1
|
The Facts and Family Secrets of Plasmids That Replicate via the Rolling-Circle Mechanism. Microbiol Mol Biol Rev 2021; 86:e0022220. [PMID: 34878299 DOI: 10.1128/mmbr.00222-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Plasmids are self-replicative DNA elements that are transferred between bacteria. Plasmids encode not only antibiotic resistance genes but also adaptive genes that allow their hosts to colonize new niches. Plasmid transfer is achieved by conjugation (or mobilization), phage-mediated transduction, and natural transformation. Thousands of plasmids use the rolling-circle mechanism for their propagation (RCR plasmids). They are ubiquitous, have a high copy number, exhibit a broad host range, and often can be mobilized among bacterial species. Based upon the replicon, RCR plasmids have been grouped into several families, the best known of them being pC194 and pUB110 (Rep_1 family), pMV158 and pE194 (Rep_2 family), and pT181 and pC221 (Rep_trans family). Genetic traits of RCR plasmids are analyzed concerning (i) replication mediated by a DNA-relaxing initiator protein and its interactions with the cognate DNA origin, (ii) lagging-strand origins of replication, (iii) antibiotic resistance genes, (iv) mobilization functions, (v) replication control, performed by proteins and/or antisense RNAs, and (vi) the participating host-encoded functions. The mobilization functions include a relaxase initiator of transfer (Mob), an origin of transfer, and one or two small auxiliary proteins. There is a family of relaxases, the MOBV family represented by plasmid pMV158, which has been revisited and updated. Family secrets, like a putative open reading frame of unknown function, are reported. We conclude that basic research on RCR plasmids is of importance, and our perspectives contemplate the concept of One Earth because we should incorporate bacteria into our daily life by diminishing their virulence and, at the same time, respecting their genetic diversity.
Collapse
|
2
|
Zrimec J. Multiple plasmid origin-of-transfer regions might aid the spread of antimicrobial resistance to human pathogens. Microbiologyopen 2020; 9:e1129. [PMID: 33111499 PMCID: PMC7755788 DOI: 10.1002/mbo3.1129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial resistance poses a great danger to humanity, in part due to the widespread horizontal gene transfer of plasmids via conjugation. Modeling of plasmid transfer is essential to uncovering the fundamentals of resistance transfer and for the development of predictive measures to limit the spread of resistance. However, a major limitation in the current understanding of plasmids is the incomplete characterization of the conjugative DNA transfer mechanisms, which conceals the actual potential for plasmid transfer in nature. Here, we consider that the plasmid-borne origin-of-transfer substrates encode specific DNA structural properties that can facilitate finding these regions in large datasets and develop a DNA structure-based alignment procedure for typing the transfer substrates that outperforms sequence-based approaches. Thousands of putative DNA transfer substrates are identified, showing that plasmid mobility can be twofold higher and span almost twofold more host species than is currently known. Over half of all putative mobile plasmids contain the means for mobilization by conjugation systems belonging to different mobility groups, which can hypothetically link previously confined host ranges across ecological habitats into a robust plasmid transfer network. This hypothetical network is found to facilitate the transfer of antimicrobial resistance from environmental genetic reservoirs to human pathogens, which might be an important driver of the observed rapid resistance development in humans and thus an important point of focus for future prevention measures.
Collapse
Affiliation(s)
- Jan Zrimec
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
3
|
Lorenzo-Díaz F, Fernández-López C, Guillén-Guío B, Bravo A, Espinosa M. Relaxase MobM Induces a Molecular Switch at Its Cognate Origin of Transfer. Front Mol Biosci 2018; 5:17. [PMID: 29600250 PMCID: PMC5863519 DOI: 10.3389/fmolb.2018.00017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/09/2018] [Indexed: 11/13/2022] Open
Abstract
The MOBV1 family of relaxases is broadly distributed in plasmids and other mobile genetic elements isolated from staphylococci, enterococci, and streptococci. The prototype of this family is protein MobM encoded by the streptococcal promiscuous plasmid pMV158. MobM cleaves the phosphodiester bond of a specific dinucleotide within the origin of transfer (oriT) to initiate conjugative transfer. Differently from other relaxases, MobM and probably other members of the family, cleaves its target single-stranded DNA through a histidine residue rather than the commonly used tyrosine. The oriT of the MOBV1 family differs from other well-known conjugative systems since it has sequences with three inverted repeats, which were predicted to generate three mutually-exclusive hairpins on supercoiled DNA. In this work, such hypothesis was evaluated through footprinting experiments on supercoiled plasmid DNA. We have found a change in hairpin extrusion mediated by protein MobM. This conformational change involves a shift from the main hairpin generated on “naked” DNA to a different hairpin in which the nick site is positioned in a single-stranded configuration. Our results indicate that the oriTpMV158 acts as a molecular switch in which, depending on the inverted repeat recognized by MobM, pMV158 mobilization could be turned “on” or “off.”
Collapse
Affiliation(s)
- Fabián Lorenzo-Díaz
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | | | - Beatriz Guillén-Guío
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Alicia Bravo
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | |
Collapse
|
4
|
Abstract
All plasmids that spread by conjugative transfer encode a relaxase. That includes plasmids that encode the type IV secretion machinery necessary to mediate cell to cell transfer, as well as mobilizable plasmids that exploit the existence of other plasmids' type IV secretion machinery to enable their own lateral spread. Relaxases perform key functions in plasmid transfer by first binding to their cognate plasmid as part of a multiprotein complex called the relaxosome, which is then specifically recognized by a receptor protein at the opening of the secretion channel. Relaxases catalyze a site- and DNA-strand-specific cleavage reaction on the plasmid then pilot the single strand of plasmid DNA through the membrane-spanning type IV secretion channel as a nucleoprotein complex. In the recipient cell, relaxases help terminate the transfer process efficiently and stabilize the incoming plasmid DNA. Here, we review the well-studied MOBF family of relaxases to describe the biochemistry of these versatile enzymes and integrate current knowledge into a mechanistic model of plasmid transfer in Gram-negative bacteria.
