1
|
Waldmann M, Bohner M, Baghnavi A, Riedel B, Seidenstuecker M. Awareness for artifacts in fluorescence microscopy of β-TCP. BMC Res Notes 2024; 17:122. [PMID: 38685087 PMCID: PMC11059721 DOI: 10.1186/s13104-024-06781-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
Fluorescence analysis of β-TCP ceramics is often used to describe cells found on said ceramics. However, we found, to our knowledge, so far undescribed artifacts which might sometimes be hard to differentiate from cells due to shape and fluorescence behavior. We tried prolonged ultrasound washing as well as Technovit 9100 fixation to reduce these artifacts. While untreated dowels showed no reduction in artifacts no matter the further treatment, Technovit fixation reduced the artifacts with even further reduction achieved by mechanical cleaning. As a consequence, scientists working with these dowels and likely even other types should try to avoid creating false positive results by considering the existence of these artifacts, checking additional filters for unusual fluorescence and by reducing them by using Technovit fixation when possible.
Collapse
Affiliation(s)
- Marco Waldmann
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Albert-Ludwigs- University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany.
| | - Marc Bohner
- Robert Mathys Foundation RMS, Bischmattstr. 12, Bettlach, 2544, Switzerland
| | - Anna Baghnavi
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Albert-Ludwigs- University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Bianca Riedel
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Albert-Ludwigs- University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Michael Seidenstuecker
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Albert-Ludwigs- University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| |
Collapse
|
2
|
Chen Y. Recent Advances in Excimer-Based Fluorescence Probes for Biological Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238628. [PMID: 36500722 PMCID: PMC9741103 DOI: 10.3390/molecules27238628] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
The fluorescent probe is a powerful tool for biological sensing and optical imaging, which can directly display analytes at the molecular level. It provides not only direct visualization of biological structures and processes, but also the capability of drug delivery systems regarding the target therapy. Conventional fluorescent probes are mainly based on monomer emission which has two distinguishing shortcomings in practice: small Stokes shifts and short lifetimes. Compared with monomer-based emission, excimer-based fluorescent probes have large Stokes shifts and long lifetimes which benefit biological applications. Recent progress in excimer-based fluorescent sensors (organic small molecules only) for biological applications are highlighted in this review, including materials and mechanisms as well as their representative applications. The progress suggests that excimer-based fluorescent probes have advantages and potential for bioanalytical applications.
Collapse
Affiliation(s)
- Yi Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, TIPC, CAS, Beijing 100190, China;
- University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
3
|
Fluorescence ratiometric DNA detection by peptide nucleic acid-pyrene binary probes. Bioorg Med Chem Lett 2022; 71:128838. [PMID: 35654301 DOI: 10.1016/j.bmcl.2022.128838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/23/2022]
Abstract
We developed a method for detecting DNA by excimer fluorescence from two peptide nucleic acids (PNAs) modified with a pyrene (Pyr). The two PNA-Pyr probes were prepared by solid-phase peptide synthesis, and we assessed fluorescence from the mixture of probes with DNA. From the results, excimer fluorescence derived from the two PNA-Pyr probes forming hybrids with the complementary DNA was observed, and the two probes showed the maximum excimer/monomer ratio when the probes and DNA were hybridized at a 1:1:1 ratio, indicating that the PNA-Pyr probes can detect target DNA. Furthermore, we adjusted the spatial arrangement between the two PNA-Pyr hybrids formed on the DNA to promote optimal excimer formation. As a result, optimal excimer formation was achieved by spacing the two nucleobases between the formed two hybrids and further inserting a hexamethylene linker (C6) between the PNA and Pyr of the PNA-Pyr probe on one side.
Collapse
|
4
|
Semikolenova OA, Golyshev VM, Kim BH, Venyaminova AG, Novopashina DS. New Two-Component Pyrene Probes Based on Oligo(2'-O-Methylribonucleotides) for microRNA Detection. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Novopashina DS, Semikolenova OA, Venyaminova AG. 5'-Monopyrene and 5'-Bispyrene 2'-O-methyl RNA Probes for Detection of RNA Mismatches. Methods Mol Biol 2020; 2063:45-56. [PMID: 31667762 DOI: 10.1007/978-1-0716-0138-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Progress in synthesis of novel fluorescent oligonucleotides has provided effective instruments for nucleic acid detection. Pyrene conjugated oligonucleotides have demonstrated their effectiveness as fluorescent hybridization probes. Here we describe the synthesis, isolation, and analysis of 5'-monopyrene and 5'-bispyrene conjugates of oligo(2'-O-methylribonucleotides) and their application as probes for fluorescent detection of mismatches in RNA targets.
Collapse
Affiliation(s)
- D S Novopashina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia. .,Novosibirsk State University, Novosibirsk, Russia.
| | | | - A G Venyaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| |
Collapse
|
6
|
Luminescent probes for luminescence lifetime sensing and imaging in live cells: a narrative review. JOURNAL OF BIO-X RESEARCH 2020. [DOI: 10.1097/jbr.0000000000000081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
7
|
Hennig A, Nau WM. Interaction of Cucurbit[7]uril With Protease Substrates: Application to Nanosecond Time-Resolved Fluorescence Assays. Front Chem 2020; 8:806. [PMID: 33134264 PMCID: PMC7511663 DOI: 10.3389/fchem.2020.00806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/31/2020] [Indexed: 01/04/2023] Open
Abstract
We report the use of the macrocyclic host cucurbit[7]uril (CB7) as a supramolecular additive in nanosecond time-resolved fluorescence (Nano-TRF) assays for proteases to enhance the discrimination of substrates and products and, thereby, the sensitivity. A peptide substrate was labeled with 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) as a long-lived (>300 ns) fluorescent probe and 3-nitrotyrosine was established as a non-fluorescent fluorescence resonance energy transfer (FRET) acceptor that acts as a “dark quencher.” The substrate was cleaved by the model proteases trypsin and chymotrypsin and the effects of the addition of CB7 to the enzyme assay mixture were investigated in detail using UV/VIS absorption as well as steady-state and time-resolved fluorescence spectroscopy. This also allowed us to identify the DBO and nitrotyrosine residues as preferential binding sites for CB7 and suggested a hairpin conformation of the peptide, in which the guanidinium side chain of an arginine residue is additionally bound to a vacant ureido rim of one of the CB7 hosts.
