1
|
Berney M, Ferguson S, McGouran JF. Function and inhibition of the DNA repair enzyme SNM1A. Bioorg Chem 2025; 156:108225. [PMID: 39914034 DOI: 10.1016/j.bioorg.2025.108225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/09/2025] [Accepted: 01/28/2025] [Indexed: 03/28/2025]
Abstract
SNM1A is an enzyme involved in several important biological pathways. To date, most investigations have focused on its role in repairing interstrand crosslinks, a highly cytotoxic form of DNA damage. SNM1A acts as a 5'-3' exonuclease, displaying an unusual capability to digest DNA past the site of a crosslink lesion. Recently, additional functions of this enzyme in the repair of DNA double-strand breaks and critically shortened telomeres have been uncovered. Furthermore, SNM1A is involved in two cell cycle checkpoints that arrest cell division in response to DNA damage. Inhibition of both DNA repair enzymes and cell cycle checkpoint proteins are effective strategies for cancer treatment, and SNM1A is therefore of significant interest as a potential therapeutic target. As a member of the metallo-β-lactamase superfamily, SNM1A is postulated to contain two metal ions in the active site that catalyse hydrolysis of the phosphodiester backbone of DNA. Substrate-mimic probes based on a nucleoside or oligonucleotide scaffold appended with a metal-binding group have proven effective in vitro. High-throughput screening campaigns have identified potent inhibitors, some of which were successful in sensitising cells to DNA-damaging cancer drugs. This review discusses the biological role, structure, and mechanism of action of SNM1A, and the development of SNM1A inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Mark Berney
- National Institute for Bioprocess Research and Training, Foster Avenue, Mount Merrion, Dublin, Ireland; School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Steven Ferguson
- National Institute for Bioprocess Research and Training, Foster Avenue, Mount Merrion, Dublin, Ireland; School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland; SSPC, The SFI Research Centre for Pharmaceuticals, Ireland
| | - Joanna F McGouran
- School of Chemistry, and Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland; SSPC, The SFI Research Centre for Pharmaceuticals, Ireland.
| |
Collapse
|
2
|
Berney M, Fay EM, Doherty W, Deering JJ, Dürr EM, Ferguson S, McGouran JF. Zinc-Binding Oligonucleotide Backbone Modifications for Targeting a DNA-Processing Metalloenzyme. Chembiochem 2024; 25:e202400528. [PMID: 39023512 DOI: 10.1002/cbic.202400528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
A series of chemically-modified oligonucleotides for targeting the DNA repair nuclease SNM1A have been designed and synthesised. Each oligonucleotide contains a modified internucleotide linkage designed to both mimic the native phosphodiester backbone and chelate to the catalytic zinc ion(s) in the SNM1A active site. Dinucleoside phosphoramidites containing urea, squaramide, sulfanylacetamide, and sulfinylacetamide linkages were prepared and employed successfully in solid-phase oligonucleotide synthesis. All the modified oligonucleotides were found to interact with SNM1A in a gel electrophoresis-based assay, demonstrating the first examples of inhibition of DNA damage repair enzymes for many of these groups in oligonucleotides. One strand containing a sulfinylacetamide-linkage was found to have the strongest interaction with SNM1A and was further tested in a real-time fluorescence assay. This allowed an IC50 value of 231 nM to be determined, significantly lower than previously reported substrate-mimics targeting this enzyme. It is expected that these modified oligonucleotides will serve as a scaffold for the future development of fluorescent or biotin-labelled probes for the in vivo study of DNA repair processes.
Collapse
Affiliation(s)
- Mark Berney
- National Institute for Bioprocess Research and Training, Foster Avenue, Mount Merrion, Dublin, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ellen M Fay
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - William Doherty
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - John J Deering
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Eva-Maria Dürr
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Steven Ferguson
- National Institute for Bioprocess Research and Training, Foster Avenue, Mount Merrion, Dublin, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
- SSPC, The SFI Research Centre for Pharmaceuticals, Ireland
| | - Joanna F McGouran
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
- SSPC, The SFI Research Centre for Pharmaceuticals, Ireland
| |
Collapse
|
3
|
Bellani MA, Shaik A, Majumdar I, Ling C, Seidman MM. Repair of genomic interstrand crosslinks. DNA Repair (Amst) 2024; 141:103739. [PMID: 39106540 PMCID: PMC11423799 DOI: 10.1016/j.dnarep.2024.103739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024]
Abstract
Genomic interstrand crosslinks (ICLs) are formed by reactive species generated during normal cellular metabolism, produced by the microbiome, and employed in cancer chemotherapy. While there are multiple options for replication dependent and independent ICL repair, the crucial step for each is unhooking one DNA strand from the other. Much of our insight into mechanisms of unhooking comes from powerful model systems based on plasmids with defined ICLs introduced into cells or cell free extracts. Here we describe the properties of exogenous and endogenous ICL forming compounds and provide an historical perspective on early work on ICL repair. We discuss the modes of unhooking elucidated in the model systems, the concordance or lack thereof in drug resistant tumors, and the evolving view of DNA adducts, including ICLs, formed by metabolic aldehydes.
Collapse
Affiliation(s)
- Marina A Bellani
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Althaf Shaik
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ishani Majumdar
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Chen Ling
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael M Seidman
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
4
|
Arbour CA, Fay EM, McGouran JF, Imperiali B. Deploying solid-phase synthesis to access thymine-containing nucleoside analogs that inhibit DNA repair nuclease SNM1A. Org Biomol Chem 2023; 21:5873-5879. [PMID: 37417819 PMCID: PMC10529636 DOI: 10.1039/d3ob00836c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Nucleoside analogs show useful bioactive properties. A versatile solid-phase synthesis that readily enables the diversification of thymine-containing nucleoside analogs is presented. The utility of the approach is demonstrated with the preparation of a library of compounds for analysis with SNM1A, a DNA damage repair enzyme that contributes to cytotoxicity. This exploration provided the most promising nucleoside-derived inhibitor of SNM1A to date with an IC50 of 12.3 μM.
Collapse
Affiliation(s)
- Christine A Arbour
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Ellen M Fay
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St., Dublin 2, Ireland
| | - Joanna F McGouran
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St., Dublin 2, Ireland
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
5
|
Fay EM, Newton A, Berney M, El‐Sagheer AH, Brown T, McGouran JF. Two-Step Validation Approach for Tools To Study the DNA Repair Enzyme SNM1A. Chembiochem 2023; 24:e202200756. [PMID: 36917742 PMCID: PMC10962688 DOI: 10.1002/cbic.202200756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/16/2023]
Abstract
We report a two-step validation approach to evaluate the suitability of metal-binding groups for targeting DNA damage-repair metalloenzymes using model enzyme SNM1A. A fragment-based screening approach was first used to identify metal-binding fragments suitable for targeting the enzyme. Effective fragments were then incorporated into oligonucleotides using the copper-catalysed azide-alkyne cycloaddition reaction. These modified oligonucleotides were recognised by SNM1A at >1000-fold lower concentrations than their fragment counterparts. The exonuclease SNM1A is a key enzyme involved in the repair of interstrand crosslinks, a highly cytotoxic form of DNA damage. However, SNM1A and other enzymes of this class are poorly understood, as there is a lack of tools available to facilitate their study. Our novel approach of incorporating functional fragments into oligonucleotides is broadly applicable to generating modified oligonucleotide structures with high affinity for DNA damage-repair enzymes.
