1
|
Gao L, Shi W, Xia X. Genomic Plasticity of Acid-Tolerant Phenotypic Evolution in Acetobacter pasteurianus. Appl Biochem Biotechnol 2023; 195:6003-6019. [PMID: 36738389 DOI: 10.1007/s12010-023-04353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 02/05/2023]
Abstract
Acetic acid bacteria have a remarkable capacity to cope with elevated concentrations of cytotoxic acetic acid in their fermentation environment. In particular, the high-level acetate tolerance of Acetobacter pasteurianus that occurs in vinegar industrial settings must be constantly selected for. However, the improved acetic acid tolerance is rapidly lost without a selection pressure. To understand genetic and molecular biology of this acquired acetic acid tolerance in A. pasteurianus, we evolved three strains A. pasteurianus CICIM B7003, CICIM B7003-02, and ATCC 33,445 over 960 generations (4 months) in two initial acetic acids of 20 g·L-1 and 30 g·L-1, respectively. An acetic acid-adapted strain M20 with significantly improved specific growth rate of 0.159 h-1 and acid productivity of 1.61 g·L-1·h-1 was obtained. Comparative genome analysis of six evolved strains revealed that the genetic variations of adaptation were mainly focused on lactate metabolism, membrane proteins, transcriptional regulators, transposases, replication, and repair system. Among of these, lactate dehydrogenase, acetolactate synthase, glycosyltransferase, ABC transporter ATP-binding protein, two-component regulatory systems, the type II toxin-antitoxin system (RelE/RelB/StbE), exodeoxyribonuclease III, type I restriction endonuclease, tRNA-uridine 2-sulfurtransferase, and transposase might collaboratively contribute to the improved acetic acid tolerance in A. pasteurianus strains. The balance between repair factors and transposition variations might be the basis for genomic plasticity of A. pasteurianus strains, allowing the survival of populations and their offspring in acetic acid stress fluctuations. These observations provide important insights into the nature of acquired acetic acid tolerance phenotype and lay a foundation for future genetic manipulation of these strains.
Collapse
Affiliation(s)
- Ling Gao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China
| | - Wei Shi
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China
| | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China.
| |
Collapse
|
2
|
Lee D, Oh S, Cho H, Yoo J, Lee G. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2211-2222. [PMID: 35137198 PMCID: PMC8887469 DOI: 10.1093/nar/gkac043] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/20/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Donghun Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Single-Molecule Biology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Sanghoon Oh
- Single-Molecule Biology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - HyeokJin Cho
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Single-Molecule Biology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Jungmin Yoo
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Single-Molecule Biology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Gwangrog Lee
- To whom correspondence should be addressed. Tel: +82 62 715 3558;
| |
Collapse
|
3
|
Yoo J, Lee D, Im H, Ji S, Oh S, Shin M, Park D, Lee G. The mechanism of gap creation by a multifunctional nuclease during base excision repair. SCIENCE ADVANCES 2021; 7:7/29/eabg0076. [PMID: 34261654 PMCID: PMC8279506 DOI: 10.1126/sciadv.abg0076] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/28/2021] [Indexed: 05/30/2023]
Abstract
During base excision repair, a transient single-stranded DNA (ssDNA) gap is produced at the apurinic/apyrimidinic (AP) site. Exonuclease III, capable of performing both AP endonuclease and exonuclease activity, are responsible for gap creation in bacteria. We used single-molecule fluorescence resonance energy transfer to examine the mechanism of gap creation. We found an AP site anchor-based mechanism by which the intrinsically distributive enzyme binds strongly to the AP site and becomes a processive enzyme, rapidly creating a gap and an associated transient ssDNA loop. The gap size is determined by the rigidity of the ssDNA loop and the duplex stability of the DNA and is limited to a few nucleotides to maintain genomic stability. When the 3' end is released from the AP endonuclease, polymerase I quickly initiates DNA synthesis and fills the gap. Our work provides previously unidentified insights into how a signal of DNA damage changes the enzymatic functions.
