1
|
Silva LN, Ramos LS, Oliveira SSC, Magalhães LB, Cypriano J, Abreu F, Macedo AJ, Branquinha MH, Santos ALS. Development of Echinocandin Resistance in Candida haemulonii: An Emergent, Widespread, and Opportunistic Fungal Pathogen. J Fungi (Basel) 2023; 9:859. [PMID: 37623630 PMCID: PMC10455776 DOI: 10.3390/jof9080859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
Echinocandins, used for the prevention and treatment of invasive fungal infections, have led to a rise in breakthrough infections caused by resistant Candida species. Among these species, those belonging to the Candida haemulonii complex are rare multidrug-resistant (MDR) yeasts that are frequently misidentified but have emerged as significant healthcare-associated pathogens causing invasive infections. The objectives of this study were to investigate the evolutionary pathways of echinocandin resistance in C. haemulonii by identifying mutations in the FKS1 gene and evaluating the impact of resistance on fitness. After subjecting a MDR clinical isolate of C. haemulonii (named Ch4) to direct selection using increasing caspofungin concentrations, we successfully obtained an isolate (designated Ch4'r) that exhibited a high level of resistance, with MIC values exceeding 16 mg/L for all tested echinocandin drugs (caspofungin, micafungin, and anidulafungin). Sequence analysis revealed a specific mutation in the resistant Ch4'r strain, leading to an arginine-histidine amino acid substitution (R1354H), occurring at the G4061A position of the HS2 region of the FKS1 gene. Compared to the wild-type strain, Ch4'r exhibited significantly reduced growth proliferation, biofilm formation capability, and phagocytosis ratio, indicating a decrease in fitness. Transmission electron microscopy analysis revealed alterations in cell wall components, with a notable increase in cell wall thickness. The resistant strain also exhibited higher amounts (2.5-fold) of chitin, a cell wall-located molecule, compared to the wild-type strain. Furthermore, the resistant strain demonstrated attenuated virulence in the Galleria mellonella larval model. The evolved strain Ch4'r maintained its resistance profile in vivo since the treatment with either caspofungin or micafungin did not improve larval survival or reduce the fungal load. Taken together, our findings suggest that the acquisition of pan-echinocandin resistance occurred rapidly after drug exposure and was associated with a significant fitness cost in C. haemulonii. This is particularly concerning as echinocandins are often the first-line treatment option for MDR Candida species.
Collapse
Affiliation(s)
- Laura N. Silva
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (L.N.S.); (L.S.R.); (S.S.C.O.); (L.B.M.); (M.H.B.)
| | - Lívia S. Ramos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (L.N.S.); (L.S.R.); (S.S.C.O.); (L.B.M.); (M.H.B.)
| | - Simone S. C. Oliveira
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (L.N.S.); (L.S.R.); (S.S.C.O.); (L.B.M.); (M.H.B.)
| | - Lucas B. Magalhães
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (L.N.S.); (L.S.R.); (S.S.C.O.); (L.B.M.); (M.H.B.)
| | - Jefferson Cypriano
- Laboratório de Biologia Celular e Magnetotaxia & Unidade de Microscopia Multiusuário, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (J.C.); (F.A.)
| | - Fernanda Abreu
- Laboratório de Biologia Celular e Magnetotaxia & Unidade de Microscopia Multiusuário, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (J.C.); (F.A.)
| | - Alexandre J. Macedo
- Laboratório de Biofilmes e Diversidade Microbiana, Centro de Biotecnologia e Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil;
| | - Marta H. Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (L.N.S.); (L.S.R.); (S.S.C.O.); (L.B.M.); (M.H.B.)
- Programa de Pós-Graduação em Bioquímica (PPGBq), Instituto de Química (IQ), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-853, Brazil
| | - André L. S. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (L.N.S.); (L.S.R.); (S.S.C.O.); (L.B.M.); (M.H.B.)
- Programa de Pós-Graduação em Bioquímica (PPGBq), Instituto de Química (IQ), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-853, Brazil
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
2
|
Insights into the Multi-Azole Resistance Profile in Candida haemulonii Species Complex. J Fungi (Basel) 2020; 6:jof6040215. [PMID: 33050545 PMCID: PMC7711680 DOI: 10.3390/jof6040215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/25/2022] Open
Abstract
The Candida haemulonii complex (C. duobushaemulonii, C. haemulonii, and C. haemulonii var. vulnera) is composed of emerging, opportunistic human fungal pathogens able to cause invasive infections with high rates of clinical treatment failure. This fungal complex typically demonstrates resistance to first-line antifungals, including fluconazole. In the present work, we have investigated the azole resistance mechanisms expressed in Brazilian clinical isolates forming the C. haemulonii complex. Initially, 12 isolates were subjected to an antifungal susceptibility test, and azole cross-resistance was detected in almost all isolates (91.7%). In order to understand the azole resistance mechanistic basis, the efflux pump activity was assessed by rhodamine-6G. The C. haemulonii complex exhibited a significantly higher rhodamine-6G efflux than the other non-albicans Candida species tested (C. tropicalis, C. krusei, and C. lusitaneae). Notably, the efflux pump inhibitors (Phe-Arg and FK506) reversed the fluconazole and voricolazole resistance phenotypes in the C. haemulonii species complex. Expression analysis indicated that the efflux pump (ChCDR1, ChCDR2, and ChMDR1) and ERG11 genes were not modulated by either fluconazole or voriconazole treatments. Further, ERG11 gene sequencing revealed several mutations, some of which culminated in amino acid polymorphisms, as previously reported in azole-resistant Candida spp. Collectively, these data point out the relevance of drug efflux pumps in mediating azole resistance in the C. haemulonii complex, and mutations in ERG11p may contribute to this resistance profile.
Collapse
|
3
|
Skrzypek MS, Binkley J, Binkley G, Miyasato SR, Simison M, Sherlock G. The Candida Genome Database (CGD): incorporation of Assembly 22, systematic identifiers and visualization of high throughput sequencing data. Nucleic Acids Res 2016; 45:D592-D596. [PMID: 27738138 PMCID: PMC5210628 DOI: 10.1093/nar/gkw924] [Citation(s) in RCA: 306] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/05/2016] [Indexed: 01/29/2023] Open
Abstract
The Candida Genome Database (CGD, http://www.candidagenome.org/) is a freely available online resource that provides gene, protein and sequence information for multiple Candida species, along with web-based tools for accessing, analyzing and exploring these data. The mission of CGD is to facilitate and accelerate research into Candida pathogenesis and biology, by curating the scientific literature in real time, and connecting literature-derived annotations to the latest version of the genomic sequence and its annotations. Here, we report the incorporation into CGD of Assembly 22, the first chromosome-level, phased diploid assembly of the C. albicans genome, coupled with improvements that we have made to the assembly using additional available sequence data. We also report the creation of systematic identifiers for C. albicans genes and sequence features using a system similar to that adopted by the yeast community over two decades ago. Finally, we describe the incorporation of JBrowse into CGD, which allows online browsing of mapped high throughput sequencing data, and its implementation for several RNA-Seq data sets, as well as the whole genome sequencing data that was used in the construction of Assembly 22.
Collapse
Affiliation(s)
- Marek S Skrzypek
- Department of Genetics, Stanford University Medical School, Stanford, CA 94305-5120, USA
| | - Jonathan Binkley
- Department of Genetics, Stanford University Medical School, Stanford, CA 94305-5120, USA
| | - Gail Binkley
- Department of Genetics, Stanford University Medical School, Stanford, CA 94305-5120, USA
| | - Stuart R Miyasato
- Department of Genetics, Stanford University Medical School, Stanford, CA 94305-5120, USA
| | - Matt Simison
- Department of Genetics, Stanford University Medical School, Stanford, CA 94305-5120, USA
| | - Gavin Sherlock
- Department of Genetics, Stanford University Medical School, Stanford, CA 94305-5120, USA
| |
Collapse
|
4
|
Cannon R, Holmes A. Learning the ABC of oral fungal drug resistance. Mol Oral Microbiol 2015; 30:425-37. [DOI: 10.1111/omi.12109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2015] [Indexed: 01/07/2023]
Affiliation(s)
- R.D. Cannon
- Sir John Walsh Research Institute; University of Otago; Dunedin New Zealand
| | - A.R. Holmes
- Sir John Walsh Research Institute; University of Otago; Dunedin New Zealand
| |
Collapse
|
5
|
Froyd CA, Kapoor S, Dietrich F, Rusche LN. The deacetylase Sir2 from the yeast Clavispora lusitaniae lacks the evolutionarily conserved capacity to generate subtelomeric heterochromatin. PLoS Genet 2013; 9:e1003935. [PMID: 24204326 PMCID: PMC3814328 DOI: 10.1371/journal.pgen.1003935] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/17/2013] [Indexed: 11/22/2022] Open
Abstract
Deacetylases of the Sir2 or sirtuin family are thought to regulate life cycle progression and life span in response to nutrient availability. This family has undergone successive rounds of duplication and diversification, enabling the enzymes to perform a wide variety of biological functions. Two evolutionarily conserved functions of yeast Sir2 proteins are the generation of repressive chromatin in subtelomeric domains and the suppression of unbalanced recombination within the tandem rDNA array. Here, we describe the function of the Sir2 ortholog ClHst1 in the yeast Clavispora lusitaniae, an occasional opportunistic pathogen. ClHst1 was localized to the non-transcribed spacer regions of the rDNA repeats and deacetylated histones at these loci, indicating that, like other Sir2 proteins, ClHst1 modulates chromatin structure at the rDNA repeats. However, we found no evidence that ClHst1 associates with subtelomeric regions or impacts gene expression directly. This surprising observation highlights the plasticity of sirtuin function. Related yeast species, including Candida albicans, possess an additional Sir2 family member. Thus, it is likely that the ancestral Candida SIR2/HST1 gene was duplicated and subfunctionalized, such that HST1 retained the capacity to regulate rDNA whereas SIR2 had other functions, perhaps including the generation of subtelomeric chromatin. After subsequent species diversification, the SIR2 paralog was apparently lost in the C. lusitaniae lineage. Thus, C. lusitaniae presents an opportunity to discover how subtelomeric chromatin can be reconfigured.