Collapse
Affiliation(s)
- Andreas Hennig
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Bremen, Germany.,Institute of Chemistry of New Materials, School of Biology/Chemistry, Universität Osnabrück, Osnabrück, Germany.,Center of Cellular Nanoanalytics (CellNanOs), Universität Osnabrück, Osnabrück, Germany
| | - Werner M Nau
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Bremen, Germany
| |
Collapse
|
8
|
Celiker T, Kaya K, Koyuncu S, Yagci Y. Polypyrenes by Photoinduced Step-Growth Polymerization. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00694] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Tugba Celiker
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Kerem Kaya
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Sermet Koyuncu
- Department of Chemical Engineering, Canakkale Onsekiz Mart University, 17100 Canakkale, Turkey
| | - Yusuf Yagci
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
- Faculty of Science, Chemistry Department, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Aparin IO, Sergeeva OV, Mishin AS, Khaydukov EV, Korshun VA, Zatsepin TS. Excimer-FRET Cascade in Dual DNA Probes: Open Access to Large Stokes Shift, Enhanced Acceptor Light up, and Robust RNA Sensing. Anal Chem 2020; 92:7028-7036. [DOI: 10.1021/acs.analchem.0c00270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ilya O. Aparin
- Skolkovo Institute of Science and Technology, 143026 Skolkovo, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Olga V. Sergeeva
- Skolkovo Institute of Science and Technology, 143026 Skolkovo, Russia
| | - Alexander S. Mishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Evgeny V. Khaydukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Federal Scientific Research Centre “Crystallography and Photonics” RAS, 119333 Moscow, Russia
- Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Gause Institute of New Antibiotics, 119021 Moscow, Russia
- Department of Biology and Biotechnology, National Research University Higher School of Economics, 117312 Moscow, Russia
| | - Timofei S. Zatsepin
- Skolkovo Institute of Science and Technology, 143026 Skolkovo, Russia
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
10
|
Li G, Henry SA, Liu H, Kang TS, Nao SC, Zhao Y, Wu C, Jin J, Zhang JT, Leung CH, Wai Hong Chan P, Ma DL. A robust photoluminescence screening assay identifies uracil-DNA glycosylase inhibitors against prostate cancer. Chem Sci 2020; 11:1750-1760. [PMID: 34123270 PMCID: PMC8148385 DOI: 10.1039/c9sc05623h] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Many cancers have developed resistance to 5-FU, due to removal by the enzyme uracil-DNA glycosylase (UDG), a type of base excision repair enzyme (BER) that can excise uracil and 5-fluorouracil (5-FU) from DNA. However, the development of UDG inhibitor screening methods, especially for the rapid and efficient screening of natural product/natural product-like compounds, is still limited so far. We developed herein a robust time-resolved photoluminescence method for screening UDG inhibitors, which could significantly improve sensitivity over the screening method based on the conventional steady-state spectroscopy, reducing the substantial fluorescence background interference. As a proof-of-concept, two potential UDG inhibitors were identified from a database of natural products and approved drugs. Co-treatment of these two compounds with 5-FU showed synergistic cytotoxicity, providing the basis for treating drug-resistant cancers. Overall, this method provides an avenue for the rapid screening of small molecule regulators of other BER enzyme activities that can avoid false negatives arising from the background fluorescence. The discovery of UDG inhibitors against prostate cancer by using a robust photoluminescence screening assay that can avoid false negatives arising from the background fluorescence.![]()
Collapse
Affiliation(s)
- Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Macau
| | | | - Hao Liu
- Department of Chemistry, Hong Kong Baptist University Kowloon Tong Hong Kong
| | - Tian-Shu Kang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Macau
| | - Sang-Cuo Nao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Macau
| | - Yichao Zhao
- School of Chemistry, Monash University Clayton Victoria 3800 Australia
| | - Chun Wu
- Department of Chemistry, Hong Kong Baptist University Kowloon Tong Hong Kong
| | - Jianwen Jin
- School of Chemistry, Monash University Clayton Victoria 3800 Australia
| | - Jia-Tong Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Macau
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Macau
| | - Philip Wai Hong Chan
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK.,School of Chemistry, Monash University Clayton Victoria 3800 Australia
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University Kowloon Tong Hong Kong
| |
Collapse
|
11
|
Ni F, Zhu Z, Tong X, Zeng W, An K, Wei D, Gong S, Zhao Q, Zhou X, Yang C. Hydrophilic, Red-Emitting, and Thermally Activated Delayed Fluorescence Emitter for Time-Resolved Luminescence Imaging by Mitochondrion-Induced Aggregation in Living Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801729. [PMID: 30886801 PMCID: PMC6402405 DOI: 10.1002/advs.201801729] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/02/2018] [Indexed: 05/23/2023]
Abstract
Thermally activated delayed fluorescence (TADF) materials have provided new strategies for time-resolved luminescence imaging (TRLI); however, the development of hydrophilic TADF luminophores for specific imaging in cells remains a substantial challenge. In this study, a mitochondria-induced aggregation strategy for TRLI is proposed with the design and utilization of the hydrophilic TADF luminophore ((10-(1,3-dioxo-2-phenyl-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)-9,9-dimethyl-9,10-dihydroacridin-2-yl)methyl)triphenylphosphonium bromide (NID-TPP). Using a nonconjugated linker to introduce a triphenylphosphonium (TPP+) group into the 6-(9,9-dimethylacridin-10(9H)-yl)-2-phenyl-1H-benzo[de]isoquinoline-1,3(2H)-dione (NID) TADF luminophore preserves the TADF emission of NID-TPP. NID-TPP shows clear aggregation-induced delayed fluorescence enhancement behavior, which provides a practical strategy for long-lived delayed fluorescence emission in an oxygen-containing environment. Finally, the designed mitochondrion-targeting TPP+ group in NID-TPP induces the adequate accumulation of NID-TPP and results in the first reported TADF-based time-resolved luminescence imaging and two-photon imaging of mitochondria in living cells.
Collapse
Affiliation(s)
- Fan Ni
- Department of Chemistry and Hubei Key Lab on Organic and Polymeric Optoelectronic MaterialsWuhan UniversityWuhan430072China
- College of Materials Science and EngineeringShenzhen UniversityShenzhen518060China
| | - Zece Zhu
- Department of Chemistry and Hubei Key Lab on Organic and Polymeric Optoelectronic MaterialsWuhan UniversityWuhan430072China
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
| | - Xiao Tong
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced MaterialsNanjing University of Posts and TelecommunicationsNanjing210023China
| | - Weixuan Zeng
- Department of Chemistry and Hubei Key Lab on Organic and Polymeric Optoelectronic MaterialsWuhan UniversityWuhan430072China
| | - Kebin An
- Department of Chemistry and Hubei Key Lab on Organic and Polymeric Optoelectronic MaterialsWuhan UniversityWuhan430072China
| | - Danqing Wei
- Department of Chemistry and Hubei Key Lab on Organic and Polymeric Optoelectronic MaterialsWuhan UniversityWuhan430072China
| | - Shaolong Gong
- Department of Chemistry and Hubei Key Lab on Organic and Polymeric Optoelectronic MaterialsWuhan UniversityWuhan430072China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced MaterialsNanjing University of Posts and TelecommunicationsNanjing210023China
| | - Xiang Zhou
- Department of Chemistry and Hubei Key Lab on Organic and Polymeric Optoelectronic MaterialsWuhan UniversityWuhan430072China
| | - Chuluo Yang
- Department of Chemistry and Hubei Key Lab on Organic and Polymeric Optoelectronic MaterialsWuhan UniversityWuhan430072China
- College of Materials Science and EngineeringShenzhen UniversityShenzhen518060China
| |
Collapse
|
12
|
Ghosh M, Ta S, Lohar S, Das S, Brandão P, Felix V, Das D. Exploring aggregation-induced emission through tuning of ligand structure for picomolar detection of pyrene. J Mol Recognit 2018; 32:e2771. [PMID: 30515937 DOI: 10.1002/jmr.2771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/09/2018] [Accepted: 10/26/2018] [Indexed: 11/09/2022]
Abstract
Tuning of ligand structures through controlled variation of ring number in fused-ring aromatic moiety appended to antipyrine allows detection of 7.8 × 10-12 M pyrene via aggregation-induced emission (AIE) associated with 101-fold fluorescence enhancement. In one case, antipyrine unit is replaced by pyridine to derive bis-methylanthracenyl picolyl amine. The structures of four molecules have been confirmed by single crystal X-ray diffraction analysis. Among them, pyrene-antipyrine conjugate (L) undergoes pyrene triggered inhibition of photo-induced electron transfer (PET) leading to water-assisted AIE.
