1
|
Fulton MD, Yama DJ, Dahl E, Johnson JL. Hsp90 and cochaperones have two genetically distinct roles in regulating eEF2 function. PLoS Genet 2024; 20:e1011508. [PMID: 39652595 DOI: 10.1371/journal.pgen.1011508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 12/17/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Protein homeostasis relies on the accurate translation and folding of newly synthesized proteins. Eukaryotic elongation factor 2 (eEF2) promotes GTP-dependent translocation of the ribosome during translation. eEF2 folding was recently shown to be dependent on Hsp90 as well as the cochaperones Hgh1, Cns1, and Cpr7. We examined the requirement for Hsp90 and cochaperones more closely and found that Hsp90 and cochaperones have two distinct roles in regulating eEF2 function. Yeast expressing one group of Hsp90 mutations or one group of cochaperone mutations had reduced steady-state levels of eEF2. The growth of Hsp90 mutants that affected eEF2 accumulation was also negatively affected by deletion of the gene encoding Hgh1. Further, mutations in yeast eEF2 that mimic disease-associated mutations in human eEF2 were negatively impacted by loss of Hgh1 and growth of one mutant was partially rescued by overexpression of Hgh1. In contrast, yeast expressing different groups of Hsp90 mutations or a different cochaperone mutation had altered sensitivity to diphtheria toxin, which is dictated by a unique posttranslational modification on eEF2. Our results provide further evidence that Hsp90 contributes to proteostasis not just by assisting protein folding, but also by enabling accurate translation of newly synthesized proteins. In addition, these results provide further evidence that yeast Hsp90 mutants have distinct in vivo effects that correlate with defects in subsets of cochaperones.
Collapse
Affiliation(s)
- Melody D Fulton
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Danielle J Yama
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Ella Dahl
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Jill L Johnson
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| |
Collapse
|
2
|
Abstract
The term SCA refers to a phenotypically and genetically heterogeneous group of autosomal dominant spinocerebellar ataxias. Phenotypically they present as gait ataxia frequently in combination with dysarthria and oculomotor problems. Additional signs and symptoms are common and can include various pyramidal and extrapyramidal signs and intellectual impairment. Genetic causes of SCAs are either repeat expansions within disease genes or common mutations (point mutations, deletions, insertions etc.). Frequently the two types of mutations cause indistinguishable phenotypes (locus heterogeneity). This article focuses on SCAs caused by common mutations. It describes phenotype and genotype of the presently 27 types known and discusses the molecular pathogenesis in those 21 types where the disease gene has been identified. Apart from the dominant types, the article also summarizes findings in a variant caused by mutations in a mitochondrial gene. Possible common disease mechanisms are considered based on findings in the various SCAs described.
Collapse
Affiliation(s)
- Ulrich Müller
- Institute of Human Genetics, JLU-Gießen, Schlangenzahl 14, 35392, Giessen, Germany.
| |
Collapse
|
3
|
Mallory MJ, McClory SP, Chatrikhi R, Gazzara MR, Ontiveros RJ, Lynch KW. Reciprocal regulation of hnRNP C and CELF2 through translation and transcription tunes splicing activity in T cells. Nucleic Acids Res 2020; 48:5710-5719. [PMID: 32338744 PMCID: PMC7261192 DOI: 10.1093/nar/gkaa295] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/23/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
RNA binding proteins (RBPs) frequently regulate the expression of other RBPs in mammalian cells. Such cross-regulation has been proposed to be important to control networks of coordinated gene expression; however, much remains to be understood about how such networks of cross-regulation are established and what the functional consequence is of coordinated or reciprocal expression of RBPs. Here we demonstrate that the RBPs CELF2 and hnRNP C regulate the expression of each other, such that depletion of one results in reduced expression of the other. Specifically, we show that loss of hnRNP C reduces the transcription of CELF2 mRNA, while loss of CELF2 results in decreased efficiency of hnRNP C translation. We further demonstrate that this reciprocal regulation serves to fine tune the splicing patterns of many downstream target genes. Together, this work reveals new activities of hnRNP C and CELF2, provides insight into a previously unrecognized gene regulatory network, and demonstrates how cross-regulation of RBPs functions to shape the cellular transcriptome.
Collapse
Affiliation(s)
- Michael J Mallory
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sean P McClory
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rakesh Chatrikhi
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R Gazzara
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert J Ontiveros
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Martín-Villanueva S, Fernández-Pevida A, Fernández-Fernández J, Kressler D, de la Cruz J. Ubiquitin release from eL40 is required for cytoplasmic maturation and function of 60S ribosomal subunits in Saccharomyces cerevisiae. FEBS J 2019; 287:345-360. [PMID: 31306551 DOI: 10.1111/febs.14999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/23/2019] [Accepted: 07/12/2019] [Indexed: 01/13/2023]
Abstract
Ubiquitin is generated by proteolytic cleavage of precursor proteins in which it is fused either to itself, constituting a linear polyubiquitin protein of head-to-tail monomers, or as a single N-terminal moiety to one of two ribosomal proteins, eL40 (Ubi1/2 precursors) and eS31 (Ubi3 precursor). It has been proposed that the ubiquitin moiety fused to these ribosomal proteins could act as a chaperone by facilitating their efficient production, folding and ribosome assembly in Saccharomyces cerevisiae. We have previously shown that ubiquitin release from eS31 is required for yeast viability and that noncleaved Ubi3 can get incorporated into translation-competent 40S subunits. In this study, we have analysed the effects of mutations that partially or totally impair cleavage of the ubiquitin-eL40A fusion protein. While noncleaved Ubi1 is not able to support growth when it is the sole cellular source of eL40, it can assemble into nascent pre-60S particles. However, Ubi1-containing 60S ribosomal subunits are not competent for translation. This is likely due to a steric interference of the unprocessed ubiquitin with the binding and function of factors that interact with the ribosome's GTPase-associated centre. In agreement with this suggestion, Ubi1-containing ribosomes affect the efficient recycling of the anti-association factor Tif6 and have a reduced presence of translation elongation factors. We conclude that the removal of the ubiquitin moiety from ribosomal protein eL40 is an essential prerequisite for both the cytoplasmic maturation and the functionality of 60S ribosomal subunits.
Collapse
Affiliation(s)
- Sara Martín-Villanueva
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.,Departamento de Genética, Universidad de Sevilla, Spain
| | - Antonio Fernández-Pevida
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.,Departamento de Genética, Universidad de Sevilla, Spain
| | - José Fernández-Fernández
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.,Departamento de Genética, Universidad de Sevilla, Spain
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Switzerland
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.,Departamento de Genética, Universidad de Sevilla, Spain
| |
Collapse
|
5
|
Schopf FH, Huber EM, Dodt C, Lopez A, Biebl MM, Rutz DA, Mühlhofer M, Richter G, Madl T, Sattler M, Groll M, Buchner J. The Co-chaperone Cns1 and the Recruiter Protein Hgh1 Link Hsp90 to Translation Elongation via Chaperoning Elongation Factor 2. Mol Cell 2019; 74:73-87.e8. [PMID: 30876805 DOI: 10.1016/j.molcel.2019.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/17/2018] [Accepted: 02/07/2019] [Indexed: 12/31/2022]
Abstract
The Hsp90 chaperone machinery in eukaryotes comprises a number of distinct accessory factors. Cns1 is one of the few essential co-chaperones in yeast, but its structure and function remained unknown. Here, we report the X-ray structure of the Cns1 fold and NMR studies on the partly disordered, essential segment of the protein. We demonstrate that Cns1 is important for maintaining translation elongation, specifically chaperoning the elongation factor eEF2. In this context, Cns1 interacts with the novel co-factor Hgh1 and forms a quaternary complex together with eEF2 and Hsp90. The in vivo folding and solubility of eEF2 depend on the presence of these proteins. Chaperoning of eEF2 by Cns1 is essential for yeast viability and requires a defined subset of the Hsp90 machinery as well as the identified eEF2 recruiting factor Hgh1.
