1
|
Kosek DM, Leal JL, Kikovska-Stojanovska E, Mao G, Wu S, Flores SC, Kirsebom LA. RNase P cleavage of pseudoknot substrates reveals differences in active site architecture that depend on residue N-1 in the 5' leader. RNA Biol 2025; 22:1-19. [PMID: 39831626 DOI: 10.1080/15476286.2024.2427906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 01/22/2025] Open
Abstract
We show that a small biotin-binding RNA aptamer that folds into a pseudoknot structure acts as a substrate for bacterial RNase P RNA (RPR) with and without the RNase P C5 protein. Cleavage in the single-stranded region in loop 1 was shown to depend on the presence of a RCCA-motif at the 3' end of the substrate. The nucleobase and the 2'hydroxyl at the position immediately 5' of the cleavage site contribute to both cleavage efficiency and site selection, where C at this position induces significant cleavage at an alternative site, one base upstream of the main cleavage site. The frequencies of cleavage at these two sites and Mg2+ binding change upon altering the structural topology in the vicinity of the cleavage site as well as by replacing Mg2+ with other divalent metal ions. Modelling studies of RPR in complex with the pseudoknot substrates suggest alternative structural topologies for cleavage at the main and the alternative site and a shift in positioning of Mg2+ that activates the H2O nucleophile. Together, our data are consistent with a model where the organization of the active site structure and positioning of Mg2+ is influenced by the identities of residues at and in the vicinity of the site of cleavage.
Collapse
Affiliation(s)
- David M Kosek
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - J Luis Leal
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
- Department of Ecology and Genetics, Evolutionary Biology Center EBC, Uppsala University, Uppsala, Sweden
| | - Ema Kikovska-Stojanovska
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
- Merck Healthcare KGaA, Global Regulatory CMC & Devices, Darmstadt, Germany
| | - Guanzhong Mao
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Shiying Wu
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
- Bio-Works AB, Uppsala, Sweden
| | - Samuel C Flores
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Leif A Kirsebom
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Liang X, Chen D, Su A, Liu Y. Divergent molecular assembly and catalytic mechanisms between bacterial and archaeal RNase P in pre-tRNA cleavage. Proc Natl Acad Sci U S A 2024; 121:e2407579121. [PMID: 39413135 PMCID: PMC11513950 DOI: 10.1073/pnas.2407579121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/30/2024] [Indexed: 10/18/2024] Open
Abstract
Ribonuclease P (RNase P) plays a vital role in the maturation of tRNA across bacteria, archaea, and eukaryotes. However, how RNase P assembles various components to achieve specific cleavage of precursor tRNA (pre-tRNA) in different organisms remains elusive. In this study, we employed single-molecule fluorescence resonance energy transfer to probe the dynamics of RNase P from E. coli (Escherichia coli) and Mja (Methanocaldococcus jannaschii) during pre-tRNA cleavage by incorporating five Cy3-Cy5 pairs into pre-tRNA and RNase P. Our results revealed significant differences in the assembly and catalytic mechanisms of RNase P between E. coli and Mja at both the RNA and protein levels. Specifically, the RNA of E. coli RNase P (EcoRPR) can adopt an active conformation that is capable of binding and cleaving pre-tRNA with high specificity independently. The addition of the protein component of E. coli RNase P (RnpA) enhances and accelerates pre-tRNA cleavage efficiency by increasing and stabilizing the active conformation. In contrast, Mja RPR is unable to form the catalytically active conformation on its own, and at least four proteins are required to induce the correct folding of Mja RPR. Mutation experiments suggest that the functional deficiency of Mja RPR arises from the absence of the second structural layer, and proper intermolecular assembly is essential for Mja RNase P to be functional over a broad temperature range. We propose models to illustrate the distinct catalytic patterns and RNA-protein interactions of RNase P in these two organisms.
Collapse
Affiliation(s)
- Xiaoge Liang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Dian Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Aimin Su
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Yu Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| |
Collapse
|
3
|
Babina AM, Kirsebom LA, Andersson DI. Suppression of the Escherichia coli rnpA49 conditionally lethal phenotype by different compensatory mutations. RNA (NEW YORK, N.Y.) 2024; 30:977-991. [PMID: 38688559 PMCID: PMC11251521 DOI: 10.1261/rna.079909.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
RNase P is an essential enzyme found across all domains of life that is responsible for the 5'-end maturation of precursor tRNAs. For decades, numerous studies have sought to elucidate the mechanisms and biochemistry governing RNase P function. However, much remains unknown about the regulation of RNase P expression, the turnover and degradation of the enzyme, and the mechanisms underlying the phenotypes and complementation of specific RNase P mutations, especially in the model bacterium, Escherichia coli In E. coli, the temperature-sensitive (ts) rnpA49 mutation in the protein subunit of RNase P has arguably been one of the most well-studied mutations for examining the enzyme's activity in vivo. Here, we report for the first time naturally occurring temperature-resistant suppressor mutations of E. coli strains carrying the rnpA49 allele. We find that rnpA49 strains can partially compensate the ts defect via gene amplifications of either RNase P subunit (rnpA49 or rnpB) or by the acquisition of loss-of-function mutations in Lon protease or RNase R. Our results agree with previous plasmid overexpression and gene deletion complementation studies, and importantly suggest the involvement of Lon protease in the degradation and/or regulatory pathway(s) of the mutant protein subunit of RNase P. This work offers novel insights into the behavior and complementation of the rnpA49 allele in vivo and provides direction for follow-up studies regarding RNase P regulation and turnover in E. coli.