Collapse
Affiliation(s)
- Jungmin Yoo
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Single-Molecule Biology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Donghun Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Single-Molecule Biology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Hyeryeon Im
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Single-Molecule Biology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Sangmi Ji
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Single-Molecule Biology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Sanghoon Oh
- Single-Molecule Biology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-Ro, Jung-gu, Daegu 41944, Korea
| | - Daeho Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Gwangrog Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.
- Single-Molecule Biology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
4
|
Cho J, Oh S, Lee D, Han JW, Yoo J, Park D, Lee G. Spectroscopic sensing and quantification of AP-endonucleases using fluorescence-enhancement by cis– trans isomerization of cyanine dyes. RSC Adv 2021; 11:11380-11386. [PMID: 35423644 PMCID: PMC8695990 DOI: 10.1039/d0ra08051a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/08/2021] [Indexed: 11/21/2022] Open
Abstract
Apurinic/apyrimidinic (AP) endonucleases are vital DNA repair enzymes, and proposed to be a prognostic biomarker for various types of cancer in humans. Numerous DNA sensors have been developed to evaluate the extent of nuclease activity but their DNA termini are not protected against other nucleases, hampering accurate quantification. Here we developed a new fluorescence enhancement (FE)-based method as an enzyme-specific DNA biosensor with nuclease-protection by three functional units (an AP-site, Cy3 and termini that are protected from exonucleolytic cleavage). A robust FE signal arises from the fluorescent cis–trans isomerization of a cyanine dye (e.g., Cy3) upon the enzyme-triggered structural change from double-stranded (ds)DNA to single-stranded (ss)DNA that carries Cy3. The FE-based assay reveals a linear dependency on sub-nanomolar concentrations as low as 10−11 M for the target enzyme and can be also utilized as a sensitive readout of other nuclease activities. Apurinic/apyrimidinic (AP) endonucleases are vital DNA repair enzymes, and proposed to be a prognostic biomarker for various types of cancer in humans.![]()
Collapse
Affiliation(s)
- JunHo Cho
- School of Life Sciences
- Gwangju Institute of Science and Technology
- Gwangju
- Korea
| | - Sanghoon Oh
- Department of Biomedical Science and Engineering
- Gwangju Institute of Science and Technology
- Gwangju
- Korea
| | - DongHun Lee
- School of Life Sciences
- Gwangju Institute of Science and Technology
- Gwangju
- Korea
| | - Jae Won Han
- School of Life Sciences
- Gwangju Institute of Science and Technology
- Gwangju
- Korea
| | - Jungmin Yoo
- School of Life Sciences
- Gwangju Institute of Science and Technology
- Gwangju
- Korea
| | - Daeho Park
- School of Life Sciences
- Gwangju Institute of Science and Technology
- Gwangju
- Korea
- Cell Mechanobiology Research Center
| | - Gwangrog Lee
- School of Life Sciences
- Gwangju Institute of Science and Technology
- Gwangju
- Korea
- Department of Biomedical Science and Engineering
| |
Collapse
|
5
|
ExoMeg1: a new exonuclease from metagenomic library. Sci Rep 2016; 6:19712. [PMID: 26815639 PMCID: PMC4750427 DOI: 10.1038/srep19712] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/27/2015] [Indexed: 01/18/2023] Open
Abstract
DNA repair mechanisms are responsible for maintaining the integrity of DNA and are essential to life. However, our knowledge of DNA repair mechanisms is based on model organisms such as Escherichia coli, and little is known about free living and uncultured microorganisms. In this study, a functional screening was applied in a metagenomic library with the goal of discovering new genes involved in the maintenance of genomic integrity. One clone was identified and the sequence analysis showed an open reading frame homolog to a hypothetical protein annotated as a member of the Exo_Endo_Phos superfamily. This novel enzyme shows 3′-5′ exonuclease activity on single and double strand DNA substrates and it is divalent metal-dependent, EDTA-sensitive and salt resistant. The clone carrying the hypothetical ORF was able to complement strains deficient in recombination or base excision repair, suggesting that the new enzyme may be acting on the repair of single strand breaks with 3′ blockers, which are substrates for these repair pathways. Because this is the first report of an enzyme obtained from a metagenomic approach showing exonuclease activity, it was named ExoMeg1. The metagenomic approach has proved to be a useful tool for identifying new genes of uncultured microorganisms.
