1
|
Ozay EI, Shanthalingam S, Torres JA, Osborne BA, Tew GN, Minter LM. Protein Kinase C Theta Modulates PCMT1 through hnRNPL to Regulate FOXP3 Stability in Regulatory T Cells. Mol Ther 2020; 28:2220-2236. [PMID: 32592691 DOI: 10.1016/j.ymthe.2020.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/21/2020] [Accepted: 06/10/2020] [Indexed: 10/24/2022] Open
Abstract
T cell receptor signaling, together with cytokine-induced signals, can differentially regulate RNA processing to influence T helper versus regulatory T cell fate. Protein kinase C family members have been shown to function in alternative splicing and RNA processing in various cell types. T cell-specific protein kinase C theta, a molecular regulator of T cell receptor downstream signaling, has been shown to phosphorylate splicing factors and affect post-transcriptional control of T cell gene expression. In this study, we explored how using a synthetic cell-penetrating peptide mimic for intracellular anti-protein kinase C theta delivery fine-tunes differentiation of induced regulatory T cells through its differential effects on RNA processing. We identified protein kinase C theta signaling as a critical modulator of two key RNA regulatory factors, heterogeneous nuclear ribonucleoprotein L (hnRNPL) and protein-l-isoaspartate O-methyltransferase-1 (PCMT1), and loss of protein kinase C theta function initiated a "switch" in post-transcriptional organization in induced regulatory T cells. More interestingly, we discovered that protein-l-isoaspartate O- methyltransferase-1 acts as an instability factor in induced regulatory T cells, by methylating the forkhead box P3 (FOXP3) promoter. Targeting protein-l-isoaspartate O-methyltransferase-1 using a cell-penetrating antibody revealed an efficient means of modulating RNA processing to confer a stable regulatory T cell phenotype.
Collapse
Affiliation(s)
- E Ilker Ozay
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sudarvili Shanthalingam
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Joe A Torres
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Barbara A Osborne
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Gregory N Tew
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Lisa M Minter
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
2
|
Magomedova L, Tiefenbach J, Zilberman E, Le Billan F, Voisin V, Saikali M, Boivin V, Robitaille M, Gueroussov S, Irimia M, Ray D, Patel R, Xu C, Jeyasuria P, Bader GD, Hughes TR, Morris QD, Scott MS, Krause H, Angers S, Blencowe BJ, Cummins CL. ARGLU1 is a transcriptional coactivator and splicing regulator important for stress hormone signaling and development. Nucleic Acids Res 2019; 47:2856-2870. [PMID: 30698747 PMCID: PMC6451108 DOI: 10.1093/nar/gkz010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/21/2018] [Accepted: 01/04/2019] [Indexed: 12/17/2022] Open
Abstract
Stress hormones bind and activate the glucocorticoid receptor (GR) in many tissues including the brain. We identified arginine and glutamate rich 1 (ARGLU1) in a screen for new modulators of glucocorticoid signaling in the CNS. Biochemical studies show that the glutamate rich C-terminus of ARGLU1 coactivates multiple nuclear receptors including the glucocorticoid receptor (GR) and the arginine rich N-terminus interacts with splicing factors and binds to RNA. RNA-seq of neural cells depleted of ARGLU1 revealed significant changes in the expression and alternative splicing of distinct genes involved in neurogenesis. Loss of ARGLU1 is embryonic lethal in mice, and knockdown in zebrafish causes neurodevelopmental and heart defects. Treatment with dexamethasone, a GR activator, also induces changes in the pattern of alternatively spliced genes, many of which were lost when ARGLU1 was absent. Importantly, the genes found to be alternatively spliced in response to glucocorticoid treatment were distinct from those under transcriptional control by GR, suggesting an additional mechanism of glucocorticoid action is present in neural cells. Our results thus show that ARGLU1 is a novel factor for embryonic development that modulates basal transcription and alternative splicing in neural cells with consequences for glucocorticoid signaling.