Collapse
Affiliation(s)
| | - Leif A Kirsebom
- Department of Cell and Molecular Biology, Uppsala University, 751 23 Uppsala, Sweden
| | | |
Collapse
|
4
|
Kirsebom LA, Liu F, McClain WH. The discovery of a catalytic RNA within RNase P and its legacy. J Biol Chem 2024; 300:107318. [PMID: 38677513 PMCID: PMC11143913 DOI: 10.1016/j.jbc.2024.107318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024] Open
Abstract
Sidney Altman's discovery of the processing of one RNA by another RNA that acts like an enzyme was revolutionary in biology and the basis for his sharing the 1989 Nobel Prize in Chemistry with Thomas Cech. These breakthrough findings support the key role of RNA in molecular evolution, where replicating RNAs (and similar chemical derivatives) either with or without peptides functioned in protocells during the early stages of life on Earth, an era referred to as the RNA world. Here, we cover the historical background highlighting the work of Altman and his colleagues and the subsequent efforts of other researchers to understand the biological function of RNase P and its catalytic RNA subunit and to employ it as a tool to downregulate gene expression. We primarily discuss bacterial RNase P-related studies but acknowledge that many groups have significantly contributed to our understanding of archaeal and eukaryotic RNase P, as reviewed in this special issue and elsewhere.
Collapse
Affiliation(s)
- Leif A Kirsebom
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| | - Fenyong Liu
- School of Public Health, University of California, Berkeley, California, USA.
| | - William H McClain
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
5
|
Wicke D, Neumann P, Gößringer M, Chernev A, Davydov S, Poehlein A, Daniel R, Urlaub H, Hartmann R, Ficner R, Stülke J. The previously uncharacterized RnpM (YlxR) protein modulates the activity of ribonuclease P in Bacillus subtilis in vitro. Nucleic Acids Res 2024; 52:1404-1419. [PMID: 38050972 PMCID: PMC10853771 DOI: 10.1093/nar/gkad1171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023] Open
Abstract
Even though Bacillus subtilis is one of the most studied organisms, no function has been identified for about 20% of its proteins. Among these unknown proteins are several RNA- and ribosome-binding proteins suggesting that they exert functions in cellular information processing. In this work, we have investigated the RNA-binding protein YlxR. This protein is widely conserved in bacteria and strongly constitutively expressed in B. subtilis suggesting an important function. We have identified the RNA subunit of the essential RNase P as the binding partner of YlxR. The main activity of RNase P is the processing of 5' ends of pre-tRNAs. In vitro processing assays demonstrated that the presence of YlxR results in reduced RNase P activity. Chemical cross-linking studies followed by in silico docking analysis and experiments with site-directed mutant proteins suggest that YlxR binds to the region of the RNase P RNA that is important for binding and cleavage of the pre-tRNA substrate. We conclude that the YlxR protein is a novel interaction partner of the RNA subunit of RNase P that serves to finetune RNase P activity to ensure appropriate amounts of mature tRNAs for translation. We rename the YlxR protein RnpM for RNase P modulator.
Collapse
Affiliation(s)
- Dennis Wicke
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Markus Gößringer
- Institute for the Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Aleksandar Chernev
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Swetlana Davydov
- Institute for the Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute of Clinical Chemistry, GZMB, University Medical Centre Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), Georg-August-University Göttingen, Germany
| | - Roland K Hartmann
- Institute for the Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Gößringer M, Wäber NB, Wiegard JC, Hartmann RK. Characterization of RNA-based and protein-only RNases P from bacteria encoding both enzyme types. RNA (NEW YORK, N.Y.) 2023; 29:376-391. [PMID: 36604113 PMCID: PMC9945441 DOI: 10.1261/rna.079459.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
A small group of bacteria encode two types of RNase P, the classical ribonucleoprotein (RNP) RNase P as well as the protein-only RNase P HARP (homolog of Aquifex RNase P). We characterized the dual RNase P activities of five bacteria that belong to three different phyla. All five bacterial species encode functional RNA (gene rnpB) and protein (gene rnpA) subunits of RNP RNase P, but only the HARP of the thermophile Thermodesulfatator indicus (phylum Thermodesulfobacteria) was found to have robust tRNA 5'-end maturation activity in vitro and in vivo in an Escherichia coli RNase P depletion strain. These findings suggest that both types of RNase P are able to contribute to the essential tRNA 5'-end maturation activity in T. indicus, thus resembling the predicted evolutionary transition state in the progenitor of the Aquificaceae before the loss of rnpA and rnpB genes in this family of bacteria. Remarkably, T. indicus RNase P RNA is transcribed with a P12 expansion segment that is posttranscriptionally excised in vivo, such that the major fraction of the RNA is fragmented and thereby truncated by ∼70 nt in the native T. indicus host as well as in the E. coli complementation strain. Replacing the native P12 element of T. indicus RNase P RNA with the short P12 helix of Thermotoga maritima RNase P RNA abolished fragmentation, but simultaneously impaired complementation efficiency in E. coli cells, suggesting that intracellular fragmentation and truncation of T. indicus RNase P RNA may be beneficial to RNA folding and/or enzymatic activity.
Collapse
Affiliation(s)
- Markus Gößringer
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, D-35037 Marburg, Germany
| | - Nadine B Wäber
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, D-35037 Marburg, Germany
| | - Jana C Wiegard
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, D-35037 Marburg, Germany
| | - Roland K Hartmann
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, D-35037 Marburg, Germany
| |
Collapse
|
7
|
Skeparnias I, Zhang J. Cooperativity and Interdependency between RNA Structure and RNA-RNA Interactions. Noncoding RNA 2021; 7:ncrna7040081. [PMID: 34940761 PMCID: PMC8704770 DOI: 10.3390/ncrna7040081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Complex RNA–RNA interactions are increasingly known to play key roles in numerous biological processes from gene expression control to ribonucleoprotein granule formation. By contrast, the nature of these interactions and characteristics of their interfaces, especially those that involve partially or wholly structured RNAs, remain elusive. Herein, we discuss different modalities of RNA–RNA interactions with an emphasis on those that depend on secondary, tertiary, or quaternary structure. We dissect recently structurally elucidated RNA–RNA complexes including RNA triplexes, riboswitches, ribozymes, and reverse transcription complexes. These analyses highlight a reciprocal relationship that intimately links RNA structure formation with RNA–RNA interactions. The interactions not only shape and sculpt RNA structures but also are enabled and modulated by the structures they create. Understanding this two-way relationship between RNA structure and interactions provides mechanistic insights into the expanding repertoire of noncoding RNA functions, and may inform the design of novel therapeutics that target RNA structures or interactions.