Collapse
|
6
|
Khanam T, Shukla A, Rai N, Ramachandran R. Critical determinants for substrate recognition and catalysis in the M. tuberculosis class II AP-endonuclease/3'-5' exonuclease III. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:505-16. [PMID: 25748880 DOI: 10.1016/j.bbapap.2015.02.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/02/2015] [Accepted: 02/25/2015] [Indexed: 01/13/2023]
Abstract
The Mycobacterium tuberculosis AP-endonuclease/3'-5' exodeoxyribonuclease (MtbXthA) is an important player in DNA base excision repair (BER). We demonstrate that the enzyme has robust apurinic/apyrimidinic (AP) endonuclease activity, 3'-5' exonuclease, phosphatase, and phosphodiesterase activities. The enzyme functions as an AP-endonuclease at high ionic environments, while the 3'-5'-exonuclease activity is predominant at low ionic environments. Our molecular modelling and mutational experiments show that E57 and D251 are critical for catalysis. Although nicked DNA and gapped DNA are fair substrates of MtbXthA, the gap-size did not affect the excision activity and furthermore, a substrate with a recessed 3'-end is preferred. To understand the determinants of abasic-site recognition, we examined the possible roles of (i) the base opposite the abasic site, (ii) the abasic ribose ring itself, (iii) local distortions in the AP-site, and (iv) conserved residues located near the active site. Our experiments demonstrate that the first three determinants do not play a role in MtbXthA, and in fact the enzyme exhibits robust endonucleolytic activity against single-stranded AP DNA also. Regarding the fourth determinant, it is known that the catalytic-site of AP endonucleases is surrounded by conserved aromatic residues and intriguingly, the exact residues that are directly involved in abasic site recognition vary with the individual proteins. We therefore, used a combination of mutational analysis, kinetic assays, and structure-based modelling, to identify that Y237, supported by Y137, mediates the formation of the MtbXthA-AP-DNA complex and AP-site incision.
Collapse
Affiliation(s)
- Taran Khanam
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Ankita Shukla
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Niyati Rai
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Ravishankar Ramachandran
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India.
| |
Collapse
|
7
|
Kaneda K, Ohishi K, Sekiguchi J, Shida T. Characterization of the AP Endonucleases fromThermoplasma volcaniumandLactobacillus plantarum: Contributions of Two Important Tryptophan Residues to AP Site Recognition. Biosci Biotechnol Biochem 2014; 70:2213-21. [PMID: 16960376 DOI: 10.1271/bbb.60153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Escherichia coli AP endonuclease (ExoIII) and its human homolog (APE1) have the sole tryptophan residue for AP site recognition (AP site recognizer) but these residues are at different positions near the catalytic sites. On the other hand, many bacterial AP endonucleases have two tryptophan residues at the same positions of both ExoIII and APE1. To elucidate whether these residues are involved in AP site recognition, the ExoIII homologs of Thermoplasma volcanium and Lactobacillus plantarum were characterized. These proteins showed AP endonuclease and 3'-5'exonculease activities. In each enzyme, the mutations of the tryptophan residues corresponding to Trp-280 of APE1 caused more significant reductions in activities and binding abilities to the oligonucleotide containing an AP site (AP-DNA) than those corresponding to Trp-212 of ExoIII. These results suggest that the tryptophan residue corresponding to Trp-280 of APE1 is the predominant AP site recognizer, and that corresponding to Trp-212 of ExoIII is the auxiliary recognizer.
