1
|
Wang W, Flury AG, Rodriguez AT, Garrison JL, Brem RB. A role for worm cutl-24 in background- and parent-of-origin-dependent ER stress resistance. BMC Genomics 2022; 23:842. [PMID: 36539699 PMCID: PMC9764823 DOI: 10.1186/s12864-022-09063-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Organisms in the wild can acquire disease- and stress-resistance traits that outstrip the programs endogenous to humans. Finding the molecular basis of such natural resistance characters is a key goal of evolutionary genetics. Standard statistical-genetic methods toward this end can perform poorly in organismal systems that lack high rates of meiotic recombination, like Caenorhabditis worms. RESULTS Here we discovered unique ER stress resistance in a wild Kenyan C. elegans isolate, which in inter-strain crosses was passed by hermaphrodite mothers to hybrid offspring. We developed an unbiased version of the reciprocal hemizygosity test, RH-seq, to explore the genetics of this parent-of-origin-dependent phenotype. Among top-scoring gene candidates from a partial-coverage RH-seq screen, we focused on the neuronally-expressed, cuticlin-like gene cutl-24 for validation. In gene-disruption and controlled crossing experiments, we found that cutl-24 was required in Kenyan hermaphrodite mothers for ER stress tolerance in their inter-strain hybrid offspring; cutl-24 was also a contributor to the trait in purebred backgrounds. CONCLUSIONS These data establish the Kenyan strain allele of cutl-24 as a determinant of a natural stress-resistant state, and they set a precedent for the dissection of natural trait diversity in invertebrate animals without the need for a panel of meiotic recombinants.
Collapse
Affiliation(s)
- Wenke Wang
- Buck Institute for Research on Aging, Novato, CA, United States
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, United States
| | - Anna G Flury
- Buck Institute for Research on Aging, Novato, CA, United States
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, United States
| | - Andrew T Rodriguez
- Buck Institute for Research on Aging, Novato, CA, United States
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Jennifer L Garrison
- Buck Institute for Research on Aging, Novato, CA, United States.
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States.
- Department of Cellular and Molecular Pharmacology, UC San Francisco, San Francisco, CA, United States.
- Global Consortium for Reproductive Longevity & Equality, Novato, CA, United States.
| | - Rachel B Brem
- Buck Institute for Research on Aging, Novato, CA, United States.
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, United States.
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
2
|
Nance J, Frøkjær-Jensen C. The Caenorhabditis elegans Transgenic Toolbox. Genetics 2019; 212:959-990. [PMID: 31405997 PMCID: PMC6707460 DOI: 10.1534/genetics.119.301506] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/01/2019] [Indexed: 12/30/2022] Open
Abstract
The power of any genetic model organism is derived, in part, from the ease with which gene expression can be manipulated. The short generation time and invariant developmental lineage have made Caenorhabditis elegans very useful for understanding, e.g., developmental programs, basic cell biology, neurobiology, and aging. Over the last decade, the C. elegans transgenic toolbox has expanded considerably, with the addition of a variety of methods to control expression and modify genes with unprecedented resolution. Here, we provide a comprehensive overview of transgenic methods in C. elegans, with an emphasis on recent advances in transposon-mediated transgenesis, CRISPR/Cas9 gene editing, conditional gene and protein inactivation, and bipartite systems for temporal and spatial control of expression.