Collapse
Affiliation(s)
- Ellen M. Fay
- School of Chemistry and Trinity Biomedical Sciences InstituteTrinity College DublinThe University of DublinDublin 2D02 R590Ireland
| | - Ailish Newton
- School of Chemistry and Trinity Biomedical Sciences InstituteTrinity College DublinThe University of DublinDublin 2D02 R590Ireland
| | - Mark Berney
- School of Chemistry and Trinity Biomedical Sciences InstituteTrinity College DublinThe University of DublinDublin 2D02 R590Ireland
| | - Afaf H. El‐Sagheer
- Department of ChemistryUniversity of OxfordMansfield RoadOX1 3TAOxfordUK
| | - Tom Brown
- Department of ChemistryUniversity of OxfordMansfield RoadOX1 3TAOxfordUK
| | - Joanna F. McGouran
- School of Chemistry and Trinity Biomedical Sciences InstituteTrinity College DublinThe University of DublinDublin 2D02 R590Ireland
| |
Collapse
|
6
|
Zhang T, Rawal Y, Jiang H, Kwon Y, Sung P, Greenberg RA. Break-induced replication orchestrates resection-dependent template switching. Nature 2023; 619:201-208. [PMID: 37316655 PMCID: PMC10937050 DOI: 10.1038/s41586-023-06177-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 05/05/2023] [Indexed: 06/16/2023]
Abstract
Break-induced telomere synthesis (BITS) is a RAD51-independent form of break-induced replication that contributes to alternative lengthening of telomeres1,2. This homology-directed repair mechanism utilizes a minimal replisome comprising proliferating cell nuclear antigen (PCNA) and DNA polymerase-δ to execute conservative DNA repair synthesis over many kilobases. How this long-tract homologous recombination repair synthesis responds to complex secondary DNA structures that elicit replication stress remains unclear3-5. Moreover, whether the break-induced replisome orchestrates additional DNA repair events to ensure processivity is also unclear. Here we combine synchronous double-strand break induction with proteomics of isolated chromatin segments (PICh) to capture the telomeric DNA damage response proteome during BITS1,6. This approach revealed a replication stress-dominated response, highlighted by repair synthesis-driven DNA damage tolerance signalling through RAD18-dependent PCNA ubiquitination. Furthermore, the SNM1A nuclease was identified as the major effector of ubiquitinated PCNA-dependent DNA damage tolerance. SNM1A recognizes the ubiquitin-modified break-induced replisome at damaged telomeres, and this directs its nuclease activity to promote resection. These findings show that break-induced replication orchestrates resection-dependent lesion bypass, with SNM1A nuclease activity serving as a critical effector of ubiquitinated PCNA-directed recombination in mammalian cells.
Collapse
Affiliation(s)
- Tianpeng Zhang
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yashpal Rawal
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Haoyang Jiang
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Roger A Greenberg
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Somashekara SC, Muniyappa K. Dual targeting of Saccharomyces cerevisiae Pso2 to mitochondria and the nucleus, and its functional relevance in the repair of DNA interstrand crosslinks. G3 (BETHESDA, MD.) 2022; 12:jkac066. [PMID: 35482533 PMCID: PMC9157068 DOI: 10.1093/g3journal/jkac066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/15/2022] [Indexed: 11/12/2022]
Abstract
Repair of DNA interstrand crosslinks involves a functional interplay among different DNA surveillance and repair pathways. Previous work has shown that interstrand crosslink-inducing agents cause damage to Saccharomyces cerevisiae nuclear and mitochondrial DNA, and its pso2/snm1 mutants exhibit a petite phenotype followed by loss of mitochondrial DNA integrity and copy number. Complex as it is, the cause and underlying molecular mechanisms remains elusive. Here, by combining a wide range of approaches with in vitro and in vivo analyses, we interrogated the subcellular localization and function of Pso2. We found evidence that the nuclear-encoded Pso2 contains 1 mitochondrial targeting sequence and 2 nuclear localization signals (NLS1 and NLS2), although NLS1 resides within the mitochondrial targeting sequence. Further analysis revealed that Pso2 is a dual-localized interstrand crosslink repair protein; it can be imported into both nucleus and mitochondria and that genotoxic agents enhance its abundance in the latter. While mitochondrial targeting sequence is essential for mitochondrial Pso2 import, either NLS1 or NLS2 is sufficient for its nuclear import; this implies that the 2 nuclear localization signal motifs are functionally redundant. Ablation of mitochondrial targeting sequence abrogated mitochondrial Pso2 import, and concomitantly, raised its levels in the nucleus. Strikingly, mutational disruption of both nuclear localization signal motifs blocked the nuclear Pso2 import; at the same time, they enhanced its translocation into the mitochondria, consistent with the notion that the relationship between mitochondrial targeting sequence and nuclear localization signal motifs is competitive. However, the nuclease activity of import-deficient species of Pso2 was not impaired. The potential relevance of dual targeting of Pso2 into 2 DNA-bearing organelles is discussed.
Collapse
Affiliation(s)
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
8
|
Wu HY, Zheng Y, Laciak AR, Huang NN, Koszelak-Rosenblum M, Flint AJ, Carr G, Zhu G. Structure and Function of SNM1 Family Nucleases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1414:1-26. [PMID: 35708844 DOI: 10.1007/5584_2022_724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Three human nucleases, SNM1A, SNM1B/Apollo, and SNM1C/Artemis, belong to the SNM1 gene family. These nucleases are involved in various cellular functions, including homologous recombination, nonhomologous end-joining, cell cycle regulation, and telomere maintenance. These three proteins share a similar catalytic domain, which is characterized as a fused metallo-β-lactamase and a CPSF-Artemis-SNM1-PSO2 domain. SNM1A and SNM1B/Apollo are exonucleases, whereas SNM1C/Artemis is an endonuclease. This review contains a summary of recent research on SNM1's cellular and biochemical functions, as well as structural biology studies. In addition, protein structure prediction by the artificial intelligence program AlphaFold provides a different view of the proteins' non-catalytic domain features, which may be used in combination with current results from X-ray crystallography and cryo-EM to understand their mechanism more clearly.
Collapse
|
9
|
Berney M, T Manoj M, Fay EM, McGouran JF. 5'-Phosphorylation Increases the Efficacy of Nucleoside Inhibitors of the DNA Repair Enzyme SNM1A. ChemMedChem 2021; 17:e202100603. [PMID: 34905656 DOI: 10.1002/cmdc.202100603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/07/2021] [Indexed: 11/11/2022]
Abstract
Certain cancers exhibit upregulation of DNA interstrand crosslink repair pathways, which contributes to resistance to crosslinking chemotherapy drugs and poor prognoses. Inhibition of enzymes implicated in interstrand crosslink repair is therefore a promising strategy for improving the efficacy of cancer treatment. One such target enzyme is SNM1A, a zinc co-ordinating 5'-3' exonuclease. Previous studies have demonstrated the feasibility of inhibiting SNM1A using modified nucleosides appended with zinc-binding groups. In this work, we sought to develop more effective SNM1A inhibitors by exploiting interactions with the phosphate-binding pocket adjacent to the enzyme's active site, in addition to the catalytic zinc ions. A series of nucleoside derivatives bearing phosphate moieties at the 5'-position, as well as zinc-binding groups at the 3'-position, were prepared and tested in gel-electrophoresis and real-time fluorescence assays. As well as investigating novel zinc-binding groups, we found that incorporation of a 5'-phosphate dramatically increased the potency of the inhibitors.
Collapse
Affiliation(s)
- Mark Berney
- Trinity College Dublin: The University of Dublin Trinity College, Chemistry, IRELAND
| | - Manav T Manoj
- Trinity College Dublin: The University of Dublin Trinity College, Chemistry, IRELAND
| | - Ellen Mary Fay
- Trinity College Dublin: The University of Dublin Trinity College, Chemistry, IRELAND
| | | |
Collapse
|
10
|
Berney M, Doherty W, Jauslin WT, T Manoj M, Dürr EM, McGouran JF. Synthesis and evaluation of squaramide and thiosquaramide inhibitors of the DNA repair enzyme SNM1A. Bioorg Med Chem 2021; 46:116369. [PMID: 34482229 PMCID: PMC8607331 DOI: 10.1016/j.bmc.2021.116369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 11/24/2022]
Abstract
SNM1A is a zinc-dependent nuclease involved in the removal of interstrand crosslink lesions from DNA. Inhibition of interstrand crosslink repair enzymes such as SNM1A is a promising strategy for improving the efficacy of crosslinking chemotherapy drugs. Initial studies have demonstrated the feasibility of developing SNM1A inhibitors, but the full potential of this enzyme as a drug target has yet to be explored. Herein, the synthesis of a family of squaramide- and thiosquaramide-bearing nucleoside derivatives and their evaluation as SNM1A inhibitors is reported. A gel electrophoresis assay was used to identify nucleoside derivatives bearing an N-hydroxysquaramide or squaric acid moiety at the 3′-position, and a thymidine derivative bearing a 5′-thiosquaramide, as candidate SNM1A inhibitors. Quantitative IC50 determination showed that a thymidine derivative bearing a 5′-thiosquaramide was the most potent inhibitor, followed by a thymidine derivative bearing a 3′-squaric acid. UV–Vis titrations were carried out to evaluate the binding of the (thio)squaramides to zinc ions, allowing the order of inhibitory potency to be rationalised. The membrane permeability of the active inhibitors was investigated, with several compounds showing promise for future in vivo applications.
