1
|
Eigenfeld M, Lupp KFM, Schwaminger SP. Role of Natural Binding Proteins in Therapy and Diagnostics. Life (Basel) 2024; 14:630. [PMID: 38792650 PMCID: PMC11122601 DOI: 10.3390/life14050630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
This review systematically investigates the critical role of natural binding proteins (NBPs), encompassing DNA-, RNA-, carbohydrate-, fatty acid-, and chitin-binding proteins, in the realms of oncology and diagnostics. In an era where cancer continues to pose significant challenges to healthcare systems worldwide, the innovative exploration of NBPs offers a promising frontier for advancing both the diagnostic accuracy and therapeutic efficacy of cancer management strategies. This manuscript provides an in-depth examination of the unique mechanisms by which NBPs interact with specific molecular targets, highlighting their potential to revolutionize cancer diagnostics and therapy. Furthermore, it discusses the burgeoning research on aptamers, demonstrating their utility as 'nucleic acid antibodies' for targeted therapy and precision diagnostics. Despite the promising applications of NBPs and aptamers in enhancing early cancer detection and developing personalized treatment protocols, this review identifies a critical knowledge gap: the need for comprehensive studies to understand the diverse functionalities and therapeutic potentials of NBPs across different cancer types and diagnostic scenarios. By bridging this gap, this manuscript underscores the importance of NBPs and aptamers in paving the way for next-generation diagnostics and targeted cancer treatments.
Collapse
Affiliation(s)
- Marco Eigenfeld
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Kilian F. M. Lupp
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Sebastian P. Schwaminger
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
2
|
Henneman B, Erkelens AM, Heinsman J, Battjes J, Dame RT. Quantitation of DNA Binding Affinity Using Tethered Particle Motion. Methods Mol Biol 2024; 2819:497-518. [PMID: 39028521 DOI: 10.1007/978-1-0716-3930-6_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The binding constant is an important characteristic of a DNA-binding protein. A large number of methods exist to measure the binding constant, but many of those methods have intrinsic flaws that influence the outcome of the characterization. Tethered particle motion (TPM) is a simple, cheap, and high-throughput single-molecule method that can be used to measure binding constants of proteins binding to DNA reliably, provided that they distort DNA. In TPM, the motion of a bead tethered to a surface by DNA is tracked using light microscopy. A protein binding to the DNA will alter bead motion. This change in bead motion makes it possible to measure the DNA-binding properties of proteins. We use the bacterial protein integration host factor (IHF) and the archaeal histone HMfA as examples to show how specific binding to DNA can be measured. Moreover, we show how the end-to-end distance can provide structural insights into protein-DNA binding.
Collapse
Affiliation(s)
- Bram Henneman
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Amanda M Erkelens
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Joost Heinsman
- Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Julius Battjes
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands.
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
3
|
Dubrovin EV. Atomic force microscopy-based approaches for single-molecule investigation of nucleic acid- protein complexes. Biophys Rev 2023; 15:1015-1033. [PMID: 37974971 PMCID: PMC10643717 DOI: 10.1007/s12551-023-01111-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/07/2023] [Indexed: 11/19/2023] Open
Abstract
The interaction of nucleic acids with proteins plays an important role in many fundamental biological processes in living cells, including replication, transcription, and translation. Therefore, understanding nucleic acid-protein interaction is of high relevance in many areas of biology, medicine and technology. During almost four decades of its existence atomic force microscopy (AFM) accumulated a significant experience in investigation of biological molecules at a single-molecule level. AFM has become a powerful tool of molecular biology and biophysics providing unique information about properties, structure, and functioning of biomolecules. Despite a great variety of nucleic acid-protein systems under AFM investigations, there are a number of typical approaches for such studies. This review is devoted to the analysis of the typical AFM-based approaches of investigation of DNA (RNA)-protein complexes with a major focus on transcription studies. The basic strategies of AFM analysis of nucleic acid-protein complexes including investigation of the products of DNA-protein reactions and real-time dynamics of DNA-protein interaction are categorized and described by the example of the most relevant research studies. The described approaches and protocols have many universal features and, therefore, are applicable for future AFM studies of various nucleic acid-protein systems.
Collapse
Affiliation(s)
- Evgeniy V. Dubrovin
- Lomonosov Moscow State University, Leninskie Gory 1 Bld. 2, 119991 Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Institutskiy Per. 9, Dolgoprudny, 141700 Russian Federation
- Sirius University of Science and Technology, Olimpiyskiy Ave 1, Township Sirius, Krasnodar Region, 354349 Russia
| |
Collapse
|
4
|
Jayaraj A, Thayer KM, Beveridge DL, Hingorani MM. Molecular dynamics of mismatch detection-How MutS uses indirect readout to find errors in DNA. Biophys J 2023; 122:3031-3043. [PMID: 37329136 PMCID: PMC10432192 DOI: 10.1016/j.bpj.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 04/30/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023] Open
Abstract
The mismatch repair protein MutS safeguards genomic integrity by finding and initiating repair of basepairing errors in DNA. Single-molecule studies show MutS diffusing on DNA, presumably scanning for mispaired/unpaired bases, and crystal structures show a characteristic "mismatch-recognition" complex with DNA enclosed within MutS and kinked at the site of error. But how MutS goes from scanning thousands of Watson-Crick basepairs to recognizing rare mismatches remains unanswered, largely because atomic-resolution data on the search process are lacking. Here, 10 μs all-atom molecular dynamics simulations of Thermus aquaticus MutS bound to homoduplex DNA and T-bulge DNA illuminate the structural dynamics underlying the search mechanism. MutS-DNA interactions constitute a multistep mechanism to check DNA over two helical turns for its 1) shape, through contacts with the sugar-phosphate backbone, 2) conformational flexibility, through bending/unbending engineered by large-scale motions of the clamp domain, and 3) local deformability, through basepair destabilizing contacts. Thus, MutS can localize a potential target by indirect readout due to lower energetic costs of bending mismatched DNA and identify a site that distorts easily due to weaker base stacking and pairing as a mismatch. The MutS signature Phe-X-Glu motif can then lock in the mismatch-recognition complex to initiate repair.
Collapse
Affiliation(s)
- Abhilash Jayaraj
- Chemistry Department, Wesleyan University, Middletown, Connecticut.
| | - Kelly M Thayer
- Chemistry Department, Wesleyan University, Middletown, Connecticut
| | | | - Manju M Hingorani
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, Connecticut.
| |
Collapse
|
5
|
Szpotkowski K, Wójcik K, Kurzyńska-Kokorniak A. Structural studies of protein-nucleic acid complexes: A brief overview of the selected techniques. Comput Struct Biotechnol J 2023; 21:2858-2872. [PMID: 37216015 PMCID: PMC10195699 DOI: 10.1016/j.csbj.2023.04.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Protein-nucleic acid complexes are involved in all vital processes, including replication, transcription, translation, regulation of gene expression and cell metabolism. Knowledge of the biological functions and molecular mechanisms beyond the activity of the macromolecular complexes can be determined from their tertiary structures. Undoubtably, performing structural studies of protein-nucleic acid complexes is challenging, mainly because these types of complexes are often unstable. In addition, their individual components may display extremely different surface charges, causing the complexes to precipitate at higher concentrations used in many structural studies. Due to the variety of protein-nucleic acid complexes and their different biophysical properties, no simple and universal guideline exists that helps scientists chose a method to successfully determine the structure of a specific protein-nucleic acid complex. In this review, we provide a summary of the following experimental methods, which can be applied to study the structures of protein-nucleic acid complexes: X-ray and neutron crystallography, nuclear magnetic resonance (NMR) spectroscopy, cryogenic electron microscopy (cryo-EM), atomic force microscopy (AFM), small angle scattering (SAS) methods, circular dichroism (CD) and infrared (IR) spectroscopy. Each method is discussed regarding its historical context, advancements over the past decades and recent years, and weaknesses and strengths. When a single method does not provide satisfactory data on the selected protein-nucleic acid complex, a combination of several methods should be considered as a hybrid approach; thus, specific structural problems can be solved when studying protein-nucleic acid complexes.
Collapse
Affiliation(s)
- Kamil Szpotkowski
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Klaudia Wójcik
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Anna Kurzyńska-Kokorniak
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland
| |
Collapse
|
6
|
Bangalore DM, Tessmer I. Direct hOGG1-Myc interactions inhibit hOGG1 catalytic activity and recruit Myc to its promoters under oxidative stress. Nucleic Acids Res 2022; 50:10385-10398. [PMID: 36156093 PMCID: PMC9561264 DOI: 10.1093/nar/gkac796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
The base excision repair (BER) glycosylase hOGG1 (human oxoguanine glycosylase 1) is responsible for repairing oxidative lesions in the genome, in particular oxidised guanine bases (oxoG). In addition, a role of hOGG1 in transcription regulation by recruitment of various transcription factors has been reported. Here, we demonstrate direct interactions between hOGG1 and the medically important oncogene transcription factor Myc that is involved in transcription initiation of a large number of genes including inflammatory genes. Using single molecule atomic force microscopy (AFM), we reveal recruitment of Myc to its E-box promoter recognition sequence by hOGG1 specifically under oxidative stress conditions, and conformational changes in hOGG1-Myc complexes at oxoG lesions that suggest loading of Myc at oxoG lesions by hOGG1. Importantly, our data show suppression of hOGG1 catalytic activity in oxoG repair by Myc. Furthermore, mutational analyses implicate the C28 residue in hOGG1 in oxidation induced protein dimerisation and suggest a role of hOGG1 dimerisation under oxidising conditions in hOGG1-Myc interactions. From our data we develop a mechanistic model for Myc recruitment by hOGG1 under oxidising, inflammatory conditions, which may be responsible for the observed enhanced gene expression of Myc target genes.
Collapse
Affiliation(s)
- Disha M Bangalore
- Rudolf Virchow Center, University of Würzburg, Josef Schneider Str. 2, 97080 Würzburg, Germany
| | - Ingrid Tessmer
- Rudolf Virchow Center, University of Würzburg, Josef Schneider Str. 2, 97080 Würzburg, Germany
| |
Collapse
|
7
|
Rudolph J, Muthurajan UM, Palacio M, Mahadevan J, Roberts G, Erbse AH, Dyer PN, Luger K. The BRCT domain of PARP1 binds intact DNA and mediates intrastrand transfer. Mol Cell 2021; 81:4994-5006.e5. [PMID: 34919819 PMCID: PMC8769213 DOI: 10.1016/j.molcel.2021.11.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/15/2021] [Accepted: 11/12/2021] [Indexed: 12/18/2022]
Abstract
PARP1 is a key player in the response to DNA damage and is the target of clinical inhibitors for the treatment of cancers. Binding of PARP1 to damaged DNA leads to activation wherein PARP1 uses NAD+ to add chains of poly(ADP-ribose) onto itself and other nuclear proteins. PARP1 also binds abundantly to intact DNA and chromatin, where it remains enzymatically inactive. We show that intact DNA makes contacts with the PARP1 BRCT domain, which was not previously recognized as a DNA-binding domain. This binding mode does not result in the concomitant reorganization and activation of the catalytic domain. We visualize the BRCT domain bound to nucleosomal DNA by cryogenic electron microscopy and identify a key motif conserved from ancestral BRCT domains for binding phosphates on DNA and phospho-peptides. Finally, we demonstrate that the DNA-binding properties of the BRCT domain contribute to the "monkey-bar mechanism" that mediates DNA transfer of PARP1.