Collapse
Affiliation(s)
- Jeremy Nance
- Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York 10016
| | - Christian Frøkjær-Jensen
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), KAUST Environmental Epigenetics Program (KEEP), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
3
|
Lebrigand K, He LD, Thakur N, Arguel MJ, Polanowska J, Henrissat B, Record E, Magdelenat G, Barbe V, Raffaele S, Barbry P, Ewbank JJ. Comparative Genomic Analysis of Drechmeria coniospora Reveals Core and Specific Genetic Requirements for Fungal Endoparasitism of Nematodes. PLoS Genet 2016; 12:e1006017. [PMID: 27153332 PMCID: PMC4859500 DOI: 10.1371/journal.pgen.1006017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 04/08/2016] [Indexed: 11/18/2022] Open
Abstract
Drechmeria coniospora is an obligate fungal pathogen that infects nematodes via the adhesion of specialized spores to the host cuticle. D. coniospora is frequently found associated with Caenorhabditis elegans in environmental samples. It is used in the study of the nematode's response to fungal infection. Full understanding of this bi-partite interaction requires knowledge of the pathogen's genome, analysis of its gene expression program and a capacity for genetic engineering. The acquisition of all three is reported here. A phylogenetic analysis placed D. coniospora close to the truffle parasite Tolypocladium ophioglossoides, and Hirsutella minnesotensis, another nematophagous fungus. Ascomycete nematopathogenicity is polyphyletic; D. coniospora represents a branch that has not been molecularly characterized. A detailed in silico functional analysis, comparing D. coniospora to 11 fungal species, revealed genes and gene families potentially involved in virulence and showed it to be a highly specialized pathogen. A targeted comparison with nematophagous fungi highlighted D. coniospora-specific genes and a core set of genes associated with nematode parasitism. A comparative gene expression analysis of samples from fungal spores and mycelia, and infected C. elegans, gave a molecular view of the different stages of the D. coniospora lifecycle. Transformation of D. coniospora allowed targeted gene knock-out and the production of fungus that expresses fluorescent reporter genes. It also permitted the initial characterisation of a potential fungal counter-defensive strategy, involving interference with a host antimicrobial mechanism. This high-quality annotated genome for D. coniospora gives insights into the evolution and virulence of nematode-destroying fungi. Coupled with genetic transformation, it opens the way for molecular dissection of D. coniospora physiology, and will allow both sides of the interaction between D. coniospora and C. elegans, as well as the evolutionary arms race that exists between pathogen and host, to be studied.
Collapse
Affiliation(s)
- Kevin Lebrigand
- CNRS and University Nice Sophia Antipolis, Institute of Molecular and Cellular Pharmacology, Sophia Antipolis, France
| | - Le D. He
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, Marseille, France
| | - Nishant Thakur
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, Marseille, France
| | - Marie-Jeanne Arguel
- CNRS and University Nice Sophia Antipolis, Institute of Molecular and Cellular Pharmacology, Sophia Antipolis, France
| | - Jolanta Polanowska
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, Marseille, France
| | - Bernard Henrissat
- CNRS UMR 7257, Aix-Marseille University, Marseille, France
- INRA, USC 1408 AFMB, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eric Record
- INRA, UMR1163 Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, Polytech Marseille, CP 925, Marseille, France
- Aix-Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, Faculté des Sciences de Luminy-Polytech, CP 925, Marseille, France
| | - Ghislaine Magdelenat
- Commissariat à l'Energie Atomique, Institut de Génomique, Génoscope, Laboratoire de Biologie Moleculaire pour l'Etude des Génomes (LBioMEG), Evry, France
| | - Valérie Barbe
- Commissariat à l'Energie Atomique, Institut de Génomique, Génoscope, Laboratoire de Biologie Moleculaire pour l'Etude des Génomes (LBioMEG), Evry, France
| | - Sylvain Raffaele
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet Tolosan, France
| | - Pascal Barbry
- CNRS and University Nice Sophia Antipolis, Institute of Molecular and Cellular Pharmacology, Sophia Antipolis, France
- * E-mail: (PB); (JJE)
| | - Jonathan J. Ewbank
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, Marseille, France
- * E-mail: (PB); (JJE)
| |
Collapse
|
4
|
Montañana F, Julien RA, Vaglio P, Matthews LR, Tichit L, Ewbank JJ. ICeE an interface for C. elegans experiments. WORM 2014; 3:e959420. [PMID: 26430546 PMCID: PMC4588384 DOI: 10.4161/21624046.2014.959420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/07/2014] [Accepted: 07/25/2014] [Indexed: 11/19/2022]
Abstract
An increasing number of laboratories are using the COPAS Biosort™ to implement high-throughput approaches to tackle diverse biological problems. While providing a powerful tool for generating quantitative data, the utility of the Biosort is currently limited by the absence of resources for data management. We describe a simple electronic database designed to allow easy storage and retrieval of Biosort data for C. elegans, but that has a wide potential application for organizing electronic files and data sets. ICeE is an Open Source application. The code and accompanying documentation are freely available via the web at http://www.ciml.univ-mrs.fr/EWBANK_jonathan/software.html.