Collapse
|
5
|
Gruber CJ, Lang S, Rajendra VKH, Nuk M, Raffl S, Schildbach JF, Zechner EL. Conjugative DNA Transfer Is Enhanced by Plasmid R1 Partitioning Proteins. Front Mol Biosci 2016; 3:32. [PMID: 27486582 PMCID: PMC4949242 DOI: 10.3389/fmolb.2016.00032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/01/2016] [Indexed: 11/22/2022] Open
Abstract
Bacterial conjugation is a form of type IV secretion used to transport protein and DNA directly to recipient bacteria. The process is cell contact-dependent, yet the mechanisms enabling extracellular events to trigger plasmid transfer to begin inside the cell remain obscure. In this study of plasmid R1 we investigated the role of plasmid proteins in the initiation of gene transfer. We find that TraI, the central regulator of conjugative DNA processing, interacts physically, and functionally with the plasmid partitioning proteins ParM and ParR. These interactions stimulate TraI catalyzed relaxation of plasmid DNA in vivo and in vitro and increase ParM ATPase activity. ParM also binds the coupling protein TraD and VirB4-like channel ATPase TraC. Together, these protein-protein interactions probably act to co-localize the transfer components intracellularly and promote assembly of the conjugation machinery. Importantly these data also indicate that the continued association of ParM and ParR at the conjugative pore is necessary for plasmid transfer to start efficiently. Moreover, the conjugative pilus and underlying secretion machinery assembled in the absence of Par proteins mediate poor biofilm formation and are completely dysfunctional for pilus specific R17 bacteriophage uptake. Thus, functional integration of Par components at the interface of relaxosome, coupling protein, and channel ATPases appears important for an optimal conformation and effective activation of the transfer machinery. We conclude that low copy plasmid R1 has evolved an active segregation system that optimizes both its vertical and lateral modes of dissemination.
Collapse
Affiliation(s)
- Christian J Gruber
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz Graz, Austria
| | - Silvia Lang
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz Graz, Austria
| | - Vinod K H Rajendra
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz Graz, Austria
| | - Monika Nuk
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz Graz, Austria
| | - Sandra Raffl
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz Graz, Austria
| | | | - Ellen L Zechner
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz Graz, Austria
| |
Collapse
|
6
|
Godziszewska J, Moncalián G, Cabezas M, Bartosik AA, de la Cruz F, Jagura-Burdzy G. Concerted action of NIC relaxase and auxiliary protein MobC in RA3 plasmid conjugation. Mol Microbiol 2016; 101:439-56. [PMID: 27101775 DOI: 10.1111/mmi.13401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2016] [Indexed: 11/29/2022]
Abstract
Conjugative transfer of the broad-host-range RA3 plasmid, the archetype of the IncU group, relies on the relaxase NIC that belongs to the as yet uncharacterized MOBP4 subfamily. NIC contains the signature motifs of HUH relaxases involved in Tyr nucleophilic attack. However, it differs in the residue involved in His activation for cation coordination and was shown here to have altered divalent cation requirements. NIC is encoded in the mobC-nic operon preceded directly by oriT, where mobC encodes an auxiliary transfer protein with a dual function: autorepressor and stimulator of conjugative transfer. Here an interplay between MobC and NIC was demonstrated. MobC is required for efficient NIC cleavage of oriT in supercoiled DNA whereas NIC assists MobC in repression of the mobC-nic operon. A 7-bp arm of IR3 (IR3a) was identified as the binding site for NIC and the crucial nucleotides in IR3a for NIC recognition were defined. Fully active oriTRA3 was delineated to a 47-bp DNA segment encompassing a conserved cleavage site sequence, the NIC binding site IR3a and the MobC binding site OM . This highly efficient RA3 conjugative system with defined requirements for minimal oriT could find ample applications in biotechnology and computational biology where simple conjugative systems are needed.
Collapse
Affiliation(s)
- Jolanta Godziszewska
- Institute of Biochemistry and Biophysics PAS, Department of Microbial Biochemistry, 02-106 Warsaw, Poland.,Warsaw University of Life Sciences (WULS-SGGW), Faculty of Human Nutrition and Consumer Sciences, Laboratory of Food Chemistry, 02-776, Warsaw, Poland
| | - Gabriel Moncalián
- Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, C/Albert Einstein 22, 39011, Santander, Spain
| | - Matilde Cabezas
- Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, C/Albert Einstein 22, 39011, Santander, Spain
| | - Aneta A Bartosik
- Institute of Biochemistry and Biophysics PAS, Department of Microbial Biochemistry, 02-106 Warsaw, Poland
| | - Fernando de la Cruz
- Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, C/Albert Einstein 22, 39011, Santander, Spain
| | - Grazyna Jagura-Burdzy
- Institute of Biochemistry and Biophysics PAS, Department of Microbial Biochemistry, 02-106 Warsaw, Poland
| |
Collapse
|
7
|
Fernández-González E, Bakioui S, Gomes MC, O'Callaghan D, Vergunst AC, Sangari FJ, Llosa M. A Functional oriT in the Ptw Plasmid of Burkholderia cenocepacia Can Be Recognized by the R388 Relaxase TrwC. Front Mol Biosci 2016; 3:16. [PMID: 27200362 PMCID: PMC4853378 DOI: 10.3389/fmolb.2016.00016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 04/14/2016] [Indexed: 12/14/2022] Open
Abstract
Burkholderia cenocepacia is both a plant pathogen and the cause of serious opportunistic infections, particularly in cystic fibrosis patients. B. cenocepacia K56-2 harbors a native plasmid named Ptw for its involvement in the Plant Tissue Watersoaking phenotype. Ptw has also been reported to be important for survival in human cells. Interestingly, the presence of PtwC, a homolog of the conjugative relaxase TrwC of plasmid R388, suggests a possible function for Ptw in conjugative DNA transfer. The ptw region includes Type IV Secretion System genes related to those of the F plasmid. However, genes in the adjacent region shared stronger homology with the R388 genes involved in conjugative DNA metabolism. This region included the putative relaxase ptwC, a putative coupling protein and accessory nicking protein, and a DNA segment with high number of inverted repeats and elevated AT content, suggesting a possible oriT. Although we were unable to detect conjugative transfer of the Ptw resident plasmid, we detected conjugal mobilization of a co-resident plasmid containing the ptw region homologous to R388, demonstrating the cloned ptw region contains an oriT. A similar plasmid lacking ptwC could not be mobilized, suggesting that the putative relaxase PtwC must act in cis on its oriT. Remarkably, we also detected mobilization of a plasmid containing the Ptw oriT by the R388 relaxase TrwC, yet we could not detect PtwC-mediated mobilization of an R388 oriT-containing plasmid. Our data unambiguously show that the Ptw plasmid harbors DNA transfer functions, and suggests the Ptw plasmid may play a dual role in horizontal DNA transfer and eukaryotic infection.
