1
|
Burgess JT, Cheong CM, Suraweera A, Sobanski T, Beard S, Dave K, Rose M, Boucher D, Croft LV, Adams MN, O'Byrne K, Richard DJ, Bolderson E. Barrier-to-autointegration-factor (Banf1) modulates DNA double-strand break repair pathway choice via regulation of DNA-dependent kinase (DNA-PK) activity. Nucleic Acids Res 2021; 49:3294-3307. [PMID: 33660778 PMCID: PMC8034644 DOI: 10.1093/nar/gkab110] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/04/2021] [Accepted: 02/23/2021] [Indexed: 01/07/2023] Open
Abstract
DNA repair pathways are essential to maintain the integrity of the genome and prevent cell death and tumourigenesis. Here, we show that the Barrier-to-Autointegration Factor (Banf1) protein has a role in the repair of DNA double-strand breaks. Banf1 is characterized as a nuclear envelope protein and mutations in Banf1 are associated with the severe premature aging syndrome, Néstor–Guillermo Progeria Syndrome. We have previously shown that Banf1 directly regulates the activity of PARP1 in the repair of oxidative DNA lesions. Here, we show that Banf1 also has a role in modulating DNA double-strand break repair through regulation of the DNA-dependent Protein Kinase catalytic subunit, DNA-PKcs. Specifically, we demonstrate that Banf1 relocalizes from the nuclear envelope to sites of DNA double-strand breaks. We also show that Banf1 can bind to and directly inhibit the activity of DNA-PKcs. Supporting this, cellular depletion of Banf1 leads to an increase in non-homologous end-joining and a decrease in homologous recombination, which our data suggest is likely due to unrestrained DNA-PKcs activity. Overall, this study identifies how Banf1 regulates double-strand break repair pathway choice by modulating DNA-PKcs activity to control genome stability within the cell.
Collapse
Affiliation(s)
- Joshua T Burgess
- Queensland University of Technology (QUT), Cancer & Ageing Research Program, Centre for Genomics and Personalised Health at the Translational Research Institute (TRI), Brisbane, Australia
| | - Chee Man Cheong
- Queensland University of Technology (QUT), Cancer & Ageing Research Program, Centre for Genomics and Personalised Health at the Translational Research Institute (TRI), Brisbane, Australia
| | - Amila Suraweera
- Queensland University of Technology (QUT), Cancer & Ageing Research Program, Centre for Genomics and Personalised Health at the Translational Research Institute (TRI), Brisbane, Australia
| | - Thais Sobanski
- Queensland University of Technology (QUT), Cancer & Ageing Research Program, Centre for Genomics and Personalised Health at the Translational Research Institute (TRI), Brisbane, Australia
| | - Sam Beard
- Queensland University of Technology (QUT), Cancer & Ageing Research Program, Centre for Genomics and Personalised Health at the Translational Research Institute (TRI), Brisbane, Australia
| | - Keyur Dave
- Queensland University of Technology (QUT), Cancer & Ageing Research Program, Centre for Genomics and Personalised Health at the Translational Research Institute (TRI), Brisbane, Australia
| | - Maddison Rose
- Queensland University of Technology (QUT), Cancer & Ageing Research Program, Centre for Genomics and Personalised Health at the Translational Research Institute (TRI), Brisbane, Australia
| | - Didier Boucher
- Queensland University of Technology (QUT), Cancer & Ageing Research Program, Centre for Genomics and Personalised Health at the Translational Research Institute (TRI), Brisbane, Australia
| | - Laura V Croft
- Queensland University of Technology (QUT), Cancer & Ageing Research Program, Centre for Genomics and Personalised Health at the Translational Research Institute (TRI), Brisbane, Australia
| | - Mark N Adams
- Queensland University of Technology (QUT), Cancer & Ageing Research Program, Centre for Genomics and Personalised Health at the Translational Research Institute (TRI), Brisbane, Australia
| | - Kenneth O'Byrne
- Queensland University of Technology (QUT), Cancer & Ageing Research Program, Centre for Genomics and Personalised Health at the Translational Research Institute (TRI), Brisbane, Australia.,Princess Alexandra Hospital, Ipswich Road, Woolloongabba, Brisbane, Queensland 4102, Australia
| | - Derek J Richard
- Queensland University of Technology (QUT), Cancer & Ageing Research Program, Centre for Genomics and Personalised Health at the Translational Research Institute (TRI), Brisbane, Australia
| | - Emma Bolderson
- Queensland University of Technology (QUT), Cancer & Ageing Research Program, Centre for Genomics and Personalised Health at the Translational Research Institute (TRI), Brisbane, Australia
| |
Collapse
|
2
|
Wang XS, Lee BJ, Zha S. The recent advances in non-homologous end-joining through the lens of lymphocyte development. DNA Repair (Amst) 2020; 94:102874. [PMID: 32623318 DOI: 10.1016/j.dnarep.2020.102874] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/16/2020] [Accepted: 05/24/2020] [Indexed: 12/17/2022]
Abstract
Lymphocyte development requires ordered assembly and subsequent modifications of the antigen receptor genes through V(D)J recombination and Immunoglobulin class switch recombination (CSR), respectively. While the programmed DNA cleavage events are initiated by lymphocyte-specific factors, the resulting DNA double-strand break (DSB) intermediates activate the ATM kinase-mediated DNA damage response (DDR) and rely on the ubiquitously expressed classical non-homologous end-joining (cNHEJ) pathway including the DNA-dependent protein kinase (DNA-PK), and, in the case of CSR, also the alternative end-joining (Alt-EJ) pathway, for repair. Correspondingly, patients and animal models with cNHEJ or DDR defects develop distinct types of immunodeficiency reflecting their specific DNA repair deficiency. The unique end-structure, sequence context, and cell cycle regulation of V(D)J recombination and CSR also provide a valuable platform to study the mechanisms of, and the interplay between, cNHEJ and DDR. Here, we compare and contrast the genetic consequences of DNA repair defects in V(D)J recombination and CSR with a focus on the newly discovered cNHEJ factors and the kinase-dependent structural roles of ATM and DNA-PK in animal models. Throughout, we try to highlight the pending questions and emerging differences that will extend our understanding of cNHEJ and DDR in the context of primary immunodeficiency and lymphoid malignancies.
Collapse
Affiliation(s)
- Xiaobin S Wang
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Graduate Program of Pathobiology and Molecular Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Immunology and Microbiology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States.
| |
Collapse
|
3
|
Han Y, Jin F, Xie Y, Liu Y, Hu S, Liu XD, Guan H, Gu Y, Ma T, Zhou PK. DNA‑PKcs PARylation regulates DNA‑PK kinase activity in the DNA damage response. Mol Med Rep 2019; 20:3609-3616. [PMID: 31485633 PMCID: PMC6755157 DOI: 10.3892/mmr.2019.10640] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/05/2019] [Indexed: 11/29/2022] Open
Abstract
DNA-dependent protein kinase catalytic subunit (-PKcs) is the core protein involved in the non-homologous end-joining repair of double-strand breaks. In addition, it can form a complex with poly(ADP-ribose) polymerase 1 (PARP1), which catalyzes protein PARylation. However, it is unclear how DNA-PKcs interacts with PARP1 in the DNA damage response and how PARylation affects DNA-PK kinase activity. Using immunoprecipitation, immunofluorescence and flow cytometry the present study found that DNA-PKcs was PARylated after DNA damage, and the PARP1/2 inhibitor olaparib completely abolished DNA-PKcs PARylation. Olaparib treatment prevented DNA-PKcs protein detachment from chromatin after DNA damage and maintained DNA-PK activation, as evidenced by DNA-PKcs Ser2056 phosphorylation. Furthermore, olaparib treatment synergized with DNA-PK inhibition to suppress cell survival. All of the above results are suggestive of the important role of DNA-PKcs PARylation in regulating DNA-PK activity.
