1
|
Sreeramulu S, Richter C, Berg H, Wirtz Martin MA, Ceylan B, Matzel T, Adam J, Altincekic N, Azzaoui K, Bains JK, Blommers MJJ, Ferner J, Fürtig B, Göbel M, Grün JT, Hengesbach M, Hohmann KF, Hymon D, Knezic B, Martins JN, Mertinkus KR, Niesteruk A, Peter SA, Pyper DJ, Qureshi NS, Scheffer U, Schlundt A, Schnieders R, Stirnal E, Sudakov A, Tröster A, Vögele J, Wacker A, Weigand JE, Wirmer‐Bartoschek J, Wöhnert J, Schwalbe H. Exploring the Druggability of Conserved RNA Regulatory Elements in the SARS‐CoV‐2 Genome. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
2
|
Sreeramulu S, Richter C, Berg H, Wirtz Martin MA, Ceylan B, Matzel T, Adam J, Altincekic N, Azzaoui K, Bains JK, Blommers MJJ, Ferner J, Fürtig B, Göbel M, Grün JT, Hengesbach M, Hohmann KF, Hymon D, Knezic B, Martins JN, Mertinkus KR, Niesteruk A, Peter SA, Pyper DJ, Qureshi NS, Scheffer U, Schlundt A, Schnieders R, Stirnal E, Sudakov A, Tröster A, Vögele J, Wacker A, Weigand JE, Wirmer‐Bartoschek J, Wöhnert J, Schwalbe H. Exploring the Druggability of Conserved RNA Regulatory Elements in the SARS-CoV-2 Genome. Angew Chem Int Ed Engl 2021; 60:19191-19200. [PMID: 34161644 PMCID: PMC8426693 DOI: 10.1002/anie.202103693] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/03/2021] [Indexed: 12/12/2022]
Abstract
SARS-CoV-2 contains a positive single-stranded RNA genome of approximately 30 000 nucleotides. Within this genome, 15 RNA elements were identified as conserved between SARS-CoV and SARS-CoV-2. By nuclear magnetic resonance (NMR) spectroscopy, we previously determined that these elements fold independently, in line with data from in vivo and ex-vivo structural probing experiments. These elements contain non-base-paired regions that potentially harbor ligand-binding pockets. Here, we performed an NMR-based screening of a poised fragment library of 768 compounds for binding to these RNAs, employing three different 1 H-based 1D NMR binding assays. The screening identified common as well as RNA-element specific hits. The results allow selection of the most promising of the 15 RNA elements as putative drug targets. Based on the identified hits, we derive key functional units and groups in ligands for effective targeting of the RNA of SARS-CoV-2.
Collapse
|
3
|
Maurya SK, Rana R. An eco-compatible strategy for the diversity-oriented synthesis of macrocycles exploiting carbohydrate-derived building blocks. Beilstein J Org Chem 2017; 13:1106-1118. [PMID: 28684990 PMCID: PMC5480360 DOI: 10.3762/bjoc.13.110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 05/12/2017] [Indexed: 12/15/2022] Open
Abstract
An efficient, eco-compatible diversity-oriented synthesis (DOS) approach for the generation of library of sugar embedded macrocyclic compounds with various ring size containing 1,2,3-triazole has been developed. This concise strategy involves the iterative use of readily available sugar-derived alkyne/azide-alkene building blocks coupled through copper catalyzed azide-alkyne cycloaddition (CuAAC) reaction followed by pairing of the linear cyclo-adduct using greener reaction conditions. The eco-compatibility, mild reaction conditions, greener solvents, easy purification and avoidance of hazards and toxic solvents are advantages of this protocol to access this important structural class. The diversity of the macrocycles synthesized (in total we have synthesized 13 macrocycles) using a set of standard reaction protocols demonstrate the potential of the new eco-compatible approach for the macrocyclic library generation.
Collapse
Affiliation(s)
- Sushil K Maurya
- Natural Product Chemistry and Process Development Division, CSIR- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India.,Academy of Scientific and Innovative Research, CSIR- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India
| | - Rohit Rana
- Natural Product Chemistry and Process Development Division, CSIR- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India.,Academy of Scientific and Innovative Research, CSIR- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India
| |
Collapse
|
4
|
Taherpour S, Lönnberg T. Fluorescence probing of metal-ion-mediated hybridization of oligonucleotides. RSC Adv 2015. [DOI: 10.1039/c4ra15136d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The structure-dependent fluorescence of pyrrolocytosine has been harnessed to quantify the affinity of metal-ion-chelating oligonucleotides for their native counterparts.