Collapse
Affiliation(s)
- Florian H Schopf
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Eva M Huber
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Christopher Dodt
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Abraham Lopez
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Maximilian M Biebl
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Daniel A Rutz
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Moritz Mühlhofer
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Gesa Richter
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany; Gottfried Schatz Research Center, Medical University of Graz, 8036 Graz, Austria
| | - Tobias Madl
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany; Gottfried Schatz Research Center, Medical University of Graz, 8036 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria
| | - Michael Sattler
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Michael Groll
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany.
| |
Collapse
|
6
|
Hawer H, Ütkür K, Arend M, Mayer K, Adrian L, Brinkmann U, Schaffrath R. Importance of diphthamide modified EF2 for translational accuracy and competitive cell growth in yeast. PLoS One 2018; 13:e0205870. [PMID: 30335802 PMCID: PMC6193676 DOI: 10.1371/journal.pone.0205870] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/02/2018] [Indexed: 01/23/2023] Open
Abstract
In eukaryotes, the modification of an invariant histidine (His-699 in yeast) residue in translation elongation factor 2 (EF2) with diphthamide involves a conserved pathway encoded by the DPH1-DPH7 gene network. Diphthamide is the target for diphtheria toxin and related lethal ADP ribosylases, which collectively kill cells by inactivating the essential translocase function of EF2 during mRNA translation and protein biosynthesis. Although this notion emphasizes the pathological importance of diphthamide, precisely why cells including our own require EF2 to carry it, is unclear. Mining the synthetic genetic array (SGA) landscape from the budding yeast Saccharomyces cerevisiae has revealed negative interactions between EF2 (EFT1-EFT2) and diphthamide (DPH1-DPH7) gene deletions. In line with these correlations, we confirm in here that loss of diphthamide modification (dphΔ) on EF2 combined with EF2 undersupply (eft2Δ) causes synthetic growth phenotypes in the composite mutant (dphΔ eft2Δ). These reflect negative interference with cell performance under standard as well as thermal and/or chemical stress conditions, cell growth rates and doubling times, competitive fitness, cell viability in the presence of TOR inhibitors (rapamycin, caffeine) and translation indicator drugs (hygromycin, anisomycin). Together with significantly suppressed tolerance towards EF2 inhibition by cytotoxic DPH5 overexpression and increased ribosomal -1 frame-shift errors in mutants lacking modifiable pools of EF2 (dphΔ, dphΔ eft2Δ), our data indicate that diphthamide is important for the fidelity of the EF2 translocation function during mRNA translation.
Collapse
Affiliation(s)
- Harmen Hawer
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
| | - Koray Ütkür
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
| | - Meike Arend
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
| | - Klaus Mayer
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center München, Penzberg, Germany
| | - Lorenz Adrian
- AG Geobiochemie, Department Isotopenbiogeochemie, Helmholtz-Zentrum für Umweltforschung GmbH–UFZ, Leipzig, Germany
- Fachgebiet Geobiotechnologie, Technische Universität Berlin, Berlin, Germany
| | - Ulrich Brinkmann
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center München, Penzberg, Germany
| | - Raffael Schaffrath
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
- * E-mail:
| |
Collapse
|
7
|
Bernabò P, Tebaldi T, Groen EJN, Lane FM, Perenthaler E, Mattedi F, Newbery HJ, Zhou H, Zuccotti P, Potrich V, Shorrock HK, Muntoni F, Quattrone A, Gillingwater TH, Viero G. In Vivo Translatome Profiling in Spinal Muscular Atrophy Reveals a Role for SMN Protein in Ribosome Biology. Cell Rep 2018; 21:953-965. [PMID: 29069603 PMCID: PMC5668566 DOI: 10.1016/j.celrep.2017.10.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/22/2017] [Accepted: 10/02/2017] [Indexed: 12/13/2022] Open
Abstract
Genetic alterations impacting ubiquitously expressed proteins involved in RNA metabolism often result in neurodegenerative conditions, with increasing evidence suggesting that translation defects can contribute to disease. Spinal muscular atrophy (SMA) is a neuromuscular disease caused by low levels of SMN protein, whose role in pathogenesis remains unclear. Here, we identified in vivo and in vitro translation defects that are cell autonomous and SMN dependent. By determining in parallel the in vivo transcriptome and translatome in SMA mice, we observed a robust decrease in translation efficiency arising during early stages of disease. We provide a catalogue of RNAs with altered translation efficiency, identifying ribosome biology and translation as central processes affected by SMN depletion. This was further supported by a decrease in the number of ribosomes in SMA motor neurons in vivo. Overall, our findings suggest ribosome biology as an important, yet largely overlooked, factor in motor neuron degeneration. Polysomal profiling reveals translation defects in SMA mice Translation defects are SMN dependent and cell autonomous Translation efficiency alterations highlight defects in ribosome biology The number of axonal ribosomes is decreased in SMA in vivo
Collapse
Affiliation(s)
- Paola Bernabò
- Institute of Biophysics, CNR Unit at Trento, Via Sommarive 18, 38123 Povo (Trento), Italy
| | - Toma Tebaldi
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123 Povo (Trento), Italy
| | - Ewout J N Groen
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Hugh Robson Building, 15 George Square, EH8 9XD Edinburgh, UK; Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, EH8 9XD Edinburgh, UK
| | - Fiona M Lane
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Hugh Robson Building, 15 George Square, EH8 9XD Edinburgh, UK; Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, EH8 9XD Edinburgh, UK
| | - Elena Perenthaler
- Institute of Biophysics, CNR Unit at Trento, Via Sommarive 18, 38123 Povo (Trento), Italy
| | - Francesca Mattedi
- Institute of Biophysics, CNR Unit at Trento, Via Sommarive 18, 38123 Povo (Trento), Italy
| | - Helen J Newbery
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Hugh Robson Building, 15 George Square, EH8 9XD Edinburgh, UK; Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, EH8 9XD Edinburgh, UK
| | - Haiyan Zhou
- Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, University College London 30, Guilford Street, WC1N 1EH London, UK
| | - Paola Zuccotti
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123 Povo (Trento), Italy
| | - Valentina Potrich
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123 Povo (Trento), Italy
| | - Hannah K Shorrock
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Hugh Robson Building, 15 George Square, EH8 9XD Edinburgh, UK; Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, EH8 9XD Edinburgh, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, University College London 30, Guilford Street, WC1N 1EH London, UK
| | - Alessandro Quattrone
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123 Povo (Trento), Italy.
