1
|
Schloissnig S, Pani S, Rodriguez-Martin B, Ebler J, Hain C, Tsapalou V, Söylev A, Hüther P, Ashraf H, Prodanov T, Asparuhova M, Hunt S, Rausch T, Marschall T, Korbel JO. Long-read sequencing and structural variant characterization in 1,019 samples from the 1000 Genomes Project. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590093. [PMID: 38659906 PMCID: PMC11042266 DOI: 10.1101/2024.04.18.590093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Structural variants (SVs) contribute significantly to human genetic diversity and disease 1-4 . Previously, SVs have remained incompletely resolved by population genomics, with short-read sequencing facing limitations in capturing the whole spectrum of SVs at nucleotide resolution 5-7 . Here we leveraged nanopore sequencing 8 to construct an intermediate coverage resource of 1,019 long-read genomes sampled within 26 human populations from the 1000 Genomes Project. By integrating linear and graph-based approaches for SV analysis via pangenome graph-augmentation, we uncover 167,291 sequence-resolved SVs in these samples, considerably advancing SV characterization compared to population-wide short-read sequencing studies 3,4 . Our analysis details diverse SV classes-deletions, duplications, insertions, and inversions-at population-scale. LINE-1 and SVA retrotransposition activities frequently mediate transductions 9,10 of unique sequences, with both mobile element classes transducing sequences at either the 3'- or 5'-end, depending on the source element locus. Furthermore, analyses of SV breakpoint junctions suggest a continuum of homology-mediated rearrangement processes are integral to SV formation, and highlight evidence for SV recurrence involving repeat sequences. Our open-access dataset underscores the transformative impact of long-read sequencing in advancing the characterisation of polymorphic genomic architectures, and provides a resource for guiding variant prioritisation in future long-read sequencing-based disease studies.
Collapse
|
2
|
Kim H, Suyama M. Genome-wide identification of copy neutral loss of heterozygosity reveals its possible association with spatial positioning of chromosomes. Hum Mol Genet 2023; 32:1175-1183. [PMID: 36349694 PMCID: PMC10026252 DOI: 10.1093/hmg/ddac278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/17/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022] Open
Abstract
Loss of heterozygosity (LOH) is a genetic alteration that results from the loss of one allele at a heterozygous locus. In particular, copy neutral LOH (CN-LOH) events are generated, for example, by mitotic homologous recombination after monoallelic defection or gene conversion, resulting in novel homozygous locus having two copies of the normal counterpart allele. This phenomenon can serve as a source of genome diversity and is associated with various diseases. To clarify the nature of the CN-LOH such as the frequency, genomic distribution and inheritance pattern, we made use of whole-genome sequencing data of the three-generation CEPH/Utah family cohort, with the pedigree consisting of grandparents, parents and offspring. We identified an average of 40.7 CN-LOH events per individual taking advantage of 285 healthy individuals from 33 families in the cohort. On average 65% of them were classified as gonosomal-mosaicism-associated CN-LOH, which exists in both germline and somatic cells. We also confirmed that the incidence of the CN-LOH has little to do with the parents' age and sex. Furthermore, through the analysis of the genomic region including the CN-LOH, we found that the chance of the occurrence of the CN-LOH tends to increase at the GC-rich locus and/or on the chromosome having a relatively close inter-homolog distance. We expect that these results provide significant insights into the association between genetic alteration and spatial position of chromosomes as well as the intrinsic genetic property of the CN-LOH.