Collapse
|
5
|
Kellish PC, Kumar S, Mack TS, Spano MN, Hennig M, Arya DP. Multivalent Amino Sugars to Recognize Different TAR RNA Conformations. MEDCHEMCOMM 2014; 5:1235-1246. [PMID: 27076899 PMCID: PMC4828046 DOI: 10.1039/c4md00165f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neomycin dimers synthesized using "click chemistry" with varying functionality and length in the linker region have been shown to be effective in targeting the HIV-1 TAR RNA region of the HIV virus. TAR (Transactivation Response) RNA region, a 59 base pair stem loop structure located at the 5'-end of all nascent viral transcripts interacts with its target, a key regulatory protein, Tat, and necessitates the replication of HIV-1 virus. Ethidium bromide displacement and FRET competition assays have revealed nanomolar binding affinity between neomycin dimers and wildtype TAR RNA while in case of neomycin, only a weak binding was detected. Here, NMR and FID-based comparisons reveal an extended binding interface for neomycin dimers involving the upper stem of the TAR RNA thereby offering an explanation for increased affinities. To further explore the potential of these modified aminosugars we have extended binding studies to include four TAR RNA mutants that display conformational differences with minimal sequence variation. The differences in binding between neomycin and neomycin dimers is characterized with TAR RNA mutants that include mutations to the bulge region, hairpin region, and both the bulge and hairpin regions. Our results demonstrate the effect of these mutations on neomycin binding and our results show that linker functionalities between dimeric units of neomycin can distinguish between the conformational differences of mutant TAR RNA structures.
Collapse
Affiliation(s)
- Patrick C. Kellish
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Sunil Kumar
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Todd S. Mack
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 70 President St., Charleston, SC 29425
| | | | - Mirko Hennig
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 70 President St., Charleston, SC 29425
| | - Dev P. Arya
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
- NUBAD, LLC, 900B West Faris Rd., Greenville, SC 29605
| |
Collapse
|
6
|
Dzananovic E, Patel TR, Deo S, McEleney K, Stetefeld J, McKenna SA. Recognition of viral RNA stem-loops by the tandem double-stranded RNA binding domains of PKR. RNA (NEW YORK, N.Y.) 2013; 19:333-344. [PMID: 23329698 PMCID: PMC3677244 DOI: 10.1261/rna.035931.112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/12/2012] [Indexed: 05/30/2023]
Abstract
In humans, the double-stranded RNA (dsRNA)-activated protein kinase (PKR) is expressed in late stages of the innate immune response to viral infection by the interferon pathway. PKR consists of tandem dsRNA binding motifs (dsRBMs) connected via a flexible linker to a Ser/Thr kinase domain. Upon interaction with viral dsRNA, PKR is converted into a catalytically active enzyme capable of phosphorylating a number of target proteins that often results in host cell translational repression. A number of high-resolution structural studies involving individual dsRBMs from proteins other than PKR have highlighted the key features required for interaction with perfectly duplexed RNA substrates. However, viral dsRNA molecules are highly structured and often contain deviations from perfect A-form RNA helices. By use of small-angle X-ray scattering (SAXS), we present solution conformations of the tandem dsRBMs of PKR in complex with two imperfectly base-paired viral dsRNA stem-loops; HIV-1 TAR and adenovirus VA(I)-AS. Both individual components and complexes were purified by size exclusion chromatography and characterized by dynamic light scattering at multiple concentrations to ensure monodispersity. SAXS ab initio solution conformations of the individual components and RNA-protein complexes were determined and highlight the potential of PKR to interact with both stem and loop regions of the RNA. Excellent agreement between experimental and model-based hydrodynamic parameter determination heightens our confidence in the obtained models. Taken together, these data support and provide a framework for the existing biochemical data regarding the tolerance of imperfectly base-paired viral dsRNA by PKR.