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Hugh Robson Building, 15 George Square, EH8 9XD Edinburgh, UK; Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, EH8 9XD Edinburgh, UK.
| | - Gabriella Viero
- Institute of Biophysics, CNR Unit at Trento, Via Sommarive 18, 38123 Povo (Trento), Italy.
| |
Collapse
|
8
|
Mechanism and Regulation of Protein Synthesis in Saccharomyces cerevisiae. Genetics 2017; 203:65-107. [PMID: 27183566 DOI: 10.1534/genetics.115.186221] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/24/2016] [Indexed: 12/18/2022] Open
Abstract
In this review, we provide an overview of protein synthesis in the yeast Saccharomyces cerevisiae The mechanism of protein synthesis is well conserved between yeast and other eukaryotes, and molecular genetic studies in budding yeast have provided critical insights into the fundamental process of translation as well as its regulation. The review focuses on the initiation and elongation phases of protein synthesis with descriptions of the roles of translation initiation and elongation factors that assist the ribosome in binding the messenger RNA (mRNA), selecting the start codon, and synthesizing the polypeptide. We also examine mechanisms of translational control highlighting the mRNA cap-binding proteins and the regulation of GCN4 and CPA1 mRNAs.
Collapse
|
9
|
Horikawa W, Endo K, Wada M, Ito K. Mutations in the G-domain of Ski7 cause specific dysfunction in non-stop decay. Sci Rep 2016; 6:29295. [PMID: 27381255 PMCID: PMC4933942 DOI: 10.1038/srep29295] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 06/17/2016] [Indexed: 11/10/2022] Open
Abstract
Ski7 functions as a cofactor in both normal mRNA turnover and non-stop mRNA decay (NSD) mRNA surveillance in budding yeast. The N-terminal region of Ski7 (Ski7N) interacts with the ski-complex and the exosome. The C-terminal region of Ski7 (Ski7C) binds guanine nucleotides and shares overall sequence and structural homology with the proteins of the translational GTPase superfamily, especially the tRNA/tRNA-mimic carrier protein subfamilies such as EF1α, eRF3, and Hbs1. Previous reports showed that Ski7N polypeptide functions adequately in vivo, while Ski7C, if any, only slightly. Furthermore, Ski7C does not exhibit GTP-hydrolysing activities under normal conditions. Therefore, the physiological and functional significance of the conserved Ski7C is unclear. Here, we report strong genetic evidence suggesting differential roles for Ski7N and Ski7C in normal and specific mRNA turnover pathways by creating/isolating mutations in both Ski7N and Ski7C conserved motifs using indicator yeast strains. We concluded that Ski7C participates in mRNA surveillance as a regulatory module competitively with the Hbs1/Dom34 complex. Our results provide insights into the molecular regulatory mechanisms underlying mRNA surveillance.
Collapse
Affiliation(s)
- Wataru Horikawa
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba 277-8562, Japan.,Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Kei Endo
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba 277-8562, Japan
| | - Miki Wada
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba 277-8562, Japan.,Technical office, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Koichi Ito
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba 277-8562, Japan
| |
Collapse
|
10
|
Michalska M, Wolf P. Pseudomonas Exotoxin A: optimized by evolution for effective killing. Front Microbiol 2015; 6:963. [PMID: 26441897 PMCID: PMC4584936 DOI: 10.3389/fmicb.2015.00963] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/31/2015] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas Exotoxin A (PE) is the most toxic virulence factor of the pathogenic bacterium Pseudomonas aeruginosa. This review describes current knowledge about the intoxication pathways of PE. Moreover, PE represents a remarkable example for pathoadaptive evolution, how bacterial molecules have been structurally and functionally optimized under evolutionary pressure to effectively impair and kill their host cells.
Collapse
Affiliation(s)
- Marta Michalska
- Department of Urology, Medical Center, University of Freiburg Freiburg, Germany
| | - Philipp Wolf
- Department of Urology, Medical Center, University of Freiburg Freiburg, Germany
| |
Collapse
|
11
|
Bernabò P, Lunelli L, Quattrone A, Jousson O, Lencioni V, Viero G. Studying translational control in non-model stressed organisms by polysomal profiling. JOURNAL OF INSECT PHYSIOLOGY 2015; 76:30-35. [PMID: 25796968 DOI: 10.1016/j.jinsphys.2015.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/30/2015] [Accepted: 03/15/2015] [Indexed: 06/04/2023]
Abstract
In stressed organisms, strategic proteins are selectively translated even if the global process of protein synthesis is compromised. The determination of protein concentrations in tissues of non-model organisms (thus with limited genomic information) is challenging due to the absence of specific antibodies. Moreover, estimating protein levels quantifying transcriptional responses may be misleading, because translational control mechanisms uncouple protein and mRNAs abundances. Translational control is increasingly recognized as a hub where regulation of gene expression converges to shape proteomes, but it is almost completely overlooked in molecular ecology studies. An interesting approach to study translation and its control mechanisms is the analysis of variations of gene-specific translational efficiencies by quantifying mRNAs associated to ribosomes. In this paper, we propose a robust and streamlined pipeline for purifying ribosome-associated mRNAs and calculating global and gene-specific translation efficiencies from non-model insect's species. This method might found applications in molecular ecology to study responses to environmental stressors in non-model organisms.
Collapse
Affiliation(s)
- Paola Bernabò
- Institute of Biophysics, CNR Unit at Trento, Italy; Centre for Integrative Biology, Mattarello, Trento, Italy; Section of Invertebrate Zoology and Hydrobiology, MUSE-Museo delle Scienze, Trento, Italy
| | - Lorenzo Lunelli
- Laboratory of Biomolecular Sequence and Structure Analysis for Health, Fondazione Bruno Kessler, Trento, Italy
| | | | | | - Valeria Lencioni
- Section of Invertebrate Zoology and Hydrobiology, MUSE-Museo delle Scienze, Trento, Italy
| | | |
Collapse
|
12
|
Schaffrath R, Abdel-Fattah W, Klassen R, Stark MJR. The diphthamide modification pathway from Saccharomyces cerevisiae--revisited. Mol Microbiol 2014; 94:1213-26. [PMID: 25352115 DOI: 10.1111/mmi.12845] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2014] [Indexed: 01/09/2023]
Abstract
Diphthamide is a conserved modification in archaeal and eukaryal translation elongation factor 2 (EF2). Its name refers to the target function for diphtheria toxin, the disease-causing agent that, through ADP ribosylation of diphthamide, causes irreversible inactivation of EF2 and cell death. Although this clearly emphasizes a pathobiological role for diphthamide, its physiological function is unclear, and precisely why cells need EF2 to contain diphthamide is hardly understood. Nonetheless, the conservation of diphthamide biosynthesis together with syndromes (i.e. ribosomal frame-shifting, embryonic lethality, neurodegeneration and cancer) typical of mutant cells that cannot make it strongly suggests that diphthamide-modified EF2 occupies an important and translation-related role in cell proliferation and development. Whether this is structural and/or regulatory remains to be seen. However, recent progress in dissecting the diphthamide gene network (DPH1-DPH7) from the budding yeast Saccharomyces cerevisiae has significantly advanced our understanding of the mechanisms required to initiate and complete diphthamide synthesis on EF2. Here, we review recent developments in the field that not only have provided novel, previously overlooked and unexpected insights into the pathway and the biochemical players required for diphthamide synthesis but also are likely to foster innovative studies into the potential regulation of diphthamide, and importantly, its ill-defined biological role.