Collapse
Affiliation(s)
- Hyeonjeong Kim
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
3
|
Activation of homologous recombination in G1 preserves centromeric integrity. Nature 2021; 600:748-753. [PMID: 34853474 DOI: 10.1038/s41586-021-04200-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 11/02/2021] [Indexed: 01/01/2023]
Abstract
Centromeric integrity is key for proper chromosome segregation during cell division1. Centromeres have unique chromatin features that are essential for centromere maintenance2. Although they are intrinsically fragile and represent hotspots for chromosomal rearrangements3, little is known about how centromere integrity in response to DNA damage is preserved. DNA repair by homologous recombination requires the presence of the sister chromatid and is suppressed in the G1 phase of the cell cycle4. Here we demonstrate that DNA breaks that occur at centromeres in G1 recruit the homologous recombination machinery, despite the absence of a sister chromatid. Mechanistically, we show that the centromere-specific histone H3 variant CENP-A and its chaperone HJURP, together with dimethylation of lysine 4 in histone 3 (H3K4me2), enable a succession of events leading to the licensing of homologous recombination in G1. H3K4me2 promotes DNA-end resection by allowing DNA damage-induced centromeric transcription and increased formation of DNA-RNA hybrids. CENP-A and HJURP interact with the deubiquitinase USP11, enabling formation of the RAD51-BRCA1-BRCA2 complex5 and rendering the centromeres accessible to RAD51 recruitment and homologous recombination in G1. Finally, we show that inhibition of homologous recombination in G1 leads to centromeric instability and chromosomal translocations. Our results support a model in which licensing of homologous recombination at centromeric breaks occurs throughout the cell cycle to prevent the activation of mutagenic DNA repair pathways and preserve centromeric integrity.
Collapse
|
4
|
Fazal S, Danzi MC, Cintra VP, Bis-Brewer DM, Dolzhenko E, Eberle MA, Zuchner S. Large scale in silico characterization of repeat expansion variation in human genomes. Sci Data 2020; 7:294. [PMID: 32901039 PMCID: PMC7479135 DOI: 10.1038/s41597-020-00633-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 08/13/2020] [Indexed: 11/21/2022] Open
Abstract
Significant progress has been made in elucidating single nucleotide polymorphism diversity in the human population. However, the majority of the variation space in the genome is structural and remains partially elusive. One form of structural variation is tandem repeats (TRs). Expansion of TRs are responsible for over 40 diseases, but we hypothesize these represent only a fraction of the pathogenic repeat expansions that exist. Here we characterize long or expanded TR variation in 1,115 human genomes as well as a replication cohort of 2,504 genomes, identified using ExpansionHunter Denovo. We found that individual genomes typically harbor several rare, large TRs, generally in non-coding regions of the genome. We noticed that these large TRs are enriched in their proximity to Alu elements. The vast majority of these large TRs seem to be expansions of smaller TRs that are already present in the reference genome. We are providing this TR profile as a resource for comparison to undiagnosed rare disease genomes in order to detect novel disease-causing repeat expansions.
Collapse
Affiliation(s)
- Sarah Fazal
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Matt C Danzi
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vivian P Cintra
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dana M Bis-Brewer
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
5
|
Brown AJ, Gibson SJ, Hatton D, James DC. In silico design of context-responsive mammalian promoters with user-defined functionality. Nucleic Acids Res 2017; 45:10906-10919. [PMID: 28977454 PMCID: PMC5737543 DOI: 10.1093/nar/gkx768] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/22/2017] [Indexed: 12/19/2022] Open
Abstract
Comprehensive de novo-design of complex mammalian promoters is restricted by unpredictable combinatorial interactions between constituent transcription factor regulatory elements (TFREs). In this study, we show that modular binding sites that do not function cooperatively can be identified by analyzing host cell transcription factor expression profiles, and subsequently testing cognate TFRE activities in varying homotypic and heterotypic promoter architectures. TFREs that displayed position-insensitive, additive function within a specific expression context could be rationally combined together in silico to create promoters with highly predictable activities. As TFRE order and spacing did not affect the performance of these TFRE-combinations, compositions could be specifically arranged to preclude the formation of undesirable sequence features. This facilitated simple in silico-design of promoters with context-required, user-defined functionalities. To demonstrate this, we de novo-created promoters for biopharmaceutical production in CHO cells that exhibited precisely designed activity dynamics and long-term expression-stability, without causing observable retroactive effects on cellular performance. The design process described can be utilized for applications requiring context-responsive, customizable promoter function, particularly where co-expression of synthetic TFs is not suitable. Although the synthetic promoter structure utilized does not closely resemble native mammalian architectures, our findings also provide additional support for a flexible billboard model of promoter regulation.