Collapse
Affiliation(s)
- Johannes Rudolph
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Uma M Muthurajan
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Megan Palacio
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Jyothi Mahadevan
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Genevieve Roberts
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Annette H Erbse
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Pamela N Dyer
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Karolin Luger
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA; Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
8
|
Paul D, Mu H, Tavakoli A, Dai Q, Chakraborty S, He C, Ansari A, Broyde S, Min JH. Impact of DNA sequences on DNA 'opening' by the Rad4/XPC nucleotide excision repair complex. DNA Repair (Amst) 2021; 107:103194. [PMID: 34428697 PMCID: PMC8934541 DOI: 10.1016/j.dnarep.2021.103194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 01/14/2023]
Abstract
Rad4/XPC recognizes diverse DNA lesions to initiate nucleotide excision repair (NER). However, NER propensities among lesions vary widely and repair-resistant lesions are persistent and thus highly mutagenic. Rad4 recognizes repair-proficient lesions by unwinding ('opening') the damaged DNA site. Such 'opening' is also observed on a normal DNA sequence containing consecutive C/G's (CCC/GGG) when tethered to Rad4 to prevent protein diffusion. However, it was unknown if such tethering-facilitated DNA 'opening' could occur on any DNA or if certain structures/sequences would resist being 'opened'. Here, we report that DNA containing alternating C/G's (CGC/GCG) failed to be opened even when tethered; instead, Rad4 bound in a 180°-reversed manner, capping the DNA end. Fluorescence lifetime studies of DNA conformations in solution showed that CCC/GGG exhibits local pre-melting that is absent in CGC/GCG. In MD simulations, CGC/GCG failed to engage Rad4 to promote 'opening' contrary to CCC/GGG. Altogether, our study illustrates how local sequences can impact DNA recognition by Rad4/XPC and how certain DNA sites resist being 'opened' even with Rad4 held at that site indefinitely. The contrast between CCC/GGG and CGC/GCG sequences in Rad4-DNA recognition may help decipher a lesion's mutagenicity in various genomic sequence contexts to explain lesion-determined mutational hot and cold spots.
Collapse
Affiliation(s)
- Debamita Paul
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - Hong Mu
- Department of Biology, New York University, New York, NY, 10003, USA
| | - Amirrasoul Tavakoli
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - Qing Dai
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Sagnik Chakraborty
- Department of Physics, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA; Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Anjum Ansari
- Department of Physics, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Suse Broyde
- Department of Biology, New York University, New York, NY, 10003, USA.
| | - Jung-Hyun Min
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA.
| |
Collapse
|
9
|
The selection process of licensing a DNA mismatch for repair. Nat Struct Mol Biol 2021; 28:373-381. [PMID: 33820992 DOI: 10.1038/s41594-021-00577-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 02/19/2021] [Indexed: 01/04/2023]
Abstract
DNA mismatch repair detects and removes mismatches from DNA by a conserved mechanism, reducing the error rate of DNA replication by 100- to 1,000-fold. In this process, MutS homologs scan DNA, recognize mismatches and initiate repair. How the MutS homologs selectively license repair of a mismatch among millions of matched base pairs is not understood. Here we present four cryo-EM structures of Escherichia coli MutS that provide snapshots, from scanning homoduplex DNA to mismatch binding and MutL activation via an intermediate state. During scanning, the homoduplex DNA forms a steric block that prevents MutS from transitioning into the MutL-bound clamp state, which can only be overcome through kinking of the DNA at a mismatch. Structural asymmetry in all four structures indicates a division of labor between the two MutS monomers. Together, these structures reveal how a small conformational change from the homoduplex- to heteroduplex-bound MutS acts as a licensing step that triggers a dramatic conformational change that enables MutL binding and initiation of the repair cascade.
Collapse
|
10
|
Onwubiko NO, Borst A, Diaz SA, Passkowski K, Scheffel F, Tessmer I, Nasheuer HP. SV40 T antigen interactions with ssDNA and replication protein A: a regulatory role of T antigen monomers in lagging strand DNA replication. Nucleic Acids Res 2020; 48:3657-3677. [PMID: 32128579 PMCID: PMC7144908 DOI: 10.1093/nar/gkaa138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/14/2020] [Accepted: 02/26/2020] [Indexed: 01/08/2023] Open
Abstract
DNA replication is a central process in all living organisms. Polyomavirus DNA replication serves as a model system for eukaryotic DNA replication and has considerably contributed to our understanding of basic replication mechanisms. However, the details of the involved processes are still unclear, in particular regarding lagging strand synthesis. To delineate the complex mechanism of coordination of various cellular proteins binding simultaneously or consecutively to DNA to initiate replication, we investigated single-stranded DNA (ssDNA) interactions by the SV40 large T antigen (Tag). Using single molecule imaging by atomic force microscopy (AFM) combined with biochemical and spectroscopic analyses we reveal independent activity of monomeric and oligomeric Tag in high affinity binding to ssDNA. Depending on ssDNA length, we obtain dissociation constants for Tag-ssDNA interactions (KD values of 10–30 nM) that are in the same order of magnitude as ssDNA binding by human replication protein A (RPA). Furthermore, we observe the formation of RPA-Tag-ssDNA complexes containing hexameric as well as monomeric Tag forms. Importantly, our data clearly show stimulation of primase function in lagging strand Okazaki fragment synthesis by monomeric Tag whereas hexameric Tag inhibits the reaction, redefining DNA replication initiation on the lagging strand.
Collapse
Affiliation(s)
- Nichodemus O Onwubiko
- Biochemistry, School of Natural Sciences, Center for Chromosome Biology, Biomedical SciencesBuilding, NUI Galway, New Castle Road, Galway, Ireland
| | - Angela Borst
- Rudolf Virchow Center for Experimental Biomedicine, University ofWürzburg, Josef Schneider Strasse 2, 97080 Würzburg, Germany
| | - Suraya A Diaz
- Biochemistry, School of Natural Sciences, Center for Chromosome Biology, Biomedical SciencesBuilding, NUI Galway, New Castle Road, Galway, Ireland
| | - Katharina Passkowski
- Rudolf Virchow Center for Experimental Biomedicine, University ofWürzburg, Josef Schneider Strasse 2, 97080 Würzburg, Germany
| | - Felicia Scheffel
- Rudolf Virchow Center for Experimental Biomedicine, University ofWürzburg, Josef Schneider Strasse 2, 97080 Würzburg, Germany
| | - Ingrid Tessmer
- Rudolf Virchow Center for Experimental Biomedicine, University ofWürzburg, Josef Schneider Strasse 2, 97080 Würzburg, Germany
| | - Heinz P Nasheuer
- Biochemistry, School of Natural Sciences, Center for Chromosome Biology, Biomedical SciencesBuilding, NUI Galway, New Castle Road, Galway, Ireland
| |
Collapse
|
11
|
Kaur P, Longley MJ, Pan H, Wang W, Countryman P, Wang H, Copeland WC. Single-molecule level structural dynamics of DNA unwinding by human mitochondrial Twinkle helicase. J Biol Chem 2020; 295:5564-5576. [PMID: 32213598 PMCID: PMC7186178 DOI: 10.1074/jbc.ra120.012795] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/24/2020] [Indexed: 11/06/2022] Open
Abstract
Knowledge of the molecular events in mitochondrial DNA (mtDNA) replication is crucial to understanding the origins of human disorders arising from mitochondrial dysfunction. Twinkle helicase is an essential component of mtDNA replication. Here, we employed atomic force microscopy imaging in air and liquids to visualize ring assembly, DNA binding, and unwinding activity of individual Twinkle hexamers at the single-molecule level. We observed that the Twinkle subunits self-assemble into hexamers and higher-order complexes that can switch between open and closed-ring configurations in the absence of DNA. Our analyses helped visualize Twinkle loading onto and unloading from DNA in an open-ringed configuration. They also revealed that closed-ring conformers bind and unwind several hundred base pairs of duplex DNA at an average rate of ∼240 bp/min. We found that the addition of mitochondrial single-stranded (ss) DNA-binding protein both influences the ways Twinkle loads onto defined DNA substrates and stabilizes the unwound ssDNA product, resulting in a ∼5-fold stimulation of the apparent DNA-unwinding rate. Mitochondrial ssDNA-binding protein also increased the estimated translocation processivity from 1750 to >9000 bp before helicase disassociation, suggesting that more than half of the mitochondrial genome could be unwound by Twinkle during a single DNA-binding event. The strategies used in this work provide a new platform to examine Twinkle disease variants and the core mtDNA replication machinery. They also offer an enhanced framework to investigate molecular mechanisms underlying deletion and depletion of the mitochondrial genome as observed in mitochondrial diseases.
Collapse
Affiliation(s)
- Parminder Kaur
- Physics Department, North Carolina State University, Raleigh, North Carolina 27695; Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695.
| | - Matthew J Longley
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Hai Pan
- Physics Department, North Carolina State University, Raleigh, North Carolina 27695
| | - Wendy Wang
- Physics Department, North Carolina State University, Raleigh, North Carolina 27695
| | - Preston Countryman
- Physics Department, North Carolina State University, Raleigh, North Carolina 27695
| | - Hong Wang
- Physics Department, North Carolina State University, Raleigh, North Carolina 27695; Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695; Toxicology Program, North Carolina State University, Raleigh, North Carolina 27695
| | - William C Copeland
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709.
| |
Collapse
|
12
|
Alkyltransferase-like protein clusters scan DNA rapidly over long distances and recruit NER to alkyl-DNA lesions. Proc Natl Acad Sci U S A 2020; 117:9318-9328. [PMID: 32273391 DOI: 10.1073/pnas.1916860117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alkylation of guanine bases in DNA is detrimental to cells due to its high mutagenic and cytotoxic potential and is repaired by the alkyltransferase AGT. Additionally, alkyltransferase-like proteins (ATLs), which are structurally similar to AGTs, have been identified in many organisms. While ATLs are per se catalytically inactive, strong evidence has suggested that ATLs target alkyl lesions to the nucleotide excision repair system (NER). Using a combination of single-molecule and ensemble approaches, we show here recruitment of UvrA, the initiating enzyme of prokaryotic NER, to an alkyl lesion by ATL. We further characterize lesion recognition by ATL and directly visualize DNA lesion search by highly motile ATL and ATL-UvrA complexes on DNA at the molecular level. Based on the high similarity of ATLs and the DNA-interacting domain of AGTs, our results provide important insight in the lesion search mechanism, not only by ATL but also by AGT, thus opening opportunities for controlling the action of AGT for therapeutic benefit during chemotherapy.