Collapse
Affiliation(s)
- Raffael Schaffrath
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK; Institut für Biologie, Abteilung Mikrobiologie, Universität Kassel, 34132, Kassel, Germany
| | | | | | | |
Collapse
|
13
|
Rossi D, Galvão FC, Bellato HM, Boldrin PEG, Andrews BJ, Valentini SR, Zanelli CF. eIF5A has a function in the cotranslational translocation of proteins into the ER. Amino Acids 2014; 46:645-53. [PMID: 24306454 DOI: 10.1007/s00726-013-1618-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 11/01/2013] [Indexed: 10/25/2022]
Abstract
The putative eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved and essential protein present in all organisms except bacteria. To be activated, eIF5A requires the conversion of a specific residue of lysine into hypusine. This hypusine modification occurs posttranslationally in two enzymatic steps, and the polyamine spermidine is the substrate. Despite having an essential function in translation elongation, the critical role played by eIF5A remains unclear. In addition to demonstrating genetic interactions with translation factors, eIF5A mutants genetically interact with mutations in YPT1, which encodes an essential protein involved in endoplasmic reticulum (ER)-to-Golgi vesicle transport. In this study, we investigated the correlation between the function of eIF5A in translation and secretion in yeast. The results of in vivo translocation assays and genetic interaction analyses suggest a specific role for eIF5A in the cotranslational translocation of proteins into the ER, but not in the posttranslational pathway. Additionally, we observed that a block in eIF5A activation up-regulates stress-induced chaperones, which also occurs when SRP function is lost. Finally, loss of eIF5A function affects binding of the ribosome-nascent chain complex to SRP. These results link eIF5A function in translation with a role of SRP in the cell and may help explain the dual effects of eIF5A in differential and general translation.
Collapse
Affiliation(s)
- Danuza Rossi
- Department of Biological Sciences, School of Pharmaceutical Sciences, Univ Estadual Paulista, UNESP, Araraquara, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
14
|
The amidation step of diphthamide biosynthesis in yeast requires DPH6, a gene identified through mining the DPH1-DPH5 interaction network. PLoS Genet 2013; 9:e1003334. [PMID: 23468660 PMCID: PMC3585130 DOI: 10.1371/journal.pgen.1003334] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 01/07/2013] [Indexed: 01/31/2023] Open
Abstract
Diphthamide is a highly modified histidine residue in eukaryal translation elongation factor 2 (eEF2) that is the target for irreversible ADP ribosylation by diphtheria toxin (DT). In Saccharomyces cerevisiae, the initial steps of diphthamide biosynthesis are well characterized and require the DPH1-DPH5 genes. However, the last pathway step—amidation of the intermediate diphthine to diphthamide—is ill-defined. Here we mine the genetic interaction landscapes of DPH1-DPH5 to identify a candidate gene for the elusive amidase (YLR143w/DPH6) and confirm involvement of a second gene (YBR246w/DPH7) in the amidation step. Like dph1-dph5, dph6 and dph7 mutants maintain eEF2 forms that evade inhibition by DT and sordarin, a diphthamide-dependent antifungal. Moreover, mass spectrometry shows that dph6 and dph7 mutants specifically accumulate diphthine-modified eEF2, demonstrating failure to complete the final amidation step. Consistent with an expected requirement for ATP in diphthine amidation, Dph6 contains an essential adenine nucleotide hydrolase domain and binds to eEF2. Dph6 is therefore a candidate for the elusive amidase, while Dph7 apparently couples diphthine synthase (Dph5) to diphthine amidation. The latter conclusion is based on our observation that dph7 mutants show drastically upregulated interaction between Dph5 and eEF2, indicating that their association is kept in check by Dph7. Physiologically, completion of diphthamide synthesis is required for optimal translational accuracy and cell growth, as indicated by shared traits among the dph mutants including increased ribosomal −1 frameshifting and altered responses to translation inhibitors. Through identification of Dph6 and Dph7 as components required for the amidation step of the diphthamide pathway, our work paves the way for a detailed mechanistic understanding of diphthamide formation. Diphthamide is an unusual modified amino acid found uniquely in a single protein, eEF2, which is required for cells to synthesize new proteins. The name refers to its target function for eEF2 inactivation by diphtheria toxin, the disease-inducing agent produced by the pathogen Corynebacterium diphtheriae. Why cells require eEF2 to contain diphthamide is unclear, although mice unable to make it fail to complete embryogenesis. Cells generate diphthamide by modifying a specific histidine residue in eEF2 using a three-step biosynthetic pathway, the first two steps of which are well defined. However, the enzyme(s) involved in the final amidation step are unknown. Here we integrate genomic and molecular approaches to identify a candidate for the elusive amidase (Dph6) and confirm involvement of a second protein (Dph7) in the amidation step, showing that failure to synthesize diphthamide affects the accuracy of protein synthesis. In contrast to Dph6, however, Dph7 may be regulatory. Our data strongly suggest that it promotes dissociation of eEF2 from diphthine synthase (Dph5), which carries out the second step of diphthamide synthesis, and that Dph5 has a novel role as an eEF2 inhibitor when diphthamide synthesis is incomplete.
Collapse
|
15
|
Hekman KE, Yu GY, Brown CD, Zhu H, Du X, Gervin K, Undlien DE, Peterson A, Stevanin G, Clark HB, Pulst SM, Bird TD, White KP, Gomez CM. A conserved eEF2 coding variant in SCA26 leads to loss of translational fidelity and increased susceptibility to proteostatic insult. Hum Mol Genet 2012; 21:5472-83. [PMID: 23001565 DOI: 10.1093/hmg/dds392] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The autosomal dominant spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of disorders exhibiting cerebellar atrophy and Purkinje cell degeneration whose subtypes arise from 31 distinct genetic loci. Our group previously published the locus for SCA26 on chromosome 19p13.3. In this study, we performed targeted deep sequencing of the critical interval in order to identify candidate causative variants in individuals from the SCA26 family. We identified a single variant that co-segregates with the disease phenotype that produces a single amino acid substitution in eukaryotic elongation factor 2. This substitution, P596H, sits in a domain critical for maintaining reading frame during translation. The yeast equivalent, P580H EF2, demonstrated impaired translocation, detected as an increased rate of -1 programmed ribosomal frameshift read-through in a dual-luciferase assay for observing translational recoding. This substitution also results in a greater susceptibility to proteostatic disruption, as evidenced by a more robust activation of a reporter gene driven by unfolded protein response activation upon challenge with dithiothreitol or heat shock in our yeast model system. Our results present a compelling candidate mutation and mechanism for the pathogenesis of SCA26 and further support the role of proteostatic disruption in neurodegenerative diseases.
Collapse
Affiliation(s)
- Katherine E Hekman
- Department of Neurology, Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Dias CAO, Gregio APB, Rossi D, Galvão FC, Watanabe TF, Park MH, Valentini SR, Zanelli CF. eIF5A interacts functionally with eEF2. Amino Acids 2012; 42:697-702. [PMID: 21822730 PMCID: PMC3245752 DOI: 10.1007/s00726-011-0985-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 06/02/2011] [Indexed: 11/27/2022]
Abstract
eIF5A is highly conserved from archaea to mammals, essential for cell viability and the only protein known to contain the essential amino acid residue hypusine, generated by a unique posttranslational modification. eIF5A was originally identified as a translation initiation factor due to its ability to stimulate the formation of the first peptide bond. However, recent studies have shown that depletion of eIF5A causes a significant decrease in polysome run-off and an increase in the ribosome transit time, suggesting that eIF5A is actually involved in the elongation step of protein synthesis. We have previously shown that the depletion mutant tif51A-3 (eIF5A(C39Y/G118D)) shows a sicker phenotype when combined with the dominant negative mutant eft2 ( H699K ) of the elongation factor eEF2. In this study, we used the eIF5A(K56A) mutant to further investigate the relationship between eIF5A and eEF2. The eIF5A(K56A) mutant is temperature sensitive and has a defect in protein synthesis, but instead of causing depletion of the eIF5A protein, this mutant has a defect in hypusine modification. Like the mutant tif51A-3, the eIF5A(K56A) mutant is synthetic sick with the mutant eft2 ( H699K ) of eEF2. High-copy eEF2 not only improves cell growth of the eIF5A(K56A) mutant, but also corrects its increased cell size defect. Moreover, eEF2 suppression of the eIF5A(K56A) mutant is correlated with the improvement of total protein synthesis and with the increased resistance to the protein synthesis inhibitor hygromycin B. Finally, the polysome profile defect of the eIF5A(K56A) mutant is largely corrected by high-copy eEF2. Therefore, these results demonstrate that eIF5A is closely related to eEF2 function during translation elongation.