Collapse
Affiliation(s)
- Milan Ghosh
- Department of Chemistry, The University of Burdwan, Bardhaman, India
| | - Sabyasachi Ta
- Department of Chemistry, The University of Burdwan, Bardhaman, India
| | - Sisir Lohar
- Department of Chemistry, T. D. B. College, Raniganj, Bardhaman, India
| | - Sudipta Das
- Department of Chemistry, Raina Swami Bholananda Vidyayatan, Bardhaman, India
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Vitor Felix
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Debasis Das
- Department of Chemistry, The University of Burdwan, Bardhaman, India
| |
Collapse
|
13
|
Li Z, Zhu J, He J. Conformational studies of 10-23 DNAzyme in solution through pyrenyl-labeled 2'-deoxyadenosine derivatives. Org Biomol Chem 2018; 14:9846-9858. [PMID: 27714317 DOI: 10.1039/c6ob01702a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
10-23 DNAzyme is a small catalytic DNA molecule. Studies on its conformation in solution are critical for understanding its catalytic mechanism and functional optimization. Based on our previous research, two fluorescent nucleoside analogues 1 and 2 were designed for the introduction of a pyrenyl group at one of the five dA residues in the catalytic core and the unpaired adenosine residue in its full-DNA substrate, respectively. Ten pyrenyl-pyrenyl pairs are formed in the DNAzyme-substrate complexes in solution for sensing the spacial positions of the five dA residues relative to the cleavage site using fluorescence spectra. The position-dependent quenching effect of pyrene emission fluorescence by nucleobases, especially the pyrenyl-pyrenyl interaction, was observed for some positions. The adenine residues in the 3'-part of the catalytic loop seem to be closer to the cleavage site than the adenine residues in the 5'-part, which is consistent with the molecular dynamics simulation result. The catalytic activities and Tm changes also confirmed the effect of the pyrenyl-nucleobase and pyrenyl-pyrenyl pair interactions. Together with functional group mutations, catalytically relevant nucleobases will be identified for understanding the catalytic mechanism of 10-23 DNAzyme.
Collapse
Affiliation(s)
- Zhiwen Li
- College of Life Science, Guizhou University, Guiyang 550025, China
| | - Junfei Zhu
- College of Life Science, Guizhou University, Guiyang 550025, China
| | - Junlin He
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
14
|
Shirinfar B, Seema H, Ahmed N. Charged probes: turn-on selective fluorescence for RNA. Org Biomol Chem 2018; 16:164-168. [DOI: 10.1039/c7ob02423a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Imidazolium-based charged fluorescent probes for the selective in vitro and in vivo recognition of RNA over other biomolecules.
Collapse
Affiliation(s)
| | - Humaira Seema
- Institute of Chemical Sciences
- University of Peshawar
- Pakistan
| | - Nisar Ahmed
- School of Chemistry
- Cardiff University
- Cardiff
- UK
| |
Collapse
|
15
|
Krasheninina OA, Novopashina DS, Apartsin EK, Venyaminova AG. Recent Advances in Nucleic Acid Targeting Probes and Supramolecular Constructs Based on Pyrene-Modified Oligonucleotides. Molecules 2017; 22:E2108. [PMID: 29189716 PMCID: PMC6150046 DOI: 10.3390/molecules22122108] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 12/17/2022] Open
Abstract
In this review, we summarize the recent advances in the use of pyrene-modified oligonucleotides as a platform for functional nucleic acid-based constructs. Pyrene is of special interest for the development of nucleic acid-based tools due to its unique fluorescent properties (sensitivity of fluorescence to the microenvironment, ability to form excimers and exciplexes, long fluorescence lifetime, high quantum yield), ability to intercalate into the nucleic acid duplex, to act as a π-π-stacking (including anchoring) moiety, and others. These properties of pyrene have been used to construct novel sensitive fluorescent probes for the sequence-specific detection of nucleic acids and the discrimination of single nucleotide polymorphisms (SNPs), aptamer-based biosensors, agents for binding of double-stranded DNAs, and building blocks for supramolecular complexes. Special attention is paid to the influence of the design of pyrene-modified oligonucleotides on their properties, i.e., the structure-function relationships. The perspectives for the applications of pyrene-modified oligonucleotides in biomolecular studies, diagnostics, and nanotechnology are discussed.
Collapse
Affiliation(s)
- Olga A Krasheninina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Acad. Lavrentiev Ave. 8, Novosibirsk 630090, Russia.
| | - Darya S Novopashina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Acad. Lavrentiev Ave. 8, Novosibirsk 630090, Russia.
| | - Evgeny K Apartsin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Acad. Lavrentiev Ave. 8, Novosibirsk 630090, Russia.
| | - Alya G Venyaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Acad. Lavrentiev Ave. 8, Novosibirsk 630090, Russia.
| |
Collapse
|
16
|
Abstract
Fluorescence lifetime (FLT) is a robust intrinsic property and material constant of fluorescent matter. Measuring this important physical indicator has evolved from a laboratory curiosity to a powerful and established technique for a variety of applications in drug discovery, medical diagnostics and basic biological research. This distinct trend was mainly driven by improved and meanwhile affordable laser and detection instrumentation on the one hand, and the development of suitable FLT probes and biological assays on the other. In this process two essential working approaches emerged. The first one is primarily focused on high throughput applications employing biochemical in vitro assays with no requirement for high spatial resolution. The second even more dynamic trend is the significant expansion of assay methods combining highly time and spatially resolved fluorescence data by fluorescence lifetime imaging. The latter approach is currently pursued to enable not only the investigation of immortal tumor cell lines, but also specific tissues or even organs in living animals. This review tries to give an actual overview about the current status of FLT based bioassays and the wide range of application opportunities in biomedical and life science areas. In addition, future trends of FLT technologies will be discussed.