Collapse
Affiliation(s)
- Cara A. Froyd
- Biochemistry Department, Duke University, Durham, North Carolina, United States of America
| | - Shivali Kapoor
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Fred Dietrich
- Department of Molecular Genetics & Microbiology, Duke University, Durham, North Carolina, United States of America
| | - Laura N. Rusche
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
6
|
Molecular fingerprints to identify Candida species. BIOMED RESEARCH INTERNATIONAL 2013; 2013:923742. [PMID: 23844370 PMCID: PMC3703398 DOI: 10.1155/2013/923742] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/30/2013] [Accepted: 06/06/2013] [Indexed: 11/17/2022]
Abstract
A wide range of molecular techniques have been developed for genotyping Candida species. Among them, multilocus sequence typing (MLST) and microsatellite length polymorphisms (MLP) analysis have recently emerged. MLST relies on DNA sequences of internal regions of various independent housekeeping genes, while MLP identifies microsatellite instability. Both methods generate unambiguous and highly reproducible data. Here, we review the results achieved by using these two techniques and also provide a brief overview of a new method based on high-resolution DNA melting (HRM). This method identifies sequence differences by subtle deviations in sample melting profiles in the presence of saturating fluorescent DNA binding dyes.
Collapse
|
7
|
Papon N, Savini V, Lanoue A, Simkin AJ, Crèche J, Giglioli-Guivarc'h N, Clastre M, Courdavault V, Sibirny AA. Candida guilliermondii: biotechnological applications, perspectives for biological control, emerging clinical importance and recent advances in genetics. Curr Genet 2013; 59:73-90. [PMID: 23616192 DOI: 10.1007/s00294-013-0391-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 03/28/2013] [Accepted: 04/02/2013] [Indexed: 12/11/2022]
Abstract
Candida guilliermondii (teleomorph Meyerozyma guilliermondii) is an ascomycetous species belonging to the Saccharomycotina CTG clade which has been studied over the last 40 years due to its biotechnological interest, biological control potential and clinical importance. Such a wide range of applications in various areas of fundamental and applied scientific research has progressively made C. guilliermondii an attractive model for exploring the potential of yeast metabolic engineering as well as for elucidating new molecular events supporting pathogenicity and antifungal resistance. All these research fields now take advantage of the establishment of a useful molecular toolbox specifically dedicated to C. guilliermondii genetics including the construction of recipient strains, the development of selectable markers and reporter genes and optimization of transformation protocols. This area of study is further supported by the availability of the complete genome sequence of the reference strain ATCC 6260 and the creation of numerous databases dedicated to gene ontology annotation (metabolic pathways, virulence, and morphogenesis). These genetic tools and genomic resources represent essential prerequisites for further successful development of C. guilliermondii research in medical mycology and in biological control by facilitating the identification of the multiple factors that contribute to its pathogenic potential. These genetic and genomic advances should also expedite future practical uses of C. guilliermondii strains of biotechnological interest by opening a window into a better understanding of the biosynthetic pathways of valuable metabolites.
Collapse
Affiliation(s)
- Nicolas Papon
- EA2106, Biomolécules et Biotechnologies Végétales, Faculté de Pharmacie, Université François-Rabelais de Tours, Tours, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Mitochondrial two-component signaling systems in Candida albicans. EUKARYOTIC CELL 2013; 12:913-22. [PMID: 23584995 DOI: 10.1128/ec.00048-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Two-component signal transduction pathways are one of the primary means by which microorganisms respond to environmental signals. These signaling cascades originated in prokaryotes and were inherited by eukaryotes via endosymbiotic lateral gene transfer from ancestral cyanobacteria. We report here that the nuclear genome of the pathogenic fungus Candida albicans contains elements of a two-component signaling pathway that seem to be targeted to the mitochondria. The C. albicans two-component response regulator protein Srr1 (stress response regulator 1) contains a mitochondrial targeting sequence at the N terminus, and fluorescence microscopy reveals mitochondrial localization of green fluorescent protein-tagged Srr1. Moreover, phylogenetic analysis indicates that C. albicans Srr1 is more closely related to histidine kinases and response regulators found in marine bacteria than are other two-component proteins present in the fungi. These data suggest conservation of this protein during the evolutionary transition from endosymbiont to a subcellular organelle. We used microarray analysis to determine whether the phenotypes observed with a srr1Δ/Δ mutant could be correlated with gene transcriptional changes. The expression of mitochondrial genes was altered in the srr1Δ/Δ null mutant in comparison to their expression in the wild type. Furthermore, apoptosis increased significantly in the srr1Δ/Δ mutant strain compared to the level of apoptosis in the wild type, suggesting the activation of a mitochondrion-dependent apoptotic cell death pathway in the srr1Δ/Δ mutant. Collectively, this study shows for the first time that a lower eukaryote like C. albicans possesses a two-component response regulator protein that has survived in mitochondria and regulates a subset of genes whose functions are associated with the oxidative stress response and programmed cell death (apoptosis).
Collapse
|
9
|
Martin R, Albrecht-Eckardt D, Brunke S, Hube B, Hünniger K, Kurzai O. A core filamentation response network in Candida albicans is restricted to eight genes. PLoS One 2013; 8:e58613. [PMID: 23516516 PMCID: PMC3597736 DOI: 10.1371/journal.pone.0058613] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/05/2013] [Indexed: 11/30/2022] Open
Abstract
Although morphological plasticity is a central virulence trait of Candida albicans, the number of filament-associated genes and the interplay of mechanisms regulating their expression remain unknown. By correlation-based network modeling of the transcriptional response to different defined external stimuli for morphogenesis we identified a set of eight genes with highly correlated expression patterns, forming a core filamentation response. This group of genes included ALS3, ECE1, HGT2, HWP1, IHD1 and RBT1 which are known or supposed to encode for cell- wall associated proteins as well as the Rac1 guanine nucleotide exchange factor encoding gene DCK1 and the unknown function open reading frame orf19.2457. The validity of network modeling was confirmed using a dataset of advanced complexity that describes the transcriptional response of C. albicans during epithelial invasion as well as comparing our results with other previously published transcriptome studies. Although the set of core filamentation response genes was quite small, several transcriptional regulators are involved in the control of their expression, depending on the environmental condition.
Collapse
Affiliation(s)
- Ronny Martin
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
| | | | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology- Hans Knoell Institute- and Friedrich Schiller University, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology- Hans Knoell Institute- and Friedrich Schiller University, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
- Friedrich Schiller University Jena, Jena, Germany
| | - Kerstin Hünniger
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
| | - Oliver Kurzai
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
- * E-mail:
| |
Collapse
|
10
|
Elevated chitin content reduces the susceptibility of Candida species to caspofungin. Antimicrob Agents Chemother 2012; 57:146-54. [PMID: 23089748 DOI: 10.1128/aac.01486-12] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The echinocandin antifungal drugs inhibit synthesis of the major fungal cell wall polysaccharide β(1,3)-glucan. Echinocandins have good efficacy against Candida albicans but reduced activity against other Candida species, in particular Candida parapsilosis and Candida guilliermondii. Treatment of Candida albicans with a sub-MIC level of caspofungin has been reported to cause a compensatory increase in chitin content and to select for sporadic echinocandin-resistant FKS1 point mutants that also have elevated cell wall chitin. Here we show that elevated chitin in response to caspofungin is a common response in various Candida species. Activation of chitin synthesis was observed in isolates of C. albicans, Candida tropicalis, C. parapsilosis, and C. guilliermondii and in some isolates of Candida krusei in response to caspofungin treatment. However, Candida glabrata isolates demonstrated no exposure-induced change in chitin content. Furthermore, isolates of C. albicans, C. krusei, C. parapsilosis, and C. guilliermondii which were stimulated to have higher chitin levels via activation of the calcineurin and protein kinase C (PKC) signaling pathways had reduced susceptibility to caspofungin. Isolates containing point mutations in the FKS1 gene generally had higher chitin levels and did not demonstrate a further compensatory increase in chitin content in response to caspofungin treatment. These results highlight the potential of increased chitin synthesis as a potential mechanism of tolerance to caspofungin for the major pathogenic Candida species.
Collapse
|
11
|
Kabir MA, Hussain MA, Ahmad Z. Candida albicans: A Model Organism for Studying Fungal Pathogens. ISRN MICROBIOLOGY 2012; 2012:538694. [PMID: 23762753 PMCID: PMC3671685 DOI: 10.5402/2012/538694] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 08/30/2012] [Indexed: 01/12/2023]
Abstract
Candida albicans is an opportunistic human fungal pathogen that causes candidiasis. As healthcare has been improved worldwide, the number of immunocompromised patients has been increased to a greater extent and they are highly susceptible to various pathogenic microbes and C. albicans has been prominent among the fungal pathogens. The complete genome sequence of this pathogen is now available and has been extremely useful for the identification of repertoire of genes present in this pathogen. The major challenge is now to assign the functions to these genes of which 13% are specific to C. albicans. Due to its close relationship with yeast Saccharomyces cerevisiae, an edge over other fungal pathogens because most of the technologies can be directly transferred to C. albicans from S. cerevisiae and it is amenable to mutation, gene disruption, and transformation. The last two decades have witnessed enormous amount of research activities on this pathogen that leads to the understanding of host-parasite interaction, infections, and disease propagation. Clearly, C. albicans has emerged as a model organism for studying fungal pathogens along with other two fungi Aspergillus fumigatus and Cryptococcus neoformans. Understanding its complete life style of C. albicans will undoubtedly be useful for developing potential antifungal drugs and tackling Candida infections. This will also shed light on the functioning of other fungal pathogens.