Collapse
Affiliation(s)
- Edis Dzananovic
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Trushar R. Patel
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Soumya Deo
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Kevin McEleney
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
- Manitoba Institute for Materials, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
- Manitoba Group in Protein Structure and Function, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Sean A. McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
- Manitoba Group in Protein Structure and Function, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
7
|
Li CH, Zuo ZC, Su JG, Xu XJ, Wang CX. The interactions and recognition of cyclic peptide mimetics of Tat with HIV-1 TAR RNA: a molecular dynamics simulation study. J Biomol Struct Dyn 2012; 31:276-87. [PMID: 22943434 DOI: 10.1080/07391102.2012.698248] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The interaction of HIV-1 trans-activator protein Tat with its cognate trans-activation response element (TAR) RNA is critical for viral transcription and replication. Therefore, it has long been considered as an attractive target for the development of antiviral compounds. Recently, the conformationally constrained cyclic peptide mimetics of Tat have been tested to be a promising family of lead peptides. Here, we focused on two representative cyclic peptides termed as L-22 and KP-Z-41, both of which exhibit excellent inhibitory potency against Tat and TAR interaction. By means of molecular dynamics simulations, we obtained a detailed picture of the interactions between them and HIV-1 TAR RNA. In results, it is found that the binding modes of the two cyclic peptides to TAR RNA are almost identical at or near the bulge regions, whereas the binding interfaces at the apical loop exhibit large conformational heterogeneity. In addition, it is revealed that electrostatic interaction energy contributes much more to KP-Z-41 complex formation than to L-22 complex, which is the main source of energy that results in a higher binding affinity of KP-Z-41 over-22 for TAR RNA. Furthermore, we identified a conserved motif RRK (Arg-Arg-Lys) that is shown to be essential for specific binding of this class of cyclic peptides to TAR RNA. This work can provide a useful insight into the design and modification of cyclic peptide inhibitors targeting the association of HIV-1 Tat and TAR RNA.
Collapse
Affiliation(s)
- Chun Hua Li
- College of Life Science and Bioengineering, Beijing University of Technology, Pingleyuan 100, Chaoyang District, Beijing 100124, China.
| | | | | | | | | |
Collapse
|
8
|
Kumar S, Kellish P, Robinson WE, Wang D, Appella DH, Arya DP. Click dimers to target HIV TAR RNA conformation. Biochemistry 2012; 51:2331-47. [PMID: 22339203 DOI: 10.1021/bi201657k] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of neomycin dimers have been synthesized using "click chemistry" with varying functionality and length in the linker region to target the human immunodeficiency virus type 1 (HIV-1) TAR RNA region of the HIV virus. The TAR (Trans-Activation Responsive) RNA region, a 59 bp stem-loop structure located at the 5'-end of all nascent viral transcripts, interacts with its target, a key regulatory protein, Tat, and necessitates the replication of HIV-1. Neomycin, an aminosugar, has been shown to exhibit multiple binding sites on TAR RNA. This observation prompted us to design and synthesize a library of triazole-linked neomycin dimers using click chemistry. The binding between neomycin dimers and TAR RNA was characterized using spectroscopic techniques, including FID (fluorescent intercalator displacement), a FRET (fluorescence resonance energy transfer) competitive assay, circular dichroism (CD), and UV thermal denaturation. UV thermal denaturation studies demonstrate that binding of neomycin dimers increases the melting temperature (T(m)) of the HIV TAR RNA up to 10 °C. Ethidium bromide displacement (FID) and a FRET competition assay revealed nanomolar binding affinity between neomycin dimers and HIV TAR RNA, while in case of neomycin, only weak binding was detected. More importantly, most of the dimers exhibited lower IC(50) values toward HIV TAR RNA, when compared to the fluorescent Tat peptide, and show increased selectivity over mutant TAR RNA. Cytopathic effects investigated using MT-2 cells indicate a number of the dimers with high affinity toward TAR show promising anti-HIV activity.
Collapse
Affiliation(s)
- Sunil Kumar
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | | | | | | | | | | |
Collapse
|
9
|
A small-molecule probe induces a conformation in HIV TAR RNA capable of binding drug-like fragments. J Mol Biol 2011; 410:984-96. [PMID: 21763501 DOI: 10.1016/j.jmb.2011.03.039] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/15/2011] [Accepted: 03/17/2011] [Indexed: 12/29/2022]
Abstract
The HIV-1 transactivation response (TAR) element-Tat interaction is a potentially valuable target for treating HIV infection, but efforts to develop TAR-binding antiviral drugs have not yet yielded a successful candidate for clinical development. In this work, we describe a novel approach toward screening fragments against RNA that uses a chemical probe to target the Tat-binding region of TAR. This probe fulfills two critical roles in the screen: by locking the RNA into a conformation capable of binding other fragments, it simultaneously allows the identification of proximal binding fragments by ligand-based NMR. Using this approach, we have discovered six novel TAR-binding fragments, three of which were docked relative to the probe-RNA structure using experimental NMR restraints. The consistent orientations of functional groups in our data-driven docked structures and common electrostatic properties across all fragment leads reveal a surprising level of selectivity by our fragment-sized screening hits. These models further suggest linking strategies for the development of higher-affinity lead compounds for the inhibition of the TAR-Tat interaction.