Collapse
Affiliation(s)
- Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, D-64295 Darmstadt, Germany
| |
Collapse
|
17
|
Krasheninina OA, Lomzov AA, Fishman VS, Novopashina DS, Venyaminova AG. Rational design and studies of excimer forming novel dual probes to target RNA. Bioorg Med Chem 2017; 25:2244-2250. [PMID: 28279557 DOI: 10.1016/j.bmc.2017.02.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 01/31/2017] [Accepted: 02/22/2017] [Indexed: 11/18/2022]
Abstract
In this paper, we report structure-based rational design and physico-chemical and biological studies of novel pyrene excimer forming dual probes for visualization of intracellular RNAs. Herein, the probes based on 2'-O-methyl RNA with linkers of different structure and length between pyrene moiety and ribose are studied with respect to their hybridization and spectral properties. We found optimal linkers that provide more intense excimer emission (at ∼480nm) of RNA-bound probes; particularly, the length of the linker arm of the 3'-component of dual probes plays a key role in formation of pyrene excimer. Calculated molecular dynamics trajectories and probability distributions of pyrene-pyrene dimer formation upon hybridization of the dual probes with RNA target are in agreement with the obtained fluorescence spectroscopy data for the corresponding duplexes. Our study demonstrates the excellent binding properties of new dual probes to structured RNA and their feasibility for the visualization of intracellular RNA targets.
Collapse
Affiliation(s)
- O A Krasheninina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentiev Ave., Novosibirsk 630090, Russia; Novosibirsk State University, 2 Pirogov str., Novosibirsk 630090, Russia.
| | - A A Lomzov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentiev Ave., Novosibirsk 630090, Russia; Novosibirsk State University, 2 Pirogov str., Novosibirsk 630090, Russia
| | - V S Fishman
- Institute of Cytology and Genetics SB RAS, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - D S Novopashina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentiev Ave., Novosibirsk 630090, Russia; Novosibirsk State University, 2 Pirogov str., Novosibirsk 630090, Russia
| | - A G Venyaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentiev Ave., Novosibirsk 630090, Russia
| |
Collapse
|
18
|
Martí AA. Metal complexes and time-resolved photoluminescence spectroscopy for sensing applications. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2015.03.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Dembska A, Juskowiak B. Pyrene functionalized molecular beacon with pH-sensitive i-motif in a loop. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 150:928-933. [PMID: 26123509 DOI: 10.1016/j.saa.2015.06.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/11/2015] [Indexed: 06/04/2023]
Abstract
In this work, we present a spectral characterization of pH-sensitive system, which combines the i-motif properties with the spatially sensitive fluorescence signal of pyrene molecules attached to hairpin ends. The excimer production (fluorescence max. ∼480 nm) by pyrene labels at the ends of the molecular beacon is driven by pH-dependent i-motif formation in the loop. To illustrate the performance and reversible work of our systems, we performed the experiments with repeatedly pH cycling between pH values of 7.5±0.3 and 6.5±0.3. The sensor gives analytical response in excimer-monomer switching mode in narrow pH range (1.5 pH units) and exhibits high pH resolution (0.1 pH unit).
Collapse
Affiliation(s)
- Anna Dembska
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznan, Poland.
| | - Bernard Juskowiak
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznan, Poland
| |
Collapse
|
20
|
Cyclodextrin supramolecular inclusion-enhanced pyrene excimer switching for time-resolved fluorescence detection of biothiols in serum. Biosens Bioelectron 2015; 68:253-258. [DOI: 10.1016/j.bios.2015.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/27/2014] [Accepted: 01/02/2015] [Indexed: 11/22/2022]
|
21
|
Han G, Kim D, Park Y, Bouffard J, Kim Y. Excimers Beyond Pyrene: A Far-Red Optical Proximity Reporter and its Application to the Label-Free Detection of DNA. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201410548] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
22
|
Han G, Kim D, Park Y, Bouffard J, Kim Y. Excimers Beyond Pyrene: A Far-Red Optical Proximity Reporter and its Application to the Label-Free Detection of DNA. Angew Chem Int Ed Engl 2015; 54:3912-6. [DOI: 10.1002/anie.201410548] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/12/2014] [Indexed: 01/10/2023]
|
23
|
Zhang R, Kwok RTK, Tang BZ, Liu B. Hybridization induced fluorescence turn-on of AIEgen–oligonucleotide conjugates for specific DNA detection. RSC Adv 2015. [DOI: 10.1039/c5ra00322a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We report a two-armed AIE probes for specific DNA detection, and the signal output can be further enhanced when two probes hybridize to each.
Collapse
Affiliation(s)
- Ruoyu Zhang
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
| | - Ryan T. K. Kwok
- Department of Chemistry
- Division of Biomedical Engineering
- The Hong Kong University of Science and Technology
- Hong Kong
- China
| | - Ben Zhong Tang
- Department of Chemistry
- Division of Biomedical Engineering
- The Hong Kong University of Science and Technology
- Hong Kong
- China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
- Institute of Materials Research and Engineering (A*STAR)
- Singapore
| |
Collapse
|
24
|
Wu YX, Zhang XB, Li JB, Zhang CC, Liang H, Mao GJ, Zhou LY, Tan W, Yu RQ. Bispyrene–Fluorescein Hybrid Based FRET Cassette: A Convenient Platform toward Ratiometric Time-Resolved Probe for Bioanalytical Applications. Anal Chem 2014; 86:10389-96. [DOI: 10.1021/ac502863m] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yong-Xiang Wu
- Molecular Science and Biomedicine Laboratory, State Key
Laboratory of Chemo/Biosensing and Chemometrics, College
of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key
Laboratory of Chemo/Biosensing and Chemometrics, College
of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Jun-Bin Li
- Molecular Science and Biomedicine Laboratory, State Key
Laboratory of Chemo/Biosensing and Chemometrics, College
of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Cui-Cui Zhang
- Molecular Science and Biomedicine Laboratory, State Key
Laboratory of Chemo/Biosensing and Chemometrics, College
of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Hao Liang
- Molecular Science and Biomedicine Laboratory, State Key
Laboratory of Chemo/Biosensing and Chemometrics, College
of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Guo-Jiang Mao
- Molecular Science and Biomedicine Laboratory, State Key
Laboratory of Chemo/Biosensing and Chemometrics, College
of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Li-Yi Zhou
- Molecular Science and Biomedicine Laboratory, State Key
Laboratory of Chemo/Biosensing and Chemometrics, College
of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key
Laboratory of Chemo/Biosensing and Chemometrics, College
of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Ru-Qin Yu
- Molecular Science and Biomedicine Laboratory, State Key
Laboratory of Chemo/Biosensing and Chemometrics, College
of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| |
Collapse
|
25
|
Park S, Otomo H, Zheng L, Sugiyama H. Highly emissive deoxyguanosine analogue capable of direct visualization of B-Z transition. Chem Commun (Camb) 2014; 50:1573-5. [PMID: 24382561 DOI: 10.1039/c3cc48297a] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A 2-aminothieno[3,4-d]pyrimidine G-mimic deoxyribonucleoside, (th)dG, was synthesized and incorporated readily into oligonucleotides as a versatile fluorescent guanine analogue. We demonstrate that (th)dG enables the visual detection of Z-DNA successfully based on different π-stacking of B- and Z-DNA.
