14
|
Paatero AO, Turakainen H, Happonen LJ, Olsson C, Palomäki T, Pajunen MI, Meng X, Otonkoski T, Tuuri T, Berry C, Malani N, Frilander MJ, Bushman FD, Savilahti H. Bacteriophage Mu integration in yeast and mammalian genomes. Nucleic Acids Res 2008; 36:e148. [PMID: 18953026 PMCID: PMC2602771 DOI: 10.1093/nar/gkn801] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 10/09/2008] [Accepted: 10/10/2008] [Indexed: 11/14/2022] Open
Abstract
Genomic parasites have evolved distinctive lifestyles to optimize replication in the context of the genomes they inhabit. Here, we introduced new DNA into eukaryotic cells using bacteriophage Mu DNA transposition complexes, termed 'transpososomes'. Following electroporation of transpososomes and selection for marker gene expression, efficient integration was verified in yeast, mouse and human genomes. Although Mu has evolved in prokaryotes, strong biases were seen in the target site distributions in eukaryotic genomes, and these biases differed between yeast and mammals. In Saccharomyces cerevisiae transposons accumulated outside of genes, consistent with selection against gene disruption. In mouse and human cells, transposons accumulated within genes, which previous work suggests is a favorable location for efficient expression of selectable markers. Naturally occurring transposons and viruses in yeast and mammals show related, but more extreme, targeting biases, suggesting that they are responding to the same pressures. These data help clarify the constraints exerted by genome structure on genomic parasites, and illustrate the wide utility of the Mu transpososome technology for gene transfer in eukaryotic cells.
Collapse
Affiliation(s)
- Anja O. Paatero
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Hilkka Turakainen
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Lotta J. Happonen
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Cia Olsson
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Tiina Palomäki
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Maria I. Pajunen
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Xiaojuan Meng
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Timo Otonkoski
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Timo Tuuri
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Charles Berry
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Nirav Malani
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Mikko J. Frilander
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Frederic D. Bushman
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Harri Savilahti
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|