Collapse
Affiliation(s)
- Yang Han
- Institute for Environmental Medicine and Radiation Hygiene, School of Public Health, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Feng Jin
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Ying Xie
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Yike Liu
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Sai Hu
- Institute for Environmental Medicine and Radiation Hygiene, School of Public Health, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiao-Dan Liu
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Hua Guan
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Yongqing Gu
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Teng Ma
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| |
Collapse
|
4
|
Toulany M. Targeting DNA Double-Strand Break Repair Pathways to Improve Radiotherapy Response. Genes (Basel) 2019; 10:genes10010025. [PMID: 30621219 PMCID: PMC6356315 DOI: 10.3390/genes10010025] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/07/2018] [Accepted: 12/27/2018] [Indexed: 12/13/2022] Open
Abstract
More than half of cancer patients receive radiotherapy as a part of their cancer treatment. DNA double-strand breaks (DSBs) are considered as the most lethal form of DNA damage and a primary cause of cell death and are induced by ionizing radiation (IR) during radiotherapy. Many malignant cells carry multiple genetic and epigenetic aberrations that may interfere with essential DSB repair pathways. Additionally, exposure to IR induces the activation of a multicomponent signal transduction network known as DNA damage response (DDR). DDR initiates cell cycle checkpoints and induces DSB repair in the nucleus by non-homologous end joining (NHEJ) or homologous recombination (HR). The canonical DSB repair pathways function in both normal and tumor cells. Thus, normal-tissue toxicity may limit the targeting of the components of these two pathways as a therapeutic approach in combination with radiotherapy. The DSB repair pathways are also stimulated through cytoplasmic signaling pathways. These signaling cascades are often upregulated in tumor cells harboring mutations or the overexpression of certain cellular oncogenes, e.g., receptor tyrosine kinases, PIK3CA and RAS. Targeting such cytoplasmic signaling pathways seems to be a more specific approach to blocking DSB repair in tumor cells. In this review, a brief overview of cytoplasmic signaling pathways that have been reported to stimulate DSB repair is provided. The state of the art of targeting these pathways will be discussed. A greater understanding of the underlying signaling pathways involved in DSB repair may provide valuable insights that will help to design new strategies to improve treatment outcomes in combination with radiotherapy.
Collapse
Affiliation(s)
- Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Roentgenweg 11, 72076 Tuebingen, Germany.
| |
Collapse
|
5
|
Hashimoto T, Murata Y, Urushihara Y, Shiga S, Takeda K, Hosoi Y. Severe hypoxia increases expression of ATM and DNA-PKcs and it increases their activities through Src and AMPK signaling pathways. Biochem Biophys Res Commun 2018; 505:13-19. [PMID: 30224064 DOI: 10.1016/j.bbrc.2018.09.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Solid tumors often contain hypoxic regions because an abnormal and inefficient tumor vasculature is unable to supply sufficient oxygen. Tissue hypoxia is generally defined as a low oxygen concentration of less than 2%. It is well known that tumor cells under severe hypoxia, where oxygen concentration is less than 0.1%, show radioresistance. It has been reported that cells under severe hypoxia show different responses from those under mild hypoxia, where oxygen concentration is 0.5-2.0%. In the present study, we investigated the effects of severe hypoxia on expression and activities of ATM and DNA-dependent protein kinase catalytic subunit (DNA-PKcs), both of which regulate DNA double-strand breaks (DSBs) repair and radiation sensitivity. Signaling pathways for increasing expression and activities of ATM and DNA-PKcs under severe hypoxia were also investigated. METHODS SV40-transformed human fibroblast cell lines, LM217 and LM205, and normal human dermal fibroblasts (NHDF) were used. Cells were cultured at an oxygen concentration of less than 0.05% for 12 or 24 h. Activities and/or expression of ATM, DNA-PKcs, Src, Caveolin-1, EGFR, HIF-1α, PDK1, Akt, AMPKα, and mTOR were estimated by Western blot analyses. RESULTS Severe hypoxia increased expression and activities of ATM, DNA-PKcs, Src, Caveolin-1, EGFR, PDK1, Akt, and AMPKα, and decreased expression and activity of mTOR. A specific Src inhibitor, PP2 suppressed activation of ATM, DNA-PKcs, Caveolin-1, EGFR, and Akt under severe hypoxia. Treatment with siRNA for AMPKα suppressed activation of ATM and DNA-PKcs and increase of ATM expression under severe hypoxia. CONCLUSION Our data show that severe hypoxia increases activities of ATM and DNA-PKcs through Src and AMPK signaling pathways, and that activation of AMPK under hypoxia causes increase of ATM expression. Since ATM and DNA-PKcs play important roles in DSBs repair induced by ionizing radiation, those data provide novel insights on the molecular mechanism of the cellular radioresistance under severe hypoxia.
Collapse
Affiliation(s)
- Takuma Hashimoto
- Department of Radiation Biology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yasuhiko Murata
- Department of Radiation Biology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yusuke Urushihara
- Department of Radiation Biology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Soichiro Shiga
- Department of Radiation Biology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kazuya Takeda
- Department of Radiation Biology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yoshio Hosoi
- Department of Radiation Biology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
6
|
Chalasani SL, Kawale AS, Akopiants K, Yu Y, Fanta M, Weinfeld M, Povirk LF. Persistent 3'-phosphate termini and increased cytotoxicity of radiomimetic DNA double-strand breaks in cells lacking polynucleotide kinase/phosphatase despite presence of an alternative 3'-phosphatase. DNA Repair (Amst) 2018; 68:12-24. [PMID: 29807321 DOI: 10.1016/j.dnarep.2018.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/07/2018] [Indexed: 02/08/2023]
Abstract
Polynucleotide kinase/phosphatase (PNKP) has been implicated in non-homologous end joining (NHEJ) of DNA double-strand breaks (DSBs). To assess the consequences of PNKP deficiency for NHEJ of 3'-phosphate-ended DSBs, PNKP-deficient derivatives of HCT116 and of HeLa cells were generated using CRISPR/CAS9. For both cell lines, PNKP deficiency conferred sensitivity to ionizing radiation as well as to neocarzinostatin (NCS), which specifically induces DSBs bearing protruding 3'-phosphate termini. Moreover, NCS-induced DSBs, detected as 53BP1 foci, were more persistent in PNKP -/- HCT116 cells compared to their wild-type (WT) counterparts. Surprisingly, PNKP-deficient whole-cell and nuclear extracts were biochemically competent in removing both protruding and recessed 3'-phosphates from synthetic DSB substrates, albeit much less efficiently than WT extracts, suggesting an alternative 3'-phosphatase. Measurements by ligation-mediated PCR showed that PNKP-deficient HeLa cells contained significantly more 3'-phosphate-terminated and fewer 3'-hydroxyl-terminated DSBs than parental cells 5-15 min after NCS treatment, but this difference disappeared by 1 h. These results suggest that, despite presence of an alternative 3'-phosphatase, loss of PNKP significantly sensitizes cells to 3'-phosphate-terminated DSBs, due to a 3'-dephosphorylation defect.