Collapse
Affiliation(s)
- Camila A. O. Dias
- Department of Biological Sciences, School of Pharmaceutical Sciences, UNESP - Univ Estadual Paulista, Araraquara, SP, Brazil
| | - Ana Paula Borges Gregio
- Department of Biological Sciences, School of Pharmaceutical Sciences, UNESP - Univ Estadual Paulista, Araraquara, SP, Brazil
| | - Danuza Rossi
- Department of Biological Sciences, School of Pharmaceutical Sciences, UNESP - Univ Estadual Paulista, Araraquara, SP, Brazil
| | - Fábio Carrilho Galvão
- Department of Biological Sciences, School of Pharmaceutical Sciences, UNESP - Univ Estadual Paulista, Araraquara, SP, Brazil
| | - Tatiana F. Watanabe
- Department of Biological Sciences, School of Pharmaceutical Sciences, UNESP - Univ Estadual Paulista, Araraquara, SP, Brazil
| | - Myung Hee Park
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Sandro R. Valentini
- Department of Biological Sciences, School of Pharmaceutical Sciences, UNESP - Univ Estadual Paulista, Araraquara, SP, Brazil
| | - Cleslei F. Zanelli
- Department of Biological Sciences, School of Pharmaceutical Sciences, UNESP - Univ Estadual Paulista, Araraquara, SP, Brazil
| |
Collapse
|
17
|
Payne TM, Payne AJ, Knoll LJ. A Toxoplasma gondii mutant highlights the importance of translational regulation in the apicoplast during animal infection. Mol Microbiol 2011; 82:1204-16. [PMID: 22059956 DOI: 10.1111/j.1365-2958.2011.07879.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite of all warm-blooded animals. We previously described a forward genetic screen to identify T. gondii mutants defective in the establishment of a chronic infection. One of the mutants isolated was disrupted in the 3' untranslated region (3'UTR) of an orthologue of bacterial translation elongation factor G (EFG). The mutant does not have a growth defect in tissue culture. Genetic complementation of this mutant with the genomic locus of TgEFG restores virulence in an acute infection mouse model. Epitope tagged TgEFG localized to the apicoplast, via a non-canonical targeting signal, where it functions as an elongation factor for translation in the apicoplast. Comparisons of TgEFG expression constructs with wild-type or mutant 3'UTRs showed that a wild-type 3'UTR is necessary for translation of TgEFG. In tissue culture, the TgEFG transcript is equally abundant in wild-type and mutant parasites; however, during an animal infection, the TgEFG transcript is increased more than threefold in the mutant. These results highlight that in tissue culture, translation in the apicoplast can be diminished, but during an animal infection, translation in the apicoplast must be fully functional.
Collapse
Affiliation(s)
- T Matthew Payne
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
18
|
Abstract
Velocity separation of translation complexes in linear sucrose gradients is the ultimate method for both analysis of the overall fitness of protein synthesis as well as for detailed investigation of physiological roles played by individual factors of the translational machinery. Polysome profile analysis is a frequently performed task in translational control research that not only enables direct monitoring of the efficiency of translation but can easily be extended with a wide range of downstream applications such as Northern and Western blotting, genome-wide microarray analysis or qRT-PCR. This chapter provides a basic overview of the polysome profile analysis technique and the RNA isolation procedure from sucrose gradients. We also discuss possible experimental pitfalls of data normalization, describe main alternatives of the basic protocol and outline a novel application of denaturing RNA electrophoresis in several steps of polysome profile analysis.
Collapse
|
19
|
Nemoto N, Singh CR, Udagawa T, Wang S, Thorson E, Winter Z, Ohira T, Ii M, Valášek L, Brown SJ, Asano K. Yeast 18 S rRNA is directly involved in the ribosomal response to stringent AUG selection during translation initiation. J Biol Chem 2010; 285:32200-12. [PMID: 20699223 PMCID: PMC2952221 DOI: 10.1074/jbc.m110.146662] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 08/09/2010] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, the 40 S ribosomal subunit serves as the platform of initiation factor assembly, to place itself precisely on the AUG start codon. Structural arrangement of the 18 S rRNA determines the overall shape of the 40 S subunit. Here, we present genetic evaluation of yeast 18 S rRNA function using 10 point mutations altering the polysome profile. All the mutants reduce the abundance of the mutant 40 S, making it limiting for translation initiation. Two of the isolated mutations, G875A, altering the core of the platform domain that binds eIF1 and eIF2, and A1193U, changing the h31 loop located below the P-site tRNA(i)(Met), show phenotypes indicating defective regulation of AUG selection. Evidence is provided that these mutations reduce the interaction with the components of the preinitiation complex, thereby inhibiting its function at different steps. These results indicate that the 18 S rRNA mutations impair the integrity of scanning-competent preinitiation complex, thereby altering the 40 S subunit response to stringent AUG selection. Interestingly, nine of the mutations alter the body/platform domains of 18 S rRNA, potentially affecting the bridges to the 60 S subunit, but they do not change the level of 18 S rRNA intermediates. Based on these results, we also discuss the mechanism of the selective degradation of the mutant 40 S subunits.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Codon, Initiator/metabolism
- Molecular Sequence Data
- Nucleic Acid Conformation
- Point Mutation
- Protein Biosynthesis
- Protein Structure, Tertiary
- Protein Subunits/chemistry
- Protein Subunits/genetics
- Protein Subunits/metabolism
- RNA, Fungal
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- Ribosome Subunits, Small, Eukaryotic/chemistry
- Ribosome Subunits, Small, Eukaryotic/genetics
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
Collapse
Affiliation(s)
- Naoki Nemoto
- From the Molecular Cellular and Developmental Biology Program and
| | | | - Tsuyoshi Udagawa
- From the Molecular Cellular and Developmental Biology Program and
| | - Suzhi Wang
- From the Molecular Cellular and Developmental Biology Program and
- Arthropod Genomics Center, Division of Biology, Kansas State University, Manhattan, Kansas 66506 and
| | | | - Zachery Winter
- From the Molecular Cellular and Developmental Biology Program and
| | - Takahiro Ohira
- From the Molecular Cellular and Developmental Biology Program and
| | - Miki Ii
- From the Molecular Cellular and Developmental Biology Program and
| | - Leoš Valášek
- the Laboratory of Regulation of Gene Expression, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Videnska 1083, 142 20, The Czech Republic
| | - Susan J. Brown
- From the Molecular Cellular and Developmental Biology Program and
- Arthropod Genomics Center, Division of Biology, Kansas State University, Manhattan, Kansas 66506 and
| | - Katsura Asano
- From the Molecular Cellular and Developmental Biology Program and
| |
Collapse
|
20
|
Dutoit R, Dubois E, Jacobs E. Selection systems based on dominant-negative transcription factors for precise genetic engineering. Nucleic Acids Res 2010; 38:e183. [PMID: 20702421 PMCID: PMC2965260 DOI: 10.1093/nar/gkq708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Diverse tools are available for performing genetic modifications of microorganisms. However, new methods still need to be developed for performing precise genomic engineering without introducing any undesirable side-alteration. Indeed for functional analyses of genomic elements, as well as for some industrial applications, only the desired mutation should be introduced at the locus considered. This article describes a new approach fulfilling these requirements, based on the use of selection systems consisting in truncated genes encoding dominant-negative transcription factors. We have demonstrated dominant-negative effects mediated by truncated Gal4p and Arg81p proteins in Saccharomyces cerevisiae, interfering with galactose and arginine metabolic pathways, respectively. These genes can be used as positive and negative markers, since they provoke both growth inhibition on substrates and resistance to specific drugs. These selection markers have been successfully used for precisely deleting HO and URA3 in wild yeasts. This genetic engineering approach could be extended to other microorganisms.