Collapse
Affiliation(s)
- Frédéric Montañana
- Centre d'Immunologie de Marseille-Luminy; UM2 Aix-Marseille Université ; Marseille, France ; INSERM U1104 ; Marseille, France ; CNRS UMR7280 ; Marseille, France
| | - Renaud A Julien
- Centre d'Immunologie de Marseille-Luminy; UM2 Aix-Marseille Université ; Marseille, France ; INSERM U1104 ; Marseille, France ; CNRS UMR7280 ; Marseille, France
| | - Philippe Vaglio
- Modul-Bio; Parc Scientifique Luminy Biotech II ; Marseille, France
| | - Lisa R Matthews
- Centre d'Immunologie de Marseille-Luminy; UM2 Aix-Marseille Université ; Marseille, France ; INSERM U1104 ; Marseille, France ; CNRS UMR7280 ; Marseille, France
| | - Laurent Tichit
- I2M (UMR 7373); Aix-Marseille Université ; Marseille, France
| | - Jonathan J Ewbank
- Centre d'Immunologie de Marseille-Luminy; UM2 Aix-Marseille Université ; Marseille, France ; INSERM U1104 ; Marseille, France ; CNRS UMR7280 ; Marseille, France
| |
Collapse
|
5
|
Robert VJP. Engineering the Caenorhabditis elegans genome by Mos1-induced transgene-instructed gene conversion. Methods Mol Biol 2012; 859:189-201. [PMID: 22367873 DOI: 10.1007/978-1-61779-603-6_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Mos1-induced transgene-instructed gene conversion (MosTIC) is a technique of choice to engineer the genome of the nematode Caenorhabditis elegans. MosTIC is initiated by the excision of Mos1, a DNA transposon of the Tc1/Mariner super family that can be mobilized in the germ line of C. elegans. Mos1 excision creates a DNA double-strand break that is repaired by several cellular mechanisms, including transgene-instructed gene conversion. For MosTIC, the transgenic repair template used by the gene conversion machinery is made of sequences that share DNA homologies with the genomic region to engineer and carries the modifications to be introduced in the genome. In this chapter, we present two MosTIC protocols routinely used.
Collapse
Affiliation(s)
- Valérie J P Robert
- Laboratory of Molecular and Cellular Biology, Ecole Normale Supérieure de Lyon, Lyon, France.
| |
Collapse
|
6
|
Kawai N, Ochiai H, Sakuma T, Yamada L, Sawada H, Yamamoto T, Sasakura Y. Efficient targeted mutagenesis of the chordate Ciona intestinalis genome with zinc-finger nucleases. Dev Growth Differ 2012; 54:535-45. [PMID: 22640377 DOI: 10.1111/j.1440-169x.2012.01355.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/06/2012] [Accepted: 04/09/2012] [Indexed: 12/13/2022]
Abstract
Zinc-finger nucleases (ZFNs) are engineered nucleases that induce DNA double-strand breaks (DSBs) at target sequences. They have been used as tools for generating targeted mutations in the genomes of multiple organisms in both animals and plants. The DSB induced by ZFNs is repaired by non-homologous end joining (NHEJ) or by homologous recombination (HR) mechanisms. Non-homologous end joining induces some errors because it is independent of a reference DNA sequence. Through the NHEJ mechanism, ZFNs generate insertional or deletional mutations at the target sequence. We examined the usability, specificity and toxicity of ZFNs in the basal chordate Ciona intestinalis. As the target of ZFNs, we chose an enhanced green fluorescent protein (EGFP) gene artificially inserted in the C. intestinalis genome because this locus is neutral for the development and growth of C. intestinalis, and the efficiency of mutagenesis with ZFNs can thus be determined without any bias. We introduced EGFP -ZFN mRNAs into the embryos of an EGFP -transgenic line and observed the mutation frequency in the target site of EGFP . We also examined the effects of the EGFP -ZFNs at off-target sites resembling the EGFP target sequence in the C. intestinalis genome in order to examine the specificity of ZFNs. We further investigated the influence of ZFNs on embryogenesis, and showed that adequate amounts of ZFNs, which do not disrupt embryogenesis, can efficiently induce mutations on the on-target site with less effect on the off-target sites. This suggests that target mutagenesis with ZFNs will be a powerful technique in C. intestinalis.