Collapse
Affiliation(s)
- Esther Fernández-González
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria, UC-SODERCAN-Consejo Superior de Investigaciones Científicas Santander, Spain
| | - Sawsane Bakioui
- Institut National de la Santé et de la Recherche Médicale, U1047Nimes, France; UFR de Médecine Site de Nimes, U1047, Université de MontpellierFrance
| | - Margarida C Gomes
- Institut National de la Santé et de la Recherche Médicale, U1047Nimes, France; UFR de Médecine Site de Nimes, U1047, Université de MontpellierFrance
| | - David O'Callaghan
- Institut National de la Santé et de la Recherche Médicale, U1047Nimes, France; UFR de Médecine Site de Nimes, U1047, Université de MontpellierFrance
| | - Annette C Vergunst
- Institut National de la Santé et de la Recherche Médicale, U1047Nimes, France; UFR de Médecine Site de Nimes, U1047, Université de MontpellierFrance
| | - Félix J Sangari
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria, UC-SODERCAN-Consejo Superior de Investigaciones Científicas Santander, Spain
| | - Matxalen Llosa
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria, UC-SODERCAN-Consejo Superior de Investigaciones Científicas Santander, Spain
| |
Collapse
|
8
|
Guja KE, Schildbach JF. Completing the specificity swap: Single-stranded DNA recognition by F and R100 TraI relaxase domains. Plasmid 2015; 80:1-7. [PMID: 25841886 DOI: 10.1016/j.plasmid.2015.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 11/27/2022]
Abstract
During conjugative plasmid transfer, one plasmid strand is cleaved and transported to the recipient bacterium. For F and related plasmids, TraI contains the relaxase or nickase activity that cleaves the plasmid DNA strand. F TraI36, the F TraI relaxase domain, binds a single-stranded origin of transfer (oriT) DNA sequence with high affinity and sequence specificity. The TraI36 domain from plasmid R100 shares 91% amino acid sequence identity with F TraI36, but its oriT DNA binding site differs by two of eleven bases. Both proteins readily distinguish between F and R100 binding sites. In earlier work, two amino acid substitutions in the DNA binding cleft were shown to be sufficient to change the R100 TraI36 DNA-binding specificity to that of F TraI36. In contrast, three substitutions could make F TraI36 more "R100-like", but failed to completely alter the specificity. Here we identify one additional amino acid substitution that completes the specificity swap from F to R100. To our surprise, adding further substitutions from R100 to the F background were detrimental to binding instead of being neutral, indicating that their effects were influenced by their structural context. These results underscore the complex and subtle nature of DNA recognition by relaxases and have implications for the evolution of relaxase binding sites and oriT sequences.
Collapse
Affiliation(s)
- Kip E Guja
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Joel F Schildbach
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| |
Collapse
|
9
|
Carballeira JD, González-Pérez B, Moncalián G, de la Cruz F. A high security double lock and key mechanism in HUH relaxases controls oriT-processing for plasmid conjugation. Nucleic Acids Res 2014; 42:10632-43. [PMID: 25123661 PMCID: PMC4176350 DOI: 10.1093/nar/gku741] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Relaxases act as DNA selection sieves in conjugative plasmid transfer. Most plasmid relaxases belong to the HUH endonuclease family. TrwC, the relaxase of plasmid R388, is the prototype of the HUH relaxase family, which also includes TraI of plasmid F. In this article we demonstrate that TrwC processes its target nic-site by means of a highly secure double lock and key mechanism. It is controlled both by TrwC–DNA intermolecular interactions and by intramolecular DNA interactions between several nic nucleotides. The sequence specificity map of the interaction between TrwC and DNA was determined by systematic mutagenesis using degenerate oligonucleotide libraries. The specificity map reveals the minimal nic sequence requirements for R388-based conjugation. Some nic-site sequence variants were still able to form the U-turn shape at the nic-site necessary for TrwC processing, as observed by X-ray crystallography. Moreover, purified TrwC relaxase effectively cleaved ssDNA as well as dsDNA substrates containing these mutant sequences. Since TrwC is able to catalyze DNA integration in a nic-site-containing DNA molecule, characterization of nic-site functionally active sequence variants should improve the search quality of potential target sequences for relaxase-mediated integration in any target genome.
Collapse
Affiliation(s)
- José Daniel Carballeira
- Departamento de Biología Molecular e Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, Universidad de Cantabria-CSIC, C/Albert Einstein 22, 39011 Santander, Spain
| | - Blanca González-Pérez
- Departamento de Biología Molecular e Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, Universidad de Cantabria-CSIC, C/Albert Einstein 22, 39011 Santander, Spain
| | - Gabriel Moncalián
- Departamento de Biología Molecular e Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, Universidad de Cantabria-CSIC, C/Albert Einstein 22, 39011 Santander, Spain
| | - Fernando de la Cruz
- Departamento de Biología Molecular e Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, Universidad de Cantabria-CSIC, C/Albert Einstein 22, 39011 Santander, Spain
| |
Collapse
|
10
|
Zechner EL, Lang S, Schildbach JF. Assembly and mechanisms of bacterial type IV secretion machines. Philos Trans R Soc Lond B Biol Sci 2012; 367:1073-87. [PMID: 22411979 PMCID: PMC3297438 DOI: 10.1098/rstb.2011.0207] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Type IV secretion occurs across a wide range of prokaryotic cell envelopes: Gram-negative, Gram-positive, cell wall-less bacteria and some archaea. This diversity is reflected in the heterogeneity of components that constitute the secretion machines. Macromolecules are secreted in an ATP-dependent process using an envelope-spanning multi-protein channel. Similar to the type III systems, this apparatus extends beyond the cell surface as a pilus structure important for direct contact and penetration of the recipient cell surface. Type IV systems are remarkably versatile in that they mobilize a broad range of substrates, including single proteins, protein complexes, DNA and nucleoprotein complexes, across the cell envelope. These machines have broad clinical significance not only for delivering bacterial toxins or effector proteins directly into targeted host cells, but also for direct involvement in phenomena such as biofilm formation and the rapid horizontal spread of antibiotic resistance genes among the microbial community.