Collapse
Affiliation(s)
- Mark Berney
- School of Chemistry & Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Ireland
| | - William Doherty
- School of Chemistry & Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Ireland
| | - Werner Theodor Jauslin
- School of Chemistry & Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Ireland
| | - Manav T Manoj
- School of Chemistry & Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Ireland
| | - Eva-Maria Dürr
- School of Chemistry & Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Ireland
| | - Joanna Francelle McGouran
- School of Chemistry & Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Ireland.
| |
Collapse
|
11
|
Baddock HT, Yosaatmadja Y, Newman JA, Schofield CJ, Gileadi O, McHugh PJ. The SNM1A DNA repair nuclease. DNA Repair (Amst) 2020; 95:102941. [PMID: 32866775 PMCID: PMC7607226 DOI: 10.1016/j.dnarep.2020.102941] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 07/25/2020] [Indexed: 01/17/2023]
Abstract
Unrepaired, or misrepaired, DNA damage can contribute to the pathogenesis of a number of conditions, or disease states; thus, DNA damage repair pathways, and the proteins within them, are required for the safeguarding of the genome. Human SNM1A is a 5'-to-3' exonuclease that plays a role in multiple DNA damage repair processes. To date, most data suggest a role of SNM1A in primarily ICL repair: SNM1A deficient cells exhibit hypersensitivity to ICL-inducing agents (e.g. mitomycin C and cisplatin); and both in vivo and in vitro experiments demonstrate SNM1A and XPF-ERCC1 can function together in the 'unhooking' step of ICL repair. SNM1A further interacts with a number of other proteins that contribute to genome integrity outside canonical ICL repair (e.g. PCNA and CSB), and these may play a role in regulating SNM1As function, subcellular localisation, and post-translational modification state. These data also provide further insight into other DNA repair pathways to which SNM1A may contribute. This review aims to discuss all aspects of the exonuclease, SNM1A, and its contribution to DNA damage tolerance.
Collapse
Affiliation(s)
- Hannah T Baddock
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS, UK
| | | | - Joseph A Newman
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA, UK
| | | | - Opher Gileadi
- Structural Genomics Consortium, University of Oxford, OX3 7DQ, UK
| | - Peter J McHugh
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS, UK.
| |
Collapse
|
12
|
Doherty W, Dürr EM, Baddock HT, Lee SY, McHugh PJ, Brown T, Senge MO, Scanlan EM, McGouran JF. A hydroxamic-acid-containing nucleoside inhibits DNA repair nuclease SNM1A. Org Biomol Chem 2019; 17:8094-8105. [PMID: 31380542 PMCID: PMC6984127 DOI: 10.1039/c9ob01133a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/12/2019] [Indexed: 12/29/2022]
Abstract
Nine modified nucleosides, incorporating zinc-binding pharmacophores, have been synthesised and evaluated as inhibitors of the DNA repair nuclease SNM1A. The series included oxyamides, hydroxamic acids, hydroxamates, a hydrazide, a squarate ester and a squaramide. A hydroxamic acid-derived nucleoside inhibited the enzyme, offering a novel approach for potential therapeutic development through the use of rationally designed nucleoside derived inhibitors.
Collapse
Affiliation(s)
- William Doherty
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland.
| | - Eva-Maria Dürr
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland.
| | - Hannah T Baddock
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Sook Y Lee
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK and Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Peter J McHugh
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Tom Brown
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Mathias O Senge
- Molecular Medicine, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St James's Hospital, Dublin 8, Ireland
| | - Eoin M Scanlan
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland.
| | - Joanna F McGouran
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland.
| |
Collapse
|
13
|
Buzon B, Grainger R, Huang S, Rzadki C, Junop MS. Structure-specific endonuclease activity of SNM1A enables processing of a DNA interstrand crosslink. Nucleic Acids Res 2019; 46:9057-9066. [PMID: 30165656 PMCID: PMC6158701 DOI: 10.1093/nar/gky759] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/20/2018] [Indexed: 01/09/2023] Open
Abstract
DNA interstrand crosslinks (ICLs) covalently join opposing strands, blocking both replication and transcription, therefore making ICL-inducing compounds highly toxic and ideal anti-cancer agents. While incisions surrounding the ICL are required to remove damaged DNA, it is currently unclear which endonucleases are needed for this key event. SNM1A has been shown to play an important function in human ICL repair, however its suggested role has been limited to exonuclease activity and not strand incision. Here we show that SNM1A has endonuclease activity, having the ability to cleave DNA structures that arise during the initiation of ICL repair. In particular, this endonuclease activity cleaves single-stranded DNA. Given that unpaired DNA regions occur 5′ to an ICL, these findings suggest SNM1A may act as either an endonuclease and/or exonuclease during ICL repair. This finding is significant as it expands the potential role of SNM1A in ICL repair.
Collapse
Affiliation(s)
- Beverlee Buzon
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster, University, Hamilton, Ontario L8N 3Z5, Canada.,Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Ryan Grainger
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Simon Huang
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster, University, Hamilton, Ontario L8N 3Z5, Canada
| | - Cameron Rzadki
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster, University, Hamilton, Ontario L8N 3Z5, Canada
| | - Murray S Junop
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster, University, Hamilton, Ontario L8N 3Z5, Canada.,Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario N6A 5C1, Canada
| |
Collapse
|
14
|
Dürr E, Doherty W, Lee SY, El‐Sagheer AH, Shivalingam A, McHugh PJ, Brown T, McGouran JF. Squaramide-Based 5'-Phosphate Replacements Bind to the DNA Repair Exonuclease SNM1A. ChemistrySelect 2018; 3:12824-12829. [PMID: 31414040 PMCID: PMC6685075 DOI: 10.1002/slct.201803375] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/19/2018] [Indexed: 12/26/2022]
Abstract
Phosphate groups are often crucial to biological activity and interactions of oligonucleotides, but confer poor membrane permeability. In addition, the group's lability to enzymatic hydrolysis is an obstacle to its use in therapeutics and in biological tools. We present the synthesis of N-oxyamide and squaramide modifications at the 5'-end of oligonucleotides as phosphate replacements and their biological evaluation using the 5'-exonuclease SNM1A. The squaryl diamide modification showed minimal recognition as a 5'-phosphate mimic; however, modest inhibition of SNM1A, postulated to occur through metal coordination at the active site, was observed. Their facile incorporation after solid-phase synthesis and recognition by the exonuclease makes squaryl diamides attractive neutral 5'-phosphate replacements for oligonucleotides. This work is the first example of squaryl diamide modifications at the 5'-terminal position of oligonucleotides and of the potential use of modified oligonucleotides to bind to the metal center of SNM1A.
Collapse
Affiliation(s)
- Eva‐Maria Dürr
- School of ChemistryTrinity Biomedical Sciences InstituteTrinity College Dublin152-160 Pearse St.Dublin 2Ireland
| | - William Doherty
- School of ChemistryTrinity Biomedical Sciences InstituteTrinity College Dublin152-160 Pearse St.Dublin 2Ireland
| | - Sook Y. Lee
- Department of OncologyWeatherall Institute of Molecular MedicineUniversity of Oxford, John Radcliffe HospitalOxford OX3 9DSUK
- Department of ChemistryUniversity of Oxford12 Mansfield RoadOxford OX1 3TAUK
| | - Afaf H. El‐Sagheer
- Department of ChemistryUniversity of Oxford12 Mansfield RoadOxford OX1 3TAUK
- Chemistry Branch, Department of Science and MathematicsFaculty of Petroleum and Mining Engineering, Suez UniversitySuez43721Egypt
| | - Arun Shivalingam
- Department of ChemistryUniversity of Oxford12 Mansfield RoadOxford OX1 3TAUK
| | - Peter J. McHugh
- Department of OncologyWeatherall Institute of Molecular MedicineUniversity of Oxford, John Radcliffe HospitalOxford OX3 9DSUK
| | - Tom Brown
- Department of ChemistryUniversity of Oxford12 Mansfield RoadOxford OX1 3TAUK
| | - Joanna F. McGouran
- School of ChemistryTrinity Biomedical Sciences InstituteTrinity College Dublin152-160 Pearse St.Dublin 2Ireland
| |
Collapse
|
15
|
SNM1B/Apollo in the DNA damage response and telomere maintenance. Oncotarget 2018; 8:48398-48409. [PMID: 28430596 PMCID: PMC5564657 DOI: 10.18632/oncotarget.16864] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/27/2017] [Indexed: 01/26/2023] Open
Abstract
hSNM1B/Apollo is a member of the highly conserved β-CASP subgroup within the MBL superfamily of proteins. It interacts with several DNA repair proteins and functions within the Fanconi anemia pathway in response to DNA interstrand crosslinks. As a shelterin accessory protein, hSNM1B/Apollo is also vital for the generation and maintenance of telomeric overhangs. In this review, we will summarize studies on hSNM1B/Apollo's function, including its contribution to DNA damage signaling, replication fork maintenance, control of topological stress and telomere protection. Furthermore, we will highlight recent studies illustrating hSNM1B/Apollo's putative role in human disease.