Collapse
Affiliation(s)
- Lilia Magomedova
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Jens Tiefenbach
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Emma Zilberman
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Florian Le Billan
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Veronique Voisin
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Michael Saikali
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Vincent Boivin
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Melanie Robitaille
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Serge Gueroussov
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Manuel Irimia
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Debashish Ray
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Rucha Patel
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - ChangJiang Xu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Pancharatnam Jeyasuria
- Department of Obstetrics and Gynecology, Wayne State University Perinatal Initiative, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Gary D Bader
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Timothy R Hughes
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Quaid D Morris
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Michelle S Scott
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Henry Krause
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Stephane Angers
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada.,Department of Biochemistry,University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Benjamin J Blencowe
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| |
Collapse
|
3
|
Neumann A, Schindler M, Olofsson D, Wilhelmi I, Schürmann A, Heyd F. Genome-wide identification of alternative splicing events that regulate protein transport across the secretory pathway. J Cell Sci 2019; 132:jcs.230201. [DOI: 10.1242/jcs.230201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/09/2019] [Indexed: 01/05/2023] Open
Abstract
Alternative splicing (AS) strongly increases proteome diversity and functionality in eukaryotic cells. Protein secretion is a tightly-controlled process, especially in a tissue-specific and differentiation-dependent manner. While previous work has focussed on transcriptional and post-translational regulatory mechanisms, the impact of AS on the secretory pathway remains largely unexplored. Here we integrate a published screen for modulators of protein transport and RNA-Seq analyses to identify over 200 AS events as secretion regulators. We confirm that splicing events along all stages of the secretory pathway regulate the efficiency of membrane trafficking using Morpholinos and CRISPR/Cas9. We furthermore show that these events are highly tissue-specific and adapt the secretory pathway during T-cell activation and adipocyte differentiation. Our data substantially advance the understanding of AS functionality, add a new regulatory layer to a fundamental cell biological process and provide a resource of alternative isoforms that control the secretory pathway.
Collapse
Affiliation(s)
- Alexander Neumann
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195 Berlin, Germany
| | - Magdalena Schindler
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195 Berlin, Germany
| | - Didrik Olofsson
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195 Berlin, Germany
| | - Ilka Wilhelmi
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany
| | - Florian Heyd
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195 Berlin, Germany
| |
Collapse
|
4
|
McCuaig RD, Dunn J, Li J, Masch A, Knaute T, Schutkowski M, Zerweck J, Rao S. PKC-Theta is a Novel SC35 Splicing Factor Regulator in Response to T Cell Activation. Front Immunol 2015; 6:562. [PMID: 26594212 PMCID: PMC4633479 DOI: 10.3389/fimmu.2015.00562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/21/2015] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing of nuclear pre-mRNA is essential for generating protein diversity and regulating gene expression. While many immunologically relevant genes undergo alternative splicing, the role of regulated splicing in T cell immune responses is largely unexplored, and the signaling pathways and splicing factors that regulate alternative splicing in T cells are poorly defined. Here, we show using a combination of Jurkat T cells, human primary T cells, and ex vivo naïve and effector virus-specific T cells isolated after influenza A virus infection that SC35 phosphorylation is induced in response to stimulatory signals. We show that SC35 colocalizes with RNA polymerase II in activated T cells and spatially overlaps with H3K27ac and H3K4me3, which mark transcriptionally active genes. Interestingly, SC35 remains coupled to the active histone marks in the absence of continuing stimulatory signals. We show for the first time that nuclear PKC-θ co-exists with SC35 in the context of the chromatin template and is a key regulator of SC35 in T cells, directly phosphorylating SC35 peptide residues at RNA recognition motif and RS domains. Collectively, our findings suggest that nuclear PKC-θ is a novel regulator of the key splicing factor SC35 in T cells.