Collapse
|
8
|
RNase P Inhibitors Identified as Aggregators. Antimicrob Agents Chemother 2021; 65:e0030021. [PMID: 33972249 DOI: 10.1128/aac.00300-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNase P is an essential enzyme responsible for tRNA 5'-end maturation. In most bacteria, the enzyme is a ribonucleoprotein consisting of a catalytic RNA subunit and a small protein cofactor termed RnpA. Several studies have reported small-molecule inhibitors directed against bacterial RNase P that were identified by high-throughput screenings. Using the bacterial RNase P enzymes from Thermotoga maritima, Bacillus subtilis, and Staphylococcus aureus as model systems, we found that such compounds, including RNPA2000 (and its derivatives), iriginol hexaacetate, and purpurin, induce the formation of insoluble aggregates of RnpA rather than acting as specific inhibitors. In the case of RNPA2000, aggregation was induced by Mg2+ ions. These findings were deduced from solubility analyses by microscopy and high-performance liquid chromatography (HPLC), RnpA-inhibitor co-pulldown experiments, detergent addition, and RnpA titrations in enzyme activity assays. Finally, we used a B. subtilis RNase P depletion strain, whose lethal phenotype could be rescued by a protein-only RNase P of plant origin, for inhibition zone analyses on agar plates. These cell-based experiments argued against RNase P-specific inhibition of bacterial growth by RNPA2000. We were also unable to confirm the previously reported nonspecific RNase activity of S. aureus RnpA itself. Our results indicate that high-throughput screenings searching for bacterial RNase P inhibitors are prone to the identification of "false positives" that are also termed pan-assay interference compounds (PAINS).
Collapse
|
9
|
A tRNA's fate is decided at its 3' end: Collaborative actions of CCA-adding enzyme and RNases involved in tRNA processing and degradation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:433-441. [PMID: 29374586 DOI: 10.1016/j.bbagrm.2018.01.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/15/2018] [Accepted: 01/19/2018] [Indexed: 02/07/2023]
Abstract
tRNAs are key players in translation and are additionally involved in a wide range of distinct cellular processes. The vital importance of tRNAs becomes evident in numerous diseases that are linked to defective tRNA molecules. It is therefore not surprising that the structural intactness of tRNAs is continuously scrutinized and defective tRNAs are eliminated. In this process, erroneous tRNAs are tagged with single-stranded RNA sequences that are recognized by degrading exonucleases. Recent discoveries have revealed that the CCA-adding enzyme - actually responsible for the de novo synthesis of the 3'-CCA end - plays an indispensable role in tRNA quality control by incorporating a second CCA triplet that is recognized as a degradation tag. In this review, we give an update on the latest findings regarding tRNA quality control that turns out to represent an interplay of the CCA-adding enzyme and RNases involved in tRNA degradation and maturation. In particular, the RNase-induced turnover of the CCA end is now recognized as a trigger for the CCA-adding enzyme to repeatedly scrutinize the structural intactness of a tRNA. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
|
10
|
The rph-1-Encoded Truncated RNase PH Protein Inhibits RNase P Maturation of Pre-tRNAs with Short Leader Sequences in the Absence of RppH. J Bacteriol 2017; 199:JB.00301-17. [PMID: 28808133 DOI: 10.1128/jb.00301-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/04/2017] [Indexed: 01/31/2023] Open
Abstract
RNase PH, encoded by the rph gene, is a 3'→5' exoribonuclease that in E. coli participates primarily in the 3' maturation of pre-tRNAs and the degradation of rRNA in stationary-phase cells. Interestingly, the routinely used laboratory strains of MG1655 and W3110 have naturally acquired the rph-1 allele, encoding a truncated catalytically inactive RNase PH protein which is widely assumed to be benign. Contrary to this assumption, we show that the rph-1-encoded Rph-1 protein inhibits RNase P-mediated 5'-end maturation of primary pre-tRNAs with leaders of <5 nucleotides in the absence of RppH, an RNA pyrophosphohydrolase. In contrast, RppH is not required for 5'-end maturation of endonucleolytically generated pre-tRNAs in the rph-1 strain and for any tRNAs in Δrph mutant or rph+ strains. We propose that the Rph-1 protein bound to the 3' end of the substrate creates a steric hindrance that in the presence of a triphosphate at the 5' end reduces the ability of RNase P to bind to the pre-tRNA.IMPORTANCE In this paper, we demonstrate that the rph-1 mutation found in commonly used E. coli strains leads to the synthesis of a truncated functionally inactive RNase PH protein that interferes with the 5'-end maturation of specific tRNAs with short 5' leaders by RNase P in the absence of RppH, an RNA pyrophosphohydrolase that converts primary 5' triphosphates into 5' monophosphates. The data presented indicate that the presence of the triphosphate interferes with RNase P binding to the pre-tRNA.
Collapse
|
11
|
Niland CN, Anderson DR, Jankowsky E, Harris ME. The contribution of the C5 protein subunit of Escherichia coli ribonuclease P to specificity for precursor tRNA is modulated by proximal 5' leader sequences. RNA (NEW YORK, N.Y.) 2017; 23:1502-1511. [PMID: 28694328 PMCID: PMC5602109 DOI: 10.1261/rna.056408.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 06/14/2017] [Indexed: 05/03/2023]
Abstract
Recognition of RNA by RNA processing enzymes and RNA binding proteins often involves cooperation between multiple subunits. However, the interdependent contributions of RNA and protein subunits to molecular recognition by ribonucleoproteins are relatively unexplored. RNase P is an endonuclease that removes 5' leaders from precursor tRNAs and functions in bacteria as a dimer formed by a catalytic RNA subunit (P RNA) and a protein subunit (C5 in E. coli). The P RNA subunit contacts the tRNA body and proximal 5' leader sequences [N(-1) and N(-2)] while C5 binds distal 5' leader sequences [N(-3) to N(-6)]. To determine whether the contacts formed by P RNA and C5 contribute independently to specificity or exhibit cooperativity or anti-cooperativity, we compared the relative kcat/Km values for all possible combinations of the six proximal 5' leader nucleotides (n = 4096) for processing by the E. coli P RNA subunit alone and by the RNase P holoenzyme. We observed that while the P RNA subunit shows specificity for 5' leader nucleotides N(-2) and N(-1), the presence of the C5 protein reduces the contribution of P RNA to specificity, but changes specificity at N(-2) and N(-3). The results reveal that the contribution of C5 protein to RNase P processing is controlled by the identity of N(-2) in the pre-tRNA 5' leader. The data also clearly show that pairing of the 5' leader with the 3' ACCA of tRNA acts as an anti-determinant for RNase P cleavage. Comparative analysis of genomically encoded E. coli tRNAs reveals that both anti-determinants are subject to negative selection in vivo.