Collapse
Affiliation(s)
- Adam J Brown
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield S1 3JD, UK
| | - Suzanne J Gibson
- Biopharmaceutical Development, MedImmune, Cambridge CB21 6GH, UK
| | - Diane Hatton
- Biopharmaceutical Development, MedImmune, Cambridge CB21 6GH, UK
| | - David C James
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield S1 3JD, UK
| |
Collapse
|
6
|
Keith N, Tucker AE, Jackson CE, Sung W, Lucas Lledó JI, Schrider DR, Schaack S, Dudycha JL, Ackerman M, Younge AJ, Shaw JR, Lynch M. High mutational rates of large-scale duplication and deletion in Daphnia pulex. Genome Res 2016; 26:60-9. [PMID: 26518480 PMCID: PMC4691751 DOI: 10.1101/gr.191338.115] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 10/13/2015] [Indexed: 02/06/2023]
Abstract
Knowledge of the genome-wide rate and spectrum of mutations is necessary to understand the origin of disease and the genetic variation driving all evolutionary processes. Here, we provide a genome-wide analysis of the rate and spectrum of mutations obtained in two Daphnia pulex genotypes via separate mutation-accumulation (MA) experiments. Unlike most MA studies that utilize haploid, homozygous, or self-fertilizing lines, D. pulex can be propagated ameiotically while maintaining a naturally heterozygous, diploid genome, allowing the capture of the full spectrum of genomic changes that arise in a heterozygous state. While base-substitution mutation rates are similar to those in other multicellular eukaryotes (about 4 × 10(-9) per site per generation), we find that the rates of large-scale (>100 kb) de novo copy-number variants (CNVs) are significantly elevated relative to those seen in previous MA studies. The heterozygosity maintained in this experiment allowed for estimates of gene-conversion processes. While most of the conversion tract lengths we report are similar to those generated by meiotic processes, we also find larger tract lengths that are indicative of mitotic processes. Comparison of MA lines to natural isolates reveals that a majority of large-scale CNVs in natural populations are removed by purifying selection. The mutations observed here share similarities with disease-causing, complex, large-scale CNVs, thereby demonstrating that MA studies in D. pulex serve as a system for studying the processes leading to such alterations.
Collapse
Affiliation(s)
- Nathan Keith
- School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, USA
| | - Abraham E Tucker
- Biology Department, Southern Arkansas University, Magnolia, Arkansas 71753, USA
| | - Craig E Jackson
- School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, USA
| | - Way Sung
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | - Daniel R Schrider
- Department of Genetics, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Sarah Schaack
- Biology Department, Reed College, Portland, Oregon 97202, USA
| | - Jeffry L Dudycha
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Matthew Ackerman
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - Andrew J Younge
- School of Informatics and Computing, Indiana University, Bloomington, Indiana 47405, USA
| | - Joseph R Shaw
- School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, USA; School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Michael Lynch
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
7
|
Brown AJ, James DC. Precision control of recombinant gene transcription for CHO cell synthetic biology. Biotechnol Adv 2015; 34:492-503. [PMID: 26721629 DOI: 10.1016/j.biotechadv.2015.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/11/2015] [Accepted: 12/22/2015] [Indexed: 11/30/2022]
Abstract
The next generation of mammalian cell factories for biopharmaceutical production will be genetically engineered to possess both generic and product-specific manufacturing capabilities that may not exist naturally. Introduction of entirely new combinations of synthetic functions (e.g. novel metabolic or stress-response pathways), and retro-engineering of existing functional cell modules will drive disruptive change in cellular manufacturing performance. However, before we can apply the core concepts underpinning synthetic biology (design, build, test) to CHO cell engineering we must first develop practical and robust enabling technologies. Fundamentally, we will require the ability to precisely control the relative stoichiometry of numerous functional components we simultaneously introduce into the host cell factory. In this review we discuss how this can be achieved by design of engineered promoters that enable concerted control of recombinant gene transcription. We describe the specific mechanisms of transcriptional regulation that affect promoter function during bioproduction processes, and detail the highly-specific promoter design criteria that are required in the context of CHO cell engineering. The relative applicability of diverse promoter development strategies are discussed, including re-engineering of natural sequences, design of synthetic transcription factor-based systems, and construction of synthetic promoters. This review highlights the potential of promoter engineering to achieve precision transcriptional control for CHO cell synthetic biology.