Collapse
Affiliation(s)
- Narudo Kawai
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, 415-0025, Japan.
| | | | | | | | | | | | | |
Collapse
|
7
|
Squiban B, Belougne J, Ewbank J, Zugasti O. Quantitative and automated high-throughput genome-wide RNAi screens in C. elegans. J Vis Exp 2012:3448. [PMID: 22395785 PMCID: PMC3399495 DOI: 10.3791/3448] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
RNA interference is a powerful method to understand gene function, especially when conducted at a whole-genome scale and in a quantitative context. In C. elegans, gene function can be knocked down simply and efficiently by feeding worms with bacteria expressing a dsRNA corresponding to a specific gene (1). While the creation of libraries of RNAi clones covering most of the C. elegans genome (2,3) opened the way for true functional genomic studies (see for example (4-7)), most established methods are laborious. Moy and colleagues have developed semi-automated protocols that facilitate genome-wide screens (8). The approach relies on microscopic imaging and image analysis. Here we describe an alternative protocol for a high-throughput genome-wide screen, based on robotic handling of bacterial RNAi clones, quantitative analysis using the COPAS Biosort (Union Biometrica (UBI)), and an integrated software: the MBioLIMS (Laboratory Information Management System from Modul-Bio) a technology that provides increased throughput for data management and sample tracking. The method allows screens to be conducted on solid medium plates. This is particularly important for some studies, such as those addressing host-pathogen interactions in C. elegans, since certain microbes do not efficiently infect worms in liquid culture. We show how the method can be used to quantify the importance of genes in anti-fungal innate immunity in C. elegans. In this case, the approach relies on the use of a transgenic strain carrying an epidermal infection-inducible fluorescent reporter gene, with GFP under the control of the promoter of the antimicrobial peptide gene nlp 29 and a red fluorescent reporter that is expressed constitutively in the epidermis. The latter provides an internal control for the functional integrity of the epidermis and nonspecific transgene silencing(9). When control worms are infected by the fungus they fluoresce green. Knocking down by RNAi a gene required for nlp 29 expression results in diminished fluorescence after infection. Currently, this protocol allows more than 3,000 RNAi clones to be tested and analyzed per week, opening the possibility of screening the entire genome in less than 2 months.
Collapse
Affiliation(s)
- Barbara Squiban
- Centre d’Immunologie de Marseille-Luminy, Université de la Méditerranée
| | | | | | | |
Collapse
|
8
|
Vallin E, Gallagher J, Granger L, Martin E, Belougne J, Maurizio J, Duverger Y, Scaglione S, Borrel C, Cortier E, Abouzid K, Carre-Pierrat M, Gieseler K, Ségalat L, Kuwabara PE, Ewbank JJ. A genome-wide collection of Mos1 transposon insertion mutants for the C. elegans research community. PLoS One 2012; 7:e30482. [PMID: 22347378 PMCID: PMC3275553 DOI: 10.1371/journal.pone.0030482] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 12/16/2011] [Indexed: 11/24/2022] Open
Abstract
Methods that use homologous recombination to engineer the genome of C. elegans commonly use strains carrying specific insertions of the heterologous transposon Mos1. A large collection of known Mos1 insertion alleles would therefore be of general interest to the C. elegans research community. We describe here the optimization of a semi-automated methodology for the construction of a substantial collection of Mos1 insertion mutant strains. At peak production, more than 5,000 strains were generated per month. These strains were then subject to molecular analysis, and more than 13,300 Mos1 insertions characterized. In addition to targeting directly more than 4,700 genes, these alleles represent the potential starting point for the engineered deletion of essentially all C. elegans genes and the modification of more than 40% of them. This collection of mutants, generated under the auspices of the European NEMAGENETAG consortium, is publicly available and represents an important research resource.