Collapse
Affiliation(s)
- Courtney N Niland
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - David R Anderson
- Zicklin School of Business, Baruch College, CUNY, New York, New York 10010, USA
| | - Eckhard Jankowsky
- Center for RNA Molecular Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Michael E Harris
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| |
Collapse
|
12
|
Ardell DH, Hou YM. Initiator tRNA genes template the 3' CCA end at high frequencies in bacteria. BMC Genomics 2016; 17:1003. [PMID: 27927177 PMCID: PMC5143459 DOI: 10.1186/s12864-016-3314-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/18/2016] [Indexed: 01/06/2023] Open
Abstract
Background While the CCA sequence at the mature 3′ end of tRNAs is conserved and critical for translational function, a genetic template for this sequence is not always contained in tRNA genes. In eukaryotes and Archaea, the CCA ends of tRNAs are synthesized post-transcriptionally by CCA-adding enzymes. In Bacteria, tRNA genes template CCA sporadically. Results In order to understand the variation in how prokaryotic tRNA genes template CCA, we re-annotated tRNA genes in tRNAdb-CE database version 0.8. Among 132,129 prokaryotic tRNA genes, initiator tRNA genes template CCA at the highest average frequency (74.1%) over all functional classes except selenocysteine and pyrrolysine tRNA genes (88.1% and 100% respectively). Across bacterial phyla and a wide range of genome sizes, many lineages exist in which predominantly initiator tRNA genes template CCA. Convergent and parallel retention of CCA templating in initiator tRNA genes evolved in independent histories of reductive genome evolution in Bacteria. Also, in a majority of cyanobacterial and actinobacterial genera, predominantly initiator tRNA genes template CCA. We also found that a surprising fraction of archaeal tRNA genes template CCA. Conclusions We suggest that cotranscriptional synthesis of initiator tRNA CCA 3′ ends can complement inefficient processing of initiator tRNA precursors, “bootstrap” rapid initiation of protein synthesis from a non-growing state, or contribute to an increase in cellular growth rates by reducing overheads of mass and energy to maintain nonfunctional tRNA precursor pools. More generally, CCA templating in structurally non-conforming tRNA genes can afford cells robustness and greater plasticity to respond rapidly to environmental changes and stimuli. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3314-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David H Ardell
- Program in Quantitative and Systems Biology, University of California, 5200 North Lake Road, CA, 95343, Merced, USA. .,Molecular and Cell Biology Unit, School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA, 95343, USA.
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, BLSB 220, Philadelphia, PA, 19107, USA
| |
Collapse
|
13
|
Walczyk D, Willkomm DK, Hartmann RK. Bacterial type B RNase P: functional characterization of the L5.1-L15.1 tertiary contact and antisense inhibition. RNA (NEW YORK, N.Y.) 2016; 22:1699-1709. [PMID: 27604960 PMCID: PMC5066622 DOI: 10.1261/rna.057422.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/06/2016] [Indexed: 06/06/2023]
Abstract
Ribonuclease P is the ubiquitous endonuclease that generates the mature 5'-ends of precursor tRNAs. In bacteria, the enzyme is composed of a catalytic RNA (∼400 nucleotides) and a small essential protein subunit (∼13 kDa). Most bacterial RNase P RNAs (P RNAs) belong to the architectural type A; type B RNase P RNA is confined to the low-G+C Gram-positive bacteria. Here we demonstrate that the L5.1-L15.1 intradomain contact in the catalytic domain of the prototypic type B RNase P RNA of Bacillus subtilis is crucial for adopting a compact functional conformation: Disruption of the L5.1-L15.1 contact by antisense oligonucleotides or mutation reduced P RNA-alone and holoenzyme activity by one to two orders of magnitude in vitro, largely retarded gel mobility of the RNA and further affected the structure of regions P7/P8/P10.1, P15 and L15.2, and abolished the ability of B. subtilis P RNA to complement a P RNA-deficient Escherichia coli strain. We also provide mutational evidence that an L9-P1 tertiary contact, as found in some Mycoplasma type B RNAs, is not formed in canonical type B RNAs as represented by B. subtilis P RNA. We finally explored the P5.1 and P15 stem-loop structures as targets for LNA-modified antisense oligonucleotides. Oligonucleotides targeting P15, but not those directed against P5.1, were found to efficiently anneal to P RNA and to inhibit activity (IC50 of ∼2 nM) when incubated with preassembled B. subtilis RNase P holoenzymes.