Collapse
Affiliation(s)
- Ellen L Zechner
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/I, Graz 8010, Austria.
| | | | | |
Collapse
|
11
|
Lang S, Zechner EL. General requirements for protein secretion by the F-like conjugation system R1. Plasmid 2012; 67:128-38. [PMID: 22248924 PMCID: PMC3338209 DOI: 10.1016/j.plasmid.2011.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 12/28/2011] [Accepted: 12/29/2011] [Indexed: 11/27/2022]
Abstract
Bacterial conjugation disseminates genes among bacteria via a process requiring direct cell contact. The cell envelope spanning secretion apparatus involved belongs to the type IV family of bacterial secretion systems, which transport protein as well as nucleoprotein substrates. This study aims to understand mechanisms leading to the initiation of type IV secretion using conjugative plasmid paradigm R1. We analyze the general requirements for plasmid encoded conjugation proteins and DNA sequence within the origin of transfer (oriT) for protein secretion activity using a Cre recombinase reporter system. We find that similar to conjugative plasmid DNA strand transfer, activation of the R1 system for protein secretion depends on binding interactions between the multimeric, ATP-binding coupling protein and the R1 relaxosome including an intact oriT. Evidence for DNA independent protein secretion was not found.
Collapse
Affiliation(s)
- Silvia Lang
- University of Graz, Institute of Molecular Biosciences, Humboldtstrasse 50/I, 8010 Graz, Austria
| | | |
Collapse
|
12
|
Lang S, Kirchberger PC, Gruber CJ, Redzej A, Raffl S, Zellnig G, Zangger K, Zechner EL. An activation domain of plasmid R1 TraI protein delineates stages of gene transfer initiation. Mol Microbiol 2011; 82:1071-85. [PMID: 22066957 PMCID: PMC3245843 DOI: 10.1111/j.1365-2958.2011.07872.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacterial conjugation is a form of type IV secretion that transports protein and DNA to recipient cells. Specific bacteriophage exploit the conjugative pili and cell envelope spanning protein machinery of these systems to invade bacterial cells. Infection by phage R17 requires F-like pili and coupling protein TraD, which gates the cytoplasmic entrance of the secretion channel. Here we investigate the role of TraD in R17 nucleoprotein uptake and find parallels to secretion mechanisms. The relaxosome of IncFII plasmid R1 is required. A ternary complex of plasmid oriT, TraD and a novel activation domain within the N-terminal 992 residues of TraI contributes a key mechanism involving relaxase-associated properties of TraI, protein interaction and the TraD ATPase. Helicase-associated activities of TraI are dispensable. These findings distinguish for the first time specific protein domains and complexes that process extracellular signals into distinct activation stages in the type IV initiation pathway. The study also provided insights into the evolutionary interplay of phage and the plasmids they exploit. Related plasmid F adapted to R17 independently of TraI. It follows that selection for phage resistance drives not only variation in TraA pilins but diversifies TraD and its binding partners in a plasmid-specific manner.
Collapse
Affiliation(s)
- Silvia Lang
- University of Graz, Institute of Molecular Biosciences, Humboldtstrasse 50, 8010 Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
13
|
TrbB from conjugative plasmid F is a structurally distinct disulfide isomerase that requires DsbD for redox state maintenance. J Bacteriol 2011; 193:4588-97. [PMID: 21742866 DOI: 10.1128/jb.00351-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TrbB, a periplasmic protein encoded by the conjugative plasmid F, has a predicted thioredoxin-like fold and possesses a C-X-X-C redox active site motif. TrbB may function in the conjugative process by serving as a disulfide bond isomerase, facilitating proper folding of a subset of F-plasmid-encoded proteins in the periplasm. Previous studies have demonstrated that a ΔtrbB F plasmid in Escherichia coli lacking DsbC(E.coli), its native disulfide bond isomerase, experiences a 10-fold decrease in mating efficiency but have not provided direct evidence for disulfide bond isomerase activity. Here we demonstrate that trbB can partially restore transfer of a variant of the distantly related R27 plasmid when both chromosomal and plasmid genes encoding disulfide bond isomerases have been disrupted. In addition, we show that TrbB displays both disulfide bond isomerase and reductase activities on substrates not involved in the conjugative process. Unlike canonical members of the disulfide bond isomerase family, secondary structure predictions suggest that TrbB lacks both an N-terminal dimerization domain and an α-helical domain found in other disulfide bond isomerases. Phylogenetic analyses support the conclusion that TrbB belongs to a unique family of plasmid-based disulfide isomerases. Interestingly, although TrbB diverges structurally from other disulfide bond isomerases, we show that like those isomerases, TrbB relies on DsbD from E. coli for maintenance of its C-X-X-C redox active site motif.