Collapse
Affiliation(s)
- M Anaul Kabir
- Molecular Genetics Laboratory, School of Biotechnology, National Institute of Technology Calicut, Calicut 673601, Kerala, India
| | | | | |
Collapse
|
12
|
Chauvel M, Nesseir A, Cabral V, Znaidi S, Goyard S, Bachellier-Bassi S, Firon A, Legrand M, Diogo D, Naulleau C, Rossignol T, d’Enfert C. A versatile overexpression strategy in the pathogenic yeast Candida albicans: identification of regulators of morphogenesis and fitness. PLoS One 2012; 7:e45912. [PMID: 23049891 PMCID: PMC3457969 DOI: 10.1371/journal.pone.0045912] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 08/23/2012] [Indexed: 12/31/2022] Open
Abstract
Candida albicans is the most frequently encountered human fungal pathogen, causing both superficial infections and life-threatening systemic diseases. Functional genomic studies performed in this organism have mainly used knock-out mutants and extensive collections of overexpression mutants are still lacking. Here, we report the development of a first generation C. albicans ORFeome, the improvement of overexpression systems and the construction of two new libraries of C. albicans strains overexpressing genes for components of signaling networks, in particular protein kinases, protein phosphatases and transcription factors. As a proof of concept, we screened these collections for genes whose overexpression impacts morphogenesis or growth rates in C. albicans. Our screens identified genes previously described for their role in these biological processes, demonstrating the functionality of our strategy, as well as genes that have not been previously associated to these processes. This article emphasizes the potential of systematic overexpression strategies to improve our knowledge of regulatory networks in C. albicans. The C. albicans plasmid and strain collections described here are available at the Fungal Genetics Stock Center. Their extension to a genome-wide scale will represent important resources for the C. albicans community.
Collapse
Affiliation(s)
- Murielle Chauvel
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Audrey Nesseir
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Vitor Cabral
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Sadri Znaidi
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Sophie Goyard
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Sophie Bachellier-Bassi
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Arnaud Firon
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Mélanie Legrand
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Dorothée Diogo
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Claire Naulleau
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Tristan Rossignol
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Christophe d’Enfert
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
- * E-mail:
| |
Collapse
|
13
|
Vanneste K, Van de Peer Y, Maere S. Inference of genome duplications from age distributions revisited. Mol Biol Evol 2012; 30:177-90. [PMID: 22936721 DOI: 10.1093/molbev/mss214] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Whole-genome duplications (WGDs), thought to facilitate evolutionary innovations and adaptations, have been uncovered in many phylogenetic lineages. WGDs are frequently inferred from duplicate age distributions, where they manifest themselves as peaks against a small-scale duplication background. However, the interpretation of duplicate age distributions is complicated by the use of K(S), the number of synonymous substitutions per synonymous site, as a proxy for the age of paralogs. Two particular concerns are the stochastic nature of synonymous substitutions leading to increasing uncertainty in K(S) with increasing age since duplication and K(S) saturation caused by the inability of evolutionary models to fully correct for the occurrence of multiple substitutions at the same site. K(S) stochasticity is expected to erode the signal of older WGDs, whereas K(S) saturation may lead to artificial peaks in the distribution. Here, we investigate the consequences of these effects on K(S)-based age distributions and WGD inference by simulating the evolution of duplicated sequences according to predefined real age distributions and re-estimating the corresponding K(S) distributions. We show that, although K(S) estimates can be used for WGD inference far beyond the commonly accepted K(S) threshold of 1, K(S) saturation effects can cause artificial peaks at higher ages. Moreover, K(S) stochasticity and saturation may lead to confounded peaks encompassing multiple WGD events and/or saturation artifacts. We argue that K(S) effects need to be properly accounted for when inferring WGDs from age distributions and that the failure to do so could lead to false inferences.
Collapse
Affiliation(s)
- Kevin Vanneste
- Department of Plant Systems Biology, VIB, Ghent, Belgium
| | | | | |
Collapse
|
14
|
Wang YC, Huang SH, Lan CY, Chen BS. Prediction of phenotype-associated genes via a cellular network approach: a Candida albicans infection case study. PLoS One 2012; 7:e35339. [PMID: 22509408 PMCID: PMC3324557 DOI: 10.1371/journal.pone.0035339] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 03/15/2012] [Indexed: 02/04/2023] Open
Abstract
Candida albicans is the most prevalent opportunistic fungal pathogen in humans causing superficial and serious systemic infections. The infection process can be divided into three stages: adhesion, invasion, and host cell damage. To enhance our understanding of these C. albicans infection stages, this study aimed to predict phenotype-associated genes involved during these three infection stages and their roles in C. albicans-host interactions. In light of the principles that proteins that lie closer to one another in a protein interaction network are more likely to have similar functions, and that genes regulated by the same transcription factors tend to have similar functions, a cellular network approach was proposed to predict the phenotype-associated genes in this study. A total of 4, 12, and 3 genes were predicted as adhesion-, invasion-, and damage-associated genes during C. albicans infection, respectively. These predicted genes highlight the facts that cell surface components are critical for cell adhesion, and that morphogenesis is crucial for cell invasion. In addition, they provide targets for further investigations into the mechanisms of the three C. albicans infection stages. These results give insights into the responses elicited in C. albicans during interaction with the host, possibly instrumental in identifying novel therapies to treat C. albicans infection.
Collapse
Affiliation(s)
- Yu-Chao Wang
- Laboratory of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Shin-Hao Huang
- Laboratory of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chung-Yu Lan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Bor-Sen Chen
- Laboratory of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
15
|
Horn F, Heinekamp T, Kniemeyer O, Pollmächer J, Valiante V, Brakhage AA. Systems biology of fungal infection. Front Microbiol 2012; 3:108. [PMID: 22485108 PMCID: PMC3317178 DOI: 10.3389/fmicb.2012.00108] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 03/05/2012] [Indexed: 12/26/2022] Open
Abstract
Elucidation of pathogenicity mechanisms of the most important human-pathogenic fungi, Aspergillus fumigatus and Candida albicans, has gained great interest in the light of the steadily increasing number of cases of invasive fungal infections. A key feature of these infections is the interaction of the different fungal morphotypes with epithelial and immune effector cells in the human host. Because of the high level of complexity, it is necessary to describe and understand invasive fungal infection by taking a systems biological approach, i.e., by a comprehensive quantitative analysis of the non-linear and selective interactions of a large number of functionally diverse, and frequently multifunctional, sets of elements, e.g., genes, proteins, metabolites, which produce coherent and emergent behaviors in time and space. The recent advances in systems biology will now make it possible to uncover the structure and dynamics of molecular and cellular cause-effect relationships within these pathogenic interactions. We review current efforts to integrate omics and image-based data of host-pathogen interactions into network and spatio-temporal models. The modeling will help to elucidate pathogenicity mechanisms and to identify diagnostic biomarkers and potential drug targets for therapy and could thus pave the way for novel intervention strategies based on novel antifungal drugs and cell therapy.
Collapse
Affiliation(s)
- Fabian Horn
- Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll InstituteJena, Germany
| | - Thorsten Heinekamp
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll InstituteJena, Germany
| | - Olaf Kniemeyer
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll InstituteJena, Germany
| | - Johannes Pollmächer
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll InstituteJena, Germany
| | - Vito Valiante
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll InstituteJena, Germany
| | - Axel A. Brakhage
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll InstituteJena, Germany
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller UniversityJena, Germany
| |
Collapse
|
16
|
Habib N, Wapinski I, Margalit H, Regev A, Friedman N. A functional selection model explains evolutionary robustness despite plasticity in regulatory networks. Mol Syst Biol 2012; 8:619. [PMID: 23089682 PMCID: PMC3501536 DOI: 10.1038/msb.2012.50] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 08/29/2012] [Indexed: 11/09/2022] Open
Abstract
Evolutionary rewiring of regulatory networks is an important source of diversity among species. Previous evidence suggested substantial divergence of regulatory networks across species. However, systematically assessing the extent of this plasticity and its functional implications has been challenging due to limited experimental data and the noisy nature of computational predictions. Here, we introduce a novel approach to study cis-regulatory evolution, and use it to trace the regulatory history of 88 DNA motifs of transcription factors across 23 Ascomycota fungi. While motifs are conserved, we find a pervasive gain and loss in the regulation of their target genes. Despite this turnover, the biological processes associated with a motif are generally conserved. We explain these trends using a model with a strong selection to conserve the overall function of a transcription factor, and a much weaker selection over the specific genes it targets. The model also accounts for the turnover of bound targets measured experimentally across species in yeasts and mammals. Thus, selective pressures on regulatory networks mostly tolerate local rewiring, and may allow for subtle fine-tuning of gene regulation during evolution.
Collapse
Affiliation(s)
- Naomi Habib
- School of Computer Science and Engineering, Hebrew University, Jerusalem, Israel
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University, Jerusalem, Israel
- Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | - Ilan Wapinski
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Broad Institute, 7 Cambridge Center, Cambridge, MA, USA
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Aviv Regev
- Broad Institute, 7 Cambridge Center, Cambridge, MA, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nir Friedman
- School of Computer Science and Engineering, Hebrew University, Jerusalem, Israel
- Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| |
Collapse
|
17
|
Pendrak ML, Roberts DD. Ribosomal RNA processing in Candida albicans. RNA (NEW YORK, N.Y.) 2011; 17:2235-48. [PMID: 22028364 PMCID: PMC3222135 DOI: 10.1261/rna.028050.111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 09/16/2011] [Indexed: 05/25/2023]
Abstract
Ribosome assembly begins with conversion of a polycistronic precursor into 18S, 5.8S, and 25S rRNAs. In the ascomycete fungus Candida albicans, rRNA transcription starts 604 nt upstream of the 18S rRNA junction (site A1). One major internal processing site in the 5' external transcribed spacer (A0) occurs 108 nt from site A1. The A0-A1 fragment persists as a stable species during log phase growth and can be used to assess proliferation rates. Separation of the small and large subunit pre-rRNAs occurs at sites A2 and A3 in internal transcribed spacer-1 Saccharomyces cerevisiae pre-rRNA. However, the 5' end of the 5.8S rRNA is represented by only a 5.8S (S) form, and a 7S rRNA precursor of the 5.8S rRNA extends into internal transcribed spacer 1 to site A2, which differs from S. cerevisiae. External transcribed spacer 1 and internal transcribed spacers 1 and 2 show remarkable structural similarity with S. cerevisiae despite low sequence identity. Maturation of C. albicans rRNA resembles other eukaryotes in that processing can occur cotranscriptionally or post-transcriptionally. During rapid proliferation, U3 snoRNA-dependent processing occurs before large and small subunit rRNA separation, consistent with cotranscriptional processing. As cells pass the diauxic transition, the 18S pre-rRNA accumulates into stationary phase as a 23S species, possessing an intact 5' external transcribed spacer extending to site A3. Nutrient addition to starved cells results in the disappearance of the 23S rRNA, indicating a potential role in normal physiology. Therefore, C. albicans reveals new mechanisms that regulate post- versus cotranscriptional rRNA processing.