Collapse
Affiliation(s)
- Kohichi Kaneda
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano, Japan
| | | | | | | |
Collapse
|
8
|
Kanazhevskaya LY, Koval VV, Vorobjev YN, Fedorova OS. Conformational dynamics of abasic DNA upon interactions with AP endonuclease 1 revealed by stopped-flow fluorescence analysis. Biochemistry 2012; 51:1306-21. [PMID: 22243137 DOI: 10.1021/bi201444m] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Apurinic/apyrimidinic (AP) sites are abundant DNA lesions arising from exposure to UV light, ionizing radiation, alkylating agents, and oxygen radicals. In human cells, AP endonuclease 1 (APE1) recognizes this mutagenic lesion and initiates its repair via a specific incision of the phosphodiester backbone 5' to the AP site. We have investigated a detailed mechanism of APE1 functioning using fluorescently labeled DNA substrates. A fluorescent adenine analogue, 2-aminopurine, was introduced into DNA substrates adjacent to the abasic site to serve as an on-site reporter of conformational transitions in DNA during the catalytic cycle. Application of a pre-steady-state stopped-flow technique allows us to observe changes in the fluorescence intensity corresponding to different stages of the process in real time. We also detected an intrinsic Trp fluorescence of the enzyme during interactions with 2-aPu-containing substrates. Our data have revealed a conformational flexibility of the abasic DNA being processed by APE1. Quantitative analysis of fluorescent traces has yielded a minimal kinetic scheme and appropriate rate constants consisting of four steps. The results obtained from stopped-flow data have shown a substantial influence of the 2-aPu base location on completion of certain reaction steps. Using detailed molecular dynamics simulations of the DNA substrates, we have attributed structural distortions of AP-DNA to realization of specific binding, effective locking, and incision of the damaged DNA. The findings allowed us to accurately discern the step that corresponds to insertion of specific APE1 amino acid residues into the abasic DNA void in the course of stabilization of the precatalytic complex.
Collapse
Affiliation(s)
- Lyubov Yu Kanazhevskaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | | | | | | |
Collapse
|
9
|
Yang X, Bing T, Mei H, Fang C, Cao Z, Shangguan D. Characterization and application of a DNA aptamer binding to L-tryptophan. Analyst 2010; 136:577-85. [PMID: 21076782 DOI: 10.1039/c0an00550a] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA aptamers for specific recognition of L-tryptophan have been evolved by a SELEX (systematic evolution of ligands by exponential enrichment) technique. Truncation-mutation experiments suggest that a 34-mer sequence, Trp3a-1, possesses the strongest binding ability to L-tryptophan. Trp3a-1 is predicted to adopt a loop-stem secondary structure, in which the loop may further fold into a binding pocket for L-tryptophan with the help of the stem. The specificity investigation shows that Trp3a-1 strongly binds to L-tryptophan, has almost no binding to other amino acids, and weakly binds to some tryptophan analogs and peptides containing the L-tryptophan residue. The binding of Trp3a-1 to L-tryptophan is mainly contributed to by hydrogen bonds and precise stacking formed between the binding pocket of Trp3a-1 and all groups on L-tryptophan. This aptamer has also been proved to be an effective ligand for the chiral separation of D/L-tryptophan. L-tryptophan and its derivatives are known to play important biological roles; this aptamer ligand could be used as a tool for the analysis of tryptophan and other related studies.
Collapse
Affiliation(s)
- Xiaojuan Yang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | | |
Collapse
|
10
|
Kanazhevskaya LY, Koval VV, Zharkov DO, Strauss PR, Fedorova OS. Conformational transitions in human AP endonuclease 1 and its active site mutant during abasic site repair. Biochemistry 2010; 49:6451-61. [PMID: 20575528 DOI: 10.1021/bi100769k] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AP endonuclease 1 (APE1) is a crucial enzyme of the base excision repair pathway (BER) in human cells. APE1 recognizes apurinic/apyrimidinic (AP) sites and makes a nick in the phosphodiester backbone 5' to them. The conformational dynamics and presteady-state kinetics of wild-type APE1 and its active site mutant, Y171F-P173L-N174K, have been studied. To observe conformational transitions occurring in the APE1 molecule during the catalytic cycle, we detected intrinsic tryptophan fluorescence of the enzyme under single turnover conditions. DNA duplexes containing a natural AP site, its tetrahydrofuran analogue, or a 2'-deoxyguanosine residue in the same position were used as specific substrates or ligands. The stopped-flow experiments have revealed high flexibility of the APE1 molecule and the complexity of the catalytic process. The fluorescent traces indicate that wild-type APE1 undergoes at least four conformational transitions during the processing of abasic sites in DNA. In contrast, nonspecific interactions of APE1 with undamaged DNA can be described by a two-step kinetic scheme. Rate and equilibrium constants were extracted from the stopped-flow and fluorescence titration data for all substrates, ligands, and products. A replacement of three residues at the enzymatic active site including the replacement of tyrosine 171 with phenylalanine in the enzyme active site resulted in a 2 x 10(4)-fold decrease in the reaction rate and reduced binding affinity. Our data indicate the important role of conformational changes in APE1 for substrate recognition and catalysis.