Collapse
|
10
|
Davidson A, Patora-Komisarska K, Robinson JA, Varani G. Essential structural requirements for specific recognition of HIV TAR RNA by peptide mimetics of Tat protein. Nucleic Acids Res 2010; 39:248-56. [PMID: 20724442 PMCID: PMC3017588 DOI: 10.1093/nar/gkq713] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The pharmacological disruption of the interaction between the HIV Tat protein and its cognate transactivation response RNA (TAR) would generate novel anti-viral drugs with a low susceptibility to drug resistance, but efforts to discover ligands with sufficient potency to warrant pharmaceutical development have been unsuccessful. We have previously described a family of structurally constrained β-hairpin peptides that potently inhibits viral growth in HIV-infected cells. The nuclear magnetic resonance (NMR) structure of an inhibitory complex revealed that the peptide makes intimate contacts with the 3-nt bulge and the upper helix of the RNA hairpin, but that a single residue contacts the apical loop where recruitment of the essential cellular co-factor cyclin T1 occurs. Attempting to extend the peptide to form more interactions with the RNA loop, we examined a library of longer peptides and achieved >6-fold improvement in affinity. The structure of TAR bound to one of the extended peptides reveals that the peptide slides down the major groove of the RNA, relative to our design, in order to maintain critical interactions with TAR. These conserved contacts involve three amino acid side chains and identify critical interaction points required for potent and specific binding to TAR RNA. They constitute a template of essential interactions required for inhibition of this RNA.
Collapse
Affiliation(s)
- Amy Davidson
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
11
|
„Mein Lieblingsfach in der Schule war Philosophie. Das Spannendste an meiner Forschung ist, jeden Tag vor neuen Herausforderungen zu stehen …︁“ Dies und mehr von und über Teresa Carlomagno finden Sie auf Seite 4257. / Teresa Carlomagno. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201001388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
12
|
Teresa Carlomagno. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/anie.201001388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Scheunemann AE, Graham WD, Vendeix FAP, Agris PF. Binding of aminoglycoside antibiotics to helix 69 of 23S rRNA. Nucleic Acids Res 2010; 38:3094-105. [PMID: 20110260 PMCID: PMC2875026 DOI: 10.1093/nar/gkp1253] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aminoglycosides antibiotics negate dissociation and recycling of the bacterial ribosome’s subunits by binding to Helix 69 (H69) of 23S rRNA. The differential binding of various aminoglycosides to the chemically synthesized terminal domains of the Escherichia coli and human H69 has been characterized using spectroscopy, calorimetry and NMR. The unmodified E. coli H69 hairpin exhibited a significantly higher affinity for neomycin B and tobramycin than for paromomycin (Kds = 0.3 ± 0.1, 0.2 ± 0.2 and 5.4 ± 1.1 µM, respectively). The binding of streptomycin was too weak to assess. In contrast to the E. coli H69, the human 28S rRNA H69 had a considerable decrease in affinity for the antibiotics, an important validation of the bacterial target. The three conserved pseudouridine modifications (Ψ1911, Ψ1915, Ψ1917) occurring in the loop of the E. coli H69 affected the dissociation constant, but not the stoichiometry for the binding of paromomycin (Kd = 2.6 ± 0.1 µM). G1906 and G1921, observed by NMR spectrometry, figured predominantly in the aminoglycoside binding to H69. The higher affinity of the E. coli H69 for neomycin B and tobramycin, as compared to paromomycin and streptomycin, indicates differences in the efficacy of the aminoglycosides.
Collapse
Affiliation(s)
- Ann E Scheunemann
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA
| | | | | | | |
Collapse
|
14
|
Kövér KE, Szilágyi L, Batta G, Uhrín D, Jiménez-Barbero J. Biomolecular Recognition by Oligosaccharides and Glycopeptides: The NMR Point of View. COMPREHENSIVE NATURAL PRODUCTS II 2010:197-246. [DOI: 10.1016/b978-008045382-8.00193-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
|
15
|
Abstract
Bacterial ribosomal RNA is the target of clinically important antibiotics, while biologically important RNAs in viral and eukaryotic genomes present a range of potential drug targets. The physicochemical properties of RNA present difficulties for medicinal chemistry, particularly when oral availability is needed. Peptidic ligands and analysis of their RNA-binding properties are providing insight into RNA recognition. RNA-binding ligands include far more chemical classes than just aminoglycosides. Chemical functionalities from known RNA-binding small molecules are being exploited in fragment- and ligand-based projects. While targeting of RNA for drug design is very challenging, continuing advances in our understanding of the principles of RNA–ligand interaction will be necessary to realize the full potential of this class of targets.