Collapse
|
16
|
Thongthip S, Bellani M, Gregg SQ, Sridhar S, Conti BA, Chen Y, Seidman MM, Smogorzewska A. Fan1 deficiency results in DNA interstrand cross-link repair defects, enhanced tissue karyomegaly, and organ dysfunction. Genes Dev 2016; 30:645-59. [PMID: 26980189 PMCID: PMC4803051 DOI: 10.1101/gad.276261.115] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Thongthip et al. describe a FANCD2/FANCI-associated nuclease 1 (Fan1)-deficient mouse and show that FAN1 is required for cellular and organismal resistance to DNA interstrand cross-links. Karyomegaly becomes prominent in the kidneys and livers of Fan1-deficient mice with age, and mice develop liver dysfunction. Deficiency of FANCD2/FANCI-associated nuclease 1 (FAN1) in humans leads to karyomegalic interstitial nephritis (KIN), a rare hereditary kidney disease characterized by chronic renal fibrosis, tubular degeneration, and characteristic polyploid nuclei in multiple tissues. The mechanism of how FAN1 protects cells is largely unknown but is thought to involve FAN1's function in DNA interstrand cross-link (ICL) repair. Here, we describe a Fan1-deficient mouse and show that FAN1 is required for cellular and organismal resistance to ICLs. We show that the ubiquitin-binding zinc finger (UBZ) domain of FAN1, which is needed for interaction with FANCD2, is not required for the initial rapid recruitment of FAN1 to ICLs or for its role in DNA ICL resistance. Epistasis analyses reveal that FAN1 has cross-link repair activities that are independent of the Fanconi anemia proteins and that this activity is redundant with the 5′–3′ exonuclease SNM1A. Karyomegaly becomes prominent in kidneys and livers of Fan1-deficient mice with age, and mice develop liver dysfunction. Treatment of Fan1-deficient mice with ICL-inducing agents results in pronounced thymic and bone marrow hypocellularity and the disappearance of c-kit+ cells. Our results provide insight into the mechanism of FAN1 in ICL repair and demonstrate that the Fan1 mouse model effectively recapitulates the pathological features of human FAN1 deficiency.
Collapse
Affiliation(s)
- Supawat Thongthip
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York 10065, USA
| | - Marina Bellani
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Siobhan Q Gregg
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York 10065, USA
| | - Sunandini Sridhar
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York 10065, USA
| | - Brooke A Conti
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York 10065, USA
| | - Yanglu Chen
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York 10065, USA
| | - Michael M Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
17
|
Abstract
A critical step in DNA interstrand cross-link repair is the programmed collapse of replication forks that have stalled at an ICL. This event is regulated by the Fanconi anemia pathway, which suppresses bone marrow failure and cancer. In this perspective, we focus on the structure of forks that have stalled at ICLs, how these structures might be incised by endonucleases, and how incision is regulated by the Fanconi anemia pathway.
Collapse
Affiliation(s)
- Jieqiong Zhang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, United States
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, United States; Howard Hughes Medical Institute.
| |
Collapse
|
18
|
Munari FM, Revers LF, Cardone JM, Immich BF, Moura DJ, Guecheva TN, Bonatto D, Laurino JP, Saffi J, Brendel M, Henriques JAP. Sak1 kinase interacts with Pso2 nuclease in response to DNA damage induced by interstrand crosslink-inducing agents in Saccharomyces cerevisiae. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 130:241-53. [PMID: 24362320 DOI: 10.1016/j.jphotobiol.2013.11.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/20/2013] [Accepted: 11/27/2013] [Indexed: 11/29/2022]
Abstract
By isolating putative binding partners through the two-hybrid system (THS) we further extended the characterization of the specific interstrand cross-link (ICL) repair gene PSO2 of Saccharomyces cerevisiae. Nine fusion protein products were isolated for Pso2p using THS, among them the Sak1 kinase, which interacted with the C-terminal β-CASP domain of Pso2p. Comparison of mutagen-sensitivity phenotypes of pso2Δ, sak1Δ and pso2Δsak1Δ disruptants revealed that SAK1 is necessary for complete WT-like repair. The epistatic interaction of both mutant alleles suggests that Sak1p and Pso2p act in the same pathway of controlling sensitivity to DNA-damaging agents. We also observed that Pso2p is phosphorylated by Sak1 kinase in vitro and co-immunoprecipitates with Sak1p after 8-MOP+UVA treatment. Survival data after treatment of pso2Δ, yku70Δ and yku70Δpso2Δ with nitrogen mustard, PSO2 and SAK1 with YKU70 or DNL4 single-, double- and triple mutants with 8-MOP+UVA indicated that ICL repair is independent of YKu70p and DNL4p in S. cerevisiae. Furthermore, a non-epistatic interaction was observed between MRE11, PSO2 and SAK1 genes after ICL induction, indicating that their encoded proteins act on the same substrate, but in distinct repair pathways. In contrast, an epistatic interaction was observed for PSO2 and RAD52, PSO2 and RAD50, PSO2 and XRS2 genes in 8-MOP+UVA treated exponentially growing cells.
Collapse
Affiliation(s)
- Fernanda M Munari
- Biotechnology Center, Federal University of Rio Grande do Sul (UFRGS), 91507-970 Porto Alegre, RS, Brazil
| | - Luis F Revers
- Biotechnology Center, Federal University of Rio Grande do Sul (UFRGS), 91507-970 Porto Alegre, RS, Brazil
| | - Jacqueline M Cardone
- Biotechnology Center, Federal University of Rio Grande do Sul (UFRGS), 91507-970 Porto Alegre, RS, Brazil
| | - Bruna F Immich
- Biotechnology Center, Federal University of Rio Grande do Sul (UFRGS), 91507-970 Porto Alegre, RS, Brazil; Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, RS, Brazil
| | - Dinara J Moura
- Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, RS, Brazil
| | - Temenouga N Guecheva
- Biotechnology Center, Federal University of Rio Grande do Sul (UFRGS), 91507-970 Porto Alegre, RS, Brazil; Department of Biophysics, Federal University of Rio Grande do Sul (UFRGS), 91507-970 Porto Alegre, RS, Brazil
| | - Diego Bonatto
- Biotechnology Center, Federal University of Rio Grande do Sul (UFRGS), 91507-970 Porto Alegre, RS, Brazil
| | - Jomar P Laurino
- Biotechnology Institute, University of Caxias do Sul (UCS), 95070-560 Caxias do Sul, RS, Brazil
| | - Jenifer Saffi
- Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, RS, Brazil
| | - Martin Brendel
- Department of Biological Sciences, State University of Santa Cruz (UESC), 45662-900 Ilhéus, BA, Brazil
| | - João A P Henriques
- Biotechnology Center, Federal University of Rio Grande do Sul (UFRGS), 91507-970 Porto Alegre, RS, Brazil; Department of Biophysics, Federal University of Rio Grande do Sul (UFRGS), 91507-970 Porto Alegre, RS, Brazil; Biotechnology Institute, University of Caxias do Sul (UCS), 95070-560 Caxias do Sul, RS, Brazil.
| |
Collapse
|
19
|
Munari FM, Guecheva TN, Bonatto D, Henriques JAP. New features on Pso2 protein family in DNA interstrand cross-link repair and in the maintenance of genomic integrity in Saccharomyces cerevisiae. Fungal Genet Biol 2013; 60:122-32. [PMID: 24076078 DOI: 10.1016/j.fgb.2013.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 09/11/2013] [Accepted: 09/15/2013] [Indexed: 11/27/2022]
Abstract
Pso2 protein, a member of the highly conserved metallo-β-lactamase (MBL) super family of nucleases, plays a central role in interstrand crosslink repair (ICL) in yeast. Pso2 protein is the founder member of a distinct group within the MBL superfamily, called β-CASP family. Three mammalian orthologs of this protein that act on DNA were identified: SNM1A, SNM1B/Apollo and SNM1C/Artemis. Yeast Pso2 and all three mammalian orthologs proteins have been shown to possess nuclease activity. Besides Pso2, ICL repair involves proteins of several DNA repair pathways. Over the last years, new homologs for human proteins have been identified in yeast. In this review, we will focus on studies clarifying the function of Pso2 protein during ICL repair in yeast, emphasizing the contribution of Brazilian research groups in this topic. New sub-pathways in the mechanisms of ICL repair, such as recently identified conserved Fanconi Anemia pathway in yeast as well as a contribution of non-homologous end joining are discussed.