Collapse
Affiliation(s)
- Lyubov Yu Kanazhevskaya
- Institute of Chemical Biology & Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | | | | | | |
Collapse
|
11
|
Lakomek K, Dickmanns A, Ciirdaeva E, Schomacher L, Ficner R. Crystal structure analysis of DNA uridine endonuclease Mth212 bound to DNA. J Mol Biol 2010; 399:604-17. [PMID: 20434457 DOI: 10.1016/j.jmb.2010.04.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 04/21/2010] [Indexed: 11/30/2022]
Abstract
The reliable repair of pre-mutagenic U/G mismatches that originated from hydrolytic cytosine deamination is crucial for the maintenance of the correct genomic information. In most organisms, any uracil base in DNA is attacked by uracil DNA glycosylases (UDGs), but at least in Methanothermobacter thermautotrophicus DeltaH, an alternative strategy has evolved. The exonuclease III homologue Mth212 from the thermophilic archaeon M. thermautotrophicus DeltaH exhibits a DNA uridine endonuclease activity in addition to the apyrimidinic/apurinic site endonuclease and 3'-->5'exonuclease functions. Mth212 alone compensates for the lack of a UDG in a single-step reaction thus substituting the two-step pathway that requires the consecutive action of UDG and apyrimidinic/apurinic site endonuclease. In order to gain deeper insight into the structural basis required for the specific uridine recognition by Mth212, we have characterized the enzyme by means of X-ray crystallography. Structures of Mth212 wild-type or mutant proteins either alone or in complex with DNA substrates and products have been determined to a resolution of up to 1.2 A, suggesting key residues for the uridine endonuclease activity. The insertion of the side chain of Arg209 into the DNA helical base stack resembles interactions observed in human UDG and seems to be crucial for the uridine recognition. In addition, Ser171, Asn153, and Lys125 in the substrate binding pocket appear to have important functions in the discrimination of aberrant uridine against naturally occurring thymidine and cytosine residues in double-stranded DNA.
Collapse
Affiliation(s)
- Kristina Lakomek
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Justus-von-Liebig Weg 11, D-37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
12
|
Ly A, Bullick S, Won JH, Milligan JR. Cationic peptides containing tyrosine protect against radiation-induced oxidative DNA damage. Int J Radiat Biol 2009; 82:421-33. [PMID: 16846977 DOI: 10.1080/09553000600771531] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE To examine the effect of the amino acid tyrosine on oxidatively or direct-type damaged DNA damage when it is present in a DNA binding ligand. MATERIALS AND METHODS We made use of tetralysine ligands to ensure binding to DNA and to condense the DNA, and simulated direct-type damage by using gamma irradiation in the presence of thiocyanate ions. These ligands contained an additional C terminal amino acid. Phenylalanine was used as a control for tyrosine. These ligands were used in conjuction with a plasmid substrate to quantify strand break yields. Base damage yields were estimated by measuring the strand break yield after incubation of the plasmid with the bacterial base excision repair enzyme formamidopyrimidine-DNA N-glycosylase (FPG). RESULTS When the condensing ligand contains an additional tyrosine or tryptophan residue, the plasmid is protected against the effects of a single electron oxidation, as assayed by sensitivity to a base excision repair enzyme. This protection is significantly greater in condensed plasmid where the amino acid residues are in close proximity to the DNA, and can be observed even when only a small fraction of the ligand contains tyrosine. CONCLUSIONS Bound tyrosine residues located in close proximity to DNA are capable of reversing oxidative DNA damage far more efficiently than when present unbound in the bulk solution. This suggests that tyrosine residues in DNA binding proteins may participate in the repair of DNA that has been oxidatively damaged by ionizing radiation.