Collapse
|
16
|
Ferner J, Suhartono M, Breitung S, Jonker HRA, Hennig M, Wöhnert J, Göbel M, Schwalbe H. Structures of HIV TAR RNA-ligand complexes reveal higher binding stoichiometries. Chembiochem 2009; 10:1490-4. [PMID: 19444830 DOI: 10.1002/cbic.200900220] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Target TAR by NMR: Tripeptides containing arginines as terminal residues and non-natural amino acids as central residues are good leads for drug design to target the HIV trans-activation response element (TAR). The structural characterization of the RNA-ligand complex by NMR spectroscopy reveals two specific binding sites that are located at bulge residue U23 and around the pyrimidine-stretch U40-C41-U42 directly adjacent to the bulge.
Collapse
Affiliation(s)
- Jan Ferner
- Institut für Organische Chemie und Chemische Biologie, Zentrum für Biomolekulare Magnetische Resonanz (BMRZ), Johann Wolfgang Goethe-Universität Frankfurt am Main, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Simultaneous recognition of HIV-1 TAR RNA bulge and loop sequences by cyclic peptide mimics of Tat protein. Proc Natl Acad Sci U S A 2009; 106:11931-6. [PMID: 19584251 DOI: 10.1073/pnas.0900629106] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The interaction of the HIV-1 transactivator protein Tat with its transactivation response (TAR) RNA is an essential step in viral replication and therefore an attractive target for developing antivirals with new mechanisms of action. Numerous compounds that bind to the 3-nt bulge responsible for binding Tat have been identified in the past, but none of these molecules had sufficient potency to warrant pharmaceutical development. We have discovered conformationally-constrained cyclic peptide mimetics of Tat that are specific nM inhibitors of the Tat-TAR interaction by using a structure-based approach. The lead peptides are nearly as active as the antiviral drug nevirapine against a variety of clinical isolates in human lymphocytes. The NMR structure of a peptide-RNA complex reveals that these molecules interfere with the recruitment to TAR of both Tat and the essential cellular cofactor transcription elongation factor-b (P-TEFb) by binding simultaneously at the RNA bulge and apical loop, forming an unusually deep pocket. This structure illustrates additional principles in RNA recognition: RNA-binding molecules can achieve specificity by interacting simultaneously with multiple secondary structure elements and by inducing the formation of deep binding pockets in their targets. It also provides insight into the P-TEFb binding site and a rational basis for optimizing the promising antiviral activity observed for these cyclic peptides.
Collapse
|
18
|
Tavares TJ, Beribisky AV, Johnson PE. Structure of the cytosine-cytosine mismatch in the thymidylate synthase mRNA binding site and analysis of its interaction with the aminoglycoside paromomycin. RNA (NEW YORK, N.Y.) 2009; 15:911-922. [PMID: 19329536 PMCID: PMC2673063 DOI: 10.1261/rna.1514909] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2008] [Accepted: 02/18/2009] [Indexed: 05/26/2023]
Abstract
The structure of a cytosine-cytosine (CC) mismatch-containing RNA molecule derived from a hairpin structure in the thymidylate synthase mRNA that binds the aminoglycoside paromomycin with high affinity was determined using nuclear magnetic resonance (NMR) spectroscopy. The cytosines in the mismatch form a noncanonical base pair where both cytosines are uncharged and stack within the stem of the RNA structure. Binding to paromomycin was analyzed using isothermal titration calorimetry (ITC) to demonstrate the necessity of the CC mismatch and to determine the affinity dissociation constant of this RNA to paromomycin to be 0.5 +/- 0.3 microM. The CC mismatch, and the neighboring GC base pairs experienced the highest degree of chemical shift changes in their H6 and H5 resonances indicating that paromomycin binds in the major groove at the CC mismatch site. In comparing the structure of CC mismatch RNA with a fully Watson-Crick GC base paired stem, the CC mismatch is shown to confer a widening of the major groove. This widening, combined with the dynamic nature of the CC mismatch, enables binding of paromomycin to this RNA molecule.