Collapse
Affiliation(s)
- Elodie Vallin
- Centre de Génétique et de Physiologie Moléculaires et Cellulaires, CNRS UMR 5534, Campus de la Doua, Villeurbanne, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Joseph Gallagher
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Laure Granger
- Centre de Génétique et de Physiologie Moléculaires et Cellulaires, CNRS UMR 5534, Campus de la Doua, Villeurbanne, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Edwige Martin
- Centre de Génétique et de Physiologie Moléculaires et Cellulaires, CNRS UMR 5534, Campus de la Doua, Villeurbanne, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Jérôme Belougne
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, Marseille, France
- INSERM, U1104, Marseille, France
- CNRS, UMR7280, Marseille, France
| | - Julien Maurizio
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, Marseille, France
- INSERM, U1104, Marseille, France
- CNRS, UMR7280, Marseille, France
| | - Yohann Duverger
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, Marseille, France
- INSERM, U1104, Marseille, France
- CNRS, UMR7280, Marseille, France
| | - Sarah Scaglione
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, Marseille, France
- INSERM, U1104, Marseille, France
- CNRS, UMR7280, Marseille, France
| | - Caroline Borrel
- Centre de Génétique et de Physiologie Moléculaires et Cellulaires, CNRS UMR 5534, Campus de la Doua, Villeurbanne, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Elisabeth Cortier
- Centre de Génétique et de Physiologie Moléculaires et Cellulaires, CNRS UMR 5534, Campus de la Doua, Villeurbanne, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Karima Abouzid
- Centre de Génétique et de Physiologie Moléculaires et Cellulaires, CNRS UMR 5534, Campus de la Doua, Villeurbanne, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Maité Carre-Pierrat
- Centre de Génétique et de Physiologie Moléculaires et Cellulaires, CNRS UMR 5534, Campus de la Doua, Villeurbanne, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
- Plateforme “Biologie de Caenorhabditis elegans”, CNRS UMS3421, Campus de la Doua, Villeurbanne, France
| | - Kathrin Gieseler
- Centre de Génétique et de Physiologie Moléculaires et Cellulaires, CNRS UMR 5534, Campus de la Doua, Villeurbanne, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Laurent Ségalat
- Centre de Génétique et de Physiologie Moléculaires et Cellulaires, CNRS UMR 5534, Campus de la Doua, Villeurbanne, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
| | | | - Jonathan J. Ewbank
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, Marseille, France
- INSERM, U1104, Marseille, France
- CNRS, UMR7280, Marseille, France
| |
Collapse
|
9
|
Boulin T, Hobert O. From genes to function: the C. elegans genetic toolbox. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:114-37. [PMID: 23801671 DOI: 10.1002/wdev.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This review aims to provide an overview of the technologies which make the nematode Caenorhabditis elegans an attractive genetic model system. We describe transgenesis techniques and forward and reverse genetic approaches to isolate mutants and clone genes. In addition, we discuss the new possibilities offered by genome engineering strategies and next-generation genome analysis tools.
Collapse
Affiliation(s)
- Thomas Boulin
- Department of Biology, Institut de Biologie de l'École Normale Supérieure, Paris, France.
| | | |
Collapse
|
10
|
Hsp90 in non-mammalian metazoan model systems. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:712-21. [PMID: 21983200 DOI: 10.1016/j.bbamcr.2011.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 01/26/2023]
Abstract
The molecular chaperone Hsp90 has been discovered in the heat-shock response of the fruit fly more than 30years ago. Today, it is becoming clear that Hsp90 is in the middle of a regulatory system, participating in the modulation of many essential client proteins and signaling pathways. Exerting these activities, Hsp90 works together with about a dozen of cochaperones. Due to their organismal simplicity and the possibility to influence their genetics on a large scale, many studies have addressed the function of Hsp90 in several multicellular model systems. Defined pathways involving Hsp90 client proteins have been identified in the metazoan model systems of Caenorhabditis elegans, Drosophila melanogaster and the zebrafish Danio rerio. Here, we summarize the functions of Hsp90 during muscle maintenance, development of phenotypic traits and the involvement of Hsp90 in stress responses, all of which were largely uncovered using the model organisms covered in this review. These findings highlight the many specific and general actions of the Hsp90 chaperone machinery. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).