Collapse
Affiliation(s)
- Dennis Walczyk
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, D-35037 Marburg, Germany
| | - Dagmar K Willkomm
- Klinik für Infektiologie und Mikrobiologie, Universitätsklinikum Schleswig-Holstein Campus Lübeck, D-23538 Lübeck, Germany
| | - Roland K Hartmann
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, D-35037 Marburg, Germany
| |
Collapse
|
14
|
Klemm BP, Wu N, Chen Y, Liu X, Kaitany KJ, Howard MJ, Fierke CA. The Diversity of Ribonuclease P: Protein and RNA Catalysts with Analogous Biological Functions. Biomolecules 2016; 6:biom6020027. [PMID: 27187488 PMCID: PMC4919922 DOI: 10.3390/biom6020027] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 12/30/2022] Open
Abstract
Ribonuclease P (RNase P) is an essential endonuclease responsible for catalyzing 5' end maturation in precursor transfer RNAs. Since its discovery in the 1970s, RNase P enzymes have been identified and studied throughout the three domains of life. Interestingly, RNase P is either RNA-based, with a catalytic RNA subunit, or a protein-only (PRORP) enzyme with differential evolutionary distribution. The available structural data, including the active site data, provides insight into catalysis and substrate recognition. The hydrolytic and kinetic mechanisms of the two forms of RNase P enzymes are similar, yet features unique to the RNA-based and PRORP enzymes are consistent with different evolutionary origins. The various RNase P enzymes, in addition to their primary role in tRNA 5' maturation, catalyze cleavage of a variety of alternative substrates, indicating a diversification of RNase P function in vivo. The review concludes with a discussion of recent advances and interesting research directions in the field.
Collapse
Affiliation(s)
- Bradley P Klemm
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Nancy Wu
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yu Chen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| | - Xin Liu
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| | - Kipchumba J Kaitany
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Michael J Howard
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Carol A Fierke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| |
Collapse
|
15
|
Small-molecule inhibitors of Staphylococcus aureus RnpA-mediated RNA turnover and tRNA processing. Antimicrob Agents Chemother 2015; 59:2016-28. [PMID: 25605356 DOI: 10.1128/aac.04352-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
New agents are urgently needed for the therapeutic treatment of Staphylococcus aureus infections. In that regard, S. aureus RNase RnpA may represent a promising novel dual-function antimicrobial target that participates in two essential cellular processes, RNA degradation and tRNA maturation. Accordingly, we previously used a high-throughput screen to identify small-molecule inhibitors of the RNA-degrading activity of the enzyme and showed that the RnpA inhibitor RNPA1000 is an attractive antimicrobial development candidate. In this study, we used a series of in vitro and cellular assays to characterize a second RnpA inhibitor, RNPA2000, which was identified in our initial screening campaign and is structurally distinct from RNPA1000. In doing so, it was found that S. aureus RnpA does indeed participate in 5'-precursor tRNA processing, as was previously hypothesized. Further, we show that RNPA2000 is a bactericidal agent that inhibits both RnpA-associated RNA degradation and tRNA maturation activities both in vitro and within S. aureus. The compound appears to display specificity for RnpA, as it did not significantly affect the in vitro activities of unrelated bacterial or eukaryotic ribonucleases and did not display measurable human cytotoxicity. Finally, we show that RNPA2000 exhibits antimicrobial activity and inhibits tRNA processing in efflux-deficient Gram-negative pathogens. Taken together, these data support the targeting of RnpA for antimicrobial development purposes, establish that small-molecule inhibitors of both of the functions of the enzyme can be identified, and lend evidence that RnpA inhibitors may have broad-spectrum antimicrobial activities.
Collapse
|
16
|
Gilet L, DiChiara JM, Figaro S, Bechhofer DH, Condon C. Small stable RNA maturation and turnover in Bacillus subtilis. Mol Microbiol 2014; 95:270-82. [PMID: 25402410 DOI: 10.1111/mmi.12863] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2014] [Indexed: 02/05/2023]
Abstract
Stable RNA maturation is a key process in the generation of functional RNAs, and failure to correctly process these RNAs can lead to their elimination through quality control mechanisms. Studies of the maturation pathways of ribosomal RNA and transfer RNA in Bacillus subtilis showed they were radically different from Escherichia coli and led to the identification of new B. subtilis-specific enzymes. We noticed that, despite their important roles in translation, a number of B. subtilis small stable RNAs still did not have characterised maturation pathways, notably the tmRNA, involved in ribosome rescue, and the RNase P RNA, involved in tRNA maturation. Here, we show that tmRNA is matured by RNase P and RNase Z at its 5' and 3' extremities, respectively, whereas the RNase P RNA is matured on its 3' side by RNase Y. Recent evidence that several RNases are not essential in B. subtilis prompted us to revisit maturation of the scRNA, a component of the signal recognition particle involved in co-translational insertion of specific proteins into the membrane. We show that RNase Y is also involved in 3' processing of scRNA. Lastly, we identified some of the enzymes involved in the turnover of these three stable RNAs.
Collapse
Affiliation(s)
- Laetitia Gilet
- CNRS FRE 3630 (affiliated with University Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | | | | | | | | |
Collapse
|
17
|
Loveland JL, Rice J, Turrini PCG, Lizotte-Waniewski M, Dorit RL. Essential is Not Irreplaceable: Fitness Dynamics of Experimental E. coli RNase P RNA Heterologous Replacement. J Mol Evol 2014; 79:143-52. [DOI: 10.1007/s00239-014-9646-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 09/11/2014] [Indexed: 11/27/2022]
|
18
|
Khomiakova EA, Zubin EM, Pavlova LV, Kazanova EV, Smirnov IP, Pozmogova GE, Muller S, Dolinnaia NG, Kubareva EA, Harmann RK, Oretskaia TS. [2'-Modified oligoribonucleotides, containing 1,2-diol and aldehyde groups. Synthesis and properties]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2013; 38:555-68. [PMID: 23342489 DOI: 10.1134/s1068162012050068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
1,2-Diol-oligoribonucleotides were prepared using fully protected 2'-O-[2-(2,3-dihydroxypropyl)amino-2-oxoethyl]uridine 3'-phosphoramidite. Incorporation of the 2'-modified uridine residue into oligonucleotide chains does not significantly affect the thermal stability of RNA and RNA-DNA duplexes. Periodate oxidation of the 1,2-diol results in reactive 2'-aldehyde oligoribonucleotides. Further application of these oligonucleotides for cross-linking with bacterial ribonuclease P was investigated.