Collapse
Affiliation(s)
- Fernanda Mosena Munari
- Biotechnology Center, Federal University of Rio Grande do Sul (UFRGS), 91507-970 Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
20
|
Dominski Z, Carpousis AJ, Clouet-d'Orval B. Emergence of the β-CASP ribonucleases: highly conserved and ubiquitous metallo-enzymes involved in messenger RNA maturation and degradation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:532-51. [PMID: 23403287 DOI: 10.1016/j.bbagrm.2013.01.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/18/2013] [Accepted: 01/22/2013] [Indexed: 01/05/2023]
Abstract
The β-CASP ribonucleases, which are found in the three domains of life, have in common a core of 460 residues containing seven conserved sequence motifs involved in the tight binding of two catalytic zinc ions. A hallmark of these enzymes is their ability to catalyze both endo- and exo-ribonucleolytic degradation. Exo-ribonucleolytic degradation proceeds in the 5' to 3' direction and is sensitive to the phosphorylation state of the 5' end of a transcript. Recent phylogenomic analyses have shown that the β-CASP ribonucleases can be partitioned into two major subdivisions that correspond to orthologs of eukaryal CPSF73 and bacterial RNase J. We discuss the known functions of the CPSF73 and RNase J orthologs, their association into complexes, and their structure as it relates to mechanism of action. Eukaryal CPSF73 is part of a large multiprotein complex that is involved in the maturation of the 3' end of RNA Polymerase II transcripts and the polyadenylation of messenger RNA. RNase J1 and J2 are paralogs in Bacillus subtilis that are involved in the degradation of messenger RNA and the maturation of non-coding RNA. RNase J1 and J2 co-purify as a heteromeric complex and there is recent evidence that they interact with other enzymes to form a bacterial RNA degradosome. Finally, we speculate on the evolutionary origin of β-CASP ribonucleases and on their functions in Archaea. Orthologs of CPSF73 with endo- and exo-ribonuclease activity are strictly conserved throughout the archaea suggesting a role for these enzymes in the maturation and/or degradation of messenger RNA. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Zbigniew Dominski
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | | | | |
Collapse
|
21
|
Cruz LA, Guecheva TN, Bonato D, Henriques JAP. Relationships between chromatin remodeling and DNA damage repair induced by 8-methoxypsoralen and UVA in yeast Saccharomyces cerevisiae. Genet Mol Biol 2012; 35:1052-9. [PMID: 23412648 PMCID: PMC3571434 DOI: 10.1590/s1415-47572012000600021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Eukaryotic cells have developed mechanisms to prevent genomic instability, such as DNA damage detection and repair, control of cell cycle progression and cell death induction. The bifunctional compound furocumarin 8-methoxypsoralen (8-MOP) is widely used in the treatment of various inflammatory skin diseases. In this review, we summarize recent data about the role of chromatin remodeling in the repair of DNA damage induced by treatment with 8-methoxypsoralen plus UVA (8-MOP+UVA), focusing on repair proteins in budding yeast Saccharomyces cerevisiae, an established model system for studying DNA repair pathways. The interstrand crosslinks (ICL) formed by the 8-MOP+UVA treatment are detrimental lesions that can block transcription and replication, leading to cell death if not repaired. Current data show the involvement of different pathways in ICL processing, such as nucleotide excision repair (NER), base excision repair (BER), translesion repair (TLS) and double-strand break repair. 8-MOP+UVA treatment in yeast enhances the expression of genes involved in the DNA damage response, double strand break repair by homologous replication, as well as genes related to cell cycle regulation. Moreover, alterations in the expression of subtelomeric genes and genes related to chromatin remodeling are consistent with structural modifications of chromatin relevant to DNA repair. Taken together, these findings indicate a specific profile in 8-MOP+UVA responses related to chromatin remodeling and DNA repair.
Collapse
Affiliation(s)
- Lavínia Almeida Cruz
- Programa de Pós-Gradução em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
22
|
Abstract
The protein Snm1B plays a key role in interstrand crosslink (ICL) repair. In a yeast two-hybrid screen we identified the protein PSF2 to bind Snm1B. PSF2 is a member of the GINS complex involved in replication initiation and elongation, and is known to play a role in ICL repair. Snm1B was shown to bind PSF2 in human cells through two regions, strongly to a 144 amino acid N-terminal region and weakly to a second smaller 37 amino acid C-terminal region. Ectopic expression of PSF2 increased the amount of Mus81, a protein component of the endonucleolytic complex involved in ICL repair, co-immunoprecipitating with Snm1B. Moreover, deleting the N-terminal, but not C-terminal region of Snm1B reduced the amount of co-immunoprecipitated Mus81. Conversely, the telomere-binding protein TRF2 competed with PSF2 for binding to the C-terminus of Snm1B, and deletion of this region, but not the N-terminal region, reduced Snm1B chromatin association. We speculate that the N-terminal region of Snm1B forms a complex containing PSF2 and Mus81, while the C-terminal region is important for PSF2-mediated chromatin association.
Collapse
Affiliation(s)
- Jay R. Stringer
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Christopher M. Counter
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
23
|
Sengerová B, Allerston CK, Abu M, Lee SY, Hartley J, Kiakos K, Schofield CJ, Hartley JA, Gileadi O, McHugh PJ. Characterization of the human SNM1A and SNM1B/Apollo DNA repair exonucleases. J Biol Chem 2012; 287:26254-67. [PMID: 22692201 PMCID: PMC3406710 DOI: 10.1074/jbc.m112.367243] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Human SNM1A and SNM1B/Apollo have both been implicated in the repair of DNA interstrand cross-links (ICLs) by cellular studies, and SNM1B is also required for telomere protection. Here, we describe studies on the biochemical characterization of the SNM1A and SNM1B proteins. The results reveal some fundamental differences in the mechanisms of the two proteins. Both SNM1A and SNM1B digest double-stranded and single-stranded DNA with a 5'-to-3' directionality in a reaction that is stimulated by divalent cations, and both nucleases are inhibited by the zinc chelator o-phenanthroline. We find that SNM1A has greater affinity for single-stranded DNA over double-stranded DNA that is not observed with SNM1B. Although both proteins demonstrate a low level of processivity on low molecular weight DNA oligonucleotide substrates, when presented with high molecular weight DNA, SNM1A alone is rendered much more active, being capable of digesting kilobase-long stretches of DNA. Both proteins can digest past ICLs induced by the non-distorting minor groove cross-linking agent SJG-136, albeit with SNM1A showing a greater capacity to achieve this. This is consistent with the proposal that SNM1A and SNM1B might exhibit some redundancy in ICL repair. Together, our work establishes differences in the substrate selectivities of SNM1A and SNM1B that are likely to be relevant to their in vivo roles and which might be exploited in the development of selective inhibitors.
Collapse
Affiliation(s)
- Blanka Sengerová
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sengerová B, Wang AT, McHugh PJ. Orchestrating the nucleases involved in DNA interstrand cross-link (ICL) repair. Cell Cycle 2011; 10:3999-4008. [PMID: 22101340 DOI: 10.4161/cc.10.23.18385] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
DNA interstrand cross-links (ICLs) pose a significant threat to genomic and cellular integrity by blocking essential cellular processes, including replication and transcription. In mammalian cells, much ICL repair occurs in association with DNA replication during S phase, following the stalling of a replication fork at the block caused by an ICL lesion. Here, we review recent work showing that the XPF-ERCC1 endonuclease and the hSNM1A exonuclease act in the same pathway, together with SLX4, to initiate ICL repair, with the MUS81-EME1 fork incision activity becoming important in the absence of the XPF-SNM1A-SLX4-dependent pathway. Another nuclease, the Fanconi anemia-associated nuclease (FAN1), has recently been implicated in the repair of ICLs, and we discuss the possible ways in which the activities of different nucleases at the ICL-stalled replication fork may be coordinated. In relation to this, we briefly speculate on the possible role of SLX4, which contains XPF and MUS81- interacting domains, in the coordination of ICL repair nucleases.
Collapse
Affiliation(s)
- Blanka Sengerová
- Department of Oncology, Weatherall Institute of Molecular Medicine,University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | | |
Collapse
|
25
|
Abstract
Many types of DNA structures are generated in response to DNA damage, repair and recombination that require processing via specialized nucleases. DNA hairpins represent one such class of structures formed during V(D)J recombination, palindrome extrusion, DNA transposition and some types of double-strand breaks. Here we present biochemical and genetic evidence to suggest that Pso2 is a robust DNA hairpin opening nuclease in budding yeast. Pso2 (SNM1A in mammals) belongs to a small group of proteins thought to function predominantly during interstrand crosslink (ICL) repair. In this study, we characterized the nuclease activity of Pso2 toward a variety of DNA substrates. Unexpectedly, Pso2 was found to be an efficient, structure-specific DNA hairpin opening endonuclease. This activity was further shown to be required in vivo for repair of chromosomal breaks harboring closed hairpin ends. These findings provide the first evidence that Pso2 may function outside ICL repair and open the possibility that Pso2 may function at least in part during ICL repair by processing DNA intermediates including DNA hairpins or hairpin-like structures.