Collapse
Affiliation(s)
- Tony J Tavares
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | | | | |
Collapse
|
19
|
Chittapragada M, Roberts S, Ham YW. Aminoglycosides: molecular insights on the recognition of RNA and aminoglycoside mimics. PERSPECTIVES IN MEDICINAL CHEMISTRY 2009; 3:21-37. [PMID: 19812740 PMCID: PMC2754922 DOI: 10.4137/pmc.s2381] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
RNA is increasingly recognized for its significant functions in biological systems and has recently become an important molecular target for therapeutics development. Aminoglycosides, a large class of clinically significant antibiotics, exert their biological functions by binding to prokaryotic ribosomal RNA (rRNA) and interfering with protein translation, resulting in bacterial cell death. They are also known to bind to viral mRNAs such as HIV-1 RRE and TAR. Consequently, aminoglycosides are accepted as the single most important model in understanding the principles that govern small molecule-RNA recognition, which is essential for the development of novel antibacterial, antiviral or even anti-oncogenic agents. This review outlines the chemical structures and mechanisms of molecular recognition and antibacterial activity of aminoglycosides and various aminoglycoside mimics that have recently been devised to improve biological efficacy, binding affinity and selectivity, or to circumvent bacterial resistance.
Collapse
Affiliation(s)
- Maruthi Chittapragada
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, U.S.A
| | | | | |
Collapse
|
20
|
Morgner N, Barth HD, Brutschy B, Scheffer U, Breitung S, Göbel M. Binding sites of the viral RNA element TAR and of TAR mutants for various peptide ligands, probed with LILBID: a new laser mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:1600-1611. [PMID: 18693035 DOI: 10.1016/j.jasms.2008.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 06/30/2008] [Accepted: 07/01/2008] [Indexed: 05/26/2023]
Abstract
A new laser-based mass spectrometry method, called laser induced liquid bead ion desorption (LILBID), was applied to investigate RNA:ligand interactions. As model system the HIV Tat:TAR transactivation complex and its binding behavior were analyzed. TARwt of HIV Type 1 and Type 2 and different artificial mutants were compared regarding their binding to Tat and different peptide ligands. Specific and nonspecific association to TAR was deduced, with the bulge being the well known specific binding site of TAR. In the case of triple arginine (RRR) as a nonspecific ligand, multiple electrostatic binding to TAR was found at higher concentration of RRR. This contrasted with the formation of only ternary complexes in competitive binding studies with TAR, Tat, and potential inhibitors. The fact that the stoichiometries of the complexes can be determined is a major advantage of MS methods over the widely applied fluorimetric methods. A quantitative evaluation of the spectra by a numeric model for ternary complex formation allows conclusions about the role and strength of the binding sites of the RNAs, the specificity and affinity of different ligands, the determination of apparent IC50 and KD values, and a comparison of the binding efficiencies of potential inhibitors.
Collapse
Affiliation(s)
- Nina Morgner
- Johann Wolfgang Goethe-Universität Frankfurt Am Main, Institut für Physikalische und Theoretische Chemie, Frankfurt Am Main, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Characterizing complex dynamics in the transactivation response element apical loop and motional correlations with the bulge by NMR, molecular dynamics, and mutagenesis. Biophys J 2008; 95:3906-15. [PMID: 18621815 DOI: 10.1529/biophysj.108.140285] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The HIV-1 transactivation response element (TAR) RNA binds a variety of proteins and is a target for developing anti-HIV therapies. TAR has two primary binding sites: a UCU bulge and a CUGGGA apical loop. We used NMR residual dipolar couplings, carbon spin relaxation (R(1) and R(2)), and relaxation dispersion (R(1rho)) in conjunction with molecular dynamics and mutagenesis to characterize the dynamics of the TAR apical loop and investigate previously proposed long-range interactions with the distant bulge. Replacement of the wild-type apical loop with a UUCG loop did not significantly affect the structural dynamics at the bulge, indicating that the apical loop and the bulge act largely as independent dynamical recognition centers. The apical loop undergoes complex dynamics at multiple timescales that are likely important for adaptive recognition: U31 and G33 undergo limited motions, G32 is highly flexible at picosecond-nanosecond timescales, and G34 and C30 form a dynamic Watson-Crick basepair in which G34 and A35 undergo a slow (approximately 30 mus) likely concerted looping in and out motion, with A35 also undergoing large amplitude motions at picosecond-nanosecond timescales. Our study highlights the power of combining NMR, molecular dynamics, and mutagenesis in characterizing RNA dynamics.