Collapse
|
19
|
Li D, Gössringer M, Hartmann RK. Archaeal-bacterial chimeric RNase P RNAs: towards understanding RNA's architecture, function and evolution. Chembiochem 2011; 12:1536-43. [PMID: 21574237 DOI: 10.1002/cbic.201100054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Indexed: 01/18/2023]
Abstract
The higher protein content of archaeal RNase P (1 RNA+4 proteins) compared to the bacterial homologue (1 RNA+1 protein) correlates with a large loss of RNA-alone activity (i.e., in the absence of protein cofactors). Here we show, for the first time, that a catalytic (C) domain of an archaeal RNase P RNA (P RNA) can functionally replace the Escherichia coli C domain in a chimeric P RNA, to provide the essential RNase P function in E. coli cells. This adaptation was achieved by 1) three minor alterations in the archaeal C domain, 2) restoration of the L9-P1 interdomain contact that is found in bacterial and archaeal type A RNAs, and 3) installation of another interdomain contact (L18-P8) that is present in bacterial but absent in archaeal P RNAs. We conclude 1) that the C domains of bacterial and archaeal P RNAs of type A have been largely conserved since the evolutionary separation of bacteria and archaea, and 2) that the L18-P8 RNA-RNA contact has been replaced with protein-protein contacts in archaeal RNase P. Function of the chimeric P RNA in E. coli required overexpression of the E. coli RNase P protein to increase the RNA's reduced cellular levels; this was attributed to enhanced degradation of the chimeric P RNA.
Collapse
Affiliation(s)
- Dan Li
- Institut für Biochemie, Justus-Liebig-Universität Giessen, Giessen, Germany
| | | | | |
Collapse
|
20
|
Abstract
Nuclear ribonuclease (RNase) P is a ubiquitous essential ribonucleoprotein complex, one of only two known RNA-based enzymes found in all three domains of life. The RNA component is the catalytic moiety of RNases P across all phylogenetic domains; it contains a well-conserved core, whereas peripheral structural elements are diverse. RNA components of eukaryotic RNases P tend to be less complex than their bacterial counterparts, a simplification that is accompanied by a dramatic reduction of their catalytic ability in the absence of protein. The size and complexity of the protein moieties increase dramatically from bacterial to archaeal to eukaryotic enzymes, apparently reflecting the delegation of some structural functions from RNA to proteins and, perhaps, in response to the increased complexity of the cellular environment in the more evolutionarily advanced organisms; the reasons for the increased dependence on proteins are not clear. We review current information on RNase P and the closely related universal eukaryotic enzyme RNase MRP, focusing on their functions and structural organization.
Collapse
Affiliation(s)
- Olga Esakova
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
21
|
Abstract
The CCA sequence is conserved at the 3' end of all mature tRNA molecules to function as the site of amino acid attachment. This sequence is acquired and maintained by stepwise nucleotide addition by the ubiquitous CCA enzyme, which is an unusual RNA polymerase that does not use a nucleic acid template for nucleotide addition. Crystal structural work has divided CCA enzymes into two structurally distinct classes, which differ in the mechanism of template-independent nucleotide selection. Recent kinetic work of the class II E. coli CCA enzyme has demonstrated a rapid and uniform rate constant for the chemistry of nucleotide addition at each step of CCA synthesis, although the enzyme uses different determinants to control the rate of each step. Importantly, the kinetic work reveals that, at each step of CCA synthesis, E. coli CCA enzyme has an innate ability to discriminate against tRNA backbone damage. This discrimination suggests the possibility of a previously unrecognized quality control mechanism that would prevent damaged tRNA from CCA maturation and from entering the ribosome machinery of protein synthesis. This quality control is relevant to cellular stress conditions that damage tRNA backbone and predicts a role of CCA addition in stress response.
Collapse
Affiliation(s)
- Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, BLSB 220, Philadelphia 19107, PA, USA.
| |
Collapse
|
22
|
Abstract
The ability to interfere with gene expression is of crucial importance to unravel the function of genes and is also a promising therapeutic strategy. Here we discuss methodologies for inhibition of target RNAs based on the cleavage activity of the essential enzyme, Ribonuclease P (RNase P). RNase P-mediated cleavage of target RNAs can be directed by external guide sequences (EGSs) or by the use of the catalytic M1 RNA from E. coli linked to a guide sequence (M1GSs). These are not only basic tools for functional genetic studies in prokaryotic and eukaryotic cells but also promising antibacterial, anticancer and antiviral agents.
Collapse
Affiliation(s)
- Eirik Wasmuth Lundblad
- Reference Centre for Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway.
| | | |
Collapse
|
23
|
McClain WH, Lai LB, Gopalan V. Trials, travails and triumphs: an account of RNA catalysis in RNase P. J Mol Biol 2010; 397:627-46. [PMID: 20100492 DOI: 10.1016/j.jmb.2010.01.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/12/2010] [Accepted: 01/19/2010] [Indexed: 12/16/2022]
Abstract
Last December marked the 20th anniversary of the Nobel Prize in Chemistry to Sidney Altman and Thomas Cech for their discovery of RNA catalysts in bacterial ribonuclease P (an enzyme catalyzing 5' maturation of tRNAs) and a self-splicing rRNA of Tetrahymena, respectively. Coinciding with the publication of a treatise on RNase P, this review provides a historical narrative, a brief report on our current knowledge, and a discussion of some research prospects on RNase P.
Collapse
Affiliation(s)
- William H McClain
- Department of Bacteriology, College of Agriculture & Life Sciences, University of Wisconsin, Madison, WI 53706, USA.
| | | | | |
Collapse
|
24
|
Romby P, Charpentier E. An overview of RNAs with regulatory functions in gram-positive bacteria. Cell Mol Life Sci 2010; 67:217-37. [PMID: 19859665 PMCID: PMC11115938 DOI: 10.1007/s00018-009-0162-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 09/07/2009] [Accepted: 09/23/2009] [Indexed: 11/26/2022]
Abstract
During the last decade, RNA molecules with regulatory functions on gene expression have benefited from a renewed interest. In bacteria, recent high throughput computational and experimental approaches have led to the discovery that 10-20% of all genes code for RNAs with critical regulatory roles in metabolic, physiological and pathogenic processes. The trans-acting RNAs comprise the noncoding RNAs, RNAs with a short open reading frame and antisense RNAs. Many of these RNAs act through binding to their target mRNAs while others modulate protein activity or target DNA. The cis-acting RNAs include regulatory regions of mRNAs that can respond to various signals. These RNAs often provide the missing link between sensing changing conditions in the environment and fine-tuning the subsequent biological responses. Information on their various functions and modes of action has been well documented for gram-negative bacteria. Here, we summarize the current knowledge of regulatory RNAs in gram-positive bacteria.