Collapse
|
11
|
Mokry M, Nijman IJ, van Dijken A, Benjamins R, Heidstra R, Scheres B, Cuppen E. Identification of factors required for meristem function in Arabidopsis using a novel next generation sequencing fast forward genetics approach. BMC Genomics 2011; 12:256. [PMID: 21599977 PMCID: PMC3114748 DOI: 10.1186/1471-2164-12-256] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 05/20/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phenotype-driven forward genetic experiments are powerful approaches for linking phenotypes to genomic elements but they still involve a laborious positional cloning process. Although sequencing of complete genomes now becomes available, discriminating causal mutations from the enormous amounts of background variation remains a major challenge. METHOD To improve this, we developed a universal two-step approach, named 'fast forward genetics', which combines traditional bulk segregant techniques with targeted genomic enrichment and next-generation sequencing technology RESULTS As a proof of principle we successfully applied this approach to two Arabidopsis mutants and identified a novel factor required for stem cell activity. CONCLUSION We demonstrated that the 'fast forward genetics' procedure efficiently identifies a small number of testable candidate mutations. As the approach is independent of genome size, it can be applied to any model system of interest. Furthermore, we show that experiments can be multiplexed and easily scaled for the identification of multiple individual mutants in a single sequencing run.
Collapse
Affiliation(s)
- Michal Mokry
- Hubrecht Institute, Developmental Biology and Stem Cell Research, KNAW and University Medical Center Utrecht, Uppsalalaan 8, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
12
|
Robert VJP, Bessereau JL. Genome engineering by transgene-instructed gene conversion in C. elegans. Methods Cell Biol 2011; 106:65-88. [PMID: 22118274 DOI: 10.1016/b978-0-12-544172-8.00003-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nematode Caenorhabditis elegans is an anatomically simple metazoan that has been used over the last 40 years to address an extremely wide range of biological questions. One major advantage of the C. elegans system is the possibility to conduct large-scale genetic screens on randomly mutagenized animals, either looking for a phenotype of interest and subsequently relate the mutated gene to the biological process under study ("forward genetics"), or screening for molecular lesions impairing the function of a specific gene and later analyze the phenotype of the mutant ("reverse genetics"). However, the nature of the genomic lesion is not controlled in either strategy. Here we describe a technique to engineer customized mutations in the C. elegans genome by homologous recombination. This technique, called MosTIC (for Mos1 excision induced transgene-instructed gene conversion), requires a C. elegans strain containing an insertion of the Drosophila transposon Mos1 within the locus to modify. Expression of the Mos transposase in the germ line triggers Mos1 excision, which causes a DNA double strand break (DSB) in the chromosome at the excision site. The DSB locally stimulates DNA repair by homologous recombination, which can sometimes occur between the chromosome and a transgene containing sequence homologous to the broken locus. In that case, sequence variations contained in the repair template will be copied by gene conversion into the genome. Here we provide a detailed protocol of the MosTIC technique, which can be used to introduce point mutations and generate knockout and knock-in alleles.
Collapse
Affiliation(s)
- Valérie J P Robert
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Paris, France
| | | |
Collapse
|
13
|
Abstract
The ability to manipulate the genome of organisms at will is perhaps the single most useful ability for the study of biological systems. Techniques for the generation of transgenics in the nematode Caenorhabditis elegans became available in the late 1980s. Since then, improvements to the original approach have been made to address specific limitations with transgene expression, expand on the repertoire of the types of biological information that transgenes can provide, and begin to develop methods to target transgenes to defined chromosomal locations. Many recent, detailed protocols have been published, and hence in this chapter, we will review various approaches to making C. elegans transgenics, discuss their applications, and consider their relative advantages and disadvantages. Comments will also be made on anticipated future developments and on the application of these methods to other nematodes.
Collapse
Affiliation(s)
- Vida Praitis
- Biology Department, Grinnell College, Grinnell, Iowa, USA
| | | |
Collapse
|
14
|
Abstract
Reverse genetics consists in the modification of the activity of a target gene to analyse the phenotypic consequences. Four main approaches are used towards this goal and will be explained in this review. Two of them are centred on genome alterations. Mutations produced by random chemical or insertional mutagenesis can be screened to recover only mutants in a specific gene of interest. Alternatively, these alterations may be specifically targeted on a gene of interest by HR (homologous recombination). The other two approaches are centred on mRNA. RNA interference is a powerful method to reduce the level of gene products, while MO (morpholino) antisense oligonucleotides alter mRNA metabolism or translation. Some model species, such as Drosophila, are amenable to most of these approaches, whereas other model species are restricted to one of them. For example, in mice and yeasts, gene targeting by HR is prevalent, whereas in Xenopus and zebrafish MO oligonucleotides are mainly used. Genome-wide collections of mutants or inactivated models obtained in several species by these approaches have been made and will help decipher gene functions in the post-genomic era.