Collapse
Affiliation(s)
- Adam J Brown
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, England, United Kingdom
| | - David C James
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, England, United Kingdom.
| |
Collapse
|
8
|
Ohashi K, Takizawa F, Tokumaru N, Nakayasu C, Toda H, Fischer U, Moritomo T, Hashimoto K, Nakanishi T, Dijkstra JM. A molecule in teleost fish, related with human MHC-encoded G6F, has a cytoplasmic tail with ITAM and marks the surface of thrombocytes and in some fishes also of erythrocytes. Immunogenetics 2010; 62:543-59. [PMID: 20614118 DOI: 10.1007/s00251-010-0460-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Accepted: 06/17/2010] [Indexed: 12/15/2022]
Abstract
In teleost fish, a novel gene G6F-like was identified, encoding a type I transmembrane molecule with four extracellular Ig-like domains and a cytoplasmic tail with putative tyrosine phosphorylation motifs including YxN and an immunoreceptor tyrosine-based activation motif (ITAM). G6F-like maps to a teleost genomic region where stretches corresponding to human chromosomes 6p (with the MHC), 12p (with CD4 and LAG-3), and 19q are tightly linked. This genomic organization resembles the ancestral "Ur-MHC" proposed for the jawed vertebrate ancestor. The deduced G6F-like molecule shows sequence similarity with members of the CD4/LAG-3 family and with the human major histocompatibility complex-encoded thrombocyte marker G6F. Despite some differences in molecular organization, teleost G6F-like and tetrapod G6F seem orthologous as they map to similar genomic location, share typical motifs in transmembrane and cytoplasmic regions, and are both expressed by thrombocytes/platelets. In the crucian carps goldfish (Carassius auratus auratus) and ginbuna (Carassius auratus langsdorfii), G6F-like was found expressed not only by thrombocytes but also by erythrocytes, supporting that erythroid and thromboid cells in teleost fish form a hematopoietic lineage like they do in mammals. The ITAM-bearing of G6F-like suggests that the molecule plays an important role in cell activation, and G6F-like expression by erythrocytes suggests that these cells have functional overlap potential with thrombocytes.
Collapse
Affiliation(s)
- Ken Ohashi
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Scavetta RJ, Tautz D. Copy number changes of CNV regions in intersubspecific crosses of the house mouse. Mol Biol Evol 2010; 27:1845-56. [PMID: 20200126 DOI: 10.1093/molbev/msq064] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Copy number variation (CNV) contributes significantly to natural genetic variation within and between populations. However, the mutational mechanisms leading to CNV, as well as the processes that control the size of CNV regions, are so far not well understood. Here, we have analyzed a gene family that forms CNV regions on the X and the Y chromosomes in Mus musculus. These CNV regions show copy number differences in two subspecies, M. musculus domesticus and M. musculus musculus. Assessment of copy numbers at these loci for individuals caught in a natural hybrid zone showed copy number increases and a large variance among individuals. Crosses of natural hybrid animals among each other produced even more extreme variants with major differences in copy number in the offspring from the same parents. To assess the inheritance pattern of the loci further, we have produced F1 and backcross hybrid animals from these subspecies. We found that copy number expansions can already be traced in F1 offspring and they became stronger in the backcross individuals. Specific analysis of hybrid male offspring indicated that neither meiotic recombination nor interchromosomal exchange was required for creating these changes because the X and Y chromosomes have no homologues in males. This suggests that intrachromosomal exchanges can drive CNV and that this can occur at an elevated frequency in interspecific crosses, even within an individual. Accordingly, we find copy number mosaicism in individuals, that is, DNA from different tissues of the same individual can have different copy numbers for the loci studied. A preliminary survey of autosomal loci suggests that these can also be subject to change in hybrids. Hence, we conclude that the effects we see are not only restricted to some specific loci but may also be caused by a general induction of replication-coupled repair processes.