Collapse
Affiliation(s)
- Sri Lakshmi Chalasani
- Department of Pharmacology and Toxicology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Ajinkya S Kawale
- Department of Pharmacology and Toxicology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Konstantin Akopiants
- Department of Pharmacology and Toxicology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Yaping Yu
- Centre for Genome Engineering, University of Calgary, Calgary, AB, Canada
| | - Mesfin Fanta
- Department of Oncology, Cross Cancer Institute and University of Alberta, Edmonton, AB, Canada
| | - Michael Weinfeld
- Department of Oncology, Cross Cancer Institute and University of Alberta, Edmonton, AB, Canada
| | - Lawrence F Povirk
- Department of Pharmacology and Toxicology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States.
| |
Collapse
|
7
|
Hausmann C, Temme A, Cordes N, Eke I. ILKAP, ILK and PINCH1 control cell survival of p53-wildtype glioblastoma cells after irradiation. Oncotarget 2016; 6:34592-605. [PMID: 26460618 PMCID: PMC4741475 DOI: 10.18632/oncotarget.5423] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/25/2015] [Indexed: 11/29/2022] Open
Abstract
The prognosis is generally poor for patients suffering from glioblastoma multiforme (GBM) due to radiation and drug resistance. Prosurvival signaling originating from focal adhesion hubs essentially contributes to therapy resistance and tumor aggressiveness. As the underlying molecular mechanisms remain largely elusive, we addressed whether targeting of the focal adhesion proteins particularly interesting new cysteine-histidine-rich 1 (PINCH1), integrin-linked kinase (ILK) and ILK associated phosphatase (ILKAP) modulates GBM cell radioresistance. Intriguingly, PINCH1, ILK and ILKAP depletion sensitized p53-wildtype, but not p53-mutant, GBM cells to radiotherapy. Concomitantly, these cells showed inactivated Glycogen synthase kinase-3β (GSK3β) and reduced proliferation. For PINCH1 and ILKAP knockdown, elevated levels of radiation-induced γH2AX/53BP1-positive foci, as a marker for DNA double strand breaks, were observed. Mechanistically, we identified radiation-induced phosphorylation of DNA protein kinase (DNAPK), an important DNA repair protein, to be dependent on ILKAP. This interaction was fundamental to radiation survival of p53-wildtype GBM cells. Conclusively, our data suggest an essential role of PINCH1, ILK and ILKAP for the radioresistance of p53-wildtype GBM cells and provide evidence for DNAPK functioning as a central mediator of ILKAP signaling. Strategies for targeting focal adhesion proteins in combination with radiotherapy might be a promising approach for patients with GBM.
Collapse
Affiliation(s)
- Christina Hausmann
- OncoRay - National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Achim Temme
- Section of Experimental Neurosurgery/Tumor Immunology, Department of Neurosurgery University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Nils Cordes
- OncoRay - National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.,Department of Radiation Oncology, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology, 01328 Dresden, Germany.,German Cancer Consortium (DKTK), 01307 Dresden, Germany.,German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Iris Eke
- OncoRay - National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.,Radiation Oncology Branch, Center for Cancer Research, National Institutes of Health/National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Almohaini M, Chalasani SL, Bafail D, Akopiants K, Zhou T, Yannone SM, Ramsden DA, Hartman MCT, Povirk LF. Nonhomologous end joining of complex DNA double-strand breaks with proximal thymine glycol and interplay with base excision repair. DNA Repair (Amst) 2016; 41:16-26. [PMID: 27049455 DOI: 10.1016/j.dnarep.2016.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 03/04/2016] [Accepted: 03/14/2016] [Indexed: 01/08/2023]
Abstract
DNA double-strand breaks induced by ionizing radiation are often accompanied by ancillary oxidative base damage that may prevent or delay their repair. In order to better define the features that make some DSBs repair-resistant, XLF-dependent nonhomologous end joining of blunt-ended DSB substrates having the oxidatively modified nonplanar base thymine glycol at the first (Tg1), second (Tg2), third (Tg3) or fifth (Tg5) positions from one 3' terminus, was examined in human whole-cell extracts. Tg at the third position had little effect on end-joining even when present on both ends of the break. However, Tg as the terminal or penultimate base was a major barrier to end joining (>10-fold reduction in ligated products) and an absolute barrier when present at both ends. Dideoxy trapping of base excision repair intermediates indicated that Tg was excised from Tg1, Tg2 and Tg3 largely if not exclusively after DSB ligation. However, Tg was rapidly excised from the Tg5 substrate, resulting in a reduced level of DSB ligation, as well as slow concomitant resection of the opposite strand. Ligase reactions containing only purified Ku, XRCC4, ligase IV and XLF showed that ligation of Tg3 and Tg5 was efficient and only partially XLF-dependent, whereas ligation of Tg1 and Tg2 was inefficient and only detectable in the presence of XLF. Overall, the results suggest that promoting ligation of DSBs with proximal base damage may be an important function of XLF, but that Tg can still be a major impediment to repair, being relatively resistant to both trimming and ligation. Moreover, it appears that base excision repair of Tg can sometimes interfere with repair of DSBs that would otherwise be readily rejoined.
Collapse
Affiliation(s)
- Mohammed Almohaini
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Sri Lakshmi Chalasani
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Duaa Bafail
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Konstantin Akopiants
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Tong Zhou
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Steven M Yannone
- Life Sciences Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720, United States
| | - Dale A Ramsden
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Matthew C T Hartman
- Department of Chemistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Lawrence F Povirk
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States.
| |
Collapse
|
9
|
Phosphatidylinositol 3-kinase/Akt signaling as a key mediator of tumor cell responsiveness to radiation. Semin Cancer Biol 2015; 35:180-90. [PMID: 26192967 DOI: 10.1016/j.semcancer.2015.07.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 02/07/2023]
Abstract
The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is a key cascade downstream of several protein kinases, especially membrane-bound receptor tyrosine kinases, including epidermal growth factor receptor (EGFR) family members. Hyperactivation of the PI3K/Akt pathway is correlated with tumor development, progression, poor prognosis, and resistance to cancer therapies, such as radiotherapy, in human solid tumors. Akt/PKB (Protein Kinase B) members are the major kinases that act downstream of PI3K, and these are involved in a variety of cellular functions, including growth, proliferation, glucose metabolism, invasion, metastasis, angiogenesis, and survival. Accumulating evidence indicates that activated Akt is one of the major predictive markers for solid tumor responsiveness to chemo/radiotherapy. DNA double-strand breaks (DNA-DSB), are the prime cause of cell death induced by ionizing radiation. Preclinical in vitro and in vivo studies have shown that constitutive activation of Akt and stress-induced activation of the PI3K/Akt pathway accelerate the repair of DNA-DSB and, consequently, lead to therapy resistance. Analyzing dysregulations of Akt, such as point mutations, gene amplification or overexpression, which results in the constitutive activation of Akt, might be of special importance in the context of radiotherapy outcomes. Such studies, as well as studies of the mechanism(s) by which activated Akt1 regulates repair of DNA-DSB, might help to identify combinations using the appropriate molecular targeting strategies with conventional radiotherapy to overcome radioresistance in solid tumors. In this review, we discuss the dysregulation of the components of upstream regulators of Akt as well as specific modifications of Akt isoforms that enhance Akt activity. Likewise, the mechanisms by which Akt interferes with repair of DNA after exposure to ionizing radiation, will be reviewed. Finally, the current status of Akt targeting in combination with radiotherapy will be discussed.