Collapse
Affiliation(s)
- Robert Duncan McCuaig
- Discipline of Biomedical Sciences, Faculty of Education, Science, Technology and Maths, University of Canberra , Canberra, ACT , Australia
| | - Jennifer Dunn
- Discipline of Biomedical Sciences, Faculty of Education, Science, Technology and Maths, University of Canberra , Canberra, ACT , Australia
| | - Jasmine Li
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne , Melbourne, VIC , Australia
| | - Antonia Masch
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Martin-Luther-University , Halle , Germany
| | | | - Mike Schutkowski
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Martin-Luther-University , Halle , Germany
| | | | - Sudha Rao
- Discipline of Biomedical Sciences, Faculty of Education, Science, Technology and Maths, University of Canberra , Canberra, ACT , Australia
| |
Collapse
|
5
|
Identification of nuclear retention domains in the RBM20 protein. FEBS Lett 2013; 587:2989-95. [PMID: 23886709 DOI: 10.1016/j.febslet.2013.07.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 07/07/2013] [Accepted: 07/15/2013] [Indexed: 11/21/2022]
Abstract
RBM20 is a nuclear protein which regulates alternative splicing of expressed genes that have a key role in cardiac function. By cloning the human and mouse RBM20 cDNA, producing expressing vectors for truncated proteins, and comparing their sub-cellular distribution in transfected cells, we have identified the sequences necessary for RBM20 full nuclear retention. The region overlaps an RNA binding motif and a serine-arginine domain. The sequence is conserved in many species but belongs only to RBM20 orthologs. The RMB20 tissue specificity, together with the properties of its nuclear localization determinant, demonstrates a specific evolutionary selection of post-transcriptional regulation factors.
Collapse
|
6
|
Harvey NT, Hughes JN, Lonic A, Yap C, Long C, Rathjen PD, Rathjen J. Response to BMP4 signalling during ES cell differentiation defines intermediates of the ectoderm lineage. J Cell Sci 2010; 123:1796-804. [PMID: 20427322 DOI: 10.1242/jcs.047530] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The formation and differentiation of multipotent precursors underlies the generation of cell diversity during mammalian development. Recognition and analysis of these transient cell populations has been hampered by technical difficulties in accessing them in vivo. In vitro model systems, based on the differentiation of embryonic stem (ES) cells, provide an alternative means of identifying and characterizing these populations. Using a previously established mouse ES-cell-based system that recapitulates the development of the ectoderm lineage we have identified a transient population that is consistent with definitive ectoderm. This previously unidentified progenitor occurs as a temporally discrete population during ES cell differentiation, and differs from the preceding and succeeding populations in gene expression and differentiation potential, with the unique ability to form surface ectoderm in response to BMP4 signalling.
Collapse
Affiliation(s)
- Nathan T Harvey
- School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA, 5005, Australia
| | | | | | | | | | | | | |
Collapse
|
7
|
Hughes JN, Dodge N, Rathjen PD, Rathjen J. A novel role for gamma-secretase in the formation of primitive streak-like intermediates from ES cells in culture. Stem Cells 2010; 27:2941-51. [PMID: 19750540 DOI: 10.1002/stem.218] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
gamma-Secretase is a membrane-associated protease with multiple intracellular targets, a number of which have been shown to influence embryonic development and embryonic stem (ES) cell differentiation. This paper describes the use of the gamma-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) to evaluate the role of gamma-secretase in the differentiation of pluripotent stem cells to the germ lineages. The addition of DAPT did not prevent the formation of primitive ectoderm-like cells from ES cells in culture. In contrast, the addition of DAPT during primitive ectoderm-like cell differentiation interfered with the ability of both serum and BMP4 to induce a primitive streak-like intermediate and resulted in the preferential formation of neurectoderm. Similarly, DAPT reduced the formation of primitive streak-like intermediates from differentiating human ES cells; the culture conditions used resulted in a population enriched in human surface ectoderm. These data suggest that gamma-secretase may form part of the general pathway by which mesoderm is specified within the primitive streak. The addition of an E-cadherin neutralizing antibody was able to partially reverse the effect of DAPT, suggesting that DAPT may be preventing the formation of primitive streak-like intermediates and promoting neurectoderm differentiation by stabilizing E-cadherin and preventing its proteolysis.