Collapse
MESH Headings
- Base Sequence
- Candida albicans/genetics
- Candida albicans/metabolism
- DNA Polymerase I/metabolism
- DNA, Ribosomal Spacer/genetics
- Gene Expression Regulation, Fungal
- Gene Order
- Molecular Sequence Data
- Molecular Weight
- Nucleic Acid Conformation
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA Stability
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- RNA, Ribosomal, 5.8S/genetics
- RNA, Ribosomal, 5.8S/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Michael L Pendrak
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
18
|
Elevated cell wall chitin in Candida albicans confers echinocandin resistance in vivo. Antimicrob Agents Chemother 2011; 56:208-17. [PMID: 21986821 DOI: 10.1128/aac.00683-11] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida albicans cells with increased cell wall chitin have reduced echinocandin susceptibility in vitro. The aim of this study was to investigate whether C. albicans cells with elevated chitin levels have reduced echinocandin susceptibility in vivo. BALB/c mice were infected with C. albicans cells with normal chitin levels and compared to mice infected with high-chitin cells. Caspofungin therapy was initiated at 24 h postinfection. Mice infected with chitin-normal cells were successfully treated with caspofungin, as indicated by reduced kidney fungal burdens, reduced weight loss, and decreased C. albicans density in kidney lesions. In contrast, mice infected with high-chitin C. albicans cells were less susceptible to caspofungin, as they had higher kidney fungal burdens and greater weight loss during early infection. Cells recovered from mouse kidneys at 24 h postinfection with high-chitin cells had 1.6-fold higher chitin levels than cells from mice infected with chitin-normal cells and maintained a significantly reduced susceptibility to caspofungin when tested in vitro. At 48 h postinfection, caspofungin treatment induced a further increase in chitin content of C. albicans cells harvested from kidneys compared to saline treatment. Some of the recovered clones had acquired, at a low frequency, a point mutation in FKS1 resulting in a S645Y amino acid substitution, a mutation known to confer echinocandin resistance. This occurred even in cells that had not been exposed to caspofungin. Our results suggest that the efficacy of caspofungin against C. albicans was reduced in vivo due to either elevation of chitin levels in the cell wall or acquisition of FKS1 point mutations.
Collapse
|
19
|
The Candida albicans GAP gene family encodes permeases involved in general and specific amino acid uptake and sensing. EUKARYOTIC CELL 2011; 10:1219-29. [PMID: 21764911 DOI: 10.1128/ec.05026-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Saccharomyces cerevisiae general amino acid permease Gap1 (ScGap1) not only mediates the uptake of most amino acids but also functions as a receptor for the activation of protein kinase A (PKA). Fungal pathogens can colonize different niches in the host, each containing various levels of different amino acids and sugars. The Candida albicans genome contains six genes homologous to the S. cerevisiae GAP1. The expression of these six genes in S. cerevisiae showed that the products of all six C. albicans genes differ in their transport capacities. C. albicans Gap2 (CaGap2) is the true orthologue of ScGap1 as it transports all tested amino acids. The other CaGap proteins have narrower substrate specificities though CaGap1 and CaGap6 transport several structurally unrelated amino acids. CaGap1, CaGap2, and CaGap6 also function as sensors. Upon detecting some amino acids, e.g., methionine, they are involved in a rapid activation of trehalase, a downstream target of PKA. Our data show that CaGAP genes can be functionally expressed in S. cerevisiae and that CaGap permeases communicate to the intracellular signal transduction pathway similarly to ScGap1.
Collapse
|
20
|
Effects of fluconazole on the secretome, the wall proteome, and wall integrity of the clinical fungus Candida albicans. EUKARYOTIC CELL 2011; 10:1071-81. [PMID: 21622905 DOI: 10.1128/ec.05011-11] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fluconazole is a commonly used antifungal drug that inhibits Erg11, a protein responsible for 14α-demethylation during ergosterol synthesis. Consequently, ergosterol is depleted from cellular membranes and replaced by toxic 14α-methylated sterols, which causes increased membrane fluidity and drug permeability. Surface-grown and planktonic cultures of Candida albicans responded similarly to fluconazole at 0.5 mg/liter, showing reduced biomass formation, severely reduced ergosterol levels, and almost complete inhibition of hyphal growth. There was no evidence of cell leakage. Mass spectrometric analysis of the secretome showed that its composition was strongly affected and included 17 fluconazole-specific secretory proteins. Relative quantification of (14)N-labeled query walls relative to a reference standard mixture of (15)N-labeled yeast and hyphal walls in combination with immunological analysis revealed considerable fluconazole-induced changes in the wall proteome as well. They were, however, similar for both surface-grown and planktonic cultures. Two major trends emerged: (i) decreased incorporation of hypha-associated wall proteins (Als3, Hwp1, and Plb5), consistent with inhibition of hyphal growth, and (ii) increased incorporation of putative wall repair-related proteins (Crh11, Pga4, Phr1, Phr2, Pir1, and Sap9). As exposure to the wall-perturbing drug Congo red led to a similar response, these observations suggested that fluconazole affects the wall. In keeping with this, the resistance of fluconazole-treated cells to wall-perturbing compounds decreased. We propose that fluconazole affects the integrity of both the cellular membranes and the fungal wall and discuss its potential consequences for antifungal therapy. We also present candidate proteins from the secretome for clinical marker development.
Collapse
|
21
|
Bonhomme J, Chauvel M, Goyard S, Roux P, Rossignol T, d'Enfert C. Contribution of the glycolytic flux and hypoxia adaptation to efficient biofilm formation by Candida albicans. Mol Microbiol 2011; 80:995-1013. [PMID: 21414038 DOI: 10.1111/j.1365-2958.2011.07626.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The fungal pathogen Candida albicans forms therapeutically challenging biofilms on biomedical implants. Using a transcript profiling approach genes whose expression is favoured upon biofilm growth compared with planktonic growth have been previously identified. Knock-out mutants for 38 of these genes were constructed, six of which showed a specific defect in biofilm formation. Among these genes, TYE7 that encodes a transcriptional activator of glycolytic genes in planktonic and biofilm growth conditions was identified as being required for the cohesiveness of biofilms. Biofilms formed by the tye7Δ knock-out mutant showed a hyperfilamentous morphology, and growth of this mutant on solid medium under hypoxia was also associated with the production of hyphae. Similar to TYE7 inactivation, inhibition of glycolysis or ATP synthesis using oxalate or an uncoupler, respectively, triggered morphogenesis when a wild-type strain was grown under hypoxia. These treatments also induced the formation of weakly cohesive, hyper-filamentous biofilms by a wild-type strain. Our data indicate that a hypoxic environment is generated within C. albicans biofilms and that continued biofilm development requires a Tye7p-dependent upregulation of glycolytic genes necessary to adapt to hypoxia and prevent uncontrolled hyphal formation. Thus, adaptation to hypoxia is an integral component of biofilm formation in C. albicans.
Collapse
Affiliation(s)
- Julie Bonhomme
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, F-75015 Paris, France
| | | | | | | | | | | |
Collapse
|
22
|
Monteoliva L, Martinez-Lopez R, Pitarch A, Hernaez ML, Serna A, Nombela C, Albar JP, Gil C. Quantitative proteome and acidic subproteome profiling of Candida albicans yeast-to-hypha transition. J Proteome Res 2010; 10:502-17. [PMID: 21133346 DOI: 10.1021/pr100710g] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Candida albicans yeast-to-hypha morphological transition is involved in the virulence strategy of this opportunistic fungal pathogen. Changes in relative abundance of the Candida proteome related to this process were analyzed using different two-dimensional differential in-gel electrophoresis (2D-DIGE)-based approaches. First, a comparative analysis of yeast and hyphal cytoplasmic proteins allowed the detection of 106 protein spots with significant variation in abundance. Sixty-one of them, corresponding to 46 proteins, were identified. As most of the differentially abundant proteins had an acidic isoelectric point, a large-scale prefractionation approach to analyze the acidic C. albicans subproteome was carried out. Ninety acidic C. albicans proteins were identified by either gel-based or nongel-based approaches. Additionally, different workflows combining preparative isoelectric focusing, Cy labeling, and narrow pH gradient 2-DE gels were tested to analyze the differences in relative protein abundance between yeast and hyphal acidic subproteomes. It was possible to identify 21 differentially abundant acidic proteins; 10 of them were not identified in the previous 2D-DIGE gels. Functional and network interaction analyses of the 56 differentially abundant proteins identified by both approaches rendered an integrated view of metabolic and cellular process reorganization during the yeast-to-hypha transition. With these results, we propose a model of metabolic reorganization.