Collapse
Affiliation(s)
- Tracy Tiefenbach
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | |
Collapse
|
26
|
Wang AT, Sengerová B, Cattell E, Inagawa T, Hartley JM, Kiakos K, Burgess-Brown NA, Swift LP, Enzlin JH, Schofield CJ, Gileadi O, Hartley JA, McHugh PJ. Human SNM1A and XPF-ERCC1 collaborate to initiate DNA interstrand cross-link repair. Genes Dev 2011; 25:1859-70. [PMID: 21896658 PMCID: PMC3175721 DOI: 10.1101/gad.15699211] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 07/20/2011] [Indexed: 12/24/2022]
Abstract
One of the major DNA interstrand cross-link (ICL) repair pathways in mammalian cells is coupled to replication, but the mechanistic roles of the critical factors involved remain largely elusive. Here, we show that purified human SNM1A (hSNM1A), which exhibits a 5'-3' exonuclease activity, can load from a single DNA nick and digest past an ICL on its substrate strand. hSNM1A-depleted cells are ICL-sensitive and accumulate replication-associated DNA double-strand breaks (DSBs), akin to ERCC1-depleted cells. These DSBs are Mus81-induced, indicating that replication fork cleavage by Mus81 results from the failure of the hSNM1A- and XPF-ERCC1-dependent ICL repair pathway. Our results reveal how collaboration between hSNM1A and XPF-ERCC1 is necessary to initiate ICL repair in replicating human cells.
Collapse
Affiliation(s)
- Anderson T. Wang
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Blanka Sengerová
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Emma Cattell
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Takabumi Inagawa
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Janet M. Hartley
- Cancer Research UK Drug–DNA Interactions Research Group, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Konstantinos Kiakos
- Cancer Research UK Drug–DNA Interactions Research Group, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | | | - Lonnie P. Swift
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Jacqueline H. Enzlin
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | | | - Opher Gileadi
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - John A. Hartley
- Cancer Research UK Drug–DNA Interactions Research Group, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Peter J. McHugh
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| |
Collapse
|
27
|
Ho TV, Guainazzi A, Derkunt SB, Enoiu M, Schärer OD. Structure-dependent bypass of DNA interstrand crosslinks by translesion synthesis polymerases. Nucleic Acids Res 2011; 39:7455-64. [PMID: 21666254 PMCID: PMC3177197 DOI: 10.1093/nar/gkr448] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
DNA interstrand crosslinks (ICLs), inhibit DNA metabolism by covalently linking two strands of DNA and are formed by antitumor agents such as cisplatin and nitrogen mustards. Multiple complex repair pathways of ICLs exist in humans that share translesion synthesis (TLS) past a partially processed ICL as a common step. We have generated site-specific major groove ICLs and studied the ability of Y-family polymerases and Pol ζ to bypass ICLs that induce different degrees of distortion in DNA. Two main factors influenced the efficiency of ICL bypass: the length of the dsDNA flanking the ICL and the length of the crosslink bridging two bases. Our study shows that ICLs can readily be bypassed by TLS polymerases if they are appropriately processed and that the structure of the ICL influences which polymerases are able to read through it.
Collapse
Affiliation(s)
- The Vinh Ho
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | | | | | | | | |
Collapse
|
28
|
Akhter S, Lam YC, Chang S, Legerski RJ. The telomeric protein SNM1B/Apollo is required for normal cell proliferation and embryonic development. Aging Cell 2010; 9:1047-56. [PMID: 20854421 DOI: 10.1111/j.1474-9726.2010.00631.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Conserved metallo β-Lactamase and β-CASP (CPSF-Artemis-Snm1-Pso2) domain nuclease family member SNM1B/Apollo is a shelterin-associated protein that localizes to telomeres through its interaction with TRF2. To study its in vivo role, we generated a knockout of SNM1B/Apollo in a mouse model. Snm1B/Apollo homozygous null mice die at birth with developmental delay and defects in multiple organ systems. Cell proliferation defects were observed in Snm1B/Apollo mutant mouse embryonic fibroblasts (MEFs) owing to high levels of telomeric end-to-end fusions. Deficiency of the nonhomologous end-joining (NHEJ) factor Ku70, but not p53, rescued the developmental defects and lethality observed in Snm1B/Apollo mutant mice as well as the impaired proliferation of Snm1B/Apollo-deficient MEFs. These findings demonstrate that SNM1B/Apollo is required to protect telomeres against NHEJ-mediated repair, which results in genomic instability and the consequent multi-organ developmental failure. Although Snm1B/Apollo-deficient MEFs exhibited high levels of apoptosis, abrogation of p53-dependent programmed cell death did not rescue the multi-organ developmental failure in the mice.
Collapse
Affiliation(s)
- Shamima Akhter
- Department of Genetics, The UT MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
29
|
Ye J, Lenain C, Bauwens S, Rizzo A, Saint-Léger A, Poulet A, Benarroch D, Magdinier F, Morere J, Amiard S, Verhoeyen E, Britton S, Calsou P, Salles B, Bizard A, Nadal M, Salvati E, Sabatier L, Wu Y, Biroccio A, Londoño-Vallejo A, Giraud-Panis MJ, Gilson E. TRF2 and apollo cooperate with topoisomerase 2alpha to protect human telomeres from replicative damage. Cell 2010; 142:230-42. [PMID: 20655466 DOI: 10.1016/j.cell.2010.05.032] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 12/21/2009] [Accepted: 05/17/2010] [Indexed: 10/19/2022]
Abstract
Human telomeres are protected from DNA damage by a nucleoprotein complex that includes the repeat-binding factor TRF2. Here, we report that TRF2 regulates the 5' exonuclease activity of its binding partner, Apollo, a member of the metallo-beta-lactamase family that is required for telomere integrity during S phase. TRF2 and Apollo also suppress damage to engineered interstitial telomere repeat tracts that were inserted far away from chromosome ends. Genetic data indicate that DNA topoisomerase 2alpha acts in the same pathway of telomere protection as TRF2 and Apollo. Moreover, TRF2, which binds preferentially to positively supercoiled DNA substrates, together with Apollo, negatively regulates the amount of TOP1, TOP2alpha, and TOP2beta at telomeres. Our data are consistent with a model in which TRF2 and Apollo relieve topological stress during telomere replication. Our work also suggests that cellular senescence may be caused by topological problems that occur during the replication of the inner portion of telomeres.
Collapse
Affiliation(s)
- Jing Ye
- Shanghai Ruijin Hospital, School of Medicine of Shanghai Jiaotong University, 200025 Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Cattell E, Sengerová B, McHugh PJ. The SNM1/Pso2 family of ICL repair nucleases: from yeast to man. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:635-645. [PMID: 20175117 DOI: 10.1002/em.20556] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Efficient interstrand crosslink (ICL) repair in yeast depends on the Pso2/Snm1 protein. Pso2 is a member of the highly conserved metallo-beta-lactamase structural family of nucleases. Mammalian cells possess three SNM1/Pso2 related proteins, SNM1A, SNM1B/Apollo, and SNM1C/Artemis. Evidence that SNM1A and SNM1B contribute to ICL repair is mounting, whereas Artemis appears to primarily contribute to non-ICL repair pathways, particularly some double-strand break repair events. Yeast Pso2 and all three mammalian SNM1-family proteins have been shown to possess nuclease activity. Here, we review the biochemical, genetic, and cellular evidence for the SNM1 family as DNA repair factors, focusing on ICL repair.