Collapse
Affiliation(s)
- Soyoung Park
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
26
|
Fischbach M, Resch-Genger U, Seitz O. Protease Probes that Enable Excimer Signaling upon Scission. Angew Chem Int Ed Engl 2014; 53:11955-9. [DOI: 10.1002/anie.201406909] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Indexed: 02/04/2023]
|
27
|
Fischbach M, Resch-Genger U, Seitz O. Proteasesonden, die Spaltung durch Excimeremission anzeigen. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201406909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Moriguchi T, Ichimura M, Kato M, Suzuki K, Takahashi Y, Shinozuka K. Development of the excimer probe responsible for DNA target bearing the silylated pyrenes at base moiety. Bioorg Med Chem Lett 2014; 24:4372-4375. [DOI: 10.1016/j.bmcl.2014.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/04/2014] [Accepted: 08/07/2014] [Indexed: 01/04/2023]
|
29
|
Krasheninina OA, Novopashina DS, Lomzov AA, Venyaminova AG. 2'-Bispyrene-modified 2'-O-methyl RNA probes as useful tools for the detection of RNA: synthesis, fluorescent properties, and duplex stability. Chembiochem 2014; 15:1939-46. [PMID: 25044697 DOI: 10.1002/cbic.201402105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Indexed: 01/01/2023]
Abstract
The synthesis and properties two series of new 2'-O-methyl RNA probes, each containing a single insertion of a 2'-bispyrenylmethylphosphorodiamidate derivative of a nucleotide (U, C, A, and G), are described. As demonstrated by UV melting studies, the probes form stable complexes with model RNAs and DNAs. Significant increases (up to 21-fold) in pyrene excimer fluorescence intensity were observed upon binding of most of the probes with complementary RNAs, but not with DNAs. The fluorescence spectra are independent of the nature of the modified nucleotides. The nucleotides on the 5'-side of the modified nucleotide have no effect on the fluorescence spectra, whereas the natures of the two nucleotides on the 3'-side are important: CC, CG, and UC dinucleotide units on the 3'-side of the modified nucleotide provide the maximum increases in excimer fluorescence intensity. This study suggests that these 2'-bispyrene-labeled 2'-O-methyl RNA probes might be useful tools for detection of RNAs.
Collapse
Affiliation(s)
- Olga A Krasheninina
- Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentiev Avenue, Novosibirsk, 630090 (Russia); Novosibirsk State University, 2 Pirogov St., Novosibirsk, 630090 (Russia).
| | | | | | | |
Collapse
|
30
|
St-Pierre P, McCluskey K, Shaw E, Penedo JC, Lafontaine DA. Fluorescence tools to investigate riboswitch structural dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1005-1019. [PMID: 24863161 DOI: 10.1016/j.bbagrm.2014.05.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 11/15/2022]
Abstract
Riboswitches are novel regulatory elements that respond to cellular metabolites to control gene expression. They are constituted of highly conserved domains that have evolved to recognize specific metabolites. Such domains, so-called aptamers, are folded into intricate structures to enable metabolite recognition. Over the years, the development of ensemble and single-molecule fluorescence techniques has allowed to probe most of the mechanistic aspects of aptamer folding and ligand binding. In this review, we summarize the current fluorescence toolkit available to study riboswitch structural dynamics. We fist describe those methods based on fluorescent nucleotide analogues, mostly 2-aminopurine (2AP), to investigate short-range conformational changes, including some key steady-state and time-resolved examples that exemplify the versatility of fluorescent analogues as structural probes. The study of long-range structural changes by Förster resonance energy transfer (FRET) is mostly discussed in the context of single-molecule studies, including some recent developments based on the combination of single-molecule FRET techniques with controlled chemical denaturation methods. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Patrick St-Pierre
- RNA Group, Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Kaley McCluskey
- SUPA, School of Physics and Astronomy University of St Andrews, St Andrews, Fife KY16 9SS, United Kingdom
| | - Euan Shaw
- SUPA, School of Physics and Astronomy University of St Andrews, St Andrews, Fife KY16 9SS, United Kingdom
| | - J C Penedo
- SUPA, School of Physics and Astronomy University of St Andrews, St Andrews, Fife KY16 9SS, United Kingdom; Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9SS, United Kingdom.
| | - D A Lafontaine
- RNA Group, Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
| |
Collapse
|
31
|
Kholodar SA, Novopashina DS, Meschaninova MI, Venyaminova AG. Multipyrene tandem probes for point mutations detection in DNA. J Nucleic Acids 2013; 2013:860457. [PMID: 24455205 PMCID: PMC3886547 DOI: 10.1155/2013/860457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 11/11/2013] [Indexed: 01/26/2023] Open
Abstract
Here we report design, synthesis and characterization of highly sensitive, specific and stable in biological systems fluorescent probes for point mutation detection in DNA. The tandems of 3'- and 5'-mono- and bis-pyrene conjugated oligo(2'-O-methylribonucleotides), protected by 3'-"inverted" thymidine, were constructed and their potential as new instruments for genetic diagnostics was studied. Novel probes have been shown to exhibit an ability to form stable duplexes with DNA target due to the stabilizing effect of multiple pyrene units at the junction. The relationship between fluorescent properties of developed probes, the number of pyrene residues at the tandem junction, and the location of point mutation has been studied. On the basis of the data obtained, we have chosen the probes possessing the highest fluorescence intensity along with the best mismatch discrimination and deletion and insertion detection ability. Application of developed probes for detection of polymorphism C677T in MTHFR gene has been demonstrated on model systems.
Collapse
Affiliation(s)
- Svetlana A. Kholodar
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Avenue 8, Novosibirsk 630090, Russia
| | - Darya S. Novopashina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Avenue 8, Novosibirsk 630090, Russia
| | - Mariya I. Meschaninova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Avenue 8, Novosibirsk 630090, Russia
| | - Alya G. Venyaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Avenue 8, Novosibirsk 630090, Russia
| |
Collapse
|
32
|
Boutorine AS, Novopashina DS, Krasheninina OA, Nozeret K, Venyaminova AG. Fluorescent probes for nucleic Acid visualization in fixed and live cells. Molecules 2013; 18:15357-97. [PMID: 24335616 PMCID: PMC6270009 DOI: 10.3390/molecules181215357] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/20/2013] [Accepted: 12/05/2013] [Indexed: 12/13/2022] Open
Abstract
This review analyses the literature concerning non-fluorescent and fluorescent probes for nucleic acid imaging in fixed and living cells from the point of view of their suitability for imaging intracellular native RNA and DNA. Attention is mainly paid to fluorescent probes for fluorescence microscopy imaging. Requirements for the target-binding part and the fluorophore making up the probe are formulated. In the case of native double-stranded DNA, structure-specific and sequence-specific probes are discussed. Among the latest, three classes of dsDNA-targeting molecules are described: (i) sequence-specific peptides and proteins; (ii) triplex-forming oligonucleotides and (iii) polyamide oligo(N-methylpyrrole/N-methylimidazole) minor groove binders. Polyamides seem to be the most promising targeting agents for fluorescent probe design, however, some technical problems remain to be solved, such as the relatively low sequence specificity and the high background fluorescence inside the cells. Several examples of fluorescent probe applications for DNA imaging in fixed and living cells are cited. In the case of intracellular RNA, only modified oligonucleotides can provide such sequence-specific imaging. Several approaches for designing fluorescent probes are considered: linear fluorescent probes based on modified oligonucleotide analogs, molecular beacons, binary fluorescent probes and template-directed reactions with fluorescence probe formation, FRET donor-acceptor pairs, pyrene excimers, aptamers and others. The suitability of all these methods for living cell applications is discussed.