Collapse
Affiliation(s)
- Lucia Monteoliva
- Departamento Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Fitzpatrick DA, O'Gaora P, Byrne KP, Butler G. Analysis of gene evolution and metabolic pathways using the Candida Gene Order Browser. BMC Genomics 2010; 11:290. [PMID: 20459735 PMCID: PMC2880306 DOI: 10.1186/1471-2164-11-290] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 05/10/2010] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Candida species are the most common cause of opportunistic fungal infection worldwide. Recent sequencing efforts have provided a wealth of Candida genomic data. We have developed the Candida Gene Order Browser (CGOB), an online tool that aids comparative syntenic analyses of Candida species. CGOB incorporates all available Candida clade genome sequences including two Candida albicans isolates (SC5314 and WO-1) and 8 closely related species (Candida dubliniensis, Candida tropicalis, Candida parapsilosis, Lodderomyces elongisporus, Debaryomyces hansenii, Pichia stipitis, Candida guilliermondii and Candida lusitaniae). Saccharomyces cerevisiae is also included as a reference genome. RESULTS CGOB assignments of homology were manually curated based on sequence similarity and synteny. In total CGOB includes 65617 genes arranged into 13625 homology columns. We have also generated improved Candida gene sets by merging/removing partial genes in each genome. Interrogation of CGOB revealed that the majority of tandemly duplicated genes are under strong purifying selection in all Candida species. We identified clusters of adjacent genes involved in the same metabolic pathways (such as catabolism of biotin, galactose and N-acetyl glucosamine) and we showed that some clusters are species or lineage-specific. We also identified one example of intron gain in C. albicans. CONCLUSIONS Our analysis provides an important resource that is now available for the Candida community. CGOB is available at http://cgob.ucd.ie.
Collapse
Affiliation(s)
- David A Fitzpatrick
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland,Department of Biology, The National University of Ireland, Maynooth, County Kildare, Ireland
| | - Peadar O'Gaora
- UCD School of Medicine and Medical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kevin P Byrne
- Smurfit Institute of Genetics, University of Dublin, Trinity College Dublin, Dublin 2, Ireland
| | - Geraldine Butler
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
24
|
Sorgo AG, Heilmann CJ, Dekker HL, Brul S, de Koster CG, Klis FM. Mass spectrometric analysis of the secretome of Candida albicans. Yeast 2010; 27:661-72. [DOI: 10.1002/yea.1775] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
25
|
Niimi M, Firth NA, Cannon RD. Antifungal drug resistance of oral fungi. Odontology 2010; 98:15-25. [PMID: 20155503 DOI: 10.1007/s10266-009-0118-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 11/28/2009] [Indexed: 01/19/2023]
Abstract
Fungi comprise a minor component of the oral microbiota but give rise to oral disease in a significant proportion of the population. The most common form of oral fungal disease is oral candidiasis, which has a number of presentations. The mainstay for the treatment of oral candidiasis is the use of polyenes, such as nystatin and amphotericin B, and azoles including miconazole, fluconazole, and itraconazole. Resistance of fungi to polyenes is rare, but some Candida species, such as Candida glabrata and C. krusei, are innately less susceptible to azoles, and C. albicans can acquire azole resistance. The main mechanism of high-level fungal azole resistance, measured in vitro, is energy-dependent drug efflux. Most fungi in the oral cavity, however, are present in multispecies biofilms that typically demonstrate an antifungal resistance phenotype. This resistance is the result of multiple factors including the expression of efflux pumps in the fungal cell membrane, biofilm matrix permeability, and a stress response in the fungal cell. Removal of dental biofilms, or treatments to prevent biofilm development in combination with antifungal drugs, may enable better treatment and prevention of oral fungal disease.
Collapse
Affiliation(s)
- Masakazu Niimi
- Department of Oral Sciences, School of Dentistry, University of Otago, 310 Great King Street, Dunedin, 9016, New Zealand
| | | | | |
Collapse
|
26
|
An extensive circuitry for cell wall regulation in Candida albicans. PLoS Pathog 2010; 6:e1000752. [PMID: 20140194 PMCID: PMC2816693 DOI: 10.1371/journal.ppat.1000752] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 01/06/2010] [Indexed: 01/30/2023] Open
Abstract
Protein kinases play key roles in signaling and response to changes in the external environment. The ability of Candida albicans to quickly sense and respond to changes in its environment is key to its survival in the human host. Our guiding hypothesis was that creating and screening a set of protein kinase mutant strains would reveal signaling pathways that mediate stress response in C. albicans. A library of protein kinase mutant strains was created and screened for sensitivity to a variety of stresses. For the majority of stresses tested, stress response was largely conserved between C. albicans, Saccharomyces cerevisiae, and Schizosaccharomyces pombe. However, we identified eight protein kinases whose roles in cell wall regulation (CWR) were not expected from functions of their orthologs in the model fungi Saccharomyces cerevisiae and Schizosaccharomyces pombe. Analysis of the conserved roles of these protein kinases indicates that establishment of cell polarity is critical for CWR. In addition, we found that septins, crucial to budding, are both important for surviving and are mislocalized by cell wall stress. Our study shows an expanded role for protein kinase signaling in C. albicans cell wall integrity. Our studies suggest that in some cases, this expansion represents a greater importance for certain pathways in cell wall biogenesis. In other cases, it appears that signaling pathways have been rewired for a cell wall integrity response. Candida albicans is the major fungal commensal and pathogen of humans. Like most microorganisms, C. albicans is surrounded and protected by a cell wall. This cell wall has two purposes: to act as a rigid “exoskeleton” to prevent cells from bursting, and to provide a surface where a cell can interact with the outside environment while protecting the cell itself from this environment. Maintenance of this structure has been well studied in the model fungus, Saccharomyces cerevisiae, but previous evidence suggested that C. albicans might have additional inputs to this process. By creating and testing a library of mutant strains for sensitivity to cell wall stress, we were able to identify a number of conserved genes with roles in this process not shared by their S. cerevisiae counterparts. Although some of these genes had previously been linked to cell wall integrity, it appears that they have increased impact on this process in C. albicans. For other genes, their role in cell wall integrity may represent a novel connection. Our findings provide insight into novel aspects of cell wall integrity in this pathogen and lay a foundation for its more detailed analysis.
Collapse
|
27
|
Epp E, Vanier G, Harcus D, Lee AY, Jansen G, Hallett M, Sheppard DC, Thomas DY, Munro CA, Mullick A, Whiteway M. Reverse genetics in Candida albicans predicts ARF cycling is essential for drug resistance and virulence. PLoS Pathog 2010; 6:e1000753. [PMID: 20140196 PMCID: PMC2816695 DOI: 10.1371/journal.ppat.1000753] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 01/06/2010] [Indexed: 12/03/2022] Open
Abstract
Candida albicans, the major fungal pathogen of humans, causes life-threatening infections in immunocompromised individuals. Due to limited available therapy options, this can frequently lead to therapy failure and emergence of drug resistance. To improve current treatment strategies, we have combined comprehensive chemical-genomic screening in Saccharomyces cerevisiae and validation in C. albicans with the goal of identifying compounds that can couple with the fungistatic drug fluconazole to make it fungicidal. Among the genes identified in the yeast screen, we found that only AGE3, which codes for an ADP-ribosylation factor GTPase activating effector protein, abrogates fluconazole tolerance in C. albicans. The age3 mutant was more sensitive to other sterols and cell wall inhibitors, including caspofungin. The deletion of AGE3 in drug resistant clinical isolates and in constitutively active calcineurin signaling mutants restored fluconazole sensitivity. We confirmed chemically the AGE3-dependent drug sensitivity by showing a potent fungicidal synergy between fluconazole and brefeldin A (an inhibitor of the guanine nucleotide exchange factor for ADP ribosylation factors) in wild type C. albicans as well as in drug resistant clinical isolates. Addition of calcineurin inhibitors to the fluconazole/brefeldin A combination only initially improved pathogen killing. Brefeldin A synergized with different drugs in non-albicans Candida species as well as Aspergillus fumigatus. Microarray studies showed that core transcriptional responses to two different drug classes are not significantly altered in age3 mutants. The therapeutic potential of inhibiting ARF activities was demonstrated by in vivo studies that showed age3 mutants are avirulent in wild type mice, attenuated in virulence in immunocompromised mice and that fluconazole treatment was significantly more efficacious when ARF signaling was genetically compromised. This work describes a new, widely conserved, broad-spectrum mechanism involved in fungal drug resistance and virulence and offers a potential route for single or improved combination therapies. Candida albicans is a fungus that normally resides as part of the microflora in the human gut. Candida species can cause superficial infections like thrush in the healthy human population and life-threatening invasive infections in immunocompromised patients. Fungal infections are often treated with azole drugs, but due to the fungistatic nature of these agents, C. albicans can develop drug resistance, leading to therapy failure. To improve the action of azoles and convert them into fungicidal drugs, we first systematically analyzed the genetic requirements for tolerance to one such azole drug, fluconazole. We show, both genetically and pharmacologically, that components of the ARF cycling machinery are critical in mediating both azole and echinocandin tolerance in C. albicans as well as several other pathogenic Candida species and in the pathogenic mold Aspergillus fumigatus. We highlight the importance of ARF cycling in drug resistance by showing that genetic compromise of ARF functions overrides common drug resistance mechanisms in clinical samples and other key regulators of azole/echinocandin tolerance. We validated the therapeutic potential of ARF cycling in two mouse models and provide evidence that drug treatment is more efficacious when ARF activities are genetically compromised. Our study demonstrates a new mechanism involved in two important aspects of the biology of human fungal pathogens and provides a potential route for improved antifungal therapies.