Collapse
|
15
|
Manipulating the Caenorhabditis elegans genome using mariner transposons. Genetica 2009; 138:541-9. [PMID: 19347589 DOI: 10.1007/s10709-009-9362-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 03/20/2009] [Indexed: 12/16/2022]
Abstract
Tc1, one of the founding members of the Tc1/mariner transposon superfamily, was identified in the nematode Caenorhabditis elegans more than 25 years ago. Over the years, Tc1 and other endogenous mariner transposons became valuable tools for mutagenesis and targeted gene inactivation in C. elegans. However, transposition is naturally repressed in the C. elegans germline by an RNAi-like mechanism, necessitating the use of mutant strains in which transposition was globally derepressed, which causes drawbacks such as uncontrolled proliferation of the transposons in the genome and accumulation of background mutations. The more recent mobilization of the Drosophila mariner transposon Mos1 in the C. elegans germline circumvented the problems inherent to endogenous transposons. Mos1 transposition strictly depends on the expression of the Mos transposase, which can be controlled in the germline using inducible promoters. First, Mos1 can be used for insertional mutagenesis. The mobilization of Mos1 copies present on an extrachromosomal array results in the generation of a small number of Mos1 genomic insertions that can be rapidly cloned by inverse PCR. Second, Mos1 insertions can be used for genome engineering. Triggering the excision of a genomic Mos1 insertion causes a chromosomal break, which can be repaired by transgene-instructed gene conversion. This process is used to introduce specific changes in a given gene, such as point mutations, deletions or insertions of a tag, and to create single-copy transgenes.
Collapse
|
16
|
Bazopoulou D, Tavernarakis N. The NemaGENETAG initiative: large scale transposon insertion gene-tagging in Caenorhabditis elegans. Genetica 2009; 137:39-46. [PMID: 19343510 DOI: 10.1007/s10709-009-9361-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 03/20/2009] [Indexed: 12/01/2022]
Abstract
The nematode Caenorhabditis elegans is a widely appreciated, powerful platform in which to study important biological mechanisms related to human health. More than 65% of human disease genes have homologues in the C. elegans genome, and essential aspects of mammalian cell biology, neurobiology and development are faithfully recapitulated in this organism. The EU-funded NemaGENETAG project was initiated with the aim to develop cutting-edge tools and resources that will facilitate modelling of human pathologies in C. elegans, and advance our understanding of animal development and physiology. The main objective of the project involves the generation and evaluation of a large collection of transposon-tagged mutants. In the process of achieving this objective the NemaGENETAG consortium also endeavours to optimize and automate existing transposon-mediated mutagenesis methodologies based on the Mos1 transposable element, in addition to developing alternatives using other transposon systems. The final product of this initiative-a comprehensive collection of transposon-tagged alleles-together with the acquisition of efficient transposon-based tools for mutagenesis and transgenesis in C. elegans, should yield a wealth of information on gene function, immediately relevant to key biological processes and to pharmaceutical research and development.
Collapse
Affiliation(s)
- Daphne Bazopoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, Vassilika Vouton, 70013, Heraklion, Crete, Greece
| | | |
Collapse
|
17
|
Frøkjær-Jensen C, Davis MW, Hopkins CE, Newman B, Thummel JM, Olesen SP, Grunnet M, Jorgensen EM. Single-copy insertion of transgenes in Caenorhabditis elegans. Nat Genet 2008; 40:1375-83. [PMID: 18953339 PMCID: PMC2749959 DOI: 10.1038/ng.248] [Citation(s) in RCA: 886] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 08/14/2008] [Indexed: 12/14/2022]
Abstract
At present, transgenes in Caenorhabditis elegans are generated by injecting DNA into the germline. The DNA assembles into a semistable extrachromosomal array composed of many copies of injected DNA. These transgenes are typically overexpressed in somatic cells and silenced in the germline. We have developed a method that inserts a single copy of a transgene into a defined site. Mobilization of a Mos1 transposon generates a double-strand break in noncoding DNA. The break is repaired by copying DNA from an extrachromosomal template into the chromosomal site. Homozygous single-copy insertions can be obtained in less than 2 weeks by injecting approximately 20 worms. We have successfully inserted transgenes as long as 9 kb and verified that single copies are inserted at the targeted site. Single-copy transgenes are expressed at endogenous levels and can be expressed in the female and male germlines.