Collapse
Affiliation(s)
- Anne Ly
- Department of Radiology, University of California at San Diego, La Jolla, California 92093-0610, USA.
| | | | | | | |
Collapse
|
13
|
Lee LC, Chou YL, Chen HH, Lee YL, Shaw JF. Functional role of a non-active site residue Trp(23) on the enzyme activity of Escherichia coli thioesterase I/protease I/lysophospholipase L(1). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1467-73. [PMID: 19540368 DOI: 10.1016/j.bbapap.2009.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 06/08/2009] [Accepted: 06/11/2009] [Indexed: 10/20/2022]
Abstract
Escherichia coli possesses a versatile protein with the enzyme activities of thioesterase I, protease I, and lysophospholipase L(1). The protein is dubbed as TAP according to the chronological order of gene discovery (TesA/ApeA/PldC). Our previous studies showed that TAP comprises the catalytic triad Ser(10), Asp(154), and His(157) as a charge relay system, as well as Gly(44) and Asn(73) residues devoted to oxyanion hole stabilization. Geometrically, about 10 A away from the enzyme catalytic cleft, Trp(23) showed a stronger resonance shift than the backbone amide resonance observed in the nuclear magnetic resonance (NMR) analyses. In the present work, we conducted site-directed mutagenesis to change Trp into alanine (Ala), phenylalanine (Phe), or tyrosine (Tyr) to unveil the role of the Trp(23) indole ring. Biochemical analyses of the mutant enzymes in combination with TAP's three-dimensional structures suggest that by interlinking the residues participating in this catalytic machinery, Trp(23) could effectively influence substrate binding and the following turnover number. Moreover, it may serve as a contributor to both H-bond and aromatic-aromatic interaction in maintaining the cross-link within the interweaving framework of protein.
Collapse
Affiliation(s)
- Li-Chiun Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | | | | | | | | |
Collapse
|
14
|
Castillo-Acosta VM, Ruiz-Pérez LM, Yang W, González-Pacanowska D, Vidal AE. Identification of a residue critical for the excision of 3'-blocking ends in apurinic/apyrimidinic endonucleases of the Xth family. Nucleic Acids Res 2009; 37:1829-42. [PMID: 19181704 PMCID: PMC2665217 DOI: 10.1093/nar/gkp021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DNA single-strand breaks containing 3'-blocking groups are generated from attack of the sugar backbone by reactive oxygen species or after base excision by DNA glycosylase/apurinic/apyrimidinic (AP) lyases. In human cells, APE1 excises sugar fragments that block the 3'-ends thus facilitating DNA repair synthesis. In Leishmania major, the causal agent of leishmaniasis, the APE1 homolog is the class II AP endonuclease LMAP. Expression of LMAP but not of APE1 reverts the hypersensitivity of a xth nfo repair-deficient Escherichia coli strain to the oxidative compound hydrogen peroxide (H(2)O(2)). To identify the residues specifically involved in the repair of oxidative DNA damage, we generated random mutations in the ape1 gene and selected those variants that conferred protection against H(2)O(2). Among the resistant clones, we isolated a mutant in the nuclease domain of APE1 (D70A) with an increased capacity to remove 3'-blocking ends in vitro. D70 of APE1 aligns with A138 of LMAP and mutation of the latter to aspartate significantly reduces its 3'-phosphodiesterase activity. Kinetic analysis shows a novel role of residue D70 in the excision rate of 3'-blocking ends. The functional and structural differences between the parasite and human enzymes probably reflect a divergent molecular evolution of their DNA repair responses to oxidative damage.