Collapse
Affiliation(s)
- Elias Epp
- Biotechnology Research Institute, National Research Council of Canada, Montréal, Québec, Canada
- Department of Biology, McGill University, Montréal, Québec, Canada
| | - Ghyslaine Vanier
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Doreen Harcus
- Biotechnology Research Institute, National Research Council of Canada, Montréal, Québec, Canada
| | - Anna Y. Lee
- McGill Centre for Bioinformatics, McGill University, Montréal, Québec, Canada
| | - Gregor Jansen
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Michael Hallett
- McGill Centre for Bioinformatics, McGill University, Montréal, Québec, Canada
| | - Don C. Sheppard
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - David Y. Thomas
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Carol A. Munro
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Alaka Mullick
- Biotechnology Research Institute, National Research Council of Canada, Montréal, Québec, Canada
- Département de Microbiologie et Immunologie, l'Université de Montréal, Montréal, Québec, Canada
| | - Malcolm Whiteway
- Biotechnology Research Institute, National Research Council of Canada, Montréal, Québec, Canada
- Department of Biology, McGill University, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
28
|
Epp E, Walther A, Lépine G, Leon Z, Mullick A, Raymond M, Wendland J, Whiteway M. Forward genetics in Candida albicans that reveals the Arp2/3 complex is required for hyphal formation, but not endocytosis. Mol Microbiol 2010; 75:1182-98. [PMID: 20141603 DOI: 10.1111/j.1365-2958.2009.07038.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Candida albicans is a diploid fungal pathogen lacking a defined complete sexual cycle, and thus has been refractory to standard forward genetic analysis. Instead, transcription profiling and reverse genetic strategies based on Saccharomyces cerevisiae have typically been used to link genes to functions. To overcome restrictions inherent in such indirect approaches, we have investigated a forward genetic mutagenesis strategy based on the UAU1 technology. We screened 4700 random insertion mutants for defects in hyphal development and linked two new genes (ARP2 and VPS52) to hyphal growth. Deleting ARP2 abolished hyphal formation, generated round and swollen yeast phase cells, disrupted cortical actin patches and blocked virulence in mice. The mutants also showed a global lack of induction of hyphae-specific genes upon the yeast-to-hyphae switch. Surprisingly, both arp2 Delta/Delta and arp2 Delta/Delta arp3 Delta/Delta mutants were still able to endocytose FM4-64 and Lucifer Yellow, although as shown by time-lapse movies internalization of FM4-64 was somewhat delayed in mutant cells. Thus the non-essential role of the Arp2/3 complex discovered by forward genetic screening in C. albicans showed that uptake of membrane components from the plasma membrane to vacuolar structures is not dependent on this actin nucleating machinery.
Collapse
Affiliation(s)
- Elias Epp
- Biotechnology Research Institute, National Research Council of Canada, Montréal, QC H4P 2R2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Global screening of potential Candida albicans biofilm-related transcription factors via network comparison. BMC Bioinformatics 2010; 11:53. [PMID: 20102611 PMCID: PMC2842261 DOI: 10.1186/1471-2105-11-53] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 01/26/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Candida albicans is a commonly encountered fungal pathogen in humans. The formation of biofilm is a major virulence factor in C. albicans pathogenesis and is related to antidrug resistance of this organism. Although many factors affecting biofilm have been analyzed, molecular mechanisms that regulate biofilm formation still await to be elucidated. RESULTS In this study, from the gene regulatory network perspective, we developed an efficient computational framework, which integrates different kinds of data from genome-scale analysis, for global screening of potential transcription factors (TFs) controlling C. albicans biofilm formation. S. cerevisiae information and ortholog data were used to infer the possible TF-gene regulatory associations in C. albicans. Based on TF-gene regulatory associations and gene expression profiles, a stochastic dynamic model was employed to reconstruct the gene regulatory networks of C. albicans biofilm and planktonic cells. The two networks were then compared and a score of relevance value (RV) was proposed to determine and assign the quantity of correlation of each potential TF with biofilm formation. A total of twenty-three TFs are identified to be related to the biofilm formation; ten of them are previously reported by literature evidences. CONCLUSIONS The results indicate that the proposed screening method can successfully identify most known biofilm-related TFs and also identify many others that have not been previously reported. Together, this method can be employed as a pre-experiment screening approach that reveals new target genes for further characterization to understand the regulatory mechanisms in biofilm formation, which can serve as the starting point for therapeutic intervention of C. albicans infections.
Collapse
|
30
|
Deletion of Candida albicans SPT6 is not lethal but results in defective hyphal growth. Fungal Genet Biol 2010; 47:288-96. [PMID: 20060921 DOI: 10.1016/j.fgb.2010.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 12/30/2009] [Accepted: 01/04/2010] [Indexed: 11/23/2022]
Abstract
As a means to study surface proteins involved in the yeast to hypha transition, human monoclonal antibody fragments (single-chain variable fragments, scFv) have been generated that bind to antigens expressed on the surface of Candida albicans yeast and/or hyphae. A cDNA expression library was constructed from hyphae, and screened for immunoreactivity with scFv5 as a means to identify its cognate antigen. A reactive clone contained the 3' end of the C. albicans gene, orf 19.7136, designated SPT6 based on homology to Saccharomyces cerevisiae, where its product functions as a transcription elongation factor. A mutant containing a homozygous deletion of SPT6 was isolated, demonstrating that unlike S. cerevisiae, deletion of this gene in C. albicans is not lethal. Growth of this strain was severely impaired, however, as was its capacity to undergo filamentous growth. Reactivity with scFv5 was not detected in the mutant strain, although its impaired growth complicates the interpretation of this finding. To assess C. albicansSPT6 function, expression of the C. albicans gene was induced in a defined S. cerevisiaespt6 mutant. Partial complementation was seen, confirming that the C. albicans and S. cerevisiae genes are functionally related in these species.
Collapse
|
31
|
Comparative transcript profiling of Candida albicans and Candida dubliniensis identifies SFL2, a C. albicans gene required for virulence in a reconstituted epithelial infection model. EUKARYOTIC CELL 2009; 9:251-65. [PMID: 20023067 DOI: 10.1128/ec.00291-09] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Candida albicans and Candida dubliniensis are closely related species displaying differences in virulence and genome content, therefore providing potential opportunities to identify novel C. albicans virulence genes. C. albicans gene arrays were used for comparative analysis of global gene expression in the two species in reconstituted human oral epithelium (RHE). C. albicans (SC5314) showed upregulation of hypha-specific and virulence genes within 30 min postinoculation, coinciding with rapid induction of filamentation and increased RHE damage. C. dubliniensis (CD36) showed no detectable upregulation of hypha-specific genes, grew as yeast, and caused limited RHE damage. Several genes absent or highly divergent in C. dubliniensis were upregulated in C. albicans. One such gene, SFL2 (orf19.3969), encoding a putative heat shock factor, was deleted in C. albicans. DeltaDeltasfl2 cells failed to filament under a range of hypha-inducing conditions and exhibited greatly reduced RHE damage, reversed by reintroduction of SFL2 into the DeltaDeltasfl2 strain. Moreover, SFL2 overexpression in C. albicans triggered hyphal morphogenesis. Although SFL2 deletion had no apparent effect on host survival in the murine model of systemic infection, DeltaDeltasfl2 strain-infected kidney tissues contained only yeast cells. These results suggest a role for SFL2 in morphogenesis and an indirect role in C. albicans pathogenesis in epithelial tissues.
Collapse
|
32
|
Ostlund G, Schmitt T, Forslund K, Köstler T, Messina DN, Roopra S, Frings O, Sonnhammer ELL. InParanoid 7: new algorithms and tools for eukaryotic orthology analysis. Nucleic Acids Res 2009; 38:D196-203. [PMID: 19892828 PMCID: PMC2808972 DOI: 10.1093/nar/gkp931] [Citation(s) in RCA: 461] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The InParanoid project gathers proteomes of completely sequenced eukaryotic species plus Escherichia coli and calculates pairwise ortholog relationships among them. The new release 7.0 of the database has grown by an order of magnitude over the previous version and now includes 100 species and their collective 1.3 million proteins organized into 42.7 million pairwise ortholog groups. The InParanoid algorithm itself has been revised and is now both more specific and sensitive. Based on results from our recent benchmarking of low-complexity filters in homology assignment, a two-pass BLAST approach was developed that makes use of high-precision compositional score matrix adjustment, but avoids the alignment truncation that sometimes follows. We have also updated the InParanoid web site (http://InParanoid.sbc.su.se). Several features have been added, the response times have been improved and the site now sports a new, clearer look. As the number of ortholog databases has grown, it has become difficult to compare among these resources due to a lack of standardized source data and incompatible representations of ortholog relationships. To facilitate data exchange and comparisons among ortholog databases, we have developed and are making available two XML schemas: SeqXML for the input sequences and OrthoXML for the output ortholog clusters.
Collapse
Affiliation(s)
- Gabriel Ostlund
- Department of Biochemistry and Biophysics, Stockholm Bioinformatics Centre, AlbaNova University Centre, Stockholm University, SE-10691 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Kabir MA, Hussain MA. Human fungal pathogen Candida albicans in the postgenomic era: an overview. Expert Rev Anti Infect Ther 2009; 7:121-34. [PMID: 19622061 DOI: 10.1586/14787210.7.1.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Candida albicans is an opportunistic human fungal pathogen and is responsible for candidiasis. Owing to the improvement in healthcare, the number of immunocompromised patients in hospitals has increased worldwide and these individuals are susceptible to infections caused by many pathogenic microbes, among which C. albicans is one of the major players. Currently, the complete genome sequence of this pathogen is available and the size of this was estimated to be of 16 Mb. Annotation of C. albicans genome revealed that there are 6114 open reading frames (ORFs), of which 774 are specific to C. albicans. This poses a challenge as well as an opportunity to the Candida community to understand the functions of the unknown genes, especially those specific to C. albicans. Efforts have been made by the Candida community to systematically delete the ORFs and assign the functions. This will, in turn, help in understanding the biology of C. albicans and its interactions with animals as well as humans, and better drugs can be developed to treat Candida infections. In this article, we review updates on the Candida biology in the context of the availability of the genome sequence, its functional analysis and anti-Candida therapy. Finally, in the light of present trends in Candida research and current challenges, various opportunities are identified and suggestions are made.