Collapse
Affiliation(s)
- Rick J Scavetta
- Max-Planck Institut für Evolutionsbiologie, Abteilung Evolutionsgenetik, Plön, Germany
| | | |
Collapse
|
10
|
Cutler G, Kassner PD. Copy number variation in the mouse genome: implications for the mouse as a model organism for human disease. Cytogenet Genome Res 2009; 123:297-306. [PMID: 19287168 DOI: 10.1159/000184721] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2008] [Indexed: 11/19/2022] Open
Abstract
Individuals within a species have genetic differences which ultimately result in the spectrum of phenotypic variation that we observe. Genetic variation exists at the nucleotide level in the form of single nucleotide polymorphisms (SNPs), and at a structural level as inversions, deletions and amplifications of larger stretches of nucleotides. Profiling of human and mouse genomes has identified numerous genomic segmental copy number variations (CNVs) throughout these genomes. Since inbred mice are widely used laboratory models for the study of both normal and disease biology, it is crucial that we understand the full scope of genetic variation, including CNVs, within these animals. These genetic differences can inform us about the history of a population or species, enlighten us on gene function, and guide our selection of a model system for the study of human disease.
Collapse
Affiliation(s)
- G Cutler
- Lead Discovery, Amgen, South San Francisco, CA, USA.
| | | |
Collapse
|
11
|
Ohtani M, Hayashi N, Hashimoto K, Nakanishi T, Dijkstra JM. Comprehensive clarification of two paralogous interleukin 4/13 loci in teleost fish. Immunogenetics 2008; 60:383-97. [DOI: 10.1007/s00251-008-0299-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 04/21/2008] [Indexed: 11/28/2022]
|
12
|
Rukść A, Birmingham EC, Baker MD. Altered DNA repair and recombination responses in mouse cells expressing wildtype or mutant forms of RAD51. DNA Repair (Amst) 2007; 6:1876-89. [PMID: 17719855 DOI: 10.1016/j.dnarep.2007.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 06/21/2007] [Accepted: 07/12/2007] [Indexed: 12/22/2022]
Abstract
Rad51, a homolog of Esherichia coli RecA, is a DNA-dependent ATPase that binds cooperatively to single-stranded DNA forming a nucleoprotein filament, which functions in the strand invasion step of homologous recombination. In this study, we examined DNA repair and recombination responses in mouse hybridoma cells stably expressing wildtype Rad51, or Walker box lysine variants, Rad51-K133A or Rad51-K133R, deficient in ATP binding and ATP hydrolysis, respectively. A unique feature is the recovery of stable transformants expressing Rad51-K133A. Augmentation of the endogenous pool of Rad51 by over-expression of transgene-encoded wildtype Rad51 enhances cell growth and gene targeting, but has minimal effects on cell survival to DNA damage induced by ionizing radiation (IR) or mitomycin C (MMC). Whereas expression of Rad51-K133A impedes growth, in general, neither Rad51-K133A nor Rad51-K133R significantly affected survival to IR- or MMC-induced damage, but did significantly reduce gene targeting. Expression of wildtype Rad51, Rad51-K133A or Rad51-K133R did not affect the frequency of intrachromosomal homologous recombination. However, in both gene targeting and intrachromosomal homologous recombination, wildtype and mutant Rad51 transgene expression altered the recombination mechanism: in gene targeting, wildtype Rad51 expression stimulates crossing over, while expression of Rad51-K133A or Rad51-K133R perturbs gene conversion; in intrachromosomal homologous recombination, cell lines expressing wildtype Rad51, Rad51-K133A or Rad51-K133R display increased deletion formation by intrachromosomal homologous recombination. The results suggest that ATP hydrolysis by Rad51 is more important for some homologous recombination functions than it is for other aspects of DNA repair.