Collapse
|
13
|
Beckwitt EC, Jang S, Carnaval Detweiler I, Kuper J, Sauer F, Simon N, Bretzler J, Watkins SC, Carell T, Kisker C, Van Houten B. Single molecule analysis reveals monomeric XPA bends DNA and undergoes episodic linear diffusion during damage search. Nat Commun 2020; 11:1356. [PMID: 32170071 PMCID: PMC7069974 DOI: 10.1038/s41467-020-15168-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 02/16/2020] [Indexed: 11/18/2022] Open
Abstract
Nucleotide excision repair (NER) removes a wide range of DNA lesions, including UV-induced photoproducts and bulky base adducts. XPA is an essential protein in eukaryotic NER, although reports about its stoichiometry and role in damage recognition are controversial. Here, by PeakForce Tapping atomic force microscopy, we show that human XPA binds and bends DNA by ∼60° as a monomer. Furthermore, we observe XPA specificity for the helix-distorting base adduct N-(2'-deoxyguanosin-8-yl)-2-acetylaminofluorene over non-damaged dsDNA. Moreover, single molecule fluorescence microscopy reveals that DNA-bound XPA exhibits multiple modes of linear diffusion between paused phases. The presence of DNA damage increases the frequency of pausing. Truncated XPA, lacking the intrinsically disordered N- and C-termini, loses specificity for DNA lesions and shows less pausing on damaged DNA. Our data are consistent with a working model in which monomeric XPA bends DNA, displays episodic phases of linear diffusion along DNA, and pauses in response to DNA damage.
Collapse
Affiliation(s)
- Emily C Beckwitt
- Program in Molecular Biophysics and Structural Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Sunbok Jang
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | | | - Jochen Kuper
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, 97080, Würzburg, Germany
| | - Florian Sauer
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, 97080, Würzburg, Germany
| | - Nina Simon
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig Maximillian University of Munich, 81377, Munich, Germany
| | - Johanna Bretzler
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig Maximillian University of Munich, 81377, Munich, Germany
| | - Simon C Watkins
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Thomas Carell
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig Maximillian University of Munich, 81377, Munich, Germany
| | - Caroline Kisker
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, 97080, Würzburg, Germany
| | - Bennett Van Houten
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
14
|
Kaur P, Longley MJ, Pan H, Wang H, Copeland WC. Single-molecule DREEM imaging reveals DNA wrapping around human mitochondrial single-stranded DNA binding protein. Nucleic Acids Res 2019; 46:11287-11302. [PMID: 30256971 PMCID: PMC6265486 DOI: 10.1093/nar/gky875] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/18/2018] [Indexed: 01/01/2023] Open
Abstract
Improper maintenance of the mitochondrial genome progressively disrupts cellular respiration and causes severe metabolic disorders commonly termed mitochondrial diseases. Mitochondrial single-stranded DNA binding protein (mtSSB) is an essential component of the mtDNA replication machinery. We utilized single-molecule methods to examine the modes by which human mtSSB binds DNA to help define protein interactions at the mtDNA replication fork. Direct visualization of individual mtSSB molecules by atomic force microscopy (AFM) revealed a random distribution of mtSSB tetramers bound to extended regions of single-stranded DNA (ssDNA), strongly suggesting non-cooperative binding by mtSSB. Selective binding to ssDNA was confirmed by AFM imaging of individual mtSSB tetramers bound to gapped plasmid DNA substrates bearing defined single-stranded regions. Shortening of the contour length of gapped DNA upon binding mtSSB was attributed to DNA wrapping around mtSSB. Tracing the DNA path in mtSSB–ssDNA complexes with Dual-Resonance-frequency-Enhanced Electrostatic force Microscopy established a predominant binding mode with one DNA strand winding once around each mtSSB tetramer at physiological salt conditions. Single-molecule imaging suggests mtSSB may not saturate or fully protect single-stranded replication intermediates during mtDNA synthesis, leaving the mitochondrial genome vulnerable to chemical mutagenesis, deletions driven by primer relocation or other actions consistent with clinically observed deletion biases.
Collapse
Affiliation(s)
- Parminder Kaur
- Physics Department, North Carolina State University, Raleigh, North Carolina, NC 27695, USA.,Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, NC 27695, USA
| | - Matthew J Longley
- Genome Integrity and Structural Biology Laboratory, NIEHS, NIH, Research Triangle Park, NC 27709, USA
| | - Hai Pan
- Physics Department, North Carolina State University, Raleigh, North Carolina, NC 27695, USA
| | - Hong Wang
- Physics Department, North Carolina State University, Raleigh, North Carolina, NC 27695, USA.,Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, NC 27695, USA
| | - William C Copeland
- Genome Integrity and Structural Biology Laboratory, NIEHS, NIH, Research Triangle Park, NC 27709, USA
| |
Collapse
|
15
|
Durante-Rodríguez G, Gutiérrez-Del-Arroyo P, Vélez M, Díaz E, Carmona M. Further Insights into the Architecture of the PN Promoter That Controls the Expression of the bzd Genes in Azoarcus. Genes (Basel) 2019; 10:genes10070489. [PMID: 31252700 PMCID: PMC6678401 DOI: 10.3390/genes10070489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/12/2019] [Accepted: 06/26/2019] [Indexed: 12/01/2022] Open
Abstract
The anaerobic degradation of benzoate in bacteria involves the benzoyl-CoA central pathway. Azoarcus/Aromatoleum strains are a major group of anaerobic benzoate degraders, and the transcriptional regulation of the bzd genes was extensively studied in Azoarcus sp. CIB. In this work, we show that the bzdR regulatory gene and the PN promoter can also be identified upstream of the catabolic bzd operon in all benzoate-degrader Azoarcus/Aromatoleum strains whose genome sequences are currently available. All the PN promoters from Azoarcus/Aromatoleum strains described here show a conserved architecture including three operator regions (ORs), i.e., OR1 to OR3, for binding to the BzdR transcriptional repressor. Here, we demonstrate that, whereas OR1 is sufficient for the BzdR-mediated repression of the PN promoter, the presence of OR2 and OR3 is required for de-repression promoted by the benzoyl-CoA inducer molecule. Our results reveal that BzdR binds to the PN promoter in the form of four dimers, two of them binding to OR1. The BzdR/PN complex formed induces a DNA loop that wraps around the BzdR dimers and generates a superstructure that was observed by atomic force microscopy. This work provides further insights into the existence of a conserved BzdR-dependent mechanism to control the expression of the bzd genes in Azoarcus strains.
Collapse
Affiliation(s)
- Gonzalo Durante-Rodríguez
- Microbial and Plant Biotechnology Department. Centro de Investigaciones Biológicas-CSIC. Ramiro de Maeztu, 9. 28040 Madrid, Spain
| | - Paloma Gutiérrez-Del-Arroyo
- Biocatalysis Department. Institute of Catalysis and Petrochemistry-CSIC. Marie Curie, 2, Cantoblanco. 28049 Madrid, Spain
| | - Marisela Vélez
- Biocatalysis Department. Institute of Catalysis and Petrochemistry-CSIC. Marie Curie, 2, Cantoblanco. 28049 Madrid, Spain
| | - Eduardo Díaz
- Microbial and Plant Biotechnology Department. Centro de Investigaciones Biológicas-CSIC. Ramiro de Maeztu, 9. 28040 Madrid, Spain
| | - Manuel Carmona
- Microbial and Plant Biotechnology Department. Centro de Investigaciones Biológicas-CSIC. Ramiro de Maeztu, 9. 28040 Madrid, Spain.
| |
Collapse
|
16
|
Monakhova MV, Kubareva EA, Romanova EA, Semkina AS, Naberezhnov DS, Rao DN, Zatsepin TS, Oretskaya TS. Synthesis of β-Diketone DNA Derivatives for Affinity Modification of Proteins. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019020079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Kocak DD, Josephs EA, Bhandarkar V, Adkar SS, Kwon JB, Gersbach CA. Increasing the specificity of CRISPR systems with engineered RNA secondary structures. Nat Biotechnol 2019; 37:657-666. [PMID: 30988504 PMCID: PMC6626619 DOI: 10.1038/s41587-019-0095-1] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 03/11/2019] [Indexed: 12/26/2022]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeat) systems have been broadly adopted for basic science, biotechnology, and gene and cell therapy. In some cases, these bacterial nucleases have demonstrated off-target activity. This creates a potential hazard for therapeutic applications and could confound results in biological research. Therefore, improving the precision of these nucleases is of broad interest. Here we show that engineering a hairpin secondary structure onto the spacer region of single guide RNAs (hp-sgRNAs) can increase specificity by several orders of magnitude when combined with various CRISPR effectors. We first demonstrate that designed hp-sgRNAs can tune the activity of a transactivator based on Cas9 from Streptococcus pyogenes (SpCas9). We then show that hp-sgRNAs increase the specificity of gene editing using five different Cas9 or Cas12a variants. Our results demonstrate that RNA secondary structure is a fundamental parameter that can tune the activity of diverse CRISPR systems.
Collapse
Affiliation(s)
- D Dewran Kocak
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Eric A Josephs
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
- Department of Nanoscience, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Vidit Bhandarkar
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Shaunak S Adkar
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Jennifer B Kwon
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
- University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.
- Department of Surgery, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
18
|
Sukhanova MV, Hamon L, Kutuzov MM, Joshi V, Abrakhi S, Dobra I, Curmi PA, Pastre D, Lavrik OI. A Single-Molecule Atomic Force Microscopy Study of PARP1 and PARP2 Recognition of Base Excision Repair DNA Intermediates. J Mol Biol 2019; 431:2655-2673. [PMID: 31129062 DOI: 10.1016/j.jmb.2019.05.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/15/2019] [Accepted: 05/16/2019] [Indexed: 01/07/2023]
Abstract
Nuclear poly(ADP-ribose) polymerases 1 and 2 (PARP1 and PARP2) catalyze the synthesis of poly(ADP-ribose) (PAR) and use NAD+ as a substrate for the polymer synthesis. Both PARP1 and PARP2 are involved in DNA damage response pathways and function as sensors of DNA breaks, including temporary single-strand breaks formed during DNA repair. Consistently, with a role in DNA repair, PARP activation requires its binding to a damaged DNA site, which initiates PAR synthesis. Here we use atomic force microscopy to characterize at the single-molecule level the interaction of PARP1 and PARP2 with long DNA substrates containing a single damage site and representing intermediates of the short-patch base excision repair (BER) pathway. We demonstrated that PARP1 has higher affinity for early intermediates of BER than PARP2, whereas both PARPs efficiently interact with the nick and may contribute to regulation of the final ligation step. The binding of a DNA repair intermediate by PARPs involved a PARP monomer or dimer depending on the type of DNA damage. PARP dimerization influences the affinity of these proteins to DNA and affects their enzymatic activity: the dimeric form is more effective in PAR synthesis in the case of PARP2 but is less effective in the case of PARP1. PARP2 suppresses PAR synthesis catalyzed by PARP1 after single-strand breaks formation. Our study suggests that the functions of PARP1 and PARP2 overlap in BER after a site cleavage and provides evidence for a role of PARP2 in the regulation of PARP1 activity.