Collapse
|
22
|
Oelze B, Albert D, Kirschning A. Synthetic and structural studies on macrocyclic amino cyclitols--conformational chameleons. Org Biomol Chem 2008; 6:2412-25. [PMID: 18563277 DOI: 10.1039/b716347a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Starting from quinic acid the synthesis of 1,4-butanediol-linked macrocyclic aminocyclitols 30, 32, 34, 36 and 38 is described. Assembly was achieved by olefin cross-metathesis of appropriate cyclohexyl allyl ethers followed by ring-closing metathesis of bis-O-allyl homodimers. In all five cases studied, the only products that were formed were those resulting from direct ring-closing metathesis; the formation of larger rings was not detected. These macrocycles exhibited diverse conformational behaviour which included formation of stable separable conformers 31a and 31b as well as conformationally dynamic macrocycles 35 in which a ring flip in one cyclohexane chair conformer induces a ring flip of the other cyclohexane ring through the linking chains of the macrocycles. The activation energy for the inversion of the chair conformation in this process was determined to be about 38 kJ mol(-1), which is about 7 kJ mol(-1) lower than the activation energy for the ring flip of the unsubstituted cyclohexane ring. In all cases, the conformational studies strongly suggest that intramolecular H-bonding between 1,3-diaxially oriented amido and alcohol or ether groups exerts a decisive contribution to the overall stabilisation of the preferred cyclohexane chair conformation.
Collapse
Affiliation(s)
- Benjamin Oelze
- Institut für Organische Chemie, Leibniz Universität Hannover, Schneiderberg 1B, D-30167, Hannover, Germany
| | | | | |
Collapse
|
23
|
Ludwig V, Krebs A, Stoll M, Dietrich U, Ferner J, Schwalbe H, Scheffer U, Dürner G, Göbel MW. Tripeptides from synthetic amino acids block the Tat-TAR association and slow down HIV spread in cell cultures. Chembiochem 2008; 8:1850-6. [PMID: 17886825 DOI: 10.1002/cbic.200700232] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Non-natural amino acids with aromatic or heteroaromatic side chains were incorporated into tripeptides of the general structure Arg-X-Arg and tested as ligands of the HIV RNA element TAR. Some of these compounds could compete efficiently with the association of TAR and Tat and downregulated a TAR-controlled reporter gene in HeLa cells. Peptide 7, which contains a 2-pyrimidinyl-alkyl chain, also inhibited the spread of HIV-1 in cell cultures. NMR studies of 7 bound to HIV-2-TAR gave evidence for contacts in the bulge region.
Collapse
Affiliation(s)
- Verena Ludwig
- Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Staple DW, Venditti V, Niccolai N, Elson-Schwab L, Tor Y, Butcher SE. Guanidinoneomycin B recognition of an HIV-1 RNA helix. Chembiochem 2008; 9:93-102. [PMID: 18058789 PMCID: PMC2782590 DOI: 10.1002/cbic.200700251] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Indexed: 01/16/2023]
Abstract
Aminoglycoside antibiotics are small-molecule drugs that bind RNA. The affinity and specificity of aminoglycoside binding to RNA can be increased through chemical modification, such as guanidinylation. Here, we report the binding of guanidinoneomycin B (GNB) to an RNA helix from the HIV-1 frameshift site. The binding of GNB increases the melting temperature (T(m)) of the frameshift-site RNA by at least 10 degrees C, to a point at which a melting transition is not even observed in 2 M urea. A structure of the complex was obtained by using multidimensional heteronuclear NMR spectroscopic methods. We also used a novel paramagnetic-probe assay to identify the site of GNB binding to the surface of the RNA. GNB makes major-groove contacts to two sets of Watson-Crick bases and is in van der Waals contact with a highly structured ACAA tetraloop. Rings I and II of GNB fit into the major groove and form the binding interface with the RNA, whereas rings III and IV are exposed to the solvent and disordered. The binding of GNB causes a broadening of the major groove across the binding site.
Collapse
Affiliation(s)
- David W. Staple
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706 (USA)
| | - Vincenzo Venditti
- Biomolecular Structure Research Center and Dipartimento di Biologia Molecolare, Università di Siena, 53100 Siena (Italy)
| | - Neri Niccolai
- Biomolecular Structure Research Center and Dipartimento di Biologia Molecolare, Università di Siena, 53100 Siena (Italy)
| | - Lev Elson-Schwab
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093 (USA)
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093 (USA)
| | - Samuel E. Butcher
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706 (USA)
| |
Collapse
|
25
|
Farès C, Amata I, Carlomagno T. 13C-detection in RNA bases: revealing structure-chemical shift relationships. J Am Chem Soc 2007; 129:15814-23. [PMID: 18052161 DOI: 10.1021/ja0727417] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The chemical shifts of the unprotonated carbons in the proton-deficient nucleobases of RNA are rarely reported, despite the valuable information that they contain about base-pairing and base-stacking. We have developed 13C-detected 2D-experiments to identify the unprotonated 13C in the RNA bases and have assigned all the base nuclei of uniformly 13C,15N-labeled HIV-2 TAR-RNA. The 13C chemical shift distributions revealed perturbations correlated with the base-pairing and base-stacking properties of all four base-types. From this work, we conclude that the information contained in the chemical shift perturbations within the base rings can provide valuable restraint information for solving RNA structures, especially in conformational averaged regions, where NOE-based information is not available.