Collapse
|
10
|
DNA-PKcs deficiency sensitizes the human hepatoma HepG2 cells to cisplatin and 5-fluorouracil through suppression of the PI3K/Akt/NF-κB pathway. Mol Cell Biochem 2014; 399:269-78. [PMID: 25348361 DOI: 10.1007/s11010-014-2253-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/17/2014] [Indexed: 12/22/2022]
Abstract
The aim of the present study was to investigate the effects of DNA-PKcs deficiency on the chemosensitivity of human hepatoma HepG2 cells to cisplatin (CDDP) and 5-fluorouracil (5-Fu), and to explore the underlying molecular mechanism. After transfection with DNA-PKcs siRNA or control siRNA, HepG2 cells were exposed to combination treatment of CDDP and 5-Fu. The cell viability, DNA damage, cell apoptosis, intracellular reactive oxygen species and glutathione (GSH) level, expression of apoptosis related proteins, activity of phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway, and nuclear factor-κB (NF-κB) pathways were assessed. The combination of CDDP and 5-Fu had a synergistic cytotoxic effect in HepG2 cells in terms of the cell viability, DNA damage, apoptosis, and oxidative stress level. DNA-PKcs siRNA could sensitize the HepG2 cells to the combined treatment. DNA-PKcs suppression further reduced the Akt phosphorylation level and Bcl-2 expression in HepG2 cells exposed to CDDP and 5-Fu, but enhanced the expression of pro-apoptotic proteins p53 and caspase-3. Moreover, CDDP could inhibit the transcriptional activity of NF-κB through degradation of IkB-α, while 5-Fu alone seemed in some extent increases the NF-κB activity. The combined treatment with CDDP and 5-Fu resulted in significantly decrease of the transcriptional activity of NF-κB, which was further aggravated by DNA-PKcs siRNA treatment. In conclusion, DNA-PKcs suppression had complementary effects in combination with CDDP and 5-Fu treatment in HepG2 cells, which was associated with suppression of NF-κB signaling pathway cascade, activation of caspase-3 and p53, as well as down-regulation of Bcl-2 and GSH.
Collapse
|
11
|
Trimming of damaged 3' overhangs of DNA double-strand breaks by the Metnase and Artemis endonucleases. DNA Repair (Amst) 2013; 12:422-32. [PMID: 23602515 DOI: 10.1016/j.dnarep.2013.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/01/2013] [Accepted: 03/21/2013] [Indexed: 11/22/2022]
Abstract
Both Metnase and Artemis possess endonuclease activities that trim 3' overhangs of duplex DNA. To assess the potential of these enzymes for facilitating resolution of damaged ends during double-strand break rejoining, substrates bearing a variety of normal and structurally modified 3' overhangs were constructed, and treated either with Metnase or with Artemis plus DNA-dependent protein kinase (DNA-PK). Unlike Artemis, which trims long overhangs to 4-5 bases, cleavage by Metnase was more evenly distributed over the length of the overhang, but with significant sequence dependence. In many substrates, Metnase also induced marked cleavage in the double-stranded region within a few bases of the overhang. Like Artemis, Metnase efficiently trimmed overhangs terminated in 3'-phosphoglycolates (PGs), and in some cases the presence of 3'-PG stimulated cleavage and altered its specificity. The nonplanar base thymine glycol in a 3' overhang severely inhibited cleavage by Metnase in the vicinity of the modified base, while Artemis was less affected. Nevertheless, thymine glycol moieties could be removed by Metnase- or Artemis-mediated cleavage at sites farther from the terminus than the lesion itself. In in vitro end-joining systems based on human cell extracts, addition of Artemis, but not Metnase, effected robust trimming of an unligatable 3'-PG overhang, resulting in a dramatic stimulation of ligase IV- and XLF-dependent end joining. Thus, while both Metnase and Artemis are biochemically capable of resolving a variety of damaged DNA ends for the repair of complex double-strand breaks, Artemis appears to act more efficiently in the context of other nonhomologous end joining proteins.
Collapse
|
12
|
Rocourt CRB, Wu M, Chen BPC, Cheng WH. The catalytic subunit of DNA-dependent protein kinase is downstream of ATM and feeds forward oxidative stress in the selenium-induced senescence response. J Nutr Biochem 2012; 24:781-7. [PMID: 22841545 DOI: 10.1016/j.jnutbio.2012.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 10/28/2022]
Abstract
Selenium induces a senescence response in cells through induction of ataxia-telangiectasia mutated (ATM) and reactive oxygen species (ROS). Although a role of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) in DNA double-strand break repair is established, it is unclear how these proteins function in response to selenium-induced oxidative stress and senescence induction. In this study, we demonstrated that pretreating normal human diploid fibroblasts with DNA-PK kinase inhibitor NU 7026 suppressed selenium-induced senescence response. Selenium treatment induced phosphorylation of DNA-PKcs on Thr-2647 and Ser-2056, the extent of which was decreased in the presence of ATM kinase inhibitor KU 55933 or the antioxidants N-acetylcysteine or 2,2,6,6-tetramethylpiperidine-1-oxyl. In contrast, the selenium-induced phosphorylation of ATM on Ser-1981 was not affected by NU 7026. Cells deficient in DNA-PKcs or pretreated with NU 7026 or N-acetylcysteine were defective in selenite-induced ROS formation. Taken together, these results indicate a distinct role of DNA-PKcs, in which this kinase can respond to and feed forward selenium-induced ROS formation and is placed downstream of ATM in the resultant senescence response.