Collapse
Affiliation(s)
- Pascale Romby
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084 Strasbourg, France
| | - Emmanuelle Charpentier
- Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, 1030 Vienna, Austria
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
25
|
Binding of C5 protein to P RNA enhances the rate constant for catalysis for P RNA processing of pre-tRNAs lacking a consensus (+ 1)/C(+ 72) pair. J Mol Biol 2009; 395:1019-37. [PMID: 19917291 DOI: 10.1016/j.jmb.2009.11.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 11/03/2009] [Accepted: 11/10/2009] [Indexed: 12/23/2022]
Abstract
The RNA subunit of the ribonucleoprotein enzyme ribonuclease P (RNase P (P RNA) contains the active site, but binding of Escherichia coli RNase P protein (C5) to P RNA increases the rate constant for catalysis for certain pre-tRNA substrates up to 1000-fold. Structure-swapping experiments between a substrate that is cleaved slowly by P RNA alone (pre-tRNA(f-met605)) and one that is cleaved quickly (pre-tRNA(met608)) pinpoint the characteristic C(+1)/A(+72) base pair of initiator tRNA(f-met) as the sole determinant of slow RNA-alone catalysis. Unlike other substrate modifications that slow RNA-alone catalysis, the presence of a C(+1)/A(+72) base pair reduces the rate constant for processing at both correct and miscleavage sites, indicating an indirect but nonetheless important role in catalysis. Analysis of the Mg(2)(+) dependence of apparent catalytic rate constants for pre-tRNA(met608) and a pre-tRNA(met608) (+1)C/(+72)A mutant provides evidence that C5 promotes rate enhancement primarily by compensating for the decrease in the affinity of metal ions important for catalysis engendered by the presence of the CA pair. Together, these results support and extend current models for RNase P substrate recognition in which contacts involving the conserved (+1)G/C(+72) pair of tRNA stabilize functional metal ion binding. Additionally, these observations suggest that C5 protein has evolved to compensate for tRNA variation at positions important for binding to P RNA, allowing for tRNA specialization.
Collapse
|
26
|
|
27
|
Hartmann RK, Gössringer M, Späth B, Fischer S, Marchfelder A. The making of tRNAs and more - RNase P and tRNase Z. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:319-68. [PMID: 19215776 DOI: 10.1016/s0079-6603(08)00808-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transfer-RNA (tRNA) molecules are essential players in protein biosynthesis. They are transcribed as precursors, which have to be extensively processed at both ends to become functional adaptors in protein synthesis. Two endonucleases that directly interact with the tRNA moiety, RNase P and tRNase Z, remove extraneous nucleotides on the molecule's 5'- and 3'-side, respectively. The ribonucleoprotein enzyme RNase P was identified almost 40 years ago and is considered a vestige from the "RNA world". Here, we present the state of affairs on prokaryotic RNase P, with a focus on recent findings on its role in RNA metabolism. tRNase Z was only identified 6 years ago, and we do not yet have a comprehensive understanding of its function. The current knowledge on prokaryotic tRNase Z in tRNA 3'-processing is reviewed here. A second, tRNase Z-independent pathway of tRNA 3'-end maturation involving 3'-exonucleases will also be discussed.
Collapse
Affiliation(s)
- Roland K Hartmann
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, Marbacher Weg 6, D-35037 Marburg, Germany
| | | | | | | | | |
Collapse
|
28
|
Kim Y, Lee Y. Novel function of C5 protein as a metabolic stabilizer of M1 RNA. FEBS Lett 2008; 583:419-24. [PMID: 19114042 DOI: 10.1016/j.febslet.2008.12.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 12/04/2008] [Accepted: 12/17/2008] [Indexed: 11/26/2022]
Abstract
Escherichia coli RNase P is a ribonucleoprotein composed of a large RNA subunit (M1 RNA) and a small protein subunit (C5 protein). We examined if C5 protein plays a role in maintaining metabolic stability of M1 RNA. The sequestration of C5 protein available for M1 RNA binding reduced M1 RNA stability in vivo, and its reduced stability was recovered via overexpression of C5 protein. In addition, M1 RNA was rapidly degraded in a temperature-sensitive C5 protein mutant strain at non-permissive temperatures. Collectively, our results demonstrate that the C5 protein metabolically stabilizes M1 RNA in the cell.
Collapse
Affiliation(s)
- Yool Kim
- Department of Chemistry, KAIST, Daejeon 305-701, Republic of Korea
| | | |
Collapse
|
29
|
Li D, Willkomm DK, Hartmann RK. Minor changes largely restore catalytic activity of archaeal RNase P RNA from Methanothermobacter thermoautotrophicus. Nucleic Acids Res 2008; 37:231-42. [PMID: 19036794 PMCID: PMC2615603 DOI: 10.1093/nar/gkn915] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The increased protein proportion of archaeal and eukaryal ribonuclease (RNase) P holoenzymes parallels a vast decrease in the catalytic activity of their RNA subunits (P RNAs) alone. We show that a few mutations toward the bacterial P RNA consensus substantially activate the catalytic (C-) domain of archaeal P RNA from Methanothermobacter, in the absence and presence of the bacterial RNase P protein. Large increases in ribozyme activity required the cooperative effect of at least two structural alterations. The P1 helix of P RNA from Methanothermobacter was found to be extended, which increases ribozyme activity (ca 200-fold) and stabilizes the tertiary structure. Activity increases of mutated archaeal C-domain variants were more pronounced in the context of chimeric P RNAs carrying the bacterial specificity (S-) domain of Escherichia coli instead of the archaeal S-domain. This could be explained by the loss of the archaeal S-domain's capacity to support tight and productive substrate binding in the absence of protein cofactors. Our results demonstrate that the catalytic capacity of archaeal P RNAs is close to that of their bacterial counterparts, but is masked by minor changes in the C-domain and, particularly, by poor function of the archaeal S-domain in the absence of archaeal protein cofactors.