Collapse
|
14
|
Nash RP, Niblock FC, Redinbo MR. Tyrosine partners coordinate DNA nicking by the Salmonella typhimurium plasmid pCU1 relaxase enzyme. FEBS Lett 2011; 585:1216-22. [PMID: 21439279 PMCID: PMC3086049 DOI: 10.1016/j.febslet.2011.03.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 03/17/2011] [Accepted: 03/18/2011] [Indexed: 10/18/2022]
Abstract
Conjugative plasmid transfer results in the spread of antibiotic resistance genes and virulence factors between bacterial cells. Plasmid transfer is dependent upon the DNA nicking activity of a plasmid-encoded relaxase enzyme. Tyrosine residues within the relaxase cleave the DNA plasmid nic site in a highly sequence-specific manner. The conjugative resistance plasmid pCU1 encodes a relaxase with four tyrosine residues surrounding its active site (Y18,19,26,27). We use activity assays to demonstrate that the pCU1 relaxase preferentially uses Y26 or a combination of Y18 + 19 to nick DNA at wild type levels, and that an adjacent aspartic acid deprotonates these tyrosines to activate them for attack. Our findings illustrate the unique modifications that the pCU1 relaxase has introduced into the traditional relaxase-mediated DNA nicking mechanism.
Collapse
Affiliation(s)
- Rebekah P. Nash
- Department of Chemistry, Caudill and Kenan Laboratories, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 27599
| | - Franklin C. Niblock
- Department of Chemistry, Caudill and Kenan Laboratories, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 27599
| | - Matthew R. Redinbo
- Department of Chemistry, Caudill and Kenan Laboratories, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 27599
- Department of Biochemistry and Biophysics, 120 Mason Farm Road, CB 7260, Room 3010 GMB, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 27599
| |
Collapse
|
15
|
Lorenzo-Díaz F, Dostál L, Coll M, Schildbach JF, Menéndez M, Espinosa M. The MobM relaxase domain of plasmid pMV158: thermal stability and activity upon Mn2+ and specific DNA binding. Nucleic Acids Res 2011; 39:4315-29. [PMID: 21296755 PMCID: PMC3105389 DOI: 10.1093/nar/gkr049] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Protein MobM, the relaxase involved in conjugative transfer of the streptococcal plasmid pMV158, is the prototype of the MOBV superfamily of relaxases. To characterize the DNA-binding and nicking domain of MobM, a truncated version of the protein (MobMN199) encompassing its N-terminal region was designed and the protein was purified. MobMN199 was monomeric in contrast to the dimeric form of the full-length protein, but it kept its nicking activity on pMV158 DNA. The optimal relaxase activity was dependent on Mn2+ or Mg2+ cations in a dosage-dependent manner. However, whereas Mn2+ strongly stabilized MobMN199 against thermal denaturation, no protective effect was observed for Mg2+. Furthermore, MobMN199 exhibited a high affinity binding for Mn2+ but not for Mg2+. We also examined the binding-specificity and affinity of MobMN199 for several substrates of single-stranded DNA encompassing the pMV158 origin of transfer (oriT). The minimal oriT was delimited to a stretch of 26 nt which included an inverted repeat located eight bases upstream of the nick site. The structure of MobMN199 was strongly stabilized by binding to the defined target DNA, indicating the formation of a tight protein–DNA complex. We demonstrate that the oriT recognition by MobMN199 was highly specific and suggest that this protein most probably employs Mn2+ during pMV158 transfer.
Collapse
Affiliation(s)
- Fabián Lorenzo-Díaz
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
16
|
Dostál L, Shao S, Schildbach JF. Tracking F plasmid TraI relaxase processing reactions provides insight into F plasmid transfer. Nucleic Acids Res 2010; 39:2658-70. [PMID: 21109533 PMCID: PMC3074121 DOI: 10.1093/nar/gkq1137] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Early in F plasmid conjugative transfer, the F relaxase, TraI, cleaves one plasmid strand at a site within the origin of transfer called nic. The reaction covalently links TraI Tyr16 to the 5′-ssDNA phosphate. Ultimately, TraI reverses the cleavage reaction to circularize the plasmid strand. The joining reaction requires a ssDNA 3′-hydroxyl; a second cleavage reaction at nic, regenerated by extension from the plasmid cleavage site, may generate this hydroxyl. Here we confirm that TraI is transported to the recipient during transfer. We track the secondary cleavage reaction and provide evidence it occurs in the donor and F ssDNA is transferred to the recipient with a free 3′-hydroxyl. Phe substitutions for four Tyr within the TraI active site implicate only Tyr16 in the two cleavage reactions required for transfer. Therefore, two TraI molecules are required for F plasmid transfer. Analysis of TraI translocation on various linear and circular ssDNA substrates supports the assertion that TraI slowly dissociates from the 3′-end of cleaved F plasmid, likely a characteristic essential for plasmid re-circularization.
Collapse
Affiliation(s)
- Lubomír Dostál
- Department of Biology, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
17
|
Nuclear targeting of a bacterial integrase that mediates site-specific recombination between bacterial and human target sequences. Appl Environ Microbiol 2010; 77:201-10. [PMID: 21037296 DOI: 10.1128/aem.01371-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TrwC is a bacterial protein involved in conjugative transfer of plasmid R388. It is transferred together with the DNA strand into the recipient bacterial cell, where it can integrate the conjugatively transferred DNA strand into its target sequence present in the recipient cell. Considering that bacterial conjugation can occur between bacteria and eukaryotic cells, this protein has great biotechnological potential as a site-specific integrase. We have searched for possible TrwC target sequences in the human genome. Recombination assays showed that TrwC efficiently catalyzes recombination between its natural target sequence and a discrete number of sequences, located in noncoding sites of the human genome, which resemble this target. We have determined the cellular localization of TrwC and derivatives in human cells by immunofluorescence and also by an indirect yeast-based assay to detect both nuclear import and export signals. The results indicate that the recombinase domain of TrwC (N600) has nuclear localization, but full-length TrwC locates in the cytoplasm, apparently due to the presence of a nuclear export signal in its C-terminal domain. The recombinase domain of TrwC can be transported to recipient cells by conjugation in the presence of the helicase domain of TrwC, but with very low efficiency. We mutagenized the trwC gene and selected for mutants with nuclear localization. We obtained one such mutant with a point A904T mutation and an extra peptide at its C terminus, which maintained its functionality in conjugation and recombination. This TrwC mutant could be useful for future TrwC-mediated site-specific integration assays in mammalian cells.