Collapse
Affiliation(s)
- Christophe Farès
- Max-Planck-Institute for Biophysical Chemistry, Department of NMR-based Structural Biology, Am Fassberg 11, D-37077 Göttingen, Germany
| | | | | |
Collapse
|
26
|
Jöge T, Jesberger M, Bröker P, Kirschning A. Synthetic access to spacer-linked 3,6-diamino-2,3,6-trideoxy-α-d-glucopyranosides—potential aminoglycoside mimics for the inhibition of the HIV-1 TAR-RNA/Tat-peptide complex. Carbohydr Res 2007; 342:1704-14. [PMID: 17562328 DOI: 10.1016/j.carres.2007.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 05/01/2007] [Accepted: 05/11/2007] [Indexed: 11/25/2022]
Abstract
The synthesis of spacer-linked neoaminoglycoside 5 is described. Key steps of the synthesis are the introduction of nitrogen functionalities at C-3 and C-6 and the olefin cross metathesis of allyl glycoside 16. Although it is known that Grubbs catalysts tolerate nitrogen functionalities, difficulties were encountered in the cross metathesis reaction. Factors that govern this dimerization are the steric and electronic demands of the catalyst and the substrate. Preliminary biological evaluation of homodimer 5, by studying the inhibition of HIV-1 TAR-RNA/Tat-peptide complex using a method based on fluorescence titration, revealed an inhibitory effect of 5.
Collapse
Affiliation(s)
- Thomas Jöge
- Institut für Organische Chemie Leibniz, Universität Hannover and Zentrum für Biomolekulare Wirkstoffe (BMWZ), Schneiderberg 1B, D-30167 Hannover, Germany
| | | | | | | |
Collapse
|
27
|
Ironmonger A, Whittaker B, Baron AJ, Clique B, Adams CJ, Ashcroft AE, Stockley PG, Nelson A. Scanning conformational space with a library of stereo- and regiochemically diverse aminoglycoside derivatives: the discovery of new ligands for RNA hairpin sequences. Org Biomol Chem 2007; 5:1081-6. [PMID: 17377661 PMCID: PMC7612281 DOI: 10.1039/b618683a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A library of stereo- and regiochemically diverse aminoglycoside derivatives was screened at 1 microM using surface plasmon resonance (SPR) against RNA hairpin models of the bacterial A-site, and the HIV viral TAR and RRE sequences. In order to double the stereochemical diversity of the library, the compounds were screened against both enantiomers of each of these sequences. Remarkably, this initial screen suggested that the same four aminoglycoside derivatives bound most tightly to all three of the RNAs, suggesting that these compounds were good RNA binders which, nonetheless, discriminated poorly between the RNA sequences. The interactions between selected isomeric aminoglycoside derivatives and the RNA hairpins were then studied in more detail using an SPR assay. Three isomeric tight-binding aminoglycoside derivatives, which had been identified from the initial screen, were found to bind more tightly to the RNA hairpins (with K(D) values in the range 0.23 to 4.7 microM) than a fourth isomeric derivative (which had K(D) values in the range 6.0 to 30 microM). The magnitude of the tightest RNA-aminoglycoside interactions stemmed, in large part, from remarkably slow dissociation of the aminoglycosides from the RNA targets. The three tight-binding aminoglycoside derivatives were found, however, to discriminate rather poorly between alternative RNA sequences with, at best, around a twenty-fold difference in affinity for alternative RNA hairpin sequences. Within the aminoglycoside derivative library studied, high affinity for an RNA target was not accompanied by good discrimination between alternative RNA sequences.
Collapse
Affiliation(s)
- Alan Ironmonger
- School of Chemistry, University of Leeds, Leeds, UK LS2 9JT
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK LS2 9JT
| | - Benjamin Whittaker
- School of Chemistry, University of Leeds, Leeds, UK LS2 9JT
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK LS2 9JT
| | - Andrew J. Baron
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK LS2 9JT
| | - Blandine Clique
- School of Chemistry, University of Leeds, Leeds, UK LS2 9JT
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK LS2 9JT
| | - Chris J. Adams
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK LS2 9JT
| | - Alison E. Ashcroft
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK LS2 9JT
| | - Peter G. Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK LS2 9JT
| | - Adam Nelson
- School of Chemistry, University of Leeds, Leeds, UK LS2 9JT
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK LS2 9JT
- Corresponding author:
| |
Collapse
|