Collapse
Affiliation(s)
- Maria V Sukhanova
- Institute of Chemical Biology and Fundamental Medicine (ICBFM) SB RAS, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Loic Hamon
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Mikhail M Kutuzov
- Institute of Chemical Biology and Fundamental Medicine (ICBFM) SB RAS, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Vandana Joshi
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Sanae Abrakhi
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Ioana Dobra
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Patrick A Curmi
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - David Pastre
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine (ICBFM) SB RAS, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia.
| |
Collapse
|
19
|
Henneman B, Heinsman J, Battjes J, Dame RT. Quantitation of DNA-Binding Affinity Using Tethered Particle Motion. Methods Mol Biol 2019; 1837:257-275. [PMID: 30109615 DOI: 10.1007/978-1-4939-8675-0_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The binding constant is an important characteristic of a DNA-binding protein. A large number of methods exist to measure the binding constant, but many of those methods have intrinsic flaws that influence the outcome of the characterization. Tethered Particle Motion (TPM) is a simple, cheap, and high-throughput single-molecule method that can be used to reliably measure binding constants of proteins binding to DNA, provided that they distort DNA. In TPM, the motion of a bead tethered to a surface by DNA is tracked using light microscopy. A protein binding to the DNA will alter bead motion. This makes it possible to measure binding properties. We use the bacterial protein Integration Host Factor (IHF) as an example to show how specific binding to DNA can be measured. Moreover, we show a new intuitive quantitative approach to displaying data obtained via TPM.
Collapse
Affiliation(s)
- Bram Henneman
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Joost Heinsman
- Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Julius Battjes
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Remus T Dame
- Leiden Institute of Chemistry and Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
20
|
Single gold-bridged nanoprobes for identification of single point DNA mutations. Nat Commun 2019; 10:836. [PMID: 30783107 PMCID: PMC6381086 DOI: 10.1038/s41467-019-08769-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 01/23/2019] [Indexed: 01/15/2023] Open
Abstract
Consensus ranking of protein affinity to identify point mutations has not been established. Therefore, analytical techniques that can detect subtle variations without interfering with native biomolecular interactions are required. Here we report a rapid method to identify point mutations by a single nanoparticle sensing system. DNA-directed gold crystallization forms rod-like nanoparticles with bridges based on structural design. The nanoparticles enhance Rayleigh light scattering, achieving high refractive-index sensitivity, and enable the system to monitor even a small number of protein-DNA binding events without interference. Analysis of the binding affinity can compile an atlas to distinguish the potential of various point mutations recognized by MutS protein. We use the atlas to analyze the presence and type of single point mutations in BRCA1 from samples of human breast and ovarian cancer cell lines. The strategy of synthesis-by-design of plasmonic nanoparticles for sensors enables direct identification of subtle biomolecular binding distortions and genetic alterations.
Collapse
|
21
|
Mawhinney MT, Liu R, Lu F, Maksimoska J, Damico K, Marmorstein R, Lieberman PM, Urbanc B. CTCF-Induced Circular DNA Complexes Observed by Atomic Force Microscopy. J Mol Biol 2018; 430:759-776. [PMID: 29409905 DOI: 10.1016/j.jmb.2018.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 11/26/2022]
Abstract
The CTCF protein has emerged as a key architectural protein involved in genome organization. Although hypothesized to initiate DNA looping, direct evidence of CTCF-induced DNA loop formation is still missing. Several studies have shown that the 11 zinc finger (11 ZF) domain of CTCF is actively involved in DNA binding. We here use atomic force microscopy to examine the effect of the 11 ZF domain comprising residues 266-579 (11 ZF CTCF) and the 3 ZF domain comprising residues 402-494 (6-8 ZF CTCF) of human CTCF on the DNA morphology. Our results show that both domains alter the DNA architecture from the relaxed morphology observed in control DNA samples to compact circular complexes, meshes, and networks, offering important insights into the multivalent character of the 11 ZF CTCF domain. Atomic force microscopy images reveal quasi-circular DNA/CTCF complexes, which are destabilized upon replacing the 11 ZF CTCF by the 6-8 ZF CTCF domain, highlighting the role of the 11 ZF motif in loop formation. Intriguingly, the formation of circular DNA/CTCF complexes is dominated by non-specific binding, whereby contour length and height profiles suggest a single DNA molecule twice wrapped around the protein.
Collapse
Affiliation(s)
| | - Runcong Liu
- Department of Physics, Drexel University, Philadelphia, PA 19104, USA
| | - Fang Lu
- The Wistar Institute, Philadelphia, PA 19104, USA
| | - Jasna Maksimoska
- The Wistar Institute, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin Damico
- The Wistar Institute, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ronen Marmorstein
- The Wistar Institute, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Brigita Urbanc
- Department of Physics, Drexel University, Philadelphia, PA 19104, USA; Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia.
| |
Collapse
|
22
|
Countryman P, Fan Y, Gorthi A, Pan H, Strickland E, Kaur P, Wang X, Lin J, Lei X, White C, You C, Wirth N, Tessmer I, Piehler J, Riehn R, Bishop AJR, Tao YJ, Wang H. Cohesin SA2 is a sequence-independent DNA-binding protein that recognizes DNA replication and repair intermediates. J Biol Chem 2018; 293:1054-1069. [PMID: 29175904 PMCID: PMC5777247 DOI: 10.1074/jbc.m117.806406] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/22/2017] [Indexed: 11/06/2022] Open
Abstract
Proper chromosome alignment and segregation during mitosis depend on cohesion between sister chromatids, mediated by the cohesin protein complex, which also plays crucial roles in diverse genome maintenance pathways. Current models attribute DNA binding by cohesin to entrapment of dsDNA by the cohesin ring subunits (SMC1, SMC3, and RAD21 in humans). However, the biophysical properties and activities of the fourth core cohesin subunit SA2 (STAG2) are largely unknown. Here, using single-molecule atomic force and fluorescence microscopy imaging as well as fluorescence anisotropy measurements, we established that SA2 binds to both dsDNA and ssDNA, albeit with a higher binding affinity for ssDNA. We observed that SA2 can switch between the 1D diffusing (search) mode on dsDNA and stable binding (recognition) mode at ssDNA gaps. Although SA2 does not specifically bind to centromeric or telomeric sequences, it does recognize DNA structures often associated with DNA replication and double-strand break repair, such as a double-stranded end, single-stranded overhang, flap, fork, and ssDNA gap. SA2 loss leads to a defect in homologous recombination-mediated DNA double-strand break repair. These results suggest that SA2 functions at intermediate DNA structures during DNA transactions in genome maintenance pathways. These findings have important implications for understanding the function of cohesin in these pathways.
Collapse
Affiliation(s)
| | - Yanlin Fan
- the Department of BioSciences, Rice University, Houston, Texas 77251
| | - Aparna Gorthi
- the Greehey Children's Cancer Research Institute and
- Department of Cell Systems and Anatomy, University of Texas Health, San Antonio, Texas 78229
| | | | | | | | | | - Jiangguo Lin
- From the Physics Department
- the Institute of Biomechanics, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiaoying Lei
- the Department of BioSciences, Rice University, Houston, Texas 77251
- the School of Public Health, Shandong University, Jinan 250012, China
| | | | - Changjiang You
- the Division of Biophysics, Universität Osnabrück, Barbarstrasse 11, 49076 Osnabrück, Germany, and
| | - Nicolas Wirth
- the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Ingrid Tessmer
- the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Jacob Piehler
- the Division of Biophysics, Universität Osnabrück, Barbarstrasse 11, 49076 Osnabrück, Germany, and
| | | | - Alexander J R Bishop
- the Greehey Children's Cancer Research Institute and
- Department of Cell Systems and Anatomy, University of Texas Health, San Antonio, Texas 78229
| | - Yizhi Jane Tao
- the Department of BioSciences, Rice University, Houston, Texas 77251
| | - Hong Wang
- From the Physics Department,
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
23
|
Mohan Bangalore D, Tessmer I. Unique insight into protein-DNA interactions from single molecule atomic force microscopy. AIMS BIOPHYSICS 2018. [DOI: 10.3934/biophy.2018.3.194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
24
|
Rinaldi FC, Doyle LA, Stoddard BL, Bogdanove AJ. The effect of increasing numbers of repeats on TAL effector DNA binding specificity. Nucleic Acids Res 2017; 45:6960-6970. [PMID: 28460076 PMCID: PMC5499867 DOI: 10.1093/nar/gkx342] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/21/2017] [Indexed: 01/27/2023] Open
Abstract
Transcription activator-like effectors (TALEs) recognize their DNA targets via tandem repeats, each specifying a single nucleotide base in a one-to-one sequential arrangement. Due to this modularity and their ability to bind long DNA sequences with high specificity, TALEs have been used in many applications. Contributions of individual repeat-nucleotide associations to affinity and specificity have been characterized. Here, using in vitro binding assays, we examined the relationship between the number of repeats in a TALE and its affinity, for both target and non-target DNA. Each additional repeat provides extra binding energy for the target DNA, with the gain decaying exponentially such that binding energy saturates. Affinity for non-target DNA also increases non-linearly with the number of repeats, but with a slower decay of gain. The difference between the effect of length on affinity for target versus non-target DNA manifests in specificity increasing then diminishing with increasing TALE length, peaking between 15 and 19 repeats. Modeling across different hypothetical saturation levels and rates of gain decay, reflecting different repeat compositions, yielded a similar range of specificity optima. This range encompasses the mean and median length of native TALEs, suggesting that these proteins as a group have evolved for maximum specificity.
Collapse
Affiliation(s)
- Fabio C Rinaldi
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Lindsey A Doyle
- Division of Basic Sciences, Fred Hutchinson Cancer Research, Seattle, WA 98019, USA
| | - Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research, Seattle, WA 98019, USA
| | - Adam J Bogdanove
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
25
|
Kasas S, Dietler G. DNA-protein interactions explored by atomic force microscopy. Semin Cell Dev Biol 2017; 73:231-239. [PMID: 28716606 DOI: 10.1016/j.semcdb.2017.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 11/30/2022]
Abstract
DNA-protein interactions play an important role in all living organisms on Earth. The advent of atomic force microscopy permitted for the first time to follow and to characterize interaction forces between these two molecular species. After a short description of the AFM and its imaging modes we review, in a chronological order some of the studies that we think importantly contributed to the field.