Collapse
|
18
|
Nash RP, Habibi S, Cheng Y, Lujan SA, Redinbo MR. The mechanism and control of DNA transfer by the conjugative relaxase of resistance plasmid pCU1. Nucleic Acids Res 2010; 38:5929-43. [PMID: 20448025 PMCID: PMC2943615 DOI: 10.1093/nar/gkq303] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacteria expand their genetic diversity, spread antibiotic resistance genes, and obtain virulence factors through the highly coordinated process of conjugative plasmid transfer (CPT). A plasmid-encoded relaxase enzyme initiates and terminates CPT by nicking and religating the transferred plasmid in a sequence-specific manner. We solved the 2.3 Å crystal structure of the relaxase responsible for the spread of the resistance plasmid pCU1 and determined its DNA binding and nicking capabilities. The overall fold of the pCU1 relaxase is similar to that of the F plasmid and plasmid R388 relaxases. However, in the pCU1 structure, the conserved tyrosine residues (Y18,19,26,27) that are required for DNA nicking and religation were displaced up to 14 Å out of the relaxase active site, revealing a high degree of mobility in this region of the enzyme. In spite of this flexibility, the tyrosines still cleaved the nic site of the plasmid’s origin of transfer, and did so in a sequence-specific, metal-dependent manner. Unexpectedly, the pCU1 relaxase lacked the sequence-specific DNA binding previously reported for the homologous F and R388 relaxase enzymes, despite its high sequence and structural similarity with both proteins. In summary, our work outlines novel structural and functional aspects of the relaxase-mediated conjugative transfer of plasmid pCU1.
Collapse
Affiliation(s)
- Rebekah Potts Nash
- Department of Chemistry, University of North Carolina, Chapel Hill, CB 3290 and Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, CB 7260, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
19
|
de la Cruz F, Frost LS, Meyer RJ, Zechner EL. Conjugative DNA metabolism in Gram-negative bacteria. FEMS Microbiol Rev 2010; 34:18-40. [PMID: 19919603 DOI: 10.1111/j.1574-6976.2009.00195.x] [Citation(s) in RCA: 273] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacterial conjugation in Gram-negative bacteria is triggered by a signal that connects the relaxosome to the coupling protein (T4CP) and transferosome, a type IV secretion system. The relaxosome, a nucleoprotein complex formed at the origin of transfer (oriT), consists of a relaxase, directed to the nic site by auxiliary DNA-binding proteins. The nic site undergoes cleavage and religation during vegetative growth, but this is converted to a cleavage and unwinding reaction when a competent mating pair has formed. Here, we review the biochemistry of relaxosomes and ponder some of the remaining questions about the nature of the signal that begins the process.
Collapse
|
20
|
Lucas M, González-Pérez B, Cabezas M, Moncalian G, Rivas G, de la Cruz F. Relaxase DNA binding and cleavage are two distinguishable steps in conjugative DNA processing that involve different sequence elements of the nic site. J Biol Chem 2010; 285:8918-26. [PMID: 20061574 DOI: 10.1074/jbc.m109.057539] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TrwC, the relaxase of plasmid R388, catalyzes a series of concerted DNA cleavage and strand transfer reactions on a specific site (nic) of its origin of transfer (oriT). nic contains the cleavage site and an adjacent inverted repeat (IR(2)). Mutation analysis in the nic region indicated that recognition of the IR(2) proximal arm and the nucleotides located between IR(2) and the cleavage site were essential for supercoiled DNA processing, as judged either by in vitro nic cleavage or by mobilization of a plasmid containing oriT. Formation of the IR(2) cruciform and recognition of the distal IR(2) arm and loop were not necessary for these reactions to take place. On the other hand, IR(2) was not involved in TrwC single-stranded DNA processing in vitro. For single-stranded DNA nic cleavage, TrwC recognized a sequence embracing six nucleotides upstream of the cleavage site and two nucleotides downstream. This suggests that TrwC DNA binding and cleavage are two distinguishable steps in conjugative DNA processing and that different sequence elements are recognized by TrwC in each step. IR(2)-proximal arm recognition was crucial for the initial supercoiled DNA binding. Subsequent recognition of the adjacent single-stranded DNA binding site was required to position the cleavage site in the active center of the protein so that the nic cleavage reaction could take place.
Collapse
Affiliation(s)
- María Lucas
- Departamento de Biología Molecular, Universidad de Cantabria, and Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas-UC-IDICAN, 39011 Santander, Spain
| | | | | | | | | | | |
Collapse
|
21
|
Protein and DNA effectors control the TraI conjugative helicase of plasmid R1. J Bacteriol 2009; 191:6888-99. [PMID: 19767439 DOI: 10.1128/jb.00920-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms controlling progression of conjugative DNA processing from a preinitiation stage of specific plasmid strand cleavage at the transfer origin to a stage competent for unwinding the DNA strand destined for transfer remain obscure. Linear heteroduplex substrates containing double-stranded DNA binding sites for plasmid R1 relaxosome proteins and various regions of open duplex for TraI helicase loading were constructed to model putative intermediate structures in the initiation pathway. The activity of TraI was compared in steady-state multiple turnover experiments that measured the net production of unwound DNA as well as transesterase-catalyzed cleavage at nic. Helicase efficiency was enhanced by the relaxosome components TraM and integration host factor. The magnitude of stimulation depended on the proximity of the specific protein binding sites to the position of open DNA. The cytoplasmic domain of the R1 coupling protein, TraDDeltaN130, stimulated helicase efficiency on all substrates in a manner consistent with cooperative interaction and sequence-independent DNA binding. Variation in the position of duplex opening also revealed an unsuspected autoinhibition of the unwinding reaction catalyzed by full-length TraI. The activity reduction was sequence dependent and was not observed with a truncated helicase, TraIDeltaN308, lacking the site-specific DNA binding transesterase domain. Given that transesterase and helicase domains are physically tethered in the wild-type protein, this observation suggests that an intramolecular switch controls helicase activation. The data support a model where protein-protein and DNA ligand interactions at the coupling protein interface coordinate the transition initiating production and uptake of the nucleoprotein secretion substrate.