Collapse
Affiliation(s)
- Caroline R B Rocourt
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
13
|
Toulany M, Lee KJ, Fattah KR, Lin YF, Fehrenbacher B, Schaller M, Chen BP, Chen DJ, Rodemann HP. Akt promotes post-irradiation survival of human tumor cells through initiation, progression, and termination of DNA-PKcs-dependent DNA double-strand break repair. Mol Cancer Res 2012; 10:945-57. [PMID: 22596249 DOI: 10.1158/1541-7786.mcr-11-0592] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Akt phosphorylation has previously been described to be involved in mediating DNA damage repair through the nonhomologous end-joining (NHEJ) repair pathway. Yet the mechanism how Akt stimulates DNA-protein kinase catalytic subunit (DNA-PKcs)-dependent DNA double-strand break (DNA-DSB) repair has not been described so far. In the present study, we investigated the mechanism by which Akt can interact with DNA-PKcs and promote its function during the NHEJ repair process. The results obtained indicate a prominent role of Akt, especially Akt1 in the regulation of NHEJ mechanism for DNA-DSB repair. As shown by pull-down assay of DNA-PKcs, Akt1 through its C-terminal domain interacts with DNA-PKcs. After exposure of cells to ionizing radiation (IR), Akt1 and DNA-PKcs form a functional complex in a first initiating step of DNA-DSB repair. Thereafter, Akt plays a pivotal role in the recruitment of AKT1/DNA-PKcs complex to DNA duplex ends marked by Ku dimers. Moreover, in the formed complex, Akt1 promotes DNA-PKcs kinase activity, which is the necessary step for progression of DNA-DSB repair. Akt1-dependent DNA-PKcs kinase activity stimulates autophosphorylation of DNA-PKcs at S2056 that is needed for efficient DNA-DSB repair and the release of DNA-PKcs from the damage site. Thus, targeting of Akt results in radiosensitization of DNA-PKcs and Ku80 expressing, but not of cells deficient for, either of these proteins. The data showed indicate for the first time that Akt through an immediate complex formation with DNA-PKcs can stimulate the accumulation of DNA-PKcs at DNA-DSBs and promote DNA-PKcs activity for efficient NHEJ DNA-DSB repair.
Collapse
Affiliation(s)
- Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Selection of radioresistant tumor cells and presence of ALDH1 activity in vitro. Radiother Oncol 2011; 99:300-6. [DOI: 10.1016/j.radonc.2011.06.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/01/2011] [Accepted: 06/01/2011] [Indexed: 01/16/2023]
|
15
|
Phosphorylation: the molecular switch of double-strand break repair. INTERNATIONAL JOURNAL OF PROTEOMICS 2011; 2011:373816. [PMID: 22084686 PMCID: PMC3200257 DOI: 10.1155/2011/373816] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/09/2011] [Accepted: 03/19/2011] [Indexed: 11/18/2022]
Abstract
Repair of double-stranded breaks (DSBs) is vital to maintaining genomic stability. In mammalian cells, DSBs are resolved in one of the following complex repair pathways: nonhomologous end-joining (NHEJ), homologous recombination (HR), or the inclusive DNA damage response (DDR). These repair pathways rely on factors that utilize reversible phosphorylation of proteins as molecular switches to regulate DNA repair. Many of these molecular switches overlap and play key roles in multiple pathways. For example, the NHEJ pathway and the DDR both utilize DNA-PK phosphorylation, whereas the HR pathway mediates repair with phosphorylation of RPA2, BRCA1, and BRCA2. Also, the DDR pathway utilizes the kinases ATM and ATR, as well as the phosphorylation of H2AX and MDC1. Together, these molecular switches regulate repair of DSBs by aiding in DSB recognition, pathway initiation, recruitment of repair factors, and the maintenance of repair mechanisms.
Collapse
|
16
|
Elliott SL, Crawford C, Mulligan E, Summerfield G, Newton P, Wallis J, Mainou-Fowler T, Evans P, Bedwell C, Durkacz BW, Willmore E. Mitoxantrone in combination with an inhibitor of DNA-dependent protein kinase: a potential therapy for high risk B-cell chronic lymphocytic leukaemia. Br J Haematol 2010; 152:61-71. [PMID: 21083655 DOI: 10.1111/j.1365-2141.2010.08425.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Defects in the DNA damage response pathway [e.g. del(17p)] are associated with drug-resistant B-cell chronic lymphocytic leukaemia (CLL). We previously demonstrated that over-expression of DNA-dependent protein kinase (DNA-PK) correlates with chemo-resistance and that inhibition of DNA-PK sensitizes CLL cells to chemotherapeutics. Here, we investigated expression of DNA-PK and other proteins that impact on drug resistance, and evaluated the effects of a DNA-PK inhibitor (NU7441) on mitoxantrone-induced cytotoxicity in CLL cells. NU7441 sensitized cells from 42/49 CLL samples to mitoxantrone, with sensitization ranging from 2- to 200-fold Co-culture of CLL cells in conditioned stromal medium increased chemoresistance but did not reduce sensitization by NU7441. Mitoxantrone treatment induced γH2AX foci and NU7441 increased their longevity (24 h). NU7441 prevented mitoxantrone-induced autophosphorylation of the DNA-PK catalytic subunit (DNA-PKcs) at Ser 2056, confirming that DNA-PK participates in repair of mitoxantrone-induced DNA damage. del(17p) cases were more resistant to mitoxantrone than del(13q) cases, but were resensitized (7-16 fold) by co-incubation with NU7441. Expression of DNA-PKcs, Ku80, P-glycoprotein and topoisomerase IIβ were significantly higher in del(17p) cases. PRKDC mRNA levels correlated with DNA-PKcs protein expression, which predicted shorter survival. These data confirm the potential of DNA-PK as a therapeutic target in poor prognosis CLL.
Collapse
Affiliation(s)
- Sarah L Elliott
- Newcastle Cancer Centre at the NorthernInstitute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bebenek K, Garcia-Diaz M, Zhou RZ, Povirk LF, Kunkel TA. Loop 1 modulates the fidelity of DNA polymerase lambda. Nucleic Acids Res 2010; 38:5419-31. [PMID: 20435673 PMCID: PMC2938210 DOI: 10.1093/nar/gkq261] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Differences in the substrate specificity of mammalian family X DNA polymerases are proposed to partly depend on a loop (loop 1) upstream of the polymerase active site. To examine if this is the case in DNA polymerase λ (pol λ), here we characterize a variant of the human polymerase in which nine residues of loop 1 are replaced with four residues from the equivalent position in pol β. Crystal structures of the mutant enzyme bound to gapped DNA with and without a correct dNTP reveal that the change in loop 1 does not affect the overall structure of the protein. Consistent with these structural data, the mutant enzyme has relatively normal catalytic efficiency for correct incorporation, and it efficiently participates in non-homologous end joining of double-strand DNA breaks. However, DNA junctions recovered from end-joining reactions are more diverse than normal, and the mutant enzyme is substantially less accurate than wild-type pol λ in three different biochemical assays. Comparisons of the binary and ternary complex crystal structures of mutant and wild-type pol λ suggest that loop 1 modulates pol λ’s fidelity by controlling dNTP-induced movements of the template strand and the primer-terminal 3′-OH as the enzyme transitions from an inactive to an active conformation.