Collapse
Affiliation(s)
- S Kasas
- Laboratoire de Physique de la Matière Vivante, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Plateforme de Morphologie, Faculté de Médecine, Université de Lausanne, Bugnion 9, 1005 Lausanne, Switzerland.
| | - G Dietler
- Laboratoire de Physique de la Matière Vivante, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
26
|
Beckwitt EC, Kong M, Van Houten B. Studying protein-DNA interactions using atomic force microscopy. Semin Cell Dev Biol 2017; 73:220-230. [PMID: 28673677 DOI: 10.1016/j.semcdb.2017.06.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
Abstract
Atomic force microscopy (AFM) has made significant contributions to the study of protein-DNA interactions by making it possible to topographically image biological samples. A single protein-DNA binding reaction imaged by AFM can reveal protein binding specificity and affinity, protein-induced DNA bending, and protein binding stoichiometry. Changes in DNA structure, complex conformation, and cooperativity, can also be analyzed. In this review we highlight some important examples in the literature and discuss the advantages and limitations of these measurements. We also discuss important advances in technology that will facilitate the progress of AFM in the future.
Collapse
Affiliation(s)
- Emily C Beckwitt
- Program in Molecular Biophysics and Structural Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Muwen Kong
- Program in Molecular Biophysics and Structural Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Bennett Van Houten
- Program in Molecular Biophysics and Structural Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
27
|
LeBlanc S, Wilkins H, Li Z, Kaur P, Wang H, Erie DA. Using Atomic Force Microscopy to Characterize the Conformational Properties of Proteins and Protein-DNA Complexes That Carry Out DNA Repair. Methods Enzymol 2017; 592:187-212. [PMID: 28668121 PMCID: PMC5761736 DOI: 10.1016/bs.mie.2017.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Atomic force microscopy (AFM) is a scanning probe technique that allows visualization of single biomolecules and complexes deposited on a surface with nanometer resolution. AFM is a powerful tool for characterizing protein-protein and protein-DNA interactions. It can be used to capture snapshots of protein-DNA solution dynamics, which in turn, enables the characterization of the conformational properties of transient protein-protein and protein-DNA interactions. With AFM, it is possible to determine the stoichiometries and binding affinities of protein-protein and protein-DNA associations, the specificity of proteins binding to specific sites on DNA, and the conformations of the complexes. We describe methods to prepare and deposit samples, including surface treatments for optimal depositions, and how to quantitatively analyze images. We also discuss a new electrostatic force imaging technique called DREEM, which allows the visualization of the path of DNA within proteins in protein-DNA complexes. Collectively, these methods facilitate the development of comprehensive models of DNA repair and provide a broader understanding of all protein-protein and protein-nucleic acid interactions. The structural details gleaned from analysis of AFM images coupled with biochemistry provide vital information toward establishing the structure-function relationships that govern DNA repair processes.
Collapse
Affiliation(s)
- Sharonda LeBlanc
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Hunter Wilkins
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Zimeng Li
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Parminder Kaur
- North Carolina State University, Raleigh, NC, United States
| | - Hong Wang
- North Carolina State University, Raleigh, NC, United States
| | - Dorothy A Erie
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
28
|
Gross J, Wirth N, Tessmer I. Atomic Force Microscopy Investigations of DNA Lesion Recognition in Nucleotide Excision Repair. J Vis Exp 2017:55501. [PMID: 28570512 PMCID: PMC5608143 DOI: 10.3791/55501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
AFM imaging is a powerful technique for the study of protein-DNA interactions. This single molecule method allows the simultaneous resolution of different molecules and molecular assemblies in a heterogeneous sample. In the particular context of DNA interacting protein systems, different protein complex forms and their corresponding binding positions on target sites containing DNA fragments can thus be distinguished. Here, an application of AFM to the study of DNA lesion recognition in the prokaryotic and eukaryotic nucleotide excision DNA repair (NER) systems is presented. The procedures of DNA and protein sample preparations are described and experimental as well as analytical details of the experiments are provided. The data allow important conclusions on the strategies by which target site verification may be achieved by the NER proteins. Interestingly, they indicate different approaches of lesion recognition and identification for the eukaryotic NER system, depending on the type of lesion. Furthermore, distinct structural properties of the two different helicases involved in prokaryotic and eukaryotic NER result in and explain the different strategies observed for these two systems. Importantly, these experimental and analytical approaches can be applied not only to the study of DNA repair but also very similarly to other DNA interacting protein systems such as those involved in replication or transcription processes.
Collapse
Affiliation(s)
- Jonas Gross
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg
| | - Nicolas Wirth
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg
| | - Ingrid Tessmer
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg;
| |
Collapse
|
29
|
Amidani D, Tramonti A, Canosa AV, Campanini B, Maggi S, Milano T, di Salvo ML, Pascarella S, Contestabile R, Bettati S, Rivetti C. Study of DNA binding and bending by Bacillus subtilis GabR, a PLP-dependent transcription factor. Biochim Biophys Acta Gen Subj 2016; 1861:3474-3489. [PMID: 27640111 DOI: 10.1016/j.bbagen.2016.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/02/2016] [Accepted: 09/11/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND GabR is a transcriptional regulator belonging to the MocR/GabR family, characterized by a N-terminal wHTH DNA-binding domain and a C-terminal effector binding and/or oligomerization domain, structurally homologous to aminotransferases (ATs). In the presence of γ-aminobutyrate (GABA) and pyridoxal 5'-phosphate (PLP), GabR activates the transcription of gabT and gabD genes involved in GABA metabolism. METHODS Here we report a biochemical and atomic force microscopy characterization of Bacillus subtilis GabR in complex with DNA. Complexes were assembled in vitro to study their stoichiometry, stability and conformation. RESULTS The fractional occupancy of the GabR cognate site suggests that GabR binds as a dimer with Kd of 10nM. Upon binding GabR bends the DNA by 80° as measured by anomalous electrophoretic mobility. With GABA we observed a decrease in affinity and conformational rearrangements compatible with a less compact nucleo-protein complex but no changes of the DNA bending angle. By employing promoter and GabR mutants we found that basic residues of the positively charged groove on the surface of the AT domain affect DNA affinity. CONCLUSIONS The present data extend current understanding of the GabR-DNA interaction and the effect of GABA and PLP. A model for the GabR-DNA complex, corroborated by a docking simulation, is proposed. GENERAL SIGNIFICANCE Characterization of the GabR DNA binding mode highlights the key role of DNA bending and interactions with bases outside the canonical direct repeats, and might be of general relevance for the action mechanism of MocR transcription factors.
Collapse
Affiliation(s)
- Davide Amidani
- Dipartimento di Bioscienze, Università degli Studi di Parma, Parma, Italy
| | - Angela Tramonti
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy; Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | | | | | - Stefano Maggi
- Dipartimento di Bioscienze, Università degli Studi di Parma, Parma, Italy
| | - Teresa Milano
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Martino L di Salvo
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Stefano Pascarella
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Roberto Contestabile
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Stefano Bettati
- Dipartimento di Neuroscienze, Università di Parma, Parma, Italy; National Institute of Biostructures and Biosystems, Rome, Italy
| | - Claudio Rivetti
- Dipartimento di Bioscienze, Università degli Studi di Parma, Parma, Italy.
| |
Collapse
|
30
|
Wirth N, Gross J, Roth HM, Buechner CN, Kisker C, Tessmer I. Conservation and Divergence in Nucleotide Excision Repair Lesion Recognition. J Biol Chem 2016; 291:18932-46. [PMID: 27405761 DOI: 10.1074/jbc.m116.739425] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Indexed: 11/06/2022] Open
Abstract
Nucleotide excision repair is an important and highly conserved DNA repair mechanism with an exceptionally large range of chemically and structurally unrelated targets. Lesion verification is believed to be achieved by the helicases UvrB and XPD in the prokaryotic and eukaryotic processes, respectively. Using single molecule atomic force microscopy analyses, we demonstrate that UvrB and XPD are able to load onto DNA and pursue lesion verification in the absence of the initial lesion detection proteins. Interestingly, our studies show different lesion recognition strategies for the two functionally homologous helicases, as apparent from their distinct DNA strand preferences, which can be rationalized from the different structural features and interactions with other nucleotide excision repair protein factors of the two enzymes.
Collapse
Affiliation(s)
- Nicolas Wirth
- From the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Jonas Gross
- From the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Heide M Roth
- From the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Claudia N Buechner
- From the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Caroline Kisker
- From the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Ingrid Tessmer
- From the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
31
|
Banasik M, Sachadyn P. A Colorimetric Microplate Assay for DNA-Binding Activity of His-Tagged MutS Protein. Mol Biotechnol 2016; 58:521-7. [PMID: 27241123 PMCID: PMC4992025 DOI: 10.1007/s12033-016-9949-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A simple microplate method was designed for rapid testing DNA-binding activity of proteins. The principle of the assay involves binding of tested DNA by his-tagged protein immobilized on a nickel-coated ELISA plate, following colorimetric detection of biotinylated DNA with avidin conjugated to horseradish peroxidase. The method was used to compare DNA mismatch binding activities of MutS proteins from three bacterial species. The assay required relatively low amounts of tested protein (approximately 0.5-10 pmol) and DNA (0.1-10 pmol) and a relatively short time of analysis (up to 60 min). The method is very simple to apply and convenient to test different buffer conditions of DNA-protein binding. Sensitive colorimetric detection enables naked eye observations and quantitation with an ELISA reader. The performance of the assay, which we believe is a distinguishing trait of the method, is based on two strong and specific molecular interactions: binding of a his-tagged protein to a nickel-coated microplate and binding of biotinylated DNA to avidin. In the reported experiments, the solution was used to optimize the conditions for DNA mismatch binding by MutS protein; however, the approach could be implemented to test nucleic acids interactions with any protein of interest.
Collapse
Affiliation(s)
- Michał Banasik
- Department of Molecular Biotechnology and Microbiology, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Paweł Sachadyn
- Department of Molecular Biotechnology and Microbiology, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233, Gdańsk, Poland.
| |
Collapse
|
32
|
Fan Y, Dong X, Zhong Y, Li J, Miao J, Hua S, Li Y, Cheng B, Chen W. Effects of ionic liquids on the hydrolysis of casein by lumbrokinase. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.12.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Hingorani MM. Mismatch binding, ADP-ATP exchange and intramolecular signaling during mismatch repair. DNA Repair (Amst) 2016; 38:24-31. [PMID: 26704427 PMCID: PMC4740199 DOI: 10.1016/j.dnarep.2015.11.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/08/2015] [Accepted: 11/30/2015] [Indexed: 12/16/2022]
Abstract
The focus of this article is on the DNA binding and ATPase activities of the mismatch repair (MMR) protein, MutS-our current understanding of how this protein uses ATP to fuel its actions on DNA and initiate repair via interactions with MutL, the next protein in the pathway. Structure-function and kinetic studies have yielded detailed views of the MutS mechanism of action in MMR. How MutS and MutL work together after mismatch recognition to enable strand-specific nicking, which leads to strand excision and synthesis, is less clear and remains an active area of investigation.