Collapse
Affiliation(s)
- M Anaul Kabir
- Department of Biotechnology, PA College of Engineering, Kairangala, Mangalore-574153, Karnataka, India.
| | | |
Collapse
|
34
|
Berriz GF, Beaver JE, Cenik C, Tasan M, Roth FP. Next generation software for functional trend analysis. Bioinformatics 2009; 25:3043-4. [PMID: 19717575 DOI: 10.1093/bioinformatics/btp498] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
UNLABELLED FuncAssociate is a web application that discovers properties enriched in lists of genes or proteins that emerge from large-scale experimentation. Here we describe an updated application with a new interface and several new features. For example, enrichment analysis can now be performed within multiple gene- and protein-naming systems. This feature avoids potentially serious translation artifacts to which other enrichment analysis strategies are subject. AVAILABILITY The FuncAssociate web application is freely available to all users at http://llama.med.harvard.edu/funcassociate.
Collapse
Affiliation(s)
- Gabriel F Berriz
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue and Center for Cancer Systems Biology, Dana Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
35
|
Martínez-Gomariz M, Perumal P, Mekala S, Nombela C, Chaffin WL, Gil C. Proteomic analysis of cytoplasmic and surface proteins from yeast cells, hyphae, and biofilms of Candida albicans. Proteomics 2009; 9:2230-52. [PMID: 19322777 DOI: 10.1002/pmic.200700594] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Candida albicans is a human commensal and opportunistic pathogen that participates in biofilm formation on host surfaces and on medical devices. We used DIGE analysis to assess the cytoplasmic and non-covalently attached cell-surface proteins in biofilm formed on polymethylmethacrylate and planktonic yeast cells and hyphae. Of the 1490 proteins spots from cytoplasmic and 580 protein spots from the surface extracts analyzed, 265 and 108 were differentially abundant respectively (>or=1.5-fold, p <0.05). Differences of both greater and lesser abundance were found between biofilms and both planktonic conditions as well as between yeast cells and hyphae. The identity of 114 cytoplasmic and 80 surface protein spots determined represented 73 and 25 unique proteins, respectively. Analyses showed that yeast cells differed most in cytoplasmic profiling while biofilms differed most in surface profiling. Several processes and functions were significantly affected by the differentially abundant cytoplasmic proteins. Particularly noted were many of the enzymes of respiratory and fermentative pentose and glucose metabolism, folate interconversions and proteins associated with oxidative and stress response functions, host response, and multi-organism interaction. The differential abundance of cytoplasmic and surface proteins demonstrated that sessile and planktonic organisms have a unique profile.
Collapse
Affiliation(s)
- Montserrat Martínez-Gomariz
- Unidad de Proteómica, Universidad Complutense de Madrid-Parque Científico de Madrid (UCM-PCM), Madrid, Spain
| | | | | | | | | | | |
Collapse
|
36
|
Glucose sensing network in Candida albicans: a sweet spot for fungal morphogenesis. EUKARYOTIC CELL 2009; 8:1314-20. [PMID: 19617394 DOI: 10.1128/ec.00138-09] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
37
|
Arnaud MB, Costanzo MC, Shah P, Skrzypek MS, Sherlock G. Gene Ontology and the annotation of pathogen genomes: the case of Candida albicans. Trends Microbiol 2009; 17:295-303. [PMID: 19577928 DOI: 10.1016/j.tim.2009.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 04/06/2009] [Accepted: 04/15/2009] [Indexed: 01/09/2023]
Abstract
The Gene Ontology (GO) is a structured controlled vocabulary developed to describe the roles and locations of gene products in a consistent manner and in a way that can be shared across organisms. The unicellular fungus Candida albicans is similar in many ways to the model organism Saccharomyces cerevisiae but, as both a commensal and a pathogen of humans, differs greatly in its lifestyle. With an expanding at-risk population of immunosuppressed patients, increased use of invasive medical procedures, the increasing prevalence of drug resistance and the emergence of additional Candida species as serious pathogens, it has never been more crucial to improve our understanding of Candida biology to guide the development of better treatments. In this brief review, we examine the importance of GO in the annotation of C. albicans gene products, with a focus on those involved in pathogenesis. We also discuss how sequence information combined with GO facilitates the transfer of knowledge across related species and the challenges and opportunities that such an approach presents.
Collapse
Affiliation(s)
- Martha B Arnaud
- Department of Genetics, Stanford University Medical School, Stanford, CA 94305-5120, USA
| | | | | | | | | |
Collapse
|
38
|
Leandro MJ, Fonseca CÃ, Gonçalves P. Hexose and pentose transport in ascomycetous yeasts: an overview. FEMS Yeast Res 2009; 9:511-25. [DOI: 10.1111/j.1567-1364.2009.00509.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
39
|
González-Novo A, Labrador L, Pablo-Hernando ME, Correa-Bordes J, Sánchez M, Jiménez J, Vázquez de Aldana CR. Dbf2 is essential for cytokinesis and correct mitotic spindle formation in Candida albicans. Mol Microbiol 2009; 72:1364-78. [PMID: 19460099 DOI: 10.1111/j.1365-2958.2009.06729.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have characterized the DBF2 gene, encoding a protein kinase of the NDR family in Candida albicans, and demonstrate that this gene is essential for cell viability. Conditional mutants were constructed by using the MET3 promoter to analyse the phenotype of cells lacking this kinase. The absence of Dbf2 resulted in cells arrested as large-budded pairs that failed to contract the actomyosin ring, a function similar to that described for its Saccharomyces cerevisiae orthologue. In addition to its role in cytokinesis, Dbf2 regulates mitotic spindle organization and nuclear segregation as Dbf2-depleted cells have abnormal microtubules and severe defects in nuclear migration to the daughter cell, which results in a cell cycle block during mitosis. Taken together, these results imply that Dbf2 performs several functions during exit from mitosis and cytokinesis. Consistent with a role in spindle organization, the protein localizes to the mitotic spindle during anaphase, and it interacts physically with tubulin, as indicated by immunoprecipitation experiments. Finally, DBF2 depletion also resulted in impaired true hyphal growth.
Collapse
Affiliation(s)
- Alberto González-Novo
- Dpto. Microbiología y Genética, Instituto de Microbiología Bioquímica, Universidad de Salamanca/CSIC, Avda. Doctores de la Reina s/n. 37007 Salamanca, Spain
| | | | | | | | | | | | | |
Collapse
|
40
|
Cannon RD, Lamping E, Holmes AR, Niimi K, Baret PV, Keniya MV, Tanabe K, Niimi M, Goffeau A, Monk BC. Efflux-mediated antifungal drug resistance. Clin Microbiol Rev 2009; 22:291-321, Table of Contents. [PMID: 19366916 PMCID: PMC2668233 DOI: 10.1128/cmr.00051-08] [Citation(s) in RCA: 403] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fungi cause serious infections in the immunocompromised and debilitated, and the incidence of invasive mycoses has increased significantly over the last 3 decades. Slow diagnosis and the relatively few classes of antifungal drugs result in high attributable mortality for systemic fungal infections. Azole antifungals are commonly used for fungal infections, but azole resistance can be a problem for some patient groups. High-level, clinically significant azole resistance usually involves overexpression of plasma membrane efflux pumps belonging to the ATP-binding cassette (ABC) or the major facilitator superfamily class of transporters. The heterologous expression of efflux pumps in model systems, such Saccharomyces cerevisiae, has enabled the functional analysis of efflux pumps from a variety of fungi. Phylogenetic analysis of the ABC pleiotropic drug resistance family has provided a new view of the evolution of this important class of efflux pumps. There are several ways in which the clinical significance of efflux-mediated antifungal drug resistance can be mitigated. Alternative antifungal drugs, such as the echinocandins, that are not efflux pump substrates provide one option. Potential therapeutic approaches that could overcome azole resistance include targeting efflux pump transcriptional regulators and fungal stress response pathways, blockade of energy supply, and direct inhibition of efflux pumps.
Collapse
Affiliation(s)
- Richard D Cannon
- Department of Oral Sciences, School of Dentistry, University of Otago, P.O. Box 647, Dunedin 9054, New Zealand.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Over the past two decades, mass spectrometry (MS) has ceased to be a fairly exotic technique banished from the protein scientists' mind to become a seminal tool for deciphering the information encoded in the genomes of many biological species. Clues to this shift in the modus operandi for characterizing their proteomes stem from the progressive availability of full genome sequences and well-annotated protein databases of many model (micro)organisms, the development both of soft ionization methods for large biomolecules (peptides and proteins) and of innovative instrumentation designs, and the introduction of sophisticated search algorithms able to correlate MS information with sequence databases, to name but a few. Here we integrate the typical MS-based strategy for identifying proteins of Candida albicans, an opportunistic fungal pathogen of humans, which have proved to be present during systemic infection and targeted by the immune system as a consequence of its interaction with the host (i.e., the C. albicans immunome).
Collapse
|
42
|
Zeidler U, Lettner T, Lassnig C, Müller M, Lajko R, Hintner H, Breitenbach M, Bito A. UME6is a crucial downstream target of other transcriptional regulators of true hyphal development inCandida albicans. FEMS Yeast Res 2009; 9:126-42. [DOI: 10.1111/j.1567-1364.2008.00459.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
43
|
Diogo D, Bouchier C, d'Enfert C, Bougnoux ME. Loss of heterozygosity in commensal isolates of the asexual diploid yeast Candida albicans. Fungal Genet Biol 2008; 46:159-68. [PMID: 19059493 DOI: 10.1016/j.fgb.2008.11.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 11/06/2008] [Accepted: 11/10/2008] [Indexed: 12/21/2022]
Abstract
Candida albicans is a commensal and the most frequent fungal pathogen of humans. One mechanism of genetic variation in this diploid asexual yeast involves loss of heterozygosity (LOH). LOH events occur upon infection and contribute to the acquisition of antifungal resistance in patients. In contrast, little is known about the nature and extent of LOH events during commensalism. Using a combination of single nucleotide polymorphism typing, positional transcript profiling and karyotyping, we have characterized related C. albicans commensal isolates that differ by LOH events. Most of these LOH events encompassed the entirety of the chromosome or a large region extending to the telomere, suggesting chromosome loss or mitotic recombination/break-induced replication events, respectively. They were frequently accompanied by karyotype alterations such as chromosome length polymorphism and copy number variations at other chromosomes. These results demonstrate the high plasticity of the C. albicans genome during commensalism.