Collapse
Affiliation(s)
- Christian Frøkjær-Jensen
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112
- The Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Denmark
| | - M. Wayne Davis
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112
| | - Christopher E. Hopkins
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112
| | - Blake Newman
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112
| | - Jason M. Thummel
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112
| | - Søren-Peter Olesen
- The Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Denmark
- NeuroSearch A/S, Ballerup, Denmark
| | - Morten Grunnet
- The Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Denmark
- NeuroSearch A/S, Ballerup, Denmark
| | - Erik M. Jorgensen
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
18
|
Chung K, Crane MM, Lu H. Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans. Nat Methods 2008; 5:637-43. [PMID: 18568029 DOI: 10.1038/nmeth.1227] [Citation(s) in RCA: 264] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 05/23/2008] [Indexed: 01/20/2023]
Abstract
Microscopy, phenotyping and visual screens are frequently applied to model organisms in combination with genetics. Although widely used, these techniques for multicellular organisms have mostly remained manual and low-throughput. Here we report the complete automation of sample handling, high-resolution microscopy, phenotyping and sorting of Caenorhabditis elegans. The engineered microfluidic system, coupled with customized software, has enabled high-throughput, high-resolution microscopy and sorting with no human intervention and may be combined with any microscopy setup. The microchip is capable of robust local temperature control, self-regulated sample-loading and automatic sample-positioning, while the integrated software performs imaging and classification of worms based on morphological and intensity features. We demonstrate the ability to perform sensitive and quantitative screens based on cellular and subcellular phenotypes with over 95% accuracy per round and a rate of several hundred worms per hour. Screening time can be reduced by orders of magnitude; moreover, screening is completely automated.
Collapse
Affiliation(s)
- Kwanghun Chung
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, Georgia 30332, USA
| | | | | |
Collapse
|
19
|
Moerman DG, Barstead RJ. Towards a mutation in every gene in Caenorhabditis elegans. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2008; 7:195-204. [PMID: 18417533 DOI: 10.1093/bfgp/eln016] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The combined efforts of the Caenorhabditis elegans Knockout Consortium and individuals within the worm community are moving us closer to the goal of identifying mutations in every gene in the nematode C. elegans. At present, we count about 7000 deletion alleles that fall within 5500 genes. The principal method used to detect deletion mutations in the nematode utilizes polymerase chain reaction (PCR). More recently, the Moerman group has incorporated array comparative genome hybridization (aCGH) to detect deletions across the entire coding genome. Other methods used to detect mutant alleles in C. elegans include targeting induced local lesion in genomes (TILLING), transposon tagging, using either Tc1 or Mos1 and resequencing. These combined strategies have improved the overall throughput of the gene-knockout labs, and have broadened the types of mutations that we, and others, can identify. In this review, we will discuss these different approaches.
Collapse
Affiliation(s)
- Donald G Moerman
- Department of Zoology, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver B.C. V6T 1Z3 Canada.
| | | |
Collapse
|
20
|
Varga-Orvos Z, Nagy ZB, Mészáros A, Kökény S, Gergely P, Tamás L, Poór G. Multiplex site-directed mutagenesis strategy including high-efficiency selection of the mutant PCR products. Biotechnol Lett 2007; 29:1921-5. [PMID: 17687622 DOI: 10.1007/s10529-007-9474-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 06/22/2007] [Accepted: 06/27/2007] [Indexed: 10/23/2022]
Abstract
Site-directed mutagenesis is of great importance for probing the structure/function relationship of proteins. Developing our previous method (Nagy et al. Anal Biochem 324:301-303, 2004), here we report a multiplex strategy for site-directed mutagenesis using PCR in one tube to introduce a single mutation into three or more genes at the same time. DNA fragments carrying the desired mutation can be distinguished from each other in a standard antibiotic selection step of the transformed bacteria. Due to this strategy the mutagenesis procedure for several genes can be accelerated.
Collapse
Affiliation(s)
- Zoltán Varga-Orvos
- Laboratory of Functional Genomics, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, Szeged, 6701, Hungary
| | | | | | | | | | | | | |
Collapse
|
21
|
News in brief. Nat Methods 2007. [DOI: 10.1038/nmeth0207-113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|