Collapse
Affiliation(s)
- Dan Li
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, D-35037 Marburg, Germany
| | | | | |
Collapse
|
30
|
Pettersson BMF, Kirsebom LA. The presence of a C-1/G+73 pair in a tRNA precursor influences processing and expression in vivo. J Mol Biol 2008; 381:1089-97. [PMID: 18625241 DOI: 10.1016/j.jmb.2008.06.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 06/25/2008] [Accepted: 06/26/2008] [Indexed: 11/17/2022]
Abstract
To understand whether 5' and 3' structural elements of the region corresponding to the mature tRNA affect the expression of the tRNA, we examined several bacterial genomes for tRNA genes where the expression might be potentially affected by structural elements located outside of the mature tRNA. In Pseudomonas aeruginosa, our analysis suggested that the tRNA(Trp) is transcribed together with a putative stem-loop structure followed by a uridine tract immediately downstream of the tRNA region. This structural element, resembling a Rho-independent transcription terminator, might therefore influence the expression and processing of tRNA(Trp). Moreover, the secondary structure suggested that the discriminator base in the tRNA(Trp) precursor can pair with either the C at position -1, the 3' terminal residue in the 5' leader, or the C immediately 5' of the uridine tract of the putative Rho-independent transcription terminator. Here, we present in vivo data demonstrating the importance of residue -1 and the positioning of the putative transcription terminator for the expression of correctly 5' processed P. aeruginosa tRNA(Trp) in Escherichia coli. Interestingly, we also detected a difference in the appearance of correctly 5' processed P. aeruginosa tRNA(Trp) in E. coli compared to the situation in P. aeruginosa.
Collapse
Affiliation(s)
- B M Fredrik Pettersson
- Department of Cell and Molecular Biology, Box 596, Biomedical Center, SE-751 24 Uppsala, Sweden
| | | |
Collapse
|
31
|
Dupasquier M, Kim S, Halkidis K, Gamper H, Hou YM. tRNA integrity is a prerequisite for rapid CCA addition: implication for quality control. J Mol Biol 2008; 379:579-88. [PMID: 18466919 DOI: 10.1016/j.jmb.2008.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2008] [Revised: 03/22/2008] [Accepted: 04/02/2008] [Indexed: 12/01/2022]
Abstract
CCA addition to the 3' end is an essential step in tRNA maturation. High-resolution crystal structures of the CCA enzymes reveal primary enzyme contact with the tRNA minihelix domain, consisting of the acceptor stem and T stem-loop. RNA and DNA minihelices are efficient substrates for CCA addition in steady-state kinetics. However, in contrast to structural models and steady-state experiments, we show here by single-turnover kinetics that minihelices are insufficient substrates for the Escherichia coli CCA enzyme and that only the full-length tRNA is kinetically competent. Even a nick in the full-length tRNA backbone in the T loop, or as far away from the minihelix domain as in the anticodon loop, prevents efficient CCA addition. These results suggest a kinetic quality control provided by the CCA enzyme to inspect the integrity of the tRNA molecule and to discriminate against nicked or damaged species from further maturation.
Collapse
Affiliation(s)
- Marcel Dupasquier
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
32
|
Li D, Willkomm DK, Schön A, Hartmann RK. RNase P of the Cyanophora paradoxa cyanelle: A plastid ribozyme. Biochimie 2007; 89:1528-38. [PMID: 17881113 DOI: 10.1016/j.biochi.2007.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 08/04/2007] [Indexed: 11/23/2022]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein enzyme that generates the mature 5' ends of tRNAs. Ubiquitous across all three kingdoms of life, the composition and functional contributions of the RNA and protein components of RNase P differ between the kingdoms. RNA-alone catalytic activity has been reported throughout bacteria, but only for some archaea, and only as trace activity for eukarya. Available information for RNase P from photosynthetic organelles points to large differences to bacterial as well as to eukaryotic RNase P: for spinach chloroplasts, protein-alone activity has been discussed; for RNase P from the cyanelle of the glaucophyte Cyanophora paradoxa, a type of organelle sharing properties of both cyanobacteria and chloroplasts, the proportion of protein was found to be around 80% rather than the usual 10% in bacteria. Furthermore, the latter RNase P was previously found catalytically inactive in the absence of protein under a variety of conditions; however, the RNA could be activated by a cyanobacterial protein, but not by the bacterial RNase P protein from Escherichia coli. Here we demonstrate that, under very high enzyme concentrations, the RNase P RNA from the cyanelle of C. paradoxa displays RNA-alone activity well above the detection level. Moreover, the RNA can be complemented to a functional holoenzyme by the E. coli RNase P protein, further supporting its overall bacterial-like architecture. Mutational analysis and domain swaps revealed that this A,U-rich cyanelle RNase P RNA is globally optimized but conformationally unstable, since changes as little as a single point mutation or a base pair identity switch at positions that are not part of the universally conserved catalytic core led to a complete loss of RNA-alone activity. Likely related to this low robustness, extensive structural changes towards an E. coli-type P5-7/P15-17 subdomain as a canonical interaction site for tRNA 3'-CCA termini could not be coaxed into increased ribozyme activity.
Collapse
MESH Headings
- Base Sequence
- Cyanobacteria/enzymology
- Enzyme Activation
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Holoenzymes/genetics
- Holoenzymes/metabolism
- Kinetics
- Nucleic Acid Conformation
- Organelles/enzymology
- Plasmids
- Plastids/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Catalytic/chemistry
- RNA, Catalytic/isolation & purification
- RNA, Catalytic/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Recombinant Proteins/metabolism
- Ribonuclease P/genetics
- Ribonuclease P/metabolism
- Templates, Genetic
- Transcription, Genetic
Collapse
Affiliation(s)
- Dan Li
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35037 Marburg, Germany
| | | | | | | |
Collapse
|