Collapse
Affiliation(s)
- Raphaël Dutoit
- Institut de Recherches Microbiologiques JM Wiame and Laboratoire de Microbiologie de l'Université Libre de Bruxelles, 1 avenue Emile Gryson, BE1070 Belgium.
| | | | | |
Collapse
|
21
|
White-Gilbertson S, Kurtz DT, Voelkel-Johnson C. The role of protein synthesis in cell cycling and cancer. Mol Oncol 2009; 3:402-8. [PMID: 19546037 DOI: 10.1016/j.molonc.2009.05.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Revised: 05/04/2009] [Accepted: 05/25/2009] [Indexed: 01/08/2023] Open
Abstract
Cell cycling and protein synthesis are both key physiological tasks for cancer cells. Here we present a model for how the elongation phase of protein synthesis, governed by elongation factor 2 and elongation factor 2 kinase, both modulates and responds to cell cycling. Within this framework we also discuss survivin, a protein with both pro-mitotic and anti-apoptotic roles whose persistence in the cell is tied to protein synthesis due to its short half-life. Finally, we provide a brief overview of efforts of cancer researchers to target EF2 and EF2 kinase.
Collapse
Affiliation(s)
- Shai White-Gilbertson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | |
Collapse
|
22
|
Saini P, Eyler DE, Green R, Dever TE. Hypusine-containing protein eIF5A promotes translation elongation. Nature 2009; 459:118-21. [PMID: 19424157 PMCID: PMC3140696 DOI: 10.1038/nature08034] [Citation(s) in RCA: 337] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 03/23/2009] [Indexed: 01/25/2023]
Abstract
Translation elongation factors facilitate protein synthesis by the ribosome. Previous studies identified two universally conserved translation elongation factors, EF-Tu in bacteria (known as eEF1A in eukaryotes) and EF-G (eEF2), which deliver aminoacyl-tRNAs to the ribosome and promote ribosomal translocation, respectively. The factor eIF5A (encoded by HYP2 and ANB1 in Saccharomyces cerevisiae), the sole protein in eukaryotes and archaea to contain the unusual amino acid hypusine (N(epsilon)-(4-amino-2-hydroxybutyl)lysine), was originally identified based on its ability to stimulate the yield (endpoint) of methionyl-puromycin synthesis-a model assay for first peptide bond synthesis thought to report on certain aspects of translation initiation. Hypusine is required for eIF5A to associate with ribosomes and to stimulate methionyl-puromycin synthesis. Because eIF5A did not stimulate earlier steps of translation initiation, and depletion of eIF5A in yeast only modestly impaired protein synthesis, it was proposed that eIF5A function was limited to stimulating synthesis of the first peptide bond or that eIF5A functioned on only a subset of cellular messenger RNAs. However, the precise cellular role of eIF5A is unknown, and the protein has also been linked to mRNA decay, including the nonsense-mediated mRNA decay pathway, and to nucleocytoplasmic transport. Here we use molecular genetic and biochemical studies to show that eIF5A promotes translation elongation. Depletion or inactivation of eIF5A in the yeast S. cerevisiae resulted in the accumulation of polysomes and an increase in ribosomal transit times. Addition of recombinant eIF5A from yeast, but not a derivative lacking hypusine, enhanced the rate of tripeptide synthesis in vitro. Moreover, inactivation of eIF5A mimicked the effects of the eEF2 inhibitor sordarin, indicating that eIF5A might function together with eEF2 to promote ribosomal translocation. Because eIF5A is a structural homologue of the bacterial protein EF-P, we propose that eIF5A/EF-P is a universally conserved translation elongation factor.
Collapse
Affiliation(s)
- Preeti Saini
- Laboratory of Gene Regulation and Development, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Daniel E. Eyler
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Rachel Green
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Thomas E. Dever
- Laboratory of Gene Regulation and Development, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
23
|
Gregio APB, Cano VPS, Avaca JS, Valentini SR, Zanelli CF. eIF5A has a function in the elongation step of translation in yeast. Biochem Biophys Res Commun 2009; 380:785-90. [PMID: 19338753 DOI: 10.1016/j.bbrc.2009.01.148] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 01/26/2009] [Indexed: 11/23/2022]
Abstract
The putative translation factor eIF5A is essential for cell viability and is highly conserved throughout evolution. Here, we describe genetic interactions between an eIF5A mutant and a translation initiation mutant (eIF4E) or a translation elongation mutant (eEF2). Polysome profile analysis of single and double mutants revealed that mutation in eIF5A reduces polysome run-off, contrarily to translation initiation mutants. Moreover, the polysome profile of an eIF5A mutant alone is very similar to that of a translation elongation mutant. Furthermore, depletion of eIF5A causes a significant decrease in total protein synthesis and an increase of the average ribosome transit time. Finally, we demonstrate that the formation of P bodies is inhibited in an eIF5A mutant, similarly to the effect of the translation elongation inhibitor cycloheximide. Taken together, these results not only reinforce a role for eIF5A in translation but also strongly support a function for eIF5A in the elongation step of protein synthesis.
Collapse
Affiliation(s)
- Ana P B Gregio
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Faculdade de Ciências Farmacêuticas, Rodovia Araraquara-Jaú, km 01, Araraquara, SP 14801-902, Brazil
| | | | | | | | | |
Collapse
|
24
|
Wolf P, Elsässer-Beile U. Pseudomonas exotoxin A: from virulence factor to anti-cancer agent. Int J Med Microbiol 2009; 299:161-76. [PMID: 18948059 DOI: 10.1016/j.ijmm.2008.08.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 07/07/2008] [Accepted: 08/13/2008] [Indexed: 11/24/2022] Open
Abstract
The pathogenic bacterium Pseudomonas aeruginosa has the ability to cause severe acute and chronic infections in humans. Pseudomonas exotoxin A (PE) is the most toxic virulence factor of this bacterium. It has ADP-ribosylation activity and decisively affects the protein synthesis of the host cells. The cytotoxic pathways of PE have been elucidated, and it could be shown that PE uses several molecular strategies developed under evolutionary pressure for effective killing. Interestingly, a medical benefit from this molecule has also been ascertained in recent years and several PE-based immunotoxins have been constructed and tested in preclinical and clinical trials against different cancers. In these molecules, the enzymatic active domain of PE is specifically targeted to tumor-related antigens. This review describes the current knowledge about the cytotoxic pathways of PE. Additionally, it summarizes preclinical and clinical trials of PE-based immunotoxins and furthermore discusses current problems and answers with these agents.