Collapse
Affiliation(s)
- Emma Cattell
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | | | | |
Collapse
|
31
|
McVey M. Strategies for DNA interstrand crosslink repair: insights from worms, flies, frogs, and slime molds. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:646-658. [PMID: 20143343 DOI: 10.1002/em.20551] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
DNA interstrand crosslinks (ICLs) are complex lesions that covalently link both strands of the DNA double helix and impede essential cellular processes such as DNA replication and transcription. Recent studies suggest that multiple repair pathways are involved in their removal. Elegant genetic analysis has demonstrated that at least three distinct sets of pathways cooperate in the repair and/or bypass of ICLs in budding yeast. Although the mechanisms of ICL repair in mammals appear similar to those in yeast, important differences have been documented. In addition, mammalian crosslink repair requires other repair factors, such as the Fanconi anemia proteins, whose functions are poorly understood. Because many of these proteins are conserved in simpler metazoans, nonmammalian models have become attractive systems for studying the function(s) of key crosslink repair factors. This review discusses the contributions that various model organisms have made to the field of ICL repair. Specifically, it highlights how studies performed with C. elegans, Drosophila, Xenopus, and the social amoeba Dictyostelium serve to complement those from bacteria, yeast, and mammals. Together, these investigations have revealed that although the underlying themes of ICL repair are largely conserved, the complement of DNA repair proteins utilized and the ways in which each of the proteins is used can vary substantially between different organisms.
Collapse
Affiliation(s)
- Mitch McVey
- Department of Biology, Tufts University, Medford, Massachusetts 02155, USA.
| |
Collapse
|
32
|
Pawelczak KS, Turchi JJ. Purification and characterization of exonuclease-free Artemis: Implications for DNA-PK-dependent processing of DNA termini in NHEJ-catalyzed DSB repair. DNA Repair (Amst) 2010; 9:670-7. [PMID: 20347402 PMCID: PMC2883643 DOI: 10.1016/j.dnarep.2010.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 02/12/2010] [Accepted: 03/01/2010] [Indexed: 11/24/2022]
Abstract
Artemis is a member of the beta-CASP family of nucleases in the metallo-beta-lactamase superfamily of hydrolases. Artemis has been demonstrated to be involved in V(D)J-recombination and in the NHEJ-catalyzed repair of DNA DSBs. In vitro, both DNA-PK independent 5'-3' exonuclease activities and DNA-PK dependent endonuclease activity have been attributed to Artemis, though mutational analysis of the Artemis active site only disrupts endonuclease activity. This suggests that either the enzyme contains two different active sites, or the exonuclease activity is not intrinsic to the Artemis polypeptide. To distinguish between these possibilities, we sought to determine if it was possible to biochemically separate Artemis endonuclease activity from exonuclease activity. Recombinant [His](6)-Artemis was expressed in a Baculovirus insect-cell expression system and isolated using a three-column purification methodology. Exonuclease and endonuclease activities, the ability to be phosphorylated by DNA-PK, and Artemis antibody reactivity was monitored throughout the purification and to characterize final pools of protein preparation. Results demonstrated the co-elution of exonuclease and endonuclease activities on a Ni-agarose affinity column but separation of the two enzymatic activities upon fractionation on a hydroxyapatite column. An exonuclease-free fraction of Artemis was obtained that retained DNA-PK dependent endonuclease activity, was phosphorylated by DNA-PK and reacted with an Artemis specific antibody. These data demonstrate that the exonuclease activity thought to be intrinsic to Artemis can be biochemically separated from the Artemis endonuclease.
Collapse
Affiliation(s)
- Katherine S. Pawelczak
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46220
| | - John J. Turchi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46220
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46220
| |
Collapse
|
33
|
Abstract
The archetypical member of the SNM1 gene family was discovered 30 years ago in the budding yeast Saccharomyces cerevisiae. This small but ubiquitous gene family is characterized by metallo-beta-lactamase and beta-CASP domains, which together have been demonstrated to comprise a nuclease activity. Three mammalian members of this family, SNM1A, SNM1B/Apollo and Artemis, have been demonstrated to play surprisingly divergent roles in cellular metabolism. These pathways include variable (diversity) joining recombination, nonhomologous end-joining of double-strand breaks, DNA damage and mitotic cell cycle checkpoints, telomere maintenance and protein ubiquitination. Not all of these functions are consistent with a model in which these proteins act only as nucleases, and indicate that the SNM1 gene family encodes multifunctional products that can act in diverse biochemical pathways. In this article we discuss the various functions of SNM1A, SNM1B/Apollo and Artemis.
Collapse
Affiliation(s)
- Yiyi Yan
- Department of Genetics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Shamima Akhter
- Department of Genetics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Xiaoshan Zhang
- Department of Genetics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Randy Legerski
- Department of Genetics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| |
Collapse
|
34
|
Yang K, Moldovan GL, D'Andrea AD. RAD18-dependent recruitment of SNM1A to DNA repair complexes by a ubiquitin-binding zinc finger. J Biol Chem 2010; 285:19085-91. [PMID: 20385554 DOI: 10.1074/jbc.m109.100032] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SNM1A is a member of the SNM1 family of nucleases required for cellular processing of interstrand DNA crosslinks (ICLs). Little is known about the molecular function of SNM1A, in terms of its recruitment to ICL lesions or its DNA damage processing activity. Here we show that SNM1A contains a functional PIP box (PCNA-interacting protein box) and a UBZ (ubiquitin binding zinc finger), required for assembly of SNM1A into nuclear focus. Moreover, RAD18-dependent monoubiquitination of PCNA is required for Mitomycin C and Ultraviolet Light inducible SNM1A nuclear focus assembly. Taken together, our results identify a novel RAD18-PCNA(Ub)-SNM1A pathway required for nuclear focus formation and ICL resistance.
Collapse
Affiliation(s)
- Kailin Yang
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
35
|
Clouet-d'Orval B, Rinaldi D, Quentin Y, Carpousis AJ. Euryarchaeal beta-CASP proteins with homology to bacterial RNase J Have 5'- to 3'-exoribonuclease activity. J Biol Chem 2010; 285:17574-83. [PMID: 20375016 DOI: 10.1074/jbc.m109.095117] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the Archaea only a handful of ribonucleases involved in RNA processing and degradation have been characterized. One potential group of archaeal ribonucleases are homologues of the bacterial RNase J family, which have a beta-CASP metallo-beta-lactamase fold. Here we show that beta-CASP proteins encoded in the genomes of the hyperthermophilic Euryarchaeota Pyrococcus abyssi and Thermococcus kodakaraensis are processive exoribonucleases with a 5' end dependence and a 5' to 3' directionality. We named these enzymes Pab-RNase J and Tk-RNase J, respectively. RNAs with 5'-monophosphate or 5'-hydroxyl ends are preferred substrates of Pab-RNase J, whereas circularized RNA is resistant to Pab-RNase J activity. Degradation of a 3' end-labeled synthetic RNA in which an internal nucleoside is substituted by three ethylene glycol units generates intermediates demonstrating 5' to 3' directionality. The substitution of conserved residues in Pab-RNase J predicted to be involved in the coordination of metal ions demonstrates their importance for ribonuclease activity, although the detailed geometry of the catalytic site is likely to differ from bacterial RNase J. This is the first identification of a 5'-exoribonuclease encoded in the genomes of the Archaea. Phylogenetic analysis shows that euryarchaeal RNase J has been inherited vertically, suggesting an ancient origin predating the separation of the Bacteria and the Archaea.
Collapse
Affiliation(s)
- Béatrice Clouet-d'Orval
- Laboratoire de Microbiologie et Génétique Moléculaire, UMR 5100, Centre National de la Recherche Scientifique et Université Paul Sabatier, 31062 Toulouse, France.
| | | | | | | |
Collapse
|
36
|
Muniandy PA, Liu J, Majumdar A, Liu ST, Seidman MM. DNA interstrand crosslink repair in mammalian cells: step by step. Crit Rev Biochem Mol Biol 2010; 45:23-49. [PMID: 20039786 PMCID: PMC2824768 DOI: 10.3109/10409230903501819] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Interstrand DNA crosslinks (ICLs) are formed by natural products of metabolism and by chemotherapeutic reagents. Work in E. coli identified a two cycle repair scheme involving incisions on one strand on either side of the ICL (unhooking) producing a gapped intermediate with the incised oligonucleotide attached to the intact strand. The gap is filled by recombinational repair or lesion bypass synthesis. The remaining monoadduct is then removed by nucleotide excision repair (NER). Despite considerable effort, our understanding of each step in mammalian cells is still quite limited. In part this reflects the variety of crosslinking compounds, each with distinct structural features, used by different investigators. Also, multiple repair pathways are involved, variably operative during the cell cycle. G(1) phase repair requires functions from NER, although the mechanism of recognition has not been determined. Repair can be initiated by encounters with the transcriptional apparatus, or a replication fork. In the case of the latter, the reconstruction of a replication fork, stalled or broken by collision with an ICL, adds to the complexity of the repair process. The enzymology of unhooking, the identity of the lesion bypass polymerases required to fill the first repair gap, and the functions involved in the second repair cycle are all subjects of active inquiry. Here we will review current understanding of each step in ICL repair in mammalian cells.