Collapse
Affiliation(s)
- Katarzyna Bebenek
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC, USA
| | | | | | | | | |
Collapse
|
18
|
Adams BR, Golding SE, Rao RR, Valerie K. Dynamic dependence on ATR and ATM for double-strand break repair in human embryonic stem cells and neural descendants. PLoS One 2010; 5:e10001. [PMID: 20368801 PMCID: PMC2848855 DOI: 10.1371/journal.pone.0010001] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 03/15/2010] [Indexed: 12/23/2022] Open
Abstract
The DNA double-strand break (DSB) is the most toxic form of DNA damage. Studies aimed at characterizing DNA repair during development suggest that homologous recombination repair (HRR) is more critical in pluripotent cells compared to differentiated somatic cells in which nonhomologous end joining (NHEJ) is dominant. We have characterized the DNA damage response (DDR) and quality of DNA double-strand break (DSB) repair in human embryonic stem cells (hESCs), and in vitro-derived neural cells. Resolution of ionizing radiation-induced foci (IRIF) was used as a surrogate for DSB repair. The resolution of γ-H2AX foci occurred at a slower rate in hESCs compared to neural progenitors (NPs) and astrocytes perhaps reflective of more complex DSB repair in hESCs. In addition, the resolution of RAD51 foci, indicative of active homologous recombination repair (HRR), showed that hESCs as well as NPs have high capacity for HRR, whereas astrocytes do not. Importantly, the ATM kinase was shown to be critical for foci formation in astrocytes, but not in hESCs, suggesting that the DDR is different in these cells. Blocking the ATM kinase in astrocytes not only prevented the formation but also completely disassembled preformed repair foci. The ability of hESCs to form IRIF was abrogated with caffeine and siRNAs targeted against ATR, implicating that hESCs rely on ATR, rather than ATM for regulating DSB repair. This relationship dynamically changed as cells differentiated. Interestingly, while the inhibition of the DNA-PKcs kinase (and presumably non-homologous endjoining [NHEJ]) in astrocytes slowed IRIF resolution it did not in hESCs, suggesting that repair in hESCs does not utilize DNA-PKcs. Altogether, our results show that hESCs have efficient DSB repair that is largely ATR-dependent HRR, whereas astrocytes critically depend on ATM for NHEJ, which, in part, is DNA-PKcs-independent.
Collapse
Affiliation(s)
- Bret R. Adams
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Sarah E. Golding
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Raj R. Rao
- Department of Chemical and Life Sciences Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Kristoffer Valerie
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- The Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
19
|
Canfield C, Rains J, De Benedetti A. TLK1B promotes repair of DSBs via its interaction with Rad9 and Asf1. BMC Mol Biol 2009; 10:110. [PMID: 20021694 PMCID: PMC2803485 DOI: 10.1186/1471-2199-10-110] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 12/20/2009] [Indexed: 11/10/2022] Open
Abstract
Background The Tousled-like kinases are involved in chromatin assembly, DNA repair, transcription, and chromosome segregation. Previous evidence indicated that TLK1B can promote repair of plasmids with cohesive ends in vitro, but it was inferred that the mechanism was indirect and via chromatin assembly, mediated by its interaction with the chromatin assembly factor Asf1. We recently identified Rad9 as a substrate of TLK1B, and we presented evidence that the TLK1B-Rad9 interaction plays some role in DSB repair. Hence the relative contribution of Asf1 and Rad9 to the protective effect of TLK1B in DSBs repair is not known. Using an adeno-HO-mediated cleavage system in MM3MG cells, we previously showed that overexpression of either TLK1B or a kinase-dead protein (KD) promoted repair and the assembly of Rad9 in proximity of the DSB at early time points post-infection. This established that it is a chaperone activity of TLK1B and not directly the kinase activity that promotes recruitment of 9-1-1 to the DSB. However, the phosphorylation of Rad9(S328) by TLK1B appeared important for mediating a cell cycle checkpoint, and thus, this phosphorylation of Rad9 may have other effects on 9-1-1 functionality. Results Here we present direct evidence that TLK1B can promote repair of linearized plasmids with incompatible ends that require processing prior to ligation. Immunodepletion of Rad9 indicated that Rad9 was important for processing the ends preceding ligation, suggesting that the interaction of TLK1B with Rad9 is a key mediator for this type of repair. Ligation of incompatible ends also required DNA-PK, as addition of wortmannin or immunodepletion of Ku70 abrogated ligation. Depletion of Ku70 prevented the ligation of the plasmid but did not affect stimulation of the fill-in of the ends by added TLK1B, which was attributed to Rad9. From experiments with the HO-cleavage system, we now show that Rad17, a subunit of the "clamp loader", associates normally with the DSB in KD-overexpressing cells. However, the subsequent release of Rad17 and Rad9 upon repair of the DSB was significantly slower in these cells compared to controls or cells expressing wt-TLK1B. Conclusions TLKs play important roles in DNA repair, not only by modulation of chromatin assembly via Asf1, but also by a more direct function in processing the ends of a DSB via interaction with Rad9. Inhibition of Rad9 phosphorylation in KD-overexpressing cells may have consequences in signaling completion of the repair and cell cycle re-entry, and could explain a loss of viability from DSBs in these cells.
Collapse
Affiliation(s)
- Caroline Canfield
- Department of Biochemistry and Molecular Biology and the Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, 71130, USA.
| | | | | |
Collapse
|
20
|
Shrivastav M, Miller CA, De Haro LP, Durant ST, Chen BPC, Chen DJ, Nickoloff JA. DNA-PKcs and ATM co-regulate DNA double-strand break repair. DNA Repair (Amst) 2009; 8:920-9. [PMID: 19535303 DOI: 10.1016/j.dnarep.2009.05.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 05/09/2009] [Accepted: 05/14/2009] [Indexed: 12/19/2022]
Abstract
DNA double-strand breaks (DSBs) are repaired by nonhomologous end-joining (NHEJ) and homologous recombination (HR). The NHEJ/HR decision is under complex regulation and involves DNA-dependent protein kinase (DNA-PKcs). HR is elevated in DNA-PKcs null cells, but suppressed by DNA-PKcs kinase inhibitors, suggesting that kinase-inactive DNA-PKcs (DNA-PKcs-KR) would suppress HR. Here we use a direct repeat assay to monitor HR repair of DSBs induced by I-SceI nuclease. Surprisingly, DSB-induced HR in DNA-PKcs-KR cells was 2- to 3-fold above the elevated HR level of DNA-PKcs null cells, and approximately 4- to 7-fold above cells expressing wild-type DNA-PKcs. The hyperrecombination in DNA-PKcs-KR cells compared to DNA-PKcs null cells was also apparent as increased resistance to DNA crosslinks induced by mitomycin C. ATM phosphorylates many HR proteins, and ATM is expressed at a low level in cells lacking DNA-PKcs, but restored to wild-type level in cells expressing DNA-PKcs-KR. Several clusters of phosphorylation sites in DNA-PKcs, including the T2609 cluster, which is phosphorylated by DNA-PKcs and ATM, regulate access of repair factors to broken ends. Our results indicate that ATM-dependent phosphorylation of DNA-PKcs-KR contributes to the hyperrecombination phenotype. Interestingly, DNA-PKcs null cells showed more persistent ionizing radiation-induced RAD51 foci (but lower HR levels) compared to DNA-PKcs-KR cells, consistent with HR completion requiring RAD51 turnover. ATM may promote RAD51 turnover, suggesting a second (not mutually exclusive) mechanism by which restored ATM contributes to hyperrecombination in DNA-PKcs-KR cells. We propose a model in which DNA-PKcs and ATM coordinately regulate DSB repair by NHEJ and HR.