Collapse
Affiliation(s)
- Alexandre S. Boutorine
- Muséum National d’Histoire Naturelle, CNRS, UMR 7196, INSERM, U565, 57 rue Cuvier, B.P. 26, Paris Cedex 05, F-75231, France; E-Mail:
| | - Darya S. Novopashina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Lavrentyev Ave., 8, Novosibirsk 630090, Russia; E-Mails: (D.S.N.); (O.A.K.); (A.G.V.)
| | - Olga A. Krasheninina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Lavrentyev Ave., 8, Novosibirsk 630090, Russia; E-Mails: (D.S.N.); (O.A.K.); (A.G.V.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova Str., 2, Novosibirsk 630090, Russia
| | - Karine Nozeret
- Muséum National d’Histoire Naturelle, CNRS, UMR 7196, INSERM, U565, 57 rue Cuvier, B.P. 26, Paris Cedex 05, F-75231, France; E-Mail:
| | - Alya G. Venyaminova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Lavrentyev Ave., 8, Novosibirsk 630090, Russia; E-Mails: (D.S.N.); (O.A.K.); (A.G.V.)
| |
Collapse
|
33
|
Gao X, Deng T, Li J, Yang R, Shen G, Yu R. New probe design strategy by cooperation of metal/DNA-ligation and supermolecule inclusion interaction: application to detection of mercury ions(II). Analyst 2013; 138:2755-60. [PMID: 23527376 DOI: 10.1039/c3an00122a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, the development is described of an efficient pyrene excimer signaling-based fluorescent sensor for the measurement of mercury ions in aqueous solutions based on thymine-Hg(2+)-thymine (T-Hg(2+)-T) coordination chemistry and the inclusion interaction of γ-cyclodextrin. Introduction of cyclodextrin can provide cooperation for the molecular level space proximity of the two labeled pyrene molecules, moreover the hydrophobic cavity of γ-cyclodextrin can also offer protection for the pyrene dimer's emission from the quenching effect of Hg(2+) and enhance the fluorescence intensity of the pyrene excimer. To demonstrate the feasibility of the design, a bis-pyrene-labeled thymine-rich DNA strand was used as the detection probe. In the presence of Hg(2+), stem-close-shaped DNA strands can be formed with the cooperation of γ-cyclodextrin and ideally predominantly emit the excimer fluorescence. The selectivity of the sensor for Hg(2+) against other biologically and environmentally related metal ions is outstanding due to the high specificity of T-Hg(2+)-T formation. In addition, the pyrene excimer has a long fluorescence lifetime, which can tolerate intense background fluorescence interference from complex biological components, making it potentially applicable in the analysis of complex biological samples.
Collapse
Affiliation(s)
- Xiaoxia Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | | | | | | | | | | |
Collapse
|
34
|
A quencher-free molecular beacon design based on pyrene excimer fluorescence using pyrene-labeled UNA (unlocked nucleic acid). Bioorg Med Chem 2013; 21:6186-90. [DOI: 10.1016/j.bmc.2013.04.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/08/2013] [Accepted: 04/16/2013] [Indexed: 11/18/2022]
|
35
|
Saneyoshi H, Ito Y, Abe H. Long-lived luminogenic probe for detection of RNA in a crude solution of living bacterial cells. J Am Chem Soc 2013; 135:13632-5. [PMID: 24010717 DOI: 10.1021/ja406724k] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A pre-type sensitizer for a lanthanide complex on an oligonucleotide was successfully converted to a perfect final structure in a target DNA/RNA-templated reaction, without any chemical reagent or enzyme, under neutral conditions. The final form of the lanthanide-oligonucleotide provided a long-lived luminescence signal, appropriate for time-gated luminescence analysis and signal amplification. Target DNA/RNA-assisted time-gated luminescence analysis is a powerful tool for elimination of autofluorescence and detection of target RNA in living bacterial cells.
Collapse
Affiliation(s)
- Hisao Saneyoshi
- Nano Medical Engineering Laboratory, RIKEN , 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | |
Collapse
|
36
|
Maity A, Das S, Mandal S, Gupta P, Purkayastha P. Interaction of semicarbazide and thiosemicarbazide pyrene derivatives with anionic and cationic micelles: changed character of pyrene due to alteration in charge density induced by the side chains. RSC Adv 2013. [DOI: 10.1039/c3ra41029c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
37
|
Zheng J, Nie Y, Hu Y, Li J, Li Y, Jiang Y, Yang R. Time-resolved fluorescent detection of Hg2+ in a complex environment by conjugating magnetic nanoparticles with a triple-helix molecular switch. Chem Commun (Camb) 2013; 49:6915-7. [DOI: 10.1039/c3cc42962h] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Su X, Xiao X, Zhang C, Zhao M. Nucleic acid fluorescent probes for biological sensing. APPLIED SPECTROSCOPY 2012; 66:1249-1262. [PMID: 23146180 DOI: 10.1366/12-06803] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Nucleic acid fluorescent probes are playing increasingly important roles in biological sensing in recent years. In addition to the conventional functions of single-stranded DNA/RNA to hybridize with their complementary strands, affinity nucleic acids (aptamers) with specific target binding properties have also been developed, which has greatly broadened the application of nucleic acid fluorescent probes to the detection of a large variety of analytes, including small molecules, proteins, ions, and even whole cells. Another chemical property of nucleic acids is to act as substrates for various nucleic acid enzymes. This property can be utilized not only to detect those enzymes and screen their inhibitors, but also employed to develop effective signal amplification systems, which implies extensive applications. This review mainly covers the biosensing methods based on the above three types of nucleic acid fluorescent probes. The most widely used intensity-based biosensing assays are covered first, including nucleic acid probe-based signal amplification methods. Then fluorescence lifetime, fluorescence anisotropy, and fluorescence correlation spectroscopy assays are introduced, respectively. As a rapidly developing field, fluorescence imaging approaches are also briefly summarized.