Collapse
Affiliation(s)
- Philipp Wolf
- Department of Urology, University of Freiburg, Germany.
| | | |
Collapse
|
25
|
Simoff I, Moradi H, Nygård O. Functional characterization of ribosomal protein L15 from Saccharomyces cerevisiae. Curr Genet 2009; 55:111-25. [PMID: 19184027 DOI: 10.1007/s00294-009-0228-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 01/08/2009] [Accepted: 01/08/2009] [Indexed: 12/20/2022]
Abstract
In this study we provide general information on the little studied eukaryotic ribosomal protein rpL15. Saccharomyces cerevisiae has two genes, YRPL15A and YRPL15B that could potentially code for yeast rpL15 (YrpL15). YRPL15A is essential while YRPL15B is dispensable. However, a plasmid-borne copy of the YRPL15B gene, controlled by the GAL1 promoter or by the promoter controlling expression of the YRPL15A gene, can functionally complement YrpL15A in yeast cells, while the same gene controlled by the authentic promoter is inactive. Analysis of the levels of YrpL15B-mRNA in yeast cells shows that the YRPL15B gene is inactive in transcription. The function of YrpL15A is highly resilient to single and multiple amino acid substitutions. In addition, minor deletions from both the N- and C-terminal ends of YrpL15A has no effect on protein function, while addition of a C-terminal tag that could be used for detection of plasmid-encoded YrpL15A is detrimental to protein function. YrpL15A could also be replaced by the homologous protein from Arabidopsis thaliana despite almost 30% differences in the amino acid sequence, while the more closely related protein from Schizosaccharomyces pombe was inactive. The lack of function was not caused by a failure of the protein to enter the yeast nucleus.
Collapse
|
26
|
Functional features of the C-terminal region of yeast ribosomal protein L5. Mol Genet Genomics 2008; 280:337-50. [PMID: 18751732 DOI: 10.1007/s00438-008-0369-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 07/19/2008] [Indexed: 10/21/2022]
Abstract
The aim of this study was to analyze the functional importance of the C-terminus of the essential yeast ribosomal protein L5 (YrpL5). Previous studies have indicated that the C-terminal region of YrpL5 forms an alpha-helix with a positively charged surface that is involved in protein-5S rRNA interaction. Formation of an YrpL5.5S rRNA complex is a prerequisite for nuclear import of YrpL5. Here we have tested the importance of the alpha-helix and the positively charged surface for YrpL5 function in Saccharomyces cerevisiae using site directed mutagenesis in combination with functional complementation. Alterations in the sequence forming the putative alpha-helix affected the functional capacity of YrpL5. However, the effect did not correlate with a decreased ability of the protein to bind to 5S rRNA as all rpL5 mutants tested were imported to the nucleus whether or not the alpha-helix or the positively charged surface were intact. The alterations introduced in the C-terminal sequence affected the growth rate of cells expressing mutant but functional forms of YrpL5. The reduced growth rate was correlated with a reduced ribosomal content per cell indicating that the alterations introduced in the C-terminus interfered with ribosome assembly.
Collapse
|
27
|
Bartish G, Nygård O. Importance of individual amino acids in the Switch I region in eEF2 studied by functional complementation in S. cerevisiae. Biochimie 2008; 90:736-48. [DOI: 10.1016/j.biochi.2008.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 01/17/2008] [Indexed: 10/22/2022]
|
28
|
Bartish G, Moradi H, Nygård O. Amino acids Thr56 and Thr58 are not essential for elongation factor 2 function in yeast. FEBS J 2007; 274:5285-97. [PMID: 17892487 DOI: 10.1111/j.1742-4658.2007.06054.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Yeast elongation factor 2 is an essential protein that contains two highly conserved threonine residues, T56 and T58, that could potentially be phosphorylated by the Rck2 kinase in response to environmental stress. The importance of residues T56 and T58 for elongation factor 2 function in yeast was studied using site directed mutagenesis and functional complementation. Mutations T56D, T56G, T56K, T56N and T56V resulted in nonfunctional elongation factor 2 whereas mutated factor carrying point mutations T56M, T56C, T56S, T58S and T58V was functional. Expression of mutants T56C, T56S and T58S was associated with reduced growth rate. The double mutants T56M/T58W and T56M/T58V were also functional but the latter mutant caused increased cell death and considerably reduced growth rate. The results suggest that the physiological role of T56 and T58 as phosphorylation targets is of little importance in yeast under standard growth conditions. Yeast cells expressing mutants T56C and T56S were less able to cope with environmental stress induced by increased growth temperatures. Similarly, cells expressing mutants T56M and T56M/T58W were less capable of adapting to increased osmolarity whereas cells expressing mutant T58V behaved normally. All mutants tested were retained their ability to bind to ribosomes in vivo. However, mutants T56D, T56G and T56K were under-represented on the ribosome, suggesting that these nonfunctional forms of elongation factor 2 were less capable of competing with wild-type elongation factor 2 in ribosome binding. The presence of nonfunctional but ribosome binding forms of elongation factor 2 did not affect the growth rate of yeast cells also expressing wild-type elongation factor 2.
Collapse
Affiliation(s)
- Galyna Bartish
- School of Life Sciences, Södertörns högskola, Huddinge, Sweden
| | | | | |
Collapse
|
29
|
Bonatto D. A systems biology analysis of protein-protein interactions between yeast superoxide dismutases and DNA repair pathways. Free Radic Biol Med 2007; 43:557-67. [PMID: 17640566 DOI: 10.1016/j.freeradbiomed.2007.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 05/07/2007] [Accepted: 05/08/2007] [Indexed: 12/01/2022]
Abstract
Superoxide dismutases (SODs) are widely distributed in eukaryotic and prokaryotic species and are responsible for O(2)(.-) scavenging and dismutation to H(2)O(2) and O(2). Mutations in the cytoplasmic (Sod1p) or mitochondrial (Sod2p) form of SODs result in aging, neurodegenerative diseases, and carcinogenesis. Diminished activity of SODs leads to reduced activity of DNA repair pathways, and overexpression of SODs in cells defective for DNA repair increases their level of chromatin damage. Unfortunately, little is understood regarding the interplay between SODs and DNA repair proteins and their role in protecting the genome from oxidative damage. To elucidate the association between yeast SODs and DNA repair mechanisms, a systems biology study was performed employing algorithms of literature data mining and the construction of physical protein-protein interactions from large yeast protein databases. The results obtained in this work allow us to draw two models suggesting that yeast SODs act as O(2)(.-) sensors under conditions of redox imbalance, activating and controlling specific DNA repair mechanisms (e.g., recombinational and excision repair pathways), chromatin remodeling, and synthesis of dNTPs.
Collapse
Affiliation(s)
- Diego Bonatto
- Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS 95070-560, Brasil.
| |
Collapse
|
30
|
Qiu L, Jiang S, Zhou F, Zhang D, Huang J, Guo Y. Molecular cloning of the black tiger shrimp (Penaeus monodon) elongation factor 2 (EF-2): sequence analysis and its expression on the ovarian maturation stage. Mol Biol Rep 2007; 35:431-8. [PMID: 17629788 DOI: 10.1007/s11033-007-9103-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 05/08/2007] [Indexed: 10/23/2022]
Abstract
The techniques of homology cloning and anchored PCR were used to clone the elongation factor 2 (EF-2) gene from black tiger shrimp (Penaeus monodon). The full length cDNA of black tiger shrimp EF-2 (btsEF-2) contained a 5' untranslated region (UTR) of 73 bp, an ORF of 2541 bp encoding a polypeptide of 846 amino acids with an estimated molecular mass of 95 kDa, and a 3( UTR of 112 bp. The searches for protein sequence similarities with BLAST analysis indicated that the deduced amino acid sequence of btsEF-2 was homological to the EF-2 of other species and even the mammalians. The conserved signature sequence of EF-2 gene family, GTPase effector domain and ADP-ribosylation domain were found in the btsEF-2 deduced amino acid sequence. The temporal expressions of gene in the different ovarian stages were measured by real time PCR. The mRNA expressions of the gene were constitutively expressed in ovary and different during the maturation stages. The result indicated that EF-2 gene was constitutively expressed and could play a critical role in the ovarian maturation stage.