Collapse
Affiliation(s)
- Meena Shrivastav
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Tyrosyl-DNA phosphodiesterase and the repair of 3'-phosphoglycolate-terminated DNA double-strand breaks. DNA Repair (Amst) 2009; 8:901-11. [PMID: 19505854 DOI: 10.1016/j.dnarep.2009.05.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 04/24/2009] [Accepted: 05/11/2009] [Indexed: 11/21/2022]
Abstract
Although tyrosyl-DNA phosphodiesterase (TDP1) is capable of removing blocked 3' termini from DNA double-strand break ends, it is uncertain whether this activity plays a role in double-strand break repair. To address this question, affinity-tagged TDP1 was overexpressed in human cells and purified, and its interactions with end joining proteins were assessed. Ku and DNA-PKcs inhibited TDP1-mediated processing of 3'-phosphoglycolate double-strand break termini, and in the absence of ATP, ends sequestered by Ku plus DNA-PKcs were completely refractory to TDP1. Addition of ATP restored TDP1-mediated end processing, presumably due to DNA-PK-catalyzed phosphorylation. Mutations in the 2609-2647 Ser/Thr phosphorylation cluster of DNA-PKcs only modestly affected such processing, suggesting that phosphorylation at other sites was important for rendering DNA ends accessible to TDP1. In human nuclear extracts, about 30% of PG termini were removed within a few hours despite very high concentrations of Ku and DNA-PKcs. Most such removal was blocked by the DNA-PK inhibitor KU-57788, but approximately 5% of PG termini were removed in the first few minutes of incubation even in extracts preincubated with inhibitor. The results suggest that despite an apparent lack of specific recruitment of TDP1 by DNA-PK, TDP1 can gain access to and can process blocked 3' termini of double-strand breaks before ends are fully sequestered by DNA-PK, as well as at a later stage after DNA-PK autophosphorylation. Following cell treatment with calicheamicin, which specifically induces double-strand breaks with protruding 3'-PG termini, TDP1-mutant SCAN1 (spinocerebellar ataxia with axonal neuropathy) cells exhibited a much higher incidence of dicentric chromosomes, as well as higher incidence of chromosome breaks and micronuclei, than normal cells. This chromosomal hypersensitivity, as well as a small but reproducible enhancement of calicheamicin cytotoxicity following siRNA-mediated TDP1 knockdown, suggests a role for TDP1 in repair of 3'-PG double-strand breaks in vivo.
Collapse
|
22
|
Akopiants K, Zhou RZ, Mohapatra S, Valerie K, Lees-Miller SP, Lee KJ, Chen DJ, Revy P, de Villartay JP, Povirk LF. Requirement for XLF/Cernunnos in alignment-based gap filling by DNA polymerases lambda and mu for nonhomologous end joining in human whole-cell extracts. Nucleic Acids Res 2009; 37:4055-62. [PMID: 19420065 PMCID: PMC2709571 DOI: 10.1093/nar/gkp283] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
XLF/Cernunnos is a core protein of the nonhomologous end-joining pathway of DNA double-strand break repair. To better define the role of Cernunnos in end joining, whole-cell extracts were prepared from Cernunnos-deficient human cells. These extracts effected little joining of DNA ends with cohesive 5′ or 3′ overhangs, and no joining at all of partially complementary 3′ overhangs that required gap filling prior to ligation. Assays in which gap-filled but unligated intermediates were trapped using dideoxynucleotides revealed that there was no gap filling on aligned DSB ends in the Cernunnos-deficient extracts. Recombinant Cernunnos protein restored gap filling and end joining of partially complementary overhangs, and stimulated joining of cohesive ends more than twentyfold. XLF-dependent gap filling was nearly eliminated by immunodepletion of DNA polymerase λ, but was restored by addition of either polymerase λ or polymerase μ. Thus, Cernunnos is essential for gap filling by either polymerase during nonhomologous end joining, suggesting that it plays a major role in aligning the two DNA ends in the repair complex.
Collapse
Affiliation(s)
- Konstantin Akopiants
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hawkins AJ, Subler MA, Akopiants K, Wiley JL, Taylor SM, Rice AC, Windle JJ, Valerie K, Povirk LF. In vitro complementation of Tdp1 deficiency indicates a stabilized enzyme-DNA adduct from tyrosyl but not glycolate lesions as a consequence of the SCAN1 mutation. DNA Repair (Amst) 2009; 8:654-63. [PMID: 19211312 DOI: 10.1016/j.dnarep.2008.12.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 12/19/2008] [Accepted: 12/21/2008] [Indexed: 11/17/2022]
Abstract
A homozygous H493R mutation in the active site of tyrosyl-DNA phosphodiesterase (TDP1) has been implicated in hereditary spinocerebellar ataxia with axonal neuropathy (SCAN1), an autosomal recessive neurodegenerative disease. However, it is uncertain how the H493R mutation elicits the specific pathologies of SCAN1. To address this question, and to further elucidate the role of TDP1 in repair of DNA end modifications and general physiology, we generated a Tdp1 knockout mouse and carried out detailed behavioral analyses as well as characterization of repair deficiencies in extracts of embryo fibroblasts from these animals. While Tdp1(-/-) mice appear phenotypically normal, extracts from Tdp1(-/-) fibroblasts exhibited deficiencies in processing 3'-phosphotyrosyl single-strand breaks and 3'-phosphoglycolate double-strand breaks (DSBs), but not 3'-phosphoglycolate single-strand breaks. Supplementing Tdp1(-/-) extracts with H493R TDP1 partially restored processing of 3'-phosphotyrosyl single-strand breaks, but with evidence of persistent covalent adducts between TDP1 and DNA, consistent with a proposed intermediate-stabilization effect of the SCAN1 mutation. However, H493R TDP1 supplementation had no effect on phosphoglycolate (PG) termini on 3' overhangs of double-strand breaks; these remained completely unprocessed. Altogether, these results suggest that for 3'-phosphoglycolate overhang lesions, the SCAN1 mutation confers loss of function, while for 3'-phosphotyrosyl lesions, the mutation uniquely stabilizes a reaction intermediate.
Collapse
Affiliation(s)
- Amy J Hawkins
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Activation of DNA-PK by ionizing radiation is mediated by protein phosphatase 6. PLoS One 2009; 4:e4395. [PMID: 19198648 PMCID: PMC2634843 DOI: 10.1371/journal.pone.0004395] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 12/25/2008] [Indexed: 11/25/2022] Open
Abstract
DNA-dependent protein kinase (DNA-PK) plays a critical role in DNA damage repair, especially in non-homologous end-joining repair of double-strand breaks such as those formed by ionizing radiation (IR) in the course of radiation therapy. Regulation of DNA-PK involves multisite phosphorylation but this is incompletely understood and little is known about protein phosphatases relative to DNA-PK. Mass spectrometry analysis revealed that DNA-PK interacts with the protein phosphatase-6 (PP6) SAPS subunit PP6R1. PP6 is a heterotrimeric enzyme that consists of a catalytic subunit, plus one of three PP6 SAPS regulatory subunits and one of three ankyrin repeat subunits. Endogenous PP6R1 co-immunoprecipitated DNA-PK, and IR enhanced the amount of complex and promoted its import into the nucleus. In addition, siRNA knockdown of either PP6R1 or PP6 significantly decreased IR activation of DNA-PK, suggesting that PP6 activates DNA-PK by association and dephosphorylation. Knockdown of other phosphatases PP5 or PP1γ1 and subunits PP6R3 or ARS-A did not reduce IR activation of DNA-PK, demonstrating specificity for PP6R1. Finally, siRNA knockdown of PP6R1 or PP6 but not other phosphatases increased the sensitivity of glioblastoma cells to radiation-induced cell death to a level similar to DNA-PK deficient cells. Our data demonstrate that PP6 associates with and activates DNA-PK in response to ionizing radiation. Therefore, the PP6/PP6R1 phosphatase is a potential molecular target for radiation sensitization by chemical inhibition.