Collapse
Affiliation(s)
- Xin Su
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, China
| | | | | | | |
Collapse
|
39
|
Huang K, Martí AA. Optimizing the Sensitivity of Photoluminescent Probes Using Time-Resolved Spectroscopy: A Molecular Beacon Case Study. Anal Chem 2012; 84:8075-82. [DOI: 10.1021/ac3019894] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kewei Huang
- Department
of Chemistry, ‡Department of Bioengineering, and §Smalley Institute for Nanoscale Science and
Technology, 6100 South Main Street, Rice University, Houston Texas 77005, United States
| | - Angel A. Martí
- Department
of Chemistry, ‡Department of Bioengineering, and §Smalley Institute for Nanoscale Science and
Technology, 6100 South Main Street, Rice University, Houston Texas 77005, United States
| |
Collapse
|
40
|
Guo J, Ju J, Turro NJ. Fluorescent hybridization probes for nucleic acid detection. Anal Bioanal Chem 2012; 402:3115-25. [PMID: 22086400 PMCID: PMC6609299 DOI: 10.1007/s00216-011-5526-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/19/2011] [Indexed: 01/09/2023]
Abstract
Due to their high sensitivity and selectivity, minimum interference with living biological systems, and ease of design and synthesis, fluorescent hybridization probes have been widely used to detect nucleic acids both in vivo and in vitro. Molecular beacons (MBs) and binary probes (BPs) are two very important hybridization probes that are designed based on well-established photophysical principles. These probes have shown particular applicability in a variety of studies, such as mRNA tracking, single nucleotide polymorphism (SNP) detection, polymerase chain reaction (PCR) monitoring, and microorganism identification. Molecular beacons are hairpin oligonucleotide probes that present distinctive fluorescent signatures in the presence and absence of their target. Binary probes consist of two fluorescently labeled oligonucleotide strands that can hybridize to adjacent regions of their target and generate distinctive fluorescence signals. These probes have been extensively studied and modified for different applications by modulating their structures or using various combinations of fluorophores, excimer-forming molecules, and metal complexes. This review describes the applicability and advantages of various hybridization probes that utilize novel and creative design to enhance their target detection sensitivity and specificity.
Collapse
Affiliation(s)
- Jia Guo
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | | | | |
Collapse
|
41
|
Affiliation(s)
- Yin Nah Teo
- Department of Chemistry, Stanford University, California 94305, United States
| | | |
Collapse
|
42
|
Cox NM, Harding LP, Jones JE, Pope SJA, Rice CR, Adams H. Probing solution behaviour of metallosupramolecular complexes using pyrene fluorescence. Dalton Trans 2012; 41:1568-73. [PMID: 22143433 DOI: 10.1039/c1dt11831e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A new method for assessing the topology of metallosupramolecular assemblies using pyrene-appended ligands is reported. Two potentially tetradentate ligands containing one (L(1)) and two (L(2)) terminal pyrene moieties were synthesised and their complexes with Cu(+) and Cd(2+) were characterised. Photophysical measurements demonstrate that in [Cu(2)(L(1))(2)](2+), [CdL(1)](2+) and [Cu(2)(L(2))(2)](2+) the emission spectra are dominated by monomeric emission but in the cadmium complex of L(2) (where the pyrene units are in close proximity) a quenching of the luminescence coupled with weak emission at 540 nm is indicative of excimer formation.
Collapse
Affiliation(s)
- Nicola M Cox
- Dept of Chemical & Biological Sciences, University of Huddersfield, Huddersfield, UK HD1 3DH
| | | | | | | | | | | |
Collapse
|
43
|
Yin BC, You M, Tan W, Ye BC. Mercury(II) ion detection via pyrene-mediated photolysis of disulfide bonds. Chemistry 2012; 18:1286-9. [PMID: 22223216 DOI: 10.1002/chem.201103348] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/12/2011] [Indexed: 11/07/2022]
Affiliation(s)
- Bin-Cheng Yin
- State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai, 200237, P.R. China
| | | | | | | |
Collapse
|
44
|
Ingale SA, Pujari SS, Sirivolu VR, Ding P, Xiong H, Mei H, Seela F. 7-Deazapurine and 8-aza-7-deazapurine nucleoside and oligonucleotide pyrene "click" conjugates: synthesis, nucleobase controlled fluorescence quenching, and duplex stability. J Org Chem 2011; 77:188-99. [PMID: 22129276 DOI: 10.1021/jo202103q] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
7-Deazapurine and 8-aza-7-deazapurine nucleosides related to dA and dG bearing 7-octadiynyl or 7-tripropargylamine side chains as well as corresponding oligonucleotides were synthesized. "Click" conjugation with 1-azidomethyl pyrene (10) resulted in fluorescent derivatives. Octadiynyl conjugates show only monomer fluorescence, while the proximal alignment of pyrene residues in the tripropargylamine derivatives causes excimer emission. 8-Aza-7-deazapurine pyrene "click" conjugates exhibit fluorescence emission much higher than that of 7-deazapurine derivatives. They are quenched by intramolecular charge transfer between the nucleobase and the dye. Oligonucleotide single strands decorated with two "double clicked" pyrenes show weak or no excimer fluorescence. However, when duplexes carry proximal pyrenes in complementary strands, strong excimer fluorescence is observed. A single replacement of a canonical nucleoside by a pyrene conjugate stabilizes the duplex substantially, most likely by stacking interactions: 6-12 °C for duplexes with a modified "adenine" base and 2-6 °C for a modified "guanine" base. The favorable photophysical properties of 8-aza-7-deazapurine pyrene conjugates improve the utility of pyrene fluorescence reporters in oligonucleotide sensing as these nucleoside conjugates are not affected by nucleobase induced quenching.
Collapse
Affiliation(s)
- Sachin A Ingale
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology , Heisenbergstraße 11, 48149 Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Huang K, Martí AA. Recent trends in molecular beacon design and applications. Anal Bioanal Chem 2011; 402:3091-102. [PMID: 22159461 DOI: 10.1007/s00216-011-5570-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 12/26/2022]
Abstract
A molecular beacon (MB) is a hairpin-structured oligonucleotide probe containing a photoluminescent species (PLS) and a quencher at different ends of the strand. In a recognition and detection process, the hybridization of MBs with target DNA sequences restores the strong photoluminescence, which is quenched before hybridization. Making better MBs involves reducing the background photoluminescence and increasing the brightness of the PLS, which therefore involves the development of new PLS and quenchers, as well as innovative PLS-quencher systems. Heavy-metal complexes, nanocrystals, pyrene compounds, and other materials with excellent photophysical properties have been applied as PLS of MBs. Nanoparticles, nanowires, graphene, metal films, and many other media have also been introduced to quench photoluminescence. On the basis of their high specificity, selectivity, and sensitivity, MBs are developed as a general platform for sensing, producing, and carrying molecules other than oligonucleotides.