Collapse
Affiliation(s)
- James N Hughes
- School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | | | | | | |
Collapse
|
8
|
Olins AL, Rhodes G, Welch DBM, Zwerger M, Olins DE. Lamin B receptor: multi-tasking at the nuclear envelope. Nucleus 2010; 1:53-70. [PMID: 21327105 PMCID: PMC3035127 DOI: 10.4161/nucl.1.1.10515] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/01/2009] [Accepted: 11/04/2009] [Indexed: 12/11/2022] Open
Abstract
Lamin B receptor (LBR) is an integral membrane protein of the interphase nuclear envelope (NE). The N-terminal end resides in the nucleoplasm, binding to lamin B and heterochromatin, with the interactions disrupted during mitosis. The C-terminal end resides within the inner nuclear membrane, retreating with the ER away from condensing chromosomes during mitotic NE breakdown. Some of these properties are interpretable in terms of our current structural knowledge of LBR, but many of the structural features remain unknown. LBR apparently has an evolutionary history which brought together at least two ancient conserved structural domains (i.e., Tudor and sterol reductase). This convergence may have occurred with the emergence of the chordates and echinoderms. It is not clear what survival values have maintained LBR structure during evolution. But it seems likely that roles in post-mitotic nuclear reformation, interphase NE growth and compartmentalization of nuclear architecture might have provided some evolutionary advantage to preservation of the LBR gene.
Collapse
Affiliation(s)
- Ada L Olins
- Department of Biology, Bowdoin College, Brunswick, ME, USA
| | | | | | | | | |
Collapse
|
9
|
A screen for modifiers of hedgehog signaling in Drosophila melanogaster identifies swm and mts. Genetics 2008; 178:1399-413. [PMID: 18245841 DOI: 10.1534/genetics.107.081638] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Signaling by Hedgehog (Hh) proteins shapes most tissues and organs in both vertebrates and invertebrates, and its misregulation has been implicated in many human diseases. Although components of the signaling pathway have been identified, key aspects of the signaling mechanism and downstream targets remain to be elucidated. We performed an enhancer/suppressor screen in Drosophila to identify novel components of the pathway and identified 26 autosomal regions that modify a phenotypic readout of Hh signaling. Three of the regions include genes that contribute constituents to the pathway-patched, engrailed, and hh. One of the other regions includes the gene microtubule star (mts) that encodes a subunit of protein phosphatase 2A. We show that mts is necessary for full activation of Hh signaling. A second region includes the gene second mitotic wave missing (swm). swm is recessive lethal and is predicted to encode an evolutionarily conserved protein with RNA binding and Zn(+) finger domains. Characterization of newly isolated alleles indicates that swm is a negative regulator of Hh signaling and is essential for cell polarity.
Collapse
|
10
|
Hamimes S, Bourgeon D, Stasiak AZ, Stasiak A, Van Dyck E. Nucleic acid-binding properties of the RRM-containing protein RDM1. Biochem Biophys Res Commun 2006; 344:87-94. [PMID: 16630539 DOI: 10.1016/j.bbrc.2006.03.154] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 03/21/2006] [Indexed: 11/30/2022]
Abstract
RDM1 (RAD52 Motif 1) is a vertebrate protein involved in the cellular response to the anti-cancer drug cisplatin. In addition to an RNA recognition motif, RDM1 contains a small amino acid motif, named RD motif, which it shares with the recombination and repair protein, RAD52. RDM1 binds to single- and double-stranded DNA, and recognizes DNA distortions induced by cisplatin adducts in vitro. Here, we have performed an in-depth analysis of the nucleic acid-binding properties of RDM1 using gel-shift assays and electron microscopy. We show that RDM1 possesses acidic pH-dependent DNA-binding activity and that it binds RNA as well as DNA, and we present evidence from competition gel-shift experiments that RDM1 may be capable of discrimination between the two nucleic acids. Based on reported studies of RAD52, we have generated an RDM1 variant mutated in its RD motif. We find that the L119GF --> AAA mutation affects the mode of RDM1 binding to single-stranded DNA.
Collapse
Affiliation(s)
- Samia Hamimes
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon, France
| | | | | | | | | |
Collapse
|