Collapse
Affiliation(s)
- Dorothée Diogo
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, INRA USC2019, Département Génomes et Génétique, 25, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
44
|
Diez-Orejas R, Fernández-Arenas E. Candida albicans–macrophage interactions: genomic and proteomic insights. Future Microbiol 2008; 3:661-81. [DOI: 10.2217/17460913.3.6.661] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Candida albicans infection is a significant cause of morbidity and mortality in immunocompromised patients. In vivo and in vitro models have been developed to study both the fungal and the mammalian immune responses. Phagocytic cells (i.e., macrophages) play a key role in innate immunity against C. albicans by capturing, killing and processing the pathogen for presentation to T cells. The use of microarray technology to study global fungal transcriptional changes after interaction with different host cells has revealed how C. albicans adapts to its environment. Proteomic tools complement molecular approaches and computational methods enable the formulation of relevant biological hypotheses. Therefore, the combination of genomics, proteomics and bioinformatics tools (i.e., network analyses) is a powerful strategy to better understand the biological situation of the fungus inside macrophages; part of the fungal population is killed while a significantly high percentage survives.
Collapse
Affiliation(s)
- Rosalía Diez-Orejas
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | - Elena Fernández-Arenas
- Centro de Biología Molecular Severo Ochoa (CBM-SO), Consejo Superior de Investigaciones Científicas (CSIC), Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
45
|
Whitaker JW, Letunic I, McConkey GA, Westhead DR. metaTIGER: a metabolic evolution resource. Nucleic Acids Res 2008; 37:D531-8. [PMID: 18953037 PMCID: PMC2686446 DOI: 10.1093/nar/gkn826] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Metabolic networks are a subject that has received much attention, but existing web resources do not include extensive phylogenetic information. Phylogenomic approaches (phylogenetics on a genomic scale) have been shown to be effective in the study of evolution and processes like horizontal gene transfer (HGT). To address the lack of phylogenomic information relating to eukaryotic metabolism, metaTIGER (www.bioinformatics.leeds.ac.uk/metatiger) has been created, using genomic information from 121 eukaryotes and 404 prokaryotes and sensitive sequence search techniques to predict the presence of metabolic enzymes. These enzyme sequences were used to create a comprehensive database of 2257 maximum-likelihood phylogenetic trees, some containing over 500 organisms. The trees can be viewed using iTOL, an advanced interactive tree viewer, enabling straightforward interpretation of large trees. Complex high-throughput tree analysis is also available through user-defined queries, allowing the rapid identification of trees of interest, e.g. containing putative HGT events. metaTIGER also provides novel and easy-to-use facilities for viewing and comparing the metabolic networks in different organisms via highlighted pathway images and tables. metaTIGER is demonstrated through evolutionary analysis of Plasmodium, including identification of genes horizontally transferred from chlamydia.
Collapse
Affiliation(s)
- John W Whitaker
- Institute of Molecular and Cellular Biology, Garstang Building, University of Leeds, Leeds, W. Yorks, LS2 9JT, UK
| | | | | | | |
Collapse
|
46
|
The IQGAP Iqg1 is a regulatory target of CDK for cytokinesis in Candida albicans. EMBO J 2008; 27:2998-3010. [PMID: 18923418 DOI: 10.1038/emboj.2008.219] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 09/23/2008] [Indexed: 01/05/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) drive and coordinate multiple cell-cycle events, including construction and contraction of the actomyosin ring during cytokinesis. However, it remains unclear whether CDKs regulate cytokinesis by directly targeting components of the ring. In a search for proteins containing consensus CDK phosphorylation sites in Candida albicans, we found that the IQGAP Iqg1 contains two dense clusters of 19 such sites flanking the actin-interacting CH domain. Here, we show that Iqg1 is indeed a phosphoprotein that undergoes cell-cycle-dependent phosphorylation and can be phosphorylated by purified Clb-Cdc28 kinases in vitro. Mass spectrometry identified several phosphoserine and phosphothreonine residues among these CDK sites. Mutating 15 of the CDK phosphorylation sites with alanine markedly reduced Iqg1 phosphorylation in vivo. The 15A mutation greatly stabilized Iqg1, caused both premature assembly and delayed disassembly of the actomyosin ring, blocked Iqg1 interaction with the actin-nucleating proteins Bni1 and Bnr1, and resulted in defects in cytokinesis. Our data therefore strongly support the idea that the Cdc28 CDK regulates cytokinesis partly by directly phosphorylating the actomyosin ring component Iqg1.
Collapse
|
47
|
Identification of the putative protein phosphatase gene PTC1 as a virulence-related gene using a silkworm model of Candida albicans infection. EUKARYOTIC CELL 2008; 7:1640-8. [PMID: 18708562 DOI: 10.1128/ec.00129-08] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein phosphatases are critical for the regulation of many cellular processes. Null mutants of 21 putative protein phosphatases of Candida albicans were constructed by consecutive allele replacement using the URA3 and ARG4 marker genes. A simple silkworm model of C. albicans infection was used to screen the panel of mutants. Four null mutant (cmp1Delta, yvh1Delta, sit4Delta, and ptc1Delta) strains showed attenuated virulence in the silkworm model relative to that of control and parental strains. Three of the mutants, the cmp1Delta, yvh1Delta, and sit4Delta mutants, had previously been identified as affecting virulence in a conventional mouse model, indicating the validity of the silkworm model screen. Disruption of the putative protein phosphatase gene PTC1 of C. albicans, which has 52% identity to the Saccharomyces cerevisiae type 2C protein phosphatase PTC1, significantly reduced virulence in the silkworm model. The mutant was also avirulent in a mouse model of disseminated candidiasis. Reintroducing either of the C. albicans PTC1 alleles into the disruptant strain, using a cassette containing either allele under the control of a constitutive ACT1 promoter, restored virulence in both infection models. Characterization of ptc1Delta revealed other phenotypic traits, including reduced hyphal growth in vitro and in vivo, and reduced extracellular proteolytic activity. We conclude that PTC1 may contribute to pathogenicity in C. albicans.
Collapse
|
48
|
Hoon S, Smith AM, Wallace IM, Suresh S, Miranda M, Fung E, Proctor M, Shokat KM, Zhang C, Davis RW, Giaever G, St Onge RP, StOnge RP, Nislow C. An integrated platform of genomic assays reveals small-molecule bioactivities. Nat Chem Biol 2008; 4:498-506. [PMID: 18622389 DOI: 10.1038/nchembio.100] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 06/16/2008] [Indexed: 01/27/2023]
Abstract
Bioactive compounds are widely used to modulate protein function and can serve as important leads for drug development. Identifying the in vivo targets of these compounds remains a challenge. Using yeast, we integrated three genome-wide gene-dosage assays to measure the effect of small molecules in vivo. A single TAG microarray was used to resolve the fitness of strains derived from pools of (i) homozygous deletion mutants, (ii) heterozygous deletion mutants and (iii) genomic library transformants. We demonstrated, with eight diverse reference compounds, that integration of these three chemogenomic profiles improves the sensitivity and specificity of small-molecule target identification. We further dissected the mechanism of action of two protein phosphatase inhibitors and in the process developed a framework for the rational design of multidrug combinations to sensitize cells with specific genotypes more effectively. Finally, we applied this platform to 188 novel synthetic chemical compounds and identified both potential targets and structure-activity relationships.
Collapse
Affiliation(s)
- Shawn Hoon
- Department of Genetics, Stanford University, Mail Stop-5120, Palo Alto, California 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Development of a MLST-biased SNP microarray for Candida albicans. Fungal Genet Biol 2008; 45:803-11. [DOI: 10.1016/j.fgb.2008.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 01/16/2008] [Accepted: 01/18/2008] [Indexed: 11/22/2022]
|
50
|
Kusch H, Engelmann S, Bode R, Albrecht D, Morschhäuser J, Hecker M. A proteomic view of Candida albicans yeast cell metabolism in exponential and stationary growth phases. Int J Med Microbiol 2008; 298:291-318. [PMID: 17588813 DOI: 10.1016/j.ijmm.2007.03.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 03/23/2007] [Accepted: 03/28/2007] [Indexed: 11/23/2022] Open
Abstract
The facultative pathogenic fungus Candida albicans has to come up with dynamic metabolic adaptation programs in order to be able to survive within a variety of niches in the human host, each of which has its different nutrient availability. Using a large-scale two-dimensional (2-D) protein gel electrophoresis approach, we analyzed the adaptation mechanisms to nutrient limitation in a batch culture in complex medium with glucose as carbon source. To this end, we constructed a 2-D reference map of cytoplasmic proteins and quantitatively compared protein accumulation of growing yeast cells with those from the stationary phase. This yielded characteristic proteome signatures for each physiological state. During exponential growth, proteins required for the synthesis of RNA, DNA, and proteins, including components of purine and pyrimidine synthesis pathways and ribosomal proteins, were over-represented. The stationary-phase signature revealed a complex reprogramming of metabolic networks: Up-regulation of glyoxylate cycle, gluconeogenesis, and glutamate degradation signaled a switch to the utilization of alternative carbon sources instead of the exhausted glucose. Induction of proteins involved in defense against oxidative and heat stress indicates a change in redox balance and reactive oxygen species concentrations.
Collapse
Affiliation(s)
- Harald Kusch
- Institut für Molekulare Infektionsbiologie, Julius-Maximilians-Universität Würzburg, Röntgenring 11, D-97070 Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|