Collapse
|
34
|
Abstract
This article reviews atomic force microscopy (AFM) studies of DNA structure and dynamics and protein-DNA complexes, including recent advances in the visualization of protein-DNA complexes with the use of cutting-edge, high-speed AFM. Special emphasis is given to direct nanoscale visualization of dynamics of protein-DNA complexes. In the area of DNA structure and dynamics, structural studies of local non-B conformations of DNA and the interplay of local and global DNA conformations are reviewed. The application of time-lapse AFM nanoscale imaging of DNA dynamics is illustrated by studies of Holliday junction branch migration. Structure and dynamics of protein-DNA interactions include problems related to site-specific DNA recombination, DNA replication, and DNA mismatch repair. Studies involving the structure and dynamics of chromatin are also described.
Collapse
Affiliation(s)
- Yuri L. Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025
| | - Luda S. Shlyakhtenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025
| |
Collapse
|
35
|
Sukhanova MV, Abrakhi S, Joshi V, Pastre D, Kutuzov MM, Anarbaev RO, Curmi PA, Hamon L, Lavrik OI. Single molecule detection of PARP1 and PARP2 interaction with DNA strand breaks and their poly(ADP-ribosyl)ation using high-resolution AFM imaging. Nucleic Acids Res 2015; 44:e60. [PMID: 26673720 PMCID: PMC4824093 DOI: 10.1093/nar/gkv1476] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 12/05/2015] [Indexed: 12/31/2022] Open
Abstract
PARP1 and PARP2 are implicated in the synthesis of poly(ADP-ribose) (PAR) after detection of DNA damage. The specificity of PARP1 and PARP2 interaction with long DNA fragments containing single- and/or double-strand breaks (SSBs and DSBs) have been studied using atomic force microscopy (AFM) imaging in combination with biochemical approaches. Our data show that PARP1 localizes mainly on DNA breaks and exhibits a slight preference for nicks over DSBs, although the protein has a moderately high affinity for undamaged DNA. In contrast to PARP1, PARP2 is mainly detected at a single DNA nick site, exhibiting a low level of binding to undamaged DNA and DSBs. The enhancement of binding affinity of PARP2 for DNA containing a single nick was also observed using fluorescence titration. AFM studies reveal that activation of both PARPs leads to the synthesis of highly branched PAR whose size depends strongly on the presence of SSBs and DSBs for PARP1 and of SSBs for PARP2. The initial affinity between the PARP1, PARP2 and the DNA damaged site appears to influence both the size of the PAR synthesized and the time of residence of PARylated PARP1 and PARP2 on DNA damages.
Collapse
Affiliation(s)
- Maria V Sukhanova
- Institute of Chemical Biology and Fundamental Medicine, 630090, Novosibirsk, Russian Federation INSERM, U1204, Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Université d'Evry-Val-d'Essonne, F-91025 Evry, France
| | - Sanae Abrakhi
- INSERM, U1204, Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Université d'Evry-Val-d'Essonne, F-91025 Evry, France
| | - Vandana Joshi
- INSERM, U1204, Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Université d'Evry-Val-d'Essonne, F-91025 Evry, France
| | - David Pastre
- INSERM, U1204, Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Université d'Evry-Val-d'Essonne, F-91025 Evry, France
| | - Mikhail M Kutuzov
- Institute of Chemical Biology and Fundamental Medicine, 630090, Novosibirsk, Russian Federation
| | - Rashid O Anarbaev
- Institute of Chemical Biology and Fundamental Medicine, 630090, Novosibirsk, Russian Federation Novosibirsk State University, 630090, Novosibirsk, Russian Federation
| | - Patrick A Curmi
- INSERM, U1204, Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Université d'Evry-Val-d'Essonne, F-91025 Evry, France
| | - Loic Hamon
- INSERM, U1204, Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Université d'Evry-Val-d'Essonne, F-91025 Evry, France
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, 630090, Novosibirsk, Russian Federation Novosibirsk State University, 630090, Novosibirsk, Russian Federation
| |
Collapse
|
36
|
Zhang F, Shi J, Bian C, Yu X. Poly(ADP-Ribose) Mediates the BRCA2-Dependent Early DNA Damage Response. Cell Rep 2015; 13:678-689. [PMID: 26489468 DOI: 10.1016/j.celrep.2015.09.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/26/2015] [Accepted: 09/14/2015] [Indexed: 01/01/2023] Open
Abstract
Breast cancer susceptibility gene 2 (BRCA2) plays a key role in DNA damage repair for maintaining genomic stability. Previous studies have shown that BRCA2 contains three tandem oligonucleotide/oligosaccharide binding folds (OB-folds) that are involved in DNA binding during DNA double-strand break repair. However, the molecular mechanism of BRCA2 in DNA damage repair remains elusive. Unexpectedly, we found that the OB-folds of BRCA2 recognize poly(ADP-ribose) (PAR) and mediate the fast recruitment of BRCA2 to DNA lesions, which is suppressed by PARP inhibitor treatment. Cancer-associated mutations in the OB-folds of BRCA2 disrupt the interaction with PAR and abolish the fast relocation of BRCA2 to DNA lesions. The quickly recruited BRCA2 is important for the early recruitment of exonuclease 1(EXO1) and is involved in DNA end resection, the first step of homologous recombination (HR). Thus, these findings uncover a molecular mechanism by which BRCA2 participates in DNA damage repair.
Collapse
Affiliation(s)
- Feng Zhang
- College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China; Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, 1150 W. Medical Center Drive, 5560 MSRBII, Ann Arbor, MI 48109, USA
| | - Jiazhong Shi
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, 1150 W. Medical Center Drive, 5560 MSRBII, Ann Arbor, MI 48109, USA; Department of Cell Biology, the Third Military Medical University, Chongqing 400038, China
| | - Chunjing Bian
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, 1150 W. Medical Center Drive, 5560 MSRBII, Ann Arbor, MI 48109, USA; Department of Radiation Biology, Beckman Research Institute, City of Hope, Duarte, CA 91773, USA
| | - Xiaochun Yu
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, 1150 W. Medical Center Drive, 5560 MSRBII, Ann Arbor, MI 48109, USA; Department of Radiation Biology, Beckman Research Institute, City of Hope, Duarte, CA 91773, USA.
| |
Collapse
|
37
|
Zhang F, Shi J, Chen SH, Bian C, Yu X. The PIN domain of EXO1 recognizes poly(ADP-ribose) in DNA damage response. Nucleic Acids Res 2015; 43:10782-94. [PMID: 26400172 PMCID: PMC4678857 DOI: 10.1093/nar/gkv939] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 09/08/2015] [Indexed: 11/14/2022] Open
Abstract
Following DNA double-strand breaks, poly(ADP-ribose) (PAR) is quickly and heavily synthesized to mediate fast and early recruitment of a number of DNA damage response factors to the sites of DNA lesions and facilitates DNA damage repair. Here, we found that EXO1, an exonuclease for DNA damage repair, is quickly recruited to the sites of DNA damage via PAR-binding. With further dissection of the functional domains of EXO1, we report that the PIN domain of EXO1 recognizes PAR both in vitro and in vivo and the interaction between the PIN domain and PAR is sufficient for the recruitment. We also found that the R93G variant of EXO1, generated by a single nucleotide polymorphism, abolishes the interaction and the early recruitment. Moreover, our study suggests that the PAR-mediated fast recruitment of EXO1 facilities early DNA end resection, the first step of homologous recombination repair. We observed that other PIN domains could also recognize DNA damage-induced PAR. Taken together, our study demonstrates a novel class of PAR-binding module that plays an important role in DNA damage response.
Collapse
Affiliation(s)
- Feng Zhang
- College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, 1150 W. Medical Center Drive, 5560 MSRBII, Ann Arbor, MI 48109, USA
| | - Jiazhong Shi
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, 1150 W. Medical Center Drive, 5560 MSRBII, Ann Arbor, MI 48109, USA Department of Cell Biology, the Third Military Medical University, Chongqing, 400038, China
| | - Shih-Hsun Chen
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, 1150 W. Medical Center Drive, 5560 MSRBII, Ann Arbor, MI 48109, USA Department of Radiation Biology, Beckman Research Institute, City of Hope, Duarte, CA 91773, USA
| | - Chunjing Bian
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, 1150 W. Medical Center Drive, 5560 MSRBII, Ann Arbor, MI 48109, USA Department of Radiation Biology, Beckman Research Institute, City of Hope, Duarte, CA 91773, USA
| | - Xiaochun Yu
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, 1150 W. Medical Center Drive, 5560 MSRBII, Ann Arbor, MI 48109, USA Department of Radiation Biology, Beckman Research Institute, City of Hope, Duarte, CA 91773, USA
| |
Collapse
|
38
|
Josephs EA, Zheng T, Marszalek PE. Atomic force microscopy captures the initiation of methyl-directed DNA mismatch repair. DNA Repair (Amst) 2015; 35:71-84. [PMID: 26466357 DOI: 10.1016/j.dnarep.2015.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/03/2015] [Accepted: 08/14/2015] [Indexed: 12/31/2022]
Abstract
In Escherichia coli, errors in newly-replicated DNA, such as the incorporation of a nucleotide with a mis-paired base or an accidental insertion or deletion of nucleotides, are corrected by a methyl-directed mismatch repair (MMR) pathway. While the enzymology of MMR has long been established, many fundamental aspects of its mechanisms remain elusive, such as the structures, compositions, and orientations of complexes of MutS, MutL, and MutH as they initiate repair. Using atomic force microscopy, we--for the first time--record the structures and locations of individual complexes of MutS, MutL and MutH bound to DNA molecules during the initial stages of mismatch repair. This technique reveals a number of striking and unexpected structures, such as the growth and disassembly of large multimeric complexes at mismatched sites, complexes of MutS and MutL anchoring latent MutH onto hemi-methylated d(GATC) sites or bound themselves at nicks in the DNA, and complexes directly bridging mismatched and hemi-methylated d(GATC) sites by looping the DNA. The observations from these single-molecule studies provide new opportunities to resolve some of the long-standing controversies in the field and underscore the dynamic heterogeneity and versatility of MutSLH complexes in the repair process.