Collapse
Affiliation(s)
- Víctor M. Castillo-Acosta
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Avda. del Conocimiento s/n, 18100 Armilla (Granada), Spain and Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Luis M. Ruiz-Pérez
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Avda. del Conocimiento s/n, 18100 Armilla (Granada), Spain and Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Wei Yang
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Avda. del Conocimiento s/n, 18100 Armilla (Granada), Spain and Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Dolores González-Pacanowska
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Avda. del Conocimiento s/n, 18100 Armilla (Granada), Spain and Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Antonio E. Vidal
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Avda. del Conocimiento s/n, 18100 Armilla (Granada), Spain and Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
- *To whom correspondence should be addressed. Tel: +34 958 181621 (ext. 518); Fax: +34 958 181632;
| |
Collapse
|
15
|
Schmiedel R, Kuettner EB, Keim A, Sträter N, Greiner-Stöffele T. Structure and function of the abasic site specificity pocket of an AP endonuclease from Archaeoglobus fulgidus. DNA Repair (Amst) 2008; 8:219-31. [PMID: 19015049 DOI: 10.1016/j.dnarep.2008.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 10/09/2008] [Accepted: 10/10/2008] [Indexed: 10/21/2022]
Abstract
The major AP endonuclease in Escherichia coli Exonuclease III (ExoIII) is frequently used in gene technology due to its strong exonucleolytic activity. A thermostabilized variant of ExoIII or a homologous enzyme from thermophilic organisms could be most useful for further applications. For this purpose we characterized a nuclease from the hyperthermophilic archaeon Archaeoglobus fulgidus (Af_Exo), which shares 33% overall sequence identity and 55% similarity to ExoIII. The gene coding for this thermostable enzyme was cloned and expressed in E. coli. The purified protein shows a strong Mg(2+)-dependent nicking activity at AP-sites, nicking of undamaged double-stranded (ds) DNA and a weak exonucleolytic activity. A V217G variant of the enzyme was crystallized with decamer ds-DNA molecule, and the three-dimensional structure was determined to 1.7A resolution. Besides our goal to find or produce a thermostable exonuclease, the structural and catalytic data of Af_Exo and a series of mutant proteins, based on the crystal structure, provide new insight into the mechanism of abasic site recognition and repair. Each of the hydrophobic residues Phe 200, Trp 215 and Val 217, forming a binding pocket for the abasic deoxyribose in Af_Exo, were mutated to glycine or serine. By expanding the size of the binding pocket the unspecific endonucleolytic activity is increased. Thus, size and flexibility of the mostly hydrophobic binding pocket have a significant influence on AP-site specificity. We suggest that its tight fitting to the flipped-out deoxyribose allows for a preferred competent binding of abasic sites. In a larger or more flexible pocket however, intact nucleotides more easily bind in a catalytically competent conformation, resulting in loss of specificity. Moreover, with mutations of Phe 200 and Trp 215 we induced a strong exonucleolytic activity on undamaged DNA.
Collapse
Affiliation(s)
- Ramona Schmiedel
- Institute of Biochemistry, Faculty of Biology, Pharmacy and Psychology, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| | | | | | | | | |
Collapse
|
16
|
Garcin ED, Hosfield DJ, Desai SA, Haas BJ, Björas M, Cunningham RP, Tainer JA. DNA apurinic-apyrimidinic site binding and excision by endonuclease IV. Nat Struct Mol Biol 2008; 15:515-22. [PMID: 18408731 DOI: 10.1038/nsmb.1414] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 03/03/2008] [Indexed: 11/09/2022]
Abstract
Escherichia coli endonuclease IV is an archetype for an abasic or apurinic-apyrimidinic endonuclease superfamily crucial for DNA base excision repair. Here biochemical, mutational and crystallographic characterizations reveal a three-metal ion mechanism for damage binding and incision. The 1.10-A resolution DNA-free and the 2.45-A resolution DNA-substrate complex structures capture substrate stabilization by Arg37 and reveal a distorted Zn3-ligand arrangement that reverts, after catalysis, to an ideal geometry suitable to hold rather than release cleaved DNA product. The 1.45-A resolution DNA-product complex structure shows how Tyr72 caps the active site, tunes its dielectric environment and promotes catalysis by Glu261-activated hydroxide, bound to two Zn2+ ions throughout catalysis. These structural, mutagenesis and biochemical results suggest general requirements for abasic site removal in contrast to features specific to the distinct endonuclease IV alpha-beta triose phosphate isomerase (TIM) barrel and APE1 four-layer alpha-beta folds of the apurinic-apyrimidinic endonuclease families.
Collapse
Affiliation(s)
- Elsa D Garcin
- Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, MB4 La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Rich RL, Myszka DG. Survey of the year 2006 commercial optical biosensor literature. J Mol Recognit 2007; 20:300-66. [DOI: 10.1002/jmr.862] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|