Collapse
Affiliation(s)
- Ania Rukść
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
13
|
Dijkstra JM, Katagiri T, Hosomichi K, Yanagiya K, Inoko H, Ototake M, Aoki T, Hashimoto K, Shiina T. A third broad lineage of major histocompatibility complex (MHC) class I in teleost fish; MHC class II linkage and processed genes. Immunogenetics 2007; 59:305-21. [PMID: 17318646 DOI: 10.1007/s00251-007-0198-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 01/09/2007] [Indexed: 10/23/2022]
Abstract
Most of the previously studied teleost MHC class I molecules can be classified into two broad lineages: "U" and "Z/ZE." However, database reports on genes in cyprinid and salmonid fishes show that there is a third major lineage, which lacks detailed analysis so far. We designated this lineage "L" because of an intriguing linkage characteristic. Namely, one zebrafish L locus is closely linked with MHC class II loci, despite the extensively documented nonlinkage of teleost class I with class II. The L lineage consists of highly variable, nonclassical MHC class I genes, and has no apparent orthologues outside teleost fishes. Characteristics that distinguish the L lineage from most other MHC class I are (1) absence of two otherwise highly conserved tryptophan residues W51 and W60 in the alpha1 domain, (2) a low GC content of the alpha1 and alpha2 exons, and (3) an HINLTL motif including a possible glycosylation site in the alpha3 domain. In rainbow trout (Oncorhynchus mykiss) we analyzed several intact L genes in detail, including their genomic organization and transcription pattern. The gene Onmy-LAA is quite different from the genes Onmy-LBA, Onmy-LCA, Onmy-LDA, and Onmy-LEA, while the latter four are similar and categorized as "Onmy-LBA-like." Whereas the Onmy-LAA gene is organized like a canonical MHC class I gene, the Onmy-LBA-like genes are processed and lack all introns except intron 1. Onmy-LAA is predominantly expressed in the intestine, while the Onmy-LBA-like transcripts display a rather homogeneous tissue distribution. To our knowledge, this is the first description of an MHC class I lineage with multiple copies of processed genes, which are intact and transcribed. The present study significantly improves the knowledge of MHC class I variation in teleosts.
Collapse
|
14
|
Dere R, Wells RD. DM2 CCTG•CAGG Repeats are Crossover Hotspots that are More Prone to Expansions than the DM1 CTG•CAG Repeats in Escherichia coli. J Mol Biol 2006; 360:21-36. [PMID: 16753177 DOI: 10.1016/j.jmb.2006.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 04/27/2006] [Accepted: 05/04/2006] [Indexed: 12/29/2022]
Abstract
Myotonic dystrophy type 2 (DM2) is caused by the extreme expansion of the repeating tetranucleotide CCTG*CAGG sequence from <30 repeats in normal individuals to approximately 11,000 for the full mutation in certain patients. This repeat is in intron 1 of the zinc finger protein 9 gene on chromosome 3q21. Since prior work demonstrated that CTG*CAG and GAA*TTC triplet repeats (responsible for DM1 and Friedreich's ataxia, respectively) can expand by genetic recombination, we investigated the capacity of the DM2 tetranucleotide repeats to also expand during this process. Both gene conversion and unequal crossing over are attractive mechanisms to effect these very large expansions. (CCTG*CAGG)n (where n=30, 75, 114 or 160) repeats showed high recombination crossover frequencies (up to 27-fold higher than the non-repeating control) in an intramolecular plasmid system in Escherichia coli. Furthermore, a distinct orientation effect was observed where orientation II (CAGG on the leading strand template) was more prone to recombine. Expansions of up to double the length of the tetranucleotide repeats were found. Also, the repeating tetranucleotide sequence was more prone to expansions (to give lengths longer than a single repeating tract) than deletions as observed for the CTG*CAG and GAA*TTC repeats. We determined that the DM2 tetranucleotide repeats showed a lower thermodynamic stability when compared to the DM1 trinucleotide repeats, which could make them better targets for DNA repair events, thus explaining their expansion-prone behavior. Genetic studies in SOS-repair mutants revealed high frequencies of recombination crossovers although the SOS-response itself was not induced. Thus, the genetic instabilities of the CCTG*CAGG repeats may be mediated by a recombination-repair mechanism that is influenced by DNA structure.