Collapse
Affiliation(s)
- Eric A Josephs
- Department of Mechanical Engineering and Materials Science, Edmund T. Pratt, Jr. School of Engineering, Duke University, Durham NC 27708, USA.
| | - Tianli Zheng
- Department of Mechanical Engineering and Materials Science, Edmund T. Pratt, Jr. School of Engineering, Duke University, Durham NC 27708, USA; Department of Cell Biology, Duke University Medical Center, Durham NC 27708, USA
| | - Piotr E Marszalek
- Department of Mechanical Engineering and Materials Science, Edmund T. Pratt, Jr. School of Engineering, Duke University, Durham NC 27708, USA.
| |
Collapse
|
39
|
Josephs EA, Kocak DD, Fitzgibbon CJ, McMenemy J, Gersbach CA, Marszalek PE. Structure and specificity of the RNA-guided endonuclease Cas9 during DNA interrogation, target binding and cleavage. Nucleic Acids Res 2015; 43:8924-41. [PMID: 26384421 PMCID: PMC4605321 DOI: 10.1093/nar/gkv892] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 08/26/2015] [Indexed: 01/05/2023] Open
Abstract
CRISPR-associated endonuclease Cas9 cuts DNA at variable target sites designated by a Cas9-bound RNA molecule. Cas9's ability to be directed by single 'guide RNA' molecules to target nearly any sequence has been recently exploited for a number of emerging biological and medical applications. Therefore, understanding the nature of Cas9's off-target activity is of paramount importance for its practical use. Using atomic force microscopy (AFM), we directly resolve individual Cas9 and nuclease-inactive dCas9 proteins as they bind along engineered DNA substrates. High-resolution imaging allows us to determine their relative propensities to bind with different guide RNA variants to targeted or off-target sequences. Mapping the structural properties of Cas9 and dCas9 to their respective binding sites reveals a progressive conformational transformation at DNA sites with increasing sequence similarity to its target. With kinetic Monte Carlo (KMC) simulations, these results provide evidence of a 'conformational gating' mechanism driven by the interactions between the guide RNA and the 14th-17th nucleotide region of the targeted DNA, the stabilities of which we find correlate significantly with reported off-target cleavage rates. KMC simulations also reveal potential methodologies to engineer guide RNA sequences with improved specificity by considering the invasion of guide RNAs into targeted DNA duplex.
Collapse
Affiliation(s)
- Eric A Josephs
- Department of Mechanical Engineering and Materials Science, Edmund T. Pratt, Jr. School of Engineering, Duke University, Durham, NC 27708, USA
| | - D Dewran Kocak
- Department of Biomedical Engineering, Edmund T. Pratt, Jr. School of Engineering, Duke University, Durham, NC 27708, USA
| | - Christopher J Fitzgibbon
- Department of Mechanical Engineering and Materials Science, Edmund T. Pratt, Jr. School of Engineering, Duke University, Durham, NC 27708, USA
| | - Joshua McMenemy
- Department of Biomedical Engineering, Edmund T. Pratt, Jr. School of Engineering, Duke University, Durham, NC 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Edmund T. Pratt, Jr. School of Engineering, Duke University, Durham, NC 27708, USA Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Piotr E Marszalek
- Department of Mechanical Engineering and Materials Science, Edmund T. Pratt, Jr. School of Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
40
|
Doniselli N, Rodriguez-Aliaga P, Amidani D, Bardales JA, Bustamante C, Guerra DG, Rivetti C. New insights into the regulatory mechanisms of ppGpp and DksA on Escherichia coli RNA polymerase-promoter complex. Nucleic Acids Res 2015; 43:5249-62. [PMID: 25916853 PMCID: PMC4446441 DOI: 10.1093/nar/gkv391] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 04/13/2015] [Indexed: 11/21/2022] Open
Abstract
The stringent response modulators, guanosine tetraphosphate (ppGpp) and protein DksA, bind RNA polymerase (RNAP) and regulate gene expression to adapt bacteria to different environmental conditions. Here, we use Atomic Force Microscopy and in vitro transcription assays to study the effects of these modulators on the conformation and stability of the open promoter complex (RPo) formed at the rrnA P1, rrnB P1, its discriminator (dis) variant and λ pR promoters. In the absence of modulators, RPo formed at these promoters show different extents of DNA wrapping which correlate with the position of UP elements. Addition of the modulators affects both DNA wrapping and RPo stability in a promoter-dependent manner. Overall, the results obtained under different conditions of ppGpp, DksA and initiating nucleotides (iNTPs) indicate that ppGpp allosterically prevents the conformational changes associated with an extended DNA wrapping that leads to RPo stabilization, while DksA interferes directly with nucleotide positioning into the RNAP active site. At the iNTPs-sensitive rRNA promoters ppGpp and DksA display an independent inhibitory effect, while at the iNTPs-insensitive pR promoter DksA reduces the effect of ppGpp in accordance with their antagonistic role.
Collapse
Affiliation(s)
- Nicola Doniselli
- Dipartimento di Bioscienze, Università degli Studi di Parma, Parma, Italy
| | - Piere Rodriguez-Aliaga
- Jason L. Choy Laboratory of Single Molecule Biophysics, University of California, Berkeley, CA, USA Biophysics Graduate Group, University of California, Berkeley, CA, USA Laboratorio de Moléculas Individuales, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Av Honorio Delgado 430, San Martin de Porras, Lima-31, Peru
| | - Davide Amidani
- Dipartimento di Bioscienze, Università degli Studi di Parma, Parma, Italy
| | - Jorge A Bardales
- Biophysics Graduate Group, University of California, Berkeley, CA, USA Laboratorio de Moléculas Individuales, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Av Honorio Delgado 430, San Martin de Porras, Lima-31, Peru
| | - Carlos Bustamante
- Jason L. Choy Laboratory of Single Molecule Biophysics, University of California, Berkeley, CA, USA Biophysics Graduate Group, University of California, Berkeley, CA, USA Departments of Physics, Chemistry, and Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Daniel G Guerra
- Laboratorio de Moléculas Individuales, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Av Honorio Delgado 430, San Martin de Porras, Lima-31, Peru
| | - Claudio Rivetti
- Dipartimento di Bioscienze, Università degli Studi di Parma, Parma, Italy
| |
Collapse
|
41
|
Garcia-Cordero JL, Maerkl SJ. Mechanically Induced Trapping of Molecular Interactions and Its Applications. ACTA ACUST UNITED AC 2015; 21:356-67. [PMID: 25805850 DOI: 10.1177/2211068215578586] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Indexed: 12/21/2022]
Abstract
Measuring binding affinities and association/dissociation rates of molecular interactions is important for a quantitative understanding of cellular mechanisms. Many low-throughput methods have been developed throughout the years to obtain these parameters. Acquiring data with higher accuracy and throughput is, however, necessary to characterize complex biological networks. Here, we provide an overview of a high-throughput microfluidic method based on mechanically induced trapping of molecular interactions (MITOMI). MITOMI can be used to obtain affinity constants and kinetic rates of hundreds of protein-ligand interactions in parallel. It has been used in dozens of studies to measure binding affinities of transcription factors, map protein interaction networks, identify pharmacological inhibitors, and perform high-throughput, low-cost molecular diagnostics. This article covers the technological aspects of MITOMI and its applications.
Collapse
Affiliation(s)
| | - Sebastian J Maerkl
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
42
|
Buechner CN, Maiti A, Drohat AC, Tessmer I. Lesion search and recognition by thymine DNA glycosylase revealed by single molecule imaging. Nucleic Acids Res 2015; 43:2716-29. [PMID: 25712093 PMCID: PMC4357730 DOI: 10.1093/nar/gkv139] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The ability of DNA glycosylases to rapidly and efficiently detect lesions among a vast excess of nondamaged DNA bases is vitally important in base excision repair (BER). Here, we use single molecule imaging by atomic force microscopy (AFM) supported by a 2-aminopurine fluorescence base flipping assay to study damage search by human thymine DNA glycosylase (hTDG), which initiates BER of mutagenic and cytotoxic G:T and G:U mispairs in DNA. Our data reveal an equilibrium between two conformational states of hTDG–DNA complexes, assigned as search complex (SC) and interrogation complex (IC), both at target lesions and undamaged DNA sites. Notably, for both hTDG and a second glycosylase, hOGG1, which recognizes structurally different 8-oxoguanine lesions, the conformation of the DNA in the SC mirrors innate structural properties of their respective target sites. In the IC, the DNA is sharply bent, as seen in crystal structures of hTDG lesion recognition complexes, which likely supports the base flipping required for lesion identification. Our results support a potentially general concept of sculpting of glycosylases to their targets, allowing them to exploit the energetic cost of DNA bending for initial lesion sensing, coupled with continuous (extrahelical) base interrogation during lesion search by DNA glycosylases.
Collapse
Affiliation(s)
- Claudia N Buechner
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Atanu Maiti
- Department of Biochemistry and Molecular Biology and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alexander C Drohat
- Department of Biochemistry and Molecular Biology and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ingrid Tessmer
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| |
Collapse
|
43
|
Rocha MS. Extracting physical chemistry from mechanics: a new approach to investigate DNA interactions with drugs and proteins in single molecule experiments. Integr Biol (Camb) 2015; 7:967-86. [DOI: 10.1039/c5ib00127g] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this review we focus on the idea of establishing connections between the mechanical properties of DNA–ligand complexes and the physical chemistry of DNA–ligand interactions.
Collapse
Affiliation(s)
- M. S. Rocha
- Laboratório de Física Biológica
- Departamento de Física
- Universidade Federal de Viçosa
- Viçosa
- Brazil
| |
Collapse
|
44
|
Symmetric curvature descriptors for label-free analysis of DNA. Sci Rep 2014; 4:6459. [PMID: 25248631 PMCID: PMC5377314 DOI: 10.1038/srep06459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/26/2014] [Indexed: 11/13/2022] Open
Abstract
High-resolution microscopy techniques such as electron microscopy, scanning tunnelling microscopy and atomic force microscopy represent well-established, powerful tools for the structural characterization of adsorbed DNA molecules at the nanoscale. Notably, the analysis of DNA contours allows mapping intrinsic curvature and flexibility along the molecular backbone. This is particularly suited to address the impact of the base-pairs sequence on the local conformation of the strands and plays a pivotal role for investigations relating the inherent DNA shape and flexibility to other functional properties. Here, we introduce novel chain descriptors aimed to characterize the local intrinsic curvature and flexibility of adsorbed DNA molecules with unknown orientation. They consist of stochastic functions that couple the curvatures of two nanosized segments, symmetrically placed on the DNA contour. We show that the fine mapping of the ensemble-averaged functions along the molecular backbone generates characteristic patterns of variation that highlight all pairs of tracts with large intrinsic curvature or enhanced flexibility. We demonstrate the practical applicability of the method for DNA chains imaged by atomic force microscopy. Our approach paves the way for the label-free comparative analysis of duplexes, aimed to detect nanoscale conformational changes of physical or biological relevance in large sample numbers.