Collapse
|
22
|
Conjugative plasmid transfer and adhesion dynamics in an Escherichia coli biofilm. Appl Environ Microbiol 2009; 75:6783-91. [PMID: 19717626 DOI: 10.1128/aem.00974-09] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A conjugative plasmid from the catheter-associated urinary tract infection strain Escherichia coli MS2027 was sequenced and annotated. This 42,644-bp plasmid, designated pMAS2027, contains 58 putative genes and is most closely related to plasmids belonging to incompatibility group X (IncX1). Plasmid pMAS2027 encodes two important virulence factors: type 3 fimbriae and a type IV secretion (T4S) system. Type 3 fimbriae, recently found to be functionally expressed in E. coli, played an important role in biofilm formation. Biofilm formation by E. coli MS2027 was specifically due to expression of type 3 fimbriae and not the T4S system. The T4S system, however, accounted for the conjugative ability of pMAS2027 and enabled a non-biofilm-forming strain to grow as part of a mixed biofilm following acquisition of this plasmid. Thus, the importance of conjugation as a mechanism to spread biofilm determinants was demonstrated. Conjugation may represent an important mechanism by which type 3 fimbria genes are transferred among the Enterobacteriaceae that cause device-related infections in nosocomial settings.
Collapse
|
23
|
Hekman K, Guja K, Larkin C, Schildbach JF. An intrastrand three-DNA-base interaction is a key specificity determinant of F transfer initiation and of F TraI relaxase DNA recognition and cleavage. Nucleic Acids Res 2008; 36:4565-72. [PMID: 18611948 PMCID: PMC2504302 DOI: 10.1093/nar/gkn422] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacterial conjugation, transfer of a single conjugative plasmid strand between bacteria, diversifies prokaryotic genomes and disseminates antibiotic resistance genes. As a prerequisite for transfer, plasmid-encoded relaxases bind to and cleave the transferred plasmid strand with sequence specificity. The crystal structure of the F TraI relaxase domain with bound single-stranded DNA suggests binding specificity is partly determined by an intrastrand three-way base-pairing interaction. We showed previously that single substitutions for the three interacting bases could significantly reduce binding. Here we examine the effect of single and double base substitutions at these positions on plasmid mobilization. Many substitutions reduce transfer, although the detrimental effects of some substitutions can be partially overcome by substitutions at a second site. We measured the affinity of the F TraI relaxase domain for several DNA sequence variants. While reduced transfer generally correlates with reduced binding affinity, some oriT variants transfer with an efficiency different than expected from their binding affinities, indicating ssDNA binding and cleavage do not correlate absolutely. Oligonucleotide cleavage assay results suggest the essential function of the three-base interaction may be to position the scissile phosphate for cleavage, rather than to directly contribute to binding affinity.
Collapse
Affiliation(s)
- Katherine Hekman
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
24
|
Identification of the origin of transfer (oriT) and a new gene required for mobilization of the SXT/R391 family of integrating conjugative elements. J Bacteriol 2008; 190:5328-38. [PMID: 18539733 DOI: 10.1128/jb.00150-08] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrating conjugative elements (ICEs) are self-transmissible, mobile elements that are widespread among bacteria. Following their excision from the chromosome, ICEs transfer by conjugation, a process initiated by a single-stranded DNA break at a specific locus called the origin of transfer (oriT). The SXT/R391 family of ICEs includes SXT(MO10), R391, and more than 25 related ICEs found in gammaproteobacteria. A previous study mapped the oriT locus of SXT(MO10) to a 550-bp intergenic region between traD and s043. We suspected that this was not the correct oriT locus, because the identical traD-s043 region in R391 and other SXT/R391 family ICEs was annotated as a gene of an unknown function. Here, we investigated the location and structure of the oriT locus in the ICEs of the SXT/R391 family and demonstrated that oriT(SXT) corresponds to a 299-bp sequence that contains multiple imperfect direct and inverted repeats and is located in the intergenic region between s003 and rumB'. The oriT(SXT) locus is well conserved among SXT/R391 ICEs, like R391, R997, and pMERPH, and cross-recognition of oriT(SXT) and oriT(R391) by R391 and SXT(MO10) was demonstrated. Furthermore, we identified a previously unannotated gene, mobI, located immediately downstream from oriT(SXT), which proved to be essential for SXT(MO10) transfer and SXT(MO10)-mediated chromosomal DNA mobilization. Deletion of mobI did not impair the SXT(MO10)-dependent transfer of the mobilizable plasmid CloDF13, suggesting that mobI has no role in the assembly of the SXT(MO10) mating pair apparatus. Instead, mobI appears to be involved in the recognition of oriT(SXT).
Collapse
|
25
|
Amani M, Elahwany MD. An origin of transfer from Lactococcus lactis subsp. lactis causes rearrangement in the temperature sensitive plasmids pUCB3522 and pJRS290. Acta Microbiol Immunol Hung 2007; 54:413-20. [PMID: 18088013 DOI: 10.1556/amicr.54.2007.4.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cloning of the oriT region derived from Lactococcus lactis subsp. lactis into plasmids is expected to convert them into mobilizable plasmids in a suitable genetic background. In some cases, however, the cloning of oriT causes deleterious DNA rearrangements. In the work presented, oriT was cloned into two temperature sensitive plasmids, pJRS290 and pUCB3522. The plasmids were transformed into E. coli and electroporated into L. lactis. Restriction digestion of the plasmids derived from the cloned transformed cells showed fragment sizes different from those expected, indicating that rearrangements had occurred. Furthermore, the inability to successfully transform E. coli with one of the plasmids supports this conclusion.