Collapse
Affiliation(s)
- Parameswary A Muniandy
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
37
|
Meier B, Barber LJ, Liu Y, Shtessel L, Boulton SJ, Gartner A, Ahmed S. The MRT-1 nuclease is required for DNA crosslink repair and telomerase activity in vivo in Caenorhabditis elegans. EMBO J 2009; 28:3549-63. [PMID: 19779462 DOI: 10.1038/emboj.2009.278] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 08/24/2009] [Indexed: 12/26/2022] Open
Abstract
The telomerase reverse transcriptase adds de novo DNA repeats to chromosome termini. Here we define Caenorhabditis elegans MRT-1 as a novel factor required for telomerase-mediated telomere replication and the DNA-damage response. MRT-1 is composed of an N-terminal domain homologous to the second OB-fold of POT1 telomere-binding proteins and a C-terminal SNM1 family nuclease domain, which confer single-strand DNA-binding and processive 3'-to-5' exonuclease activity, respectively. Furthermore, telomerase activity in vivo depends on a functional MRT-1 OB-fold. We show that MRT-1 acts in the same telomere replication pathway as telomerase and the 9-1-1 DNA-damage response complex. MRT-1 is dispensable for DNA double-strand break repair, but functions with the 9-1-1 complex to promote DNA interstrand cross-link (ICL) repair. Our data reveal MRT-1 as a dual-domain protein required for telomerase function and ICL repair, which raises the possibility that telomeres and ICL lesions may share a common feature that plays a critical role in de novo telomere repeat addition.
Collapse
Affiliation(s)
- Bettina Meier
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Hemphill AW, Bruun D, Thrun L, Akkari Y, Torimaru Y, Hejna K, Jakobs P, Hejna J, Jones S, Olson S, Moses R. Mammalian SNM1 is required for genome stability. Mol Genet Metab 2008; 94:38-45. [PMID: 18180189 PMCID: PMC2413150 DOI: 10.1016/j.ymgme.2007.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 11/21/2007] [Accepted: 11/22/2007] [Indexed: 12/30/2022]
Abstract
The protein encoded by SNM1 in Saccharomyces cerevisiae has been shown to act specifically in DNA interstrand crosslinks (ICL) repair. There are five mammalian homologs of SNM1, including Artemis, which is involved in V(D)J recombination. Cells from mice constructed with a disruption in the Snm1 gene are sensitive to the DNA interstrand crosslinker, mitomycin (MMC), as indicated by increased radial formation following exposure. The mice reproduce normally and have normal life spans. However, a partial perinatal lethality, not seen in either homozygous mutant alone, can be noted when the Snm1 disruption is combined with a Fancd2 disruption. To explore the role of hSNM1 and its homologs in ICL repair in human cells, we used siRNA depletion in human fibroblasts, with cell survival and chromosome radials as the end points for sensitivity following treatment with MMC. Depletion of hSNM1 increases sensitivity to ICLs as detected by both end points, while depletion of Artemis does not. Thus hSNM1 is active in maintenance of genome stability following ICL formation. To evaluate the epistatic relationship between hSNM1 and other ICL repair pathways, we depleted hSNM1 in Fanconi anemia (FA) cells, which are inherently sensitive to ICLs. Depletion of hSNM1 in an FA cell line produces additive sensitivity for MMC. Further, mono-ubiquitination of FANCD2, an endpoint of the FA pathway, is not disturbed by depletion of hSNM1 in normal cells. Thus, hSNM1 appears to represent a second pathway for genome stability, distinct from the FA pathway.
Collapse
Affiliation(s)
- A. W. Hemphill
- Department of Molecular and Medical Genetics, Oregon Health & Sciences University, 3181 Sam Jackson Park Road, Portland, OR 97239
| | - D. Bruun
- Department of Molecular and Medical Genetics, Oregon Health & Sciences University, 3181 Sam Jackson Park Road, Portland, OR 97239
| | - L. Thrun
- Department of Molecular and Medical Genetics, Oregon Health & Sciences University, 3181 Sam Jackson Park Road, Portland, OR 97239
| | - Y. Akkari
- Department of Molecular and Medical Genetics, Oregon Health & Sciences University, 3181 Sam Jackson Park Road, Portland, OR 97239
| | - Y. Torimaru
- Department of Molecular and Medical Genetics, Oregon Health & Sciences University, 3181 Sam Jackson Park Road, Portland, OR 97239
| | - K. Hejna
- Department of Molecular and Medical Genetics, Oregon Health & Sciences University, 3181 Sam Jackson Park Road, Portland, OR 97239
| | - P.M. Jakobs
- Department of Molecular and Medical Genetics, Oregon Health & Sciences University, 3181 Sam Jackson Park Road, Portland, OR 97239
| | - J. Hejna
- Department of Molecular and Medical Genetics, Oregon Health & Sciences University, 3181 Sam Jackson Park Road, Portland, OR 97239
| | - S. Jones
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, MA 01655
| | - S.B. Olson
- Department of Molecular and Medical Genetics, Oregon Health & Sciences University, 3181 Sam Jackson Park Road, Portland, OR 97239
| | - R.E. Moses
- Department of Molecular and Medical Genetics, Oregon Health & Sciences University, 3181 Sam Jackson Park Road, Portland, OR 97239
| |
Collapse
|
39
|
Minko IG, Harbut MB, Kozekov ID, Kozekova A, Jakobs PM, Olson SB, Moses RE, Harris TM, Rizzo CJ, Lloyd RS. Role for DNA polymerase kappa in the processing of N2-N2-guanine interstrand cross-links. J Biol Chem 2008; 283:17075-82. [PMID: 18434313 DOI: 10.1074/jbc.m801238200] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Although there exists compelling genetic evidence for a homologous recombination-independent pathway for repair of interstrand cross-links (ICLs) involving translesion synthesis (TLS), biochemical support for this model is lacking. To identify DNA polymerases that may function in TLS past ICLs, oligodeoxynucleotides were synthesized containing site-specific ICLs in which the linkage was between N(2)-guanines, similar to cross-links formed by mitomycin C and enals. Here, data are presented that mammalian cell replication of DNAs containing these lesions was approximately 97% accurate. Using a series of oligodeoxynucleotides that mimic potential intermediates in ICL repair, we demonstrate that human polymerase (pol) kappa not only catalyzed accurate incorporation opposite the cross-linked guanine but also replicated beyond the lesion, thus providing the first biochemical evidence for TLS past an ICL. The efficiency of TLS was greatly enhanced by truncation of both the 5 ' and 3 ' ends of the nontemplating strand. Further analyses showed that although yeast Rev1 could incorporate a dCTP opposite the cross-linked guanine, no evidence was found for TLS by pol zeta or a pol zeta/Rev1 combination. Because pol kappa was able to bypass these ICLs, biological evidence for a role for pol kappa in tolerating the N(2)-N(2)-guanine ICLs was sought; both cell survival and chromosomal stability were adversely affected in pol kappa-depleted cells following mitomycin C exposure. Thus, biochemical data and cellular studies both suggest a role for pol kappa in the processing of N(2)-N(2)-guanine ICLs.
Collapse
Affiliation(s)
- Irina G Minko
- Center for Research on Occupational and Environmental Toxicology and Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Homologous recombination (HR) comprises a series of interrelated pathways that function in the repair of DNA double-stranded breaks (DSBs) and interstrand crosslinks (ICLs). In addition, recombination provides critical support for DNA replication in the recovery of stalled or broken replication forks, contributing to tolerance of DNA damage. A central core of proteins, most critically the RecA homolog Rad51, catalyzes the key reactions that typify HR: homology search and DNA strand invasion. The diverse functions of recombination are reflected in the need for context-specific factors that perform supplemental functions in conjunction with the core proteins. The inability to properly repair complex DNA damage and resolve DNA replication stress leads to genomic instability and contributes to cancer etiology. Mutations in the BRCA2 recombination gene cause predisposition to breast and ovarian cancer as well as Fanconi anemia, a cancer predisposition syndrome characterized by a defect in the repair of DNA interstrand crosslinks. The cellular functions of recombination are also germane to DNA-based treatment modalities of cancer, which target replicating cells by the direct or indirect induction of DNA lesions that are substrates for recombination pathways. This review focuses on mechanistic aspects of HR relating to DSB and ICL repair as well as replication fork support.
Collapse
Affiliation(s)
- Xuan Li
- Section of Microbiology University of California, Davis, Davis CA 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Section of Microbiology University of California, Davis, Davis CA 95616-8665, USA
- Section of Molecular and Cellular Biology, University of California, Davis, Davis CA 95616-8665, USA
| |
Collapse
|