Collapse
Affiliation(s)
- Lihua Qiu
- Biotechnology and Aquiculture Laboratory, The South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingangxi Road, Guangzhou, P.R. China
| | | | | | | | | | | |
Collapse
|
31
|
Demeshkina N, Hirokawa G, Kaji A, Kaji H. Novel activity of eukaryotic translocase, eEF2: dissociation of the 80S ribosome into subunits with ATP but not with GTP. Nucleic Acids Res 2007; 35:4597-607. [PMID: 17586816 PMCID: PMC1950535 DOI: 10.1093/nar/gkm468] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Ribosomes must dissociate into subunits in order to begin protein biosynthesis. The enzymes that catalyze this fundamental process in eukaryotes remained unknown. Here, we demonstrate that eukaryotic translocase, eEF2, which catalyzes peptide elongation in the presence of GTP, dissociates yeast 80S ribosomes into subunits in the presence of ATP but not GTP or other nucleoside triphosphates. Dissociation was detected by light scattering or ultracentrifugation after the split subunits were stabilized. ATP was hydrolyzed during the eEF2-dependent dissociation, while a non-hydrolyzable analog of ATP was inactive in ribosome splitting by eEF2. GTP inhibited not only ATP hydrolysis but also dissociation. Sordarin, a fungal eEF2 inhibitor, averted the splitting but stimulated ATP hydrolysis. Another elongation inhibitor, cycloheximide, also prevented eEF2/ATP-dependent splitting, while the inhibitory effect of fusidic acid on the splitting was nominal. Upon dissociation of the 80S ribosome, eEF2 was found on the subunits. We propose that the dissociation activity of eEF2/ATP plays a role in mobilizing 80S ribosomes for protein synthesis during the shift up of physiological conditions.
Collapse
Affiliation(s)
- Natalia Demeshkina
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107 and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Go Hirokawa
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107 and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Akira Kaji
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107 and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hideko Kaji
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107 and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- *To whom correspondence should be addressed.+1 215 503 6547+1 215 923 7343
| |
Collapse
|
32
|
Abstract
This chapter describes phenotypic assays on specific and general aspects of translation using yeast Saccharomyces cerevisiae as a model eukaryote. To study the effect on start codon selection stringency, a his4(-) or his4-lacZ allele altering the first AUG to AUU is employed. Mutations relaxing the stringent selection confer the His(+) phenotype in the his4(-) strain background or increase expression from his4-lacZ compared to that from wild-type HIS4-lacZ (Sui(-) phenotype). Translation of the Gcn4p transcription activator is strictly regulated by amino acid availability depending on upstream ORF (uORF) elements in the GCN4 mRNA leader. Mutations reducing the eIF2/GTP/Met-tRNA(i)(Met) complex level or the rate of its binding to the 40S subunit derepress GCN4 translation by allowing ribosomes to bypass inhibitory uORFs in the absence of the starvation signal (Gcd(-) phenotype). Mutations impairing scanning or AUG recognition generally impair translational GCN4 induction during amino acid starvation (Gcn(-) phenotype). Different amino acid analogs or amino acid enzyme inhibitors are used to study Gcd(-) or Gcn(-) phenotypes. The method of polysome profiling is also described to gain an ultimate "phenotypic" proof for translation defects.
Collapse
Affiliation(s)
- Bumjun Lee
- Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | | | | | | |
Collapse
|
33
|
Lim EJ, Kim CW. Functional characterization of the promoter region of the chicken elongation factor-2 gene. Gene 2006; 386:183-90. [PMID: 17118580 DOI: 10.1016/j.gene.2006.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 09/07/2006] [Accepted: 09/09/2006] [Indexed: 11/28/2022]
Abstract
Elongation factor 2 (EF-2) plays a key role in the essential process of protein synthesis by translocating tRNAs from the ribosomal A- and P-sites to the P- and E-sites. EF-2 regulates the outcome of protein synthesis in mammalian cells. This report demonstrates that chicken EF-2 protein levels are dependent on transcription in 8-bromo-cAMP, insulin and phorbol ester-treated cells. In order to delineate functional domains that control chicken EF-2 gene transcription, the 5'-flanking region of the chicken EF-2 promoter was analyzed. Deletion constructs from -550 and -86 had the same basal level promoter activity as the whole EF-2 promoter. The sequence between nucleotides -700 and -550 was determined to be a regulatory region for the chicken EF-2 basal promoter activity. The region between -700 and -550 has a negative regulatory region and two regulatory proteins (I, II). 8-bromo-cAMP increased chicken EF-2 promoter activity (-700/+102) in Rat 1 HIR fibroblast cells more than insulin and phorbol ester treatment. Binding of protein I and II were decreased by 8-bromo-cAMP but restored by a protein kinase A inhibitor (KT5720). GATA consensus sequence oligonucleotide and fragment -86/-50 prevented protein II binding of fragment -700/-550. This result suggested that protein II is a GATA-like protein. These observations provide a novel regulatory mechanism for the EF-2 promoter.
Collapse
Affiliation(s)
- Eun Jin Lim
- Molecular and Cell Nutrition Laboratory, Department of Animal and Food Science, University of Kentucky, Lexington, Kentucky 40536, USA.
| | | |
Collapse
|
34
|
Ortiz PA, Ulloque R, Kihara GK, Zheng H, Kinzy TG. Translation elongation factor 2 anticodon mimicry domain mutants affect fidelity and diphtheria toxin resistance. J Biol Chem 2006; 281:32639-48. [PMID: 16950777 DOI: 10.1074/jbc.m607076200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic elongation factor 2 (eEF2) mediates translocation in protein synthesis. The molecular mimicry model proposes that the tip of domain IV mimics the anticodon loop of tRNA. His-699 in this region is post-translationally modified to diphthamide, the target for Corynebacterium diphtheriae and Pseudomonas aeruginosa toxins. ADP-ribosylation by these toxins inhibits eEF2 function causing cell death. Mutagenesis of the tip of domain IV was used to assess both functions. A H694A mutant strain was non-functional, whereas D696A, I698A, and H699N strains conferred conditional growth defects, sensitivity to translation inhibitors, and decreased total translation in vivo. These mutant strains and those lacking diphthamide modification enzymes showed increased -1 frameshifting. The effects are not due to reduced protein levels, ribosome binding, or GTP hydrolysis. Functional eEF2 forms substituted in domain IV confer dominant diphtheria toxin resistance, which correlates with an in vivo effect on translation-linked phenotypes. These results provide a new mechanism in which the translational machinery maintains the accurate production of proteins, establishes a role for the diphthamide modification, and provides evidence of the ability to suppress the lethal effect of a toxin targeted to eEF2.
Collapse
Affiliation(s)
- Pedro A Ortiz
- Department of Molecular Genetics, Microbiology and Immunology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854-5635, USA
| | | | | | | | | |
Collapse
|
35
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|