Collapse
Affiliation(s)
- M. Amani
- 1 Alexandria University Section of Microbiology, Botany Department, Faculty of Science Alexandria Egypt
| | | |
Collapse
|
26
|
Gonzalez-Perez B, Lucas M, Cooke LA, Vyle JS, de la Cruz F, Moncalián G. Analysis of DNA processing reactions in bacterial conjugation by using suicide oligonucleotides. EMBO J 2007; 26:3847-57. [PMID: 17660746 PMCID: PMC1952221 DOI: 10.1038/sj.emboj.7601806] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 06/26/2007] [Indexed: 11/09/2022] Open
Abstract
Protein TrwC is the conjugative relaxase responsible for DNA processing in plasmid R388 bacterial conjugation. TrwC has two catalytic tyrosines, Y18 and Y26, both able to carry out cleavage reactions using unmodified oligonucleotide substrates. Suicide substrates containing a 3'-S-phosphorothiolate linkage at the cleavage site displaced TrwC reaction towards covalent adducts and thereby enabled intermediate steps in relaxase reactions to be investigated. Two distinct covalent TrwC-oligonucleotide complexes could be separated from noncovalently bound protein by SDS-PAGE. As observed by mass spectrometry, one complex contained a single, cleaved oligonucleotide bound to Y18, whereas the other contained two cleaved oligonucleotides, bound to Y18 and Y26. Analysis of the cleavage reaction using suicide substrates and Y18F or Y26F mutants showed that efficient Y26 cleavage only occurs after Y18 cleavage. Strand-transfer reactions carried out with the isolated Y18-DNA complex allowed the assignment of specific roles to each tyrosine. Thus, only Y18 was used for initiation. Y26 was specifically used in the second transesterification that leads to strand transfer, thus catalyzing the termination reaction that occurs in the recipient cell.
Collapse
Affiliation(s)
- Blanca Gonzalez-Perez
- Departamento de Biología Molecular (Universidad de Cantabria) and Instituto de Biomedicina y Biotecnología de Cantabria (CSIC-UC-IDICAN), Santander, Spain
| | - María Lucas
- Departamento de Biología Molecular (Universidad de Cantabria) and Instituto de Biomedicina y Biotecnología de Cantabria (CSIC-UC-IDICAN), Santander, Spain
| | - Leonie A Cooke
- School of Chemistry and Chemical Engineering, The Queen's University of Belfast, Belfast, UK
| | - Joseph S Vyle
- School of Chemistry and Chemical Engineering, The Queen's University of Belfast, Belfast, UK
| | - Fernando de la Cruz
- Departamento de Biología Molecular (Universidad de Cantabria) and Instituto de Biomedicina y Biotecnología de Cantabria (CSIC-UC-IDICAN), Santander, Spain
- Departamento de Biologia Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (CSIC), Universidad de Cantabria, Cardenal Herrera Oria s/n, Santander 39011, Spain. Tel.: +34 94 2201 942; Fax: +34 94 2201 945; E-mail:
| | - Gabriel Moncalián
- Departamento de Biología Molecular (Universidad de Cantabria) and Instituto de Biomedicina y Biotecnología de Cantabria (CSIC-UC-IDICAN), Santander, Spain
| |
Collapse
|
27
|
Williams SL, Schildbach JF. TraY and integration host factor oriT binding sites and F conjugal transfer: sequence variations, but not altered spacing, are tolerated. J Bacteriol 2007; 189:3813-23. [PMID: 17351033 PMCID: PMC1913323 DOI: 10.1128/jb.01783-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial conjugation is the process by which a single strand of a conjugative plasmid is transferred from donor to recipient. For F plasmid, TraI, a relaxase or nickase, binds a single plasmid DNA strand at its specific origin of transfer (oriT) binding site, sbi, and cleaves at a site called nic. In vitro studies suggest TraI is recruited to sbi by its accessory proteins, TraY and integration host factor (IHF). TraY and IHF bind conserved oriT sites sbyA and ihfA, respectively, and bend DNA. The resulting conformational changes may propagate to nic, generating the single-stranded region that TraI can bind. Previous deletion studies performed by others showed transfer efficiency of a plasmid containing F oriT decreased progressively as increasingly longer segments, ultimately containing both sbyA and ihfA, were deleted. Here we describe our efforts to more precisely define the role of sbyA and ihfA by examining the effects of multiple base substitutions at sbyA and ihfA on binding and plasmid mobilization. While we observed significant decreases in in vitro DNA-binding affinities, we saw little effect on plasmid mobilization even when sbyA and ihfA variants were combined. In contrast, when half or full helical turns were inserted between the relaxosome protein-binding sites, mobilization was dramatically reduced, in some cases below the detectable limit of the assay. These results are consistent with TraY and IHF recognizing sbyA and ihfA with limited sequence specificity and with relaxosome proteins requiring proper spacing and orientation with respect to each other.
Collapse
Affiliation(s)
- Sarah L Williams
- Department of Biology, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | | |
Collapse
|
28
|
Chen Y, Staddon JH, Dunny GM. Specificity determinants of conjugative DNA processing in the Enterococcus faecalis plasmid pCF10 and the Lactococcus lactis plasmid pRS01. Mol Microbiol 2007; 63:1549-64. [PMID: 17302827 PMCID: PMC2650854 DOI: 10.1111/j.1365-2958.2007.05610.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The DNA-processing region of the Enterococcus faecalis pheromone-responsive plasmid pCF10 is highly similar to that of the otherwise unrelated plasmid pRS01 from Lactococcus lactis. A transfer-proficient pRS01 derivative was unable to mobilize plasmids containing the pCF10 origin of transfer, oriT. In contrast, pRS01 oriT-containing plasmids could be mobilized by pCF10 at a low frequency. Relaxases PcfG and LtrB were both capable of binding to single-stranded oriT DNAs; LtrB was highly specific for its cognate oriT, whereas PcfG could recognize both pCF10 and pRS01 oriT. However, pcfG was unable to complement an ltrB insertion mutation. Genetic analysis showed that pcfF of pCF10 and ltrF of pRS01 are also essential for plasmid transfer. Purified PcfF and LtrF possess double-stranded DNA binding activities for the inverted repeat within either oriT sequence. PcfG and LtrB were recruited into their cognate F-oriT DNA complex through direct interactions with their cognate accessory protein. PcfG also could interact with LtrF when pCF10 oriT was present. In vivo cross-complementation analysis showed that ltrF partially restored the pCF10DeltapcfF mutant transfer ability when provided in trans, whereas pcfF failed to complement an ltrF mutation. Specificity of conjugative DNA processing in these plasmids involves both DNA-protein and protein-protein interactions.
Collapse
Affiliation(s)
- Yuqing Chen
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|