Collapse
Affiliation(s)
- Kewei Huang
- Department of Chemistry, Rice University, 6100 South Main Street, Houston, TX 77005, USA
| | | |
Collapse
|
46
|
Østergaard ME, Hrdlicka PJ. Pyrene-functionalized oligonucleotides and locked nucleic acids (LNAs): tools for fundamental research, diagnostics, and nanotechnology. Chem Soc Rev 2011; 40:5771-88. [PMID: 21487621 PMCID: PMC3644995 DOI: 10.1039/c1cs15014f] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pyrene-functionalized oligonucleotides (PFOs) are increasingly explored as tools in fundamental research, diagnostics and nanotechnology. Their popularity is linked to the ability of pyrenes to function as polarity-sensitive and quenchable fluorophores, excimer-generating units, aromatic stacking moieties and nucleic acid duplex intercalators. These characteristics have enabled development of PFOs for detection of complementary DNA/RNA targets, discrimination of single nucleotide polymorphisms (SNPs), and generation of π-arrays on nucleic acid scaffolds. This critical review will highlight the physical properties and applications of PFOs that are likely to provide high degree of positional control of the chromophore in nucleic acid complexes. Particular emphasis will be placed on pyrene-functionalized Locked Nucleic Acids (LNAs) since these materials display interesting properties such as fluorescence quantum yields approaching unity and recognition of mixed-sequence double stranded DNA (144 references).
Collapse
|
47
|
Xu Z, Spring DR, Yoon J. Fluorescent sensing and discrimination of ATP and ADP based on a unique sandwich assembly of pyrene-adenine-pyrene. Chem Asian J 2011; 6:2114-22. [PMID: 21506284 DOI: 10.1002/asia.201100120] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Indexed: 11/07/2022]
Abstract
It is still a challenging task to discriminate adenosine-5'-triphosphate (ATP) from various nucleoside triphosphates, such as GTP, CTP, UTP, and TTP. The ability to distinguish ATP from adenosine diphosphate (ADP) by fluorescent signals is also urgently desired. Herein, we report two pyrene-based zinc complexes as nucleoside polyphosphate receptors with high selectivity for ATP and ADP based on fluorescence and NMR studies. A unique pyrene-adenine-pyrene sandwich assembly was observed in the case of compound 1 with ATP or ADP, resulting in the increase of monomer fluorescence intensity; whereas the other bases of nucleoside triphosphates, such as GTP, CTP, UTP, and TTP were not sandwiched, resulting in a switch in the monomer-excimer fluorescence of pyrene. The different binding patterns of various nucleobases with a pyrene-pyrene assembly make 1 a highly selective fluorescent sensor for ANP (N=di, tri). In the case of compound 2, the first 0.5 equivalents of ATP induced a strong excimer emission, whilst ADP induced a large enhancement in the monomeric fluorescent peak. This fluorescence change makes 2 an efficient sensor to discriminate ATP from ADP.
Collapse
Affiliation(s)
- Zhaochao Xu
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, Korea
| | | | | |
Collapse
|
48
|
Ma C, Huang H, Zhao C. An aptamer-based and pyrene-labeled fluorescent biosensor for homogeneous detection of potassium ions. ANAL SCI 2011; 26:1261-4. [PMID: 21157094 DOI: 10.2116/analsci.26.1261] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A simple and homogeneous method based on aptamer and pyrene moieties for the detection of K(+) was developed. The aptamer was labeled by pyrene moiety at 3' end as the molecular recognition element. In the presence of K(+), the complementary oligonucleotide labeled by pyrene moiety at 5' end was displaced from the aptamer, which was accompanied by a dramatic decrease of the excimer fluorescence of pyrene. However, the excimer fluorescence remains in the absence of the target. With optimum conditions, relative changes of the pyrene excimer fluorescence intensity were proportional to the concentrations of K(+) in the range of 6.3 × 10(-4) to 1.0 × 10(-2) M with a detection limit of 5.0 × 10(-4) M. Importantly, in the presence of Na(+), NH(4)(+), Mg(2+) and Ca(2+) cations of biological fluids, this method was able to detect K(+) with high selectivity. In a word, the assay seems to have great potential applications, especially in biological fluids due to its simplicity, specificity and homogeneous detection.
Collapse
Affiliation(s)
- Cuiping Ma
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, P. R. China.
| | | | | |
Collapse
|
49
|
Juskowiak B. Nucleic acid-based fluorescent probes and their analytical potential. Anal Bioanal Chem 2011; 399:3157-76. [PMID: 21046088 PMCID: PMC3044240 DOI: 10.1007/s00216-010-4304-5] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 10/04/2010] [Accepted: 10/05/2010] [Indexed: 12/21/2022]
Abstract
It is well known that nucleic acids play an essential role in living organisms because they store and transmit genetic information and use that information to direct the synthesis of proteins. However, less is known about the ability of nucleic acids to bind specific ligands and the application of oligonucleotides as molecular probes or biosensors. Oligonucleotide probes are single-stranded nucleic acid fragments that can be tailored to have high specificity and affinity for different targets including nucleic acids, proteins, small molecules, and ions. One can divide oligonucleotide-based probes into two main categories: hybridization probes that are based on the formation of complementary base-pairs, and aptamer probes that exploit selective recognition of nonnucleic acid analytes and may be compared with immunosensors. Design and construction of hybridization and aptamer probes are similar. Typically, oligonucleotide (DNA, RNA) with predefined base sequence and length is modified by covalent attachment of reporter groups (one or more fluorophores in fluorescence-based probes). The fluorescent labels act as transducers that transform biorecognition (hybridization, ligand binding) into a fluorescence signal. Fluorescent labels have several advantages, for example high sensitivity and multiple transduction approaches (fluorescence quenching or enhancement, fluorescence anisotropy, fluorescence lifetime, fluorescence resonance energy transfer (FRET), and excimer-monomer light switching). These multiple signaling options combined with the design flexibility of the recognition element (DNA, RNA, PNA, LNA) and various labeling strategies contribute to development of numerous selective and sensitive bioassays. This review covers fundamentals of the design and engineering of oligonucleotide probes, describes typical construction approaches, and discusses examples of probes used both in hybridization studies and in aptamer-based assays.
Collapse
Affiliation(s)
- Bernard Juskowiak
- Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznan, Poland.
| |
Collapse
|
50
|
Karuppannan S, Chambron JC. Supramolecular chemical sensors based on pyrene monomer-excimer dual luminescence. Chem Asian J 2011; 6:964-84. [PMID: 21271681 DOI: 10.1002/asia.201000724] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Indexed: 12/18/2022]
Abstract
The past ten years have seen a spectacular development of chemical sensors based on the monomer-excimer dual luminescence of aromatic systems, such as pyrene. Either in the form of integrated or multicomponent molecular devices these chemosensors have been attracting a high interest above all because of their unique ratiometric properties. This review will focus on the latter systems, which can be classified into two classes: Firstly, the assembly of receptor-effector conjugates is triggerred by the analyte of interest. As a result, the sensor shows monomer to excimer fluorescence switching upon substrate binding. Secondly, the supramolecular assembly that constitutes the sensor is perturbed by interaction with the analyte. This induces a conformational change or the exchange of a component of the system, which is the cause of the luminescence switch effect.
Collapse
|