Collapse
|
25
|
Burdak-Rothkamm S, Rothkamm K, Prise KM. ATM acts downstream of ATR in the DNA damage response signaling of bystander cells. Cancer Res 2008; 68:7059-65. [PMID: 18757420 DOI: 10.1158/0008-5472.can-08-0545] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This study identifies ataxia-telangiectasia mutated (ATM) as a further component of the complex signaling network of radiation-induced DNA damage in nontargeted bystander cells downstream of ataxia-telangiectasia and Rad3-related (ATR) and provides a rationale for molecular targeted modulation of these effects. In directly irradiated cells, ATR, ATM, and DNA-dependent protein kinase (DNA-PK) deficiency resulted in reduced cell survival as predicted by the known important role of these proteins in sensing DNA damage. A decrease in clonogenic survival was also observed in ATR/ATM/DNA-PK-proficient, nonirradiated bystander cells, but this effect was completely abrogated in ATR and ATM but not DNA-PK-deficient bystander cells. ATM activation in bystander cells was found to be dependent on ATR function. Furthermore, the induction and colocalization of ATR, 53BP1, ATM-S1981P, p21, and BRCA1 foci in nontargeted cells was shown, suggesting their involvement in bystander DNA damage signaling and providing additional potential targets for its modulation. 53BP1 bystander foci were induced in an ATR-dependent manner predominantly in S-phase cells, similar to gammaH2AX foci induction. In conclusion, these results provide a rationale for the differential modulation of targeted and nontargeted effects of radiation.
Collapse
Affiliation(s)
- Susanne Burdak-Rothkamm
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom.
| | | | | |
Collapse
|
26
|
Toulany M, Kehlbach R, Florczak U, Sak A, Wang S, Chen J, Lobrich M, Rodemann HP. Targeting of AKT1 enhances radiation toxicity of human tumor cells by inhibiting DNA-PKcs-dependent DNA double-strand break repair. Mol Cancer Ther 2008; 7:1772-81. [PMID: 18644989 DOI: 10.1158/1535-7163.mct-07-2200] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have already reported that epidermal growth factor receptor/phosphatidylinositol 3-kinase/AKT signaling is an important pathway in regulating radiation sensitivity and DNA double-strand break (DNA-dsb) repair of human tumor cells. In the present study, we investigated the effect of AKT1 on DNA-dependent protein kinase catalytic subunit (DNA-PKcs) activity and DNA-dsb repair in irradiated non-small cell lung cancer cell lines A549 and H460. Treatment of cells with the specific AKT pathway inhibitor API-59 CJ-OH (API; 1-5 micromol/L) reduced clonogenic survival between 40% and 85% and enhanced radiation sensitivity of both cell lines significantly. As indicated by fluorescence-activated cell sorting analysis (sub-G(1) cells) and poly(ADP-ribose) polymerase cleavage, API treatment or transfection with AKT1-small interfering RNA (siRNA) induced apoptosis of H460 but not of A549 cells. However, in either apoptosis-resistant A549 or apoptosis-sensitive H460 cells, API and/or AKT1-siRNA did not enhance poly(ADP-ribose) polymerase cleavage and apoptosis following irradiation. Pretreatment of cells with API or transfection with AKT1-siRNA strongly inhibited radiation-induced phosphorylation of DNA-PKcs at T2609 and S2056 as well as repair of DNA-dsb as measured by the gamma-H2AX foci assay. Coimmunoprecipitation experiments showed a complex formation of activated AKT and DNA-PKcs, supporting the assumption that AKT plays an important regulatory role in the activation of DNA-PKcs in irradiated cells. Thus, targeting of AKT enhances radiation sensitivity of lung cancer cell lines A549 and H460 most likely through specific inhibition of DNA-PKcs-dependent DNA-dsb repair but not through enhancement of radiation-induced apoptosis.
Collapse
Affiliation(s)
- Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Eberhard-Karls University Tuebingen, Roentgenweg 11, 72076 Tuebingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhou RZ, Blanco L, Garcia-Diaz M, Bebenek K, Kunkel TA, Povirk LF. Tolerance for 8-oxoguanine but not thymine glycol in alignment-based gap filling of partially complementary double-strand break ends by DNA polymerase lambda in human nuclear extracts. Nucleic Acids Res 2008; 36:2895-905. [PMID: 18385158 PMCID: PMC2396438 DOI: 10.1093/nar/gkn126] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Ionizing radiation induces various clustered DNA lesions, including double-strand breaks (DSBs) accompanied by nearby oxidative base damage. Previous work showed that, in HeLa nuclear extracts, DSBs with partially complementary 3′ overhangs and a one-base gap in each strand are accurately rejoined, with the gaps being filled by DNA polymerase λ. To determine the possible effect of oxidative base damage on this process, plasmid substrates were constructed containing overhangs with 8-oxoguanine or thymine glycol in base-pairing positions of 3-base (-ACG or -GTA) 3′ overhangs. In this context, 8-oxoguanine was well tolerated by the end-joining machinery when present at one end of the break, but not when present at both ends. Thymine glycol was less well tolerated than 8-oxoguanine, reducing gap filling and accurate rejoining by at least 10-fold. The results suggest that complex DSBs can be accurately rejoined despite the presence of accompanying base damage, but that nonplanar bases constitute a major barrier to this process and promote error-prone joining. A chimeric DNA polymerase, in which the catalytic domain of polymerase λ was replaced with that of polymerase β, could not substitute for polymerase λ in these assays, suggesting that this domain is specifically adapted for gap filling on aligned DSB ends.
Collapse
Affiliation(s)
- Rui-Zhe Zhou
- Department of Pharmacology and Toxicology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
The DNA-dependent protein kinase (DNA-PK) is central to the process of nonhomologous end joining because it recognizes and then binds double strand breaks initiating repair. It has long been appreciated that DNA-PK protects DNA ends to promote end joining. Here we review recent work from our laboratories and others demonstrating that DNA-PK can regulate end access both positively and negatively. This is accomplished via distinct autophosphorylation events that result in opposing effects on DNA end access. Additional autophosphorylations that are both physically and functionally distinct serve to regulate kinase activity and complex dissociation. Finally, DNA-PK both positively and negatively regulates DNA end access to repair via the homologous recombination pathway. This has particularly important implications in human cells because of DNA-PK's cellular abundance.
Collapse
Affiliation(s)
- Katheryn Meek
- College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | | | | |
Collapse
|