Collapse
Affiliation(s)
- Ruhee Dere
- Institute of Biosciences and Technology, Center for Genome Research, Texas A&M University System Health Science Center, Texas Medical Center, 2121 W. Holcombe Blvd., Houston, TX 77030-3303, USA
| | | |
Collapse
|
15
|
Chen JM, Stenson PD, Cooper DN, Férec C. A systematic analysis of LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease. Hum Genet 2005; 117:411-27. [PMID: 15983781 DOI: 10.1007/s00439-005-1321-0] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Accepted: 04/04/2005] [Indexed: 10/25/2022]
Abstract
Diverse long interspersed element-1 (LINE-1 or L1)-dependent mutational mechanisms have been extensively studied with respect to L1 and Alu elements engineered for retrotransposition in cultured cells and/or in genome-wide analyses. To what extent the in vitro studies can be held to accurately reflect in vivo events in the human genome, however, remains to be clarified. We have attempted to address this question by means of a systematic analysis of recent L1-mediated retrotranspositional events that have caused human genetic disease, with a view to providing a more complete picture of how L1-mediated retrotransposition impacts upon the architecture of the human genome. A total of 48 such mutations were identified, including those described as L1-mediated retrotransposons, as well as insertions reported to contain a poly(A) tail: 26 were L1 trans-driven Alu insertions, 15 were direct L1 insertions, four were L1 trans-driven SVA insertions, and three were associated with simple poly(A) insertions. The systematic study of these lesions, when combined with previous in vitro and genome-wide analyses, has strengthened several important conclusions regarding L1-mediated retrotransposition in humans: (a) approximately 25% of L1 insertions are associated with the 3' transduction of adjacent genomic sequences, (b) approximately 25% of the new L1 inserts are full-length, (c) poly(A) tail length correlates inversely with the age of the element, and (d) the length of target site duplication in vivo is rarely longer than 20 bp. Our analysis also suggests that some 10% of L1-mediated retrotranspositional events are associated with significant genomic deletions in humans. Finally, the identification of independent retrotranspositional events that have integrated at the same genomic locations provides new insight into the L1-mediated insertional process in humans.
Collapse
Affiliation(s)
- Jian-Min Chen
- INSERM U613-Génétique Moléculaire et Génétique Epidémiologique, Etablissement Français du Sang-Bretagne, Université de Bretagne Occidentale, Centre Hospitalier Universitaire, Brest, 29220, France.
| | | | | | | |
Collapse
|
16
|
Vinogradov AE. Evolution of genome size: multilevel selection, mutation bias or dynamical chaos? Curr Opin Genet Dev 2005; 14:620-6. [PMID: 15531156 DOI: 10.1016/j.gde.2004.09.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the past two years, new data on conceptual aspects of the evolution of eukaryotic genome size have appeared, including the adaptivity of genome enlargement, the mechanisms of genome size change and the relation of genome size to organismal complexity. New data on the hypotheses of "selfish DNA" and "mutational equilibrium" have been recently obtained. A relationship is emerging between the intragenomic distribution of noncoding DNA and differential gene expression, which suggests that noncoding DNA is involved in epigenetic organization of the genome and organismal complexity. The standpoint of dynamical chaos, which integrates multilevel selection and mutation biases, may provide a framework for studying the evolution of genome size.
Collapse
Affiliation(s)
- Alexander E Vinogradov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Avenue 4, St Petersburg 194064, Russia.
| |
Collapse
|