Collapse
|
45
|
Lee JB, Cho WK, Park J, Jeon Y, Kim D, Lee SH, Fishel R. Single-molecule views of MutS on mismatched DNA. DNA Repair (Amst) 2014; 20:82-93. [PMID: 24629484 PMCID: PMC4245035 DOI: 10.1016/j.dnarep.2014.02.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 02/11/2014] [Accepted: 02/14/2014] [Indexed: 01/09/2023]
Abstract
Base-pair mismatches that occur during DNA replication or recombination can reduce genetic stability or conversely increase genetic diversity. The genetics and biophysical mechanism of mismatch repair (MMR) has been extensively studied since its discovery nearly 50 years ago. MMR is a strand-specific excision-resynthesis reaction that is initiated by MutS homolog (MSH) binding to the mismatched nucleotides. The MSH mismatch-binding signal is then transmitted to the immediate downstream MutL homolog (MLH/PMS) MMR components and ultimately to a distant strand scission site where excision begins. The mechanism of signal transmission has been controversial for decades. We have utilized single molecule Forster Resonance Energy Transfer (smFRET), Fluorescence Tracking (smFT) and Polarization Total Internal Reflection Fluorescence (smP-TIRF) to examine the interactions and dynamic behaviors of single Thermus aquaticus MutS (TaqMutS) particles on mismatched DNA. We determined that TaqMutS forms an incipient clamp to search for a mismatch in ~1 s intervals by 1-dimensional (1D) thermal fluctuation-driven rotational diffusion while in continuous contact with the helical duplex DNA. When MutS encounters a mismatch it lingers for ~3 s to exchange bound ADP for ATP (ADP→ATP exchange). ATP binding by TaqMutS induces an extremely stable clamp conformation (~10 min) that slides off the mismatch and moves along the adjacent duplex DNA driven simply by 1D thermal diffusion. The ATP-bound sliding clamps rotate freely while in discontinuous contact with the DNA. The visualization of a train of MSH proteins suggests that dissociation of ATP-bound sliding clamps from the mismatch permits multiple mismatch-dependent loading events. These direct observations have provided critical clues into understanding the molecular mechanism of MSH proteins during MMR.
Collapse
Affiliation(s)
- Jong-Bong Lee
- Department of Physics, POSTECH, Pohang 790-784, Republic of Korea; School of Interdisciplinary Bioscience & Bioengineering, POSTECH, Pohang 790-784, Republic of Korea.
| | - Won-Ki Cho
- Department of Physics, POSTECH, Pohang 790-784, Republic of Korea
| | - Jonghyun Park
- Department of Physics, POSTECH, Pohang 790-784, Republic of Korea
| | - Yongmoon Jeon
- Department of Physics, POSTECH, Pohang 790-784, Republic of Korea
| | - Daehyung Kim
- Department of Physics, POSTECH, Pohang 790-784, Republic of Korea
| | - Seung Hwan Lee
- School of Interdisciplinary Bioscience & Bioengineering, POSTECH, Pohang 790-784, Republic of Korea
| | - Richard Fishel
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210, United States; Physics Department, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
46
|
Meiners MJ, Tahmaseb K, Matson SW. The UvrD303 hyper-helicase exhibits increased processivity. J Biol Chem 2014; 289:17100-10. [PMID: 24798324 DOI: 10.1074/jbc.m114.565309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
DNA helicases use energy derived from nucleoside 5'-triphosphate hydrolysis to catalyze the separation of double-stranded DNA into single-stranded intermediates for replication, recombination, and repair. Escherichia coli helicase II (UvrD) functions in methyl-directed mismatch repair, nucleotide excision repair, and homologous recombination. A previously discovered 2-amino acid substitution of residues 403 and 404 (both Asp → Ala) in the 2B subdomain of UvrD (uvrD303) confers an antimutator and UV-sensitive phenotype on cells expressing this allele. The purified protein exhibits a "hyper-helicase" unwinding activity in vitro. Using rapid quench, pre-steady state kinetic experiments we show the increased helicase activity of UvrD303 is due to an increase in the processivity of the unwinding reaction. We suggest that this mutation in the 2B subdomain results in a weakened interaction with the 1B subdomain, allowing the helicase to adopt a more open conformation. This is consistent with the idea that the 2B subdomain may have an autoregulatory role. The UvrD303 mutation may enable the helicase to unwind DNA via a "strand displacement" mechanism, which is similar to the mechanism used to processively translocate along single-stranded DNA, and the increased unwinding processivity may contribute directly to the antimutator phenotype.
Collapse
Affiliation(s)
| | | | - Steven W Matson
- From the Department of Biology, Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
47
|
Erie DA, Weninger KR. Single molecule studies of DNA mismatch repair. DNA Repair (Amst) 2014; 20:71-81. [PMID: 24746644 DOI: 10.1016/j.dnarep.2014.03.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/21/2014] [Accepted: 03/22/2014] [Indexed: 11/30/2022]
Abstract
DNA mismatch repair, which involves is a widely conserved set of proteins, is essential to limit genetic drift in all organisms. The same system of proteins plays key roles in many cancer related cellular transactions in humans. Although the basic process has been reconstituted in vitro using purified components, many fundamental aspects of DNA mismatch repair remain hidden due in part to the complexity and transient nature of the interactions between the mismatch repair proteins and DNA substrates. Single molecule methods offer the capability to uncover these transient but complex interactions and allow novel insights into mechanisms that underlie DNA mismatch repair. In this review, we discuss applications of single molecule methodology including electron microscopy, atomic force microscopy, particle tracking, FRET, and optical trapping to studies of DNA mismatch repair. These studies have led to formulation of mechanistic models of how proteins identify single base mismatches in the vast background of matched DNA and signal for their repair.
Collapse
Affiliation(s)
- Dorothy A Erie
- Department of Chemistry and Curriculum in Applied Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| | - Keith R Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695, United States
| |
Collapse
|
48
|
DeRocco VC, Sass LE, Qiu R, Weninger KR, Erie DA. Dynamics of MutS-mismatched DNA complexes are predictive of their repair phenotypes. Biochemistry 2014; 53:2043-52. [PMID: 24588663 PMCID: PMC3985873 DOI: 10.1021/bi401429b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
MutS
recognizes base–base mismatches and base insertions/deletions
(IDLs) in newly replicated DNA. Specific interactions between MutS
and these errors trigger a cascade of protein–protein interactions
that ultimately lead to their repair. The inability to explain why
different DNA errors are repaired with widely varying efficiencies in vivo remains an outstanding example of our limited knowledge
of this process. Here, we present single-molecule Förster resonance
energy transfer measurements of the DNA bending dynamics induced by Thermus aquaticus MutS and the E41A mutant of MutS, which
is known to have error specific deficiencies in signaling repair.
We compared three DNA mismatches/IDLs (T-bulge, GT, and CC) with repair
efficiencies ranging from high to low. We identify three dominant
DNA bending states [slightly bent/unbent (U), intermediately
bent (I), and significantly bent (B)] and
find that the kinetics of interconverting among states varies widely
for different complexes. The increased stability of MutS–mismatch/IDL
complexes is associated with stabilization of U and lowering
of the B to U transition barrier. Destabilization
of U is always accompanied by a destabilization of B, supporting the suggestion that B is a “required”
precursor to U. Comparison of MutS and MutS-E41A dynamics
on GT and the T-bulge suggests that hydrogen bonding to MutS facilitates
the changes in base–base hydrogen bonding that are required
to achieve the U state, which has been implicated in
repair signaling. Taken together with repair propensities, our data
suggest that the bending kinetics of MutS–mismatched DNA complexes
may control the entry into functional pathways for downstream signaling
of repair.
Collapse
Affiliation(s)
- Vanessa C DeRocco
- Department of Chemistry and ‡Curriculum in Applied Sciences and Engineering, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | | | | | | | | |
Collapse
|
49
|
Seitz P, Pezeshgi Modarres H, Borgeaud S, Bulushev RD, Steinbock LJ, Radenovic A, Dal Peraro M, Blokesch M. ComEA is essential for the transfer of external DNA into the periplasm in naturally transformable Vibrio cholerae cells. PLoS Genet 2014; 10:e1004066. [PMID: 24391524 PMCID: PMC3879209 DOI: 10.1371/journal.pgen.1004066] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 11/12/2013] [Indexed: 11/18/2022] Open
Abstract
The DNA uptake of naturally competent bacteria has been attributed to the action of DNA uptake machineries resembling type IV pilus complexes. However, the protein(s) for pulling the DNA across the outer membrane of Gram-negative bacteria remain speculative. Here we show that the competence protein ComEA binds incoming DNA in the periplasm of naturally competent Vibrio cholerae cells thereby promoting DNA uptake, possibly through ratcheting and entropic forces associated with ComEA binding. Using comparative modeling and molecular simulations, we projected the 3D structure and DNA-binding site of ComEA. These in silico predictions, combined with in vivo and in vitro validations of wild-type and site-directed modified variants of ComEA, suggested that ComEA is not solely a DNA receptor protein but plays a direct role in the DNA uptake process. Furthermore, we uncovered that ComEA homologs of other bacteria (both Gram-positive and Gram-negative) efficiently compensated for the absence of ComEA in V. cholerae, suggesting that the contribution of ComEA in the DNA uptake process might be conserved among naturally competent bacteria. Horizontal gene transfer (HGT) plays a key role in transferring genetic information from one organism to another. Natural competence for transformation is one of three modes of HGT used by bacteria to promote the uptake of free DNA from the surrounding. The human pathogen Vibrio cholerae enters such a competence state upon growth on chitinous surfaces, which represent its natural niche in the aquatic environment. Whereas we have gained a reasonable understanding on how the competence phenotype is regulated in V. cholerae we are only at the beginning of deciphering the mechanistic aspects of the DNA uptake process. In this study, we characterize the competence protein ComEA. We show that ComEA is transported into the periplasm of V. cholerae and that it is required for the uptake of DNA across the outer membrane. We demonstrate that ComEA aggregates around incoming DNA in vivo and that the binding of DNA is dependent on specific residues within a conserved helix-hairpin-helix motif. We propose a model indicating that the DNA uptake process across the outer membrane might be driven through ratcheting and entropic forces associated with ComEA binding.
Collapse
Affiliation(s)
- Patrick Seitz
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Hassan Pezeshgi Modarres
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Sandrine Borgeaud
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Roman D. Bulushev
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lorenz J. Steinbock
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Matteo Dal Peraro
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
50
|
Li K, Du S, Van Ginkel S, Chen Y. Atomic Force Microscopy Study of the Interaction of DNA and Nanoparticles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 811:93-109. [DOI: 10.1007/978-94-017-8739-0_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|