1
|
Qiu Y, Xiang L, Yin M, Fang C, Dai X, Zhang L, Li Y. RfaH contributes to maximal colonization and full virulence of hypervirulent Klebsiella pneumoniae. Front Cell Infect Microbiol 2024; 14:1454373. [PMID: 39364146 PMCID: PMC11448354 DOI: 10.3389/fcimb.2024.1454373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/19/2024] [Indexed: 10/05/2024] Open
Abstract
Hypervirulent K. pneumoniae (hvKp) have emerged as clinically important pathogens, posing a serious threat to human health. RfaH, a transcriptional elongation factor, has been regarded as implicated in facilitating the transcription of long virulence operons in certain bacterial species. In K. pneumoniae, RfaH plays a vital role in promoting CPS synthesis and hypermucoviscosity, as well as mediating bacterial fitness during lung infection. In this study, we aim to conduct a systematic investigation of the roles of rfaH in the survival, dissemination, and colonization of hvKp through in vitro and in vivo assays. We found that bacterial cells and colonies displayed capsule -deficient phenotypes subsequent to the deletion of rfaH in K. pneumoniae NTUH-K2044. We confirmed that rfaH is required for the synthesis of capsule and lipopolysaccharide (LPS) by positively regulating the expression of CPS and LPS gene clusters. We found that the ΔrfaH mutant led to a significantly decreased mortality of K. pneumoniae in a mouse intraperitoneal infection model. We further demonstrated that the absence of rfaH was associated with slower bacterial growth under conditions of low nutrition or iron limitation. ΔrfaH displayed reduced survival rates in the presence of human serum. Besides, the engulfment of the ΔrfaH mutant was significantly higher than that of NTUH-K2044 by macrophages in vivo, indicating an indispensable role of RfaH in the phagocytosis resistance of hvKp in mice. Both mouse intranasal and intraperitoneal infection models revealed a higher bacterial clearance rate of ΔrfaH in lungs, livers, and spleens of mice compared to its wild type, suggesting an important role of RfaH in the bacterial survival, dissemination, and colonization of hvKp in vivo. Histopathological results supported that RfaH contributes to the pathogenicity of hvKp in mice. In conclusion, our study demonstrates crucial roles of RfaH in the survival, colonization and full virulence of hvKp, which provides several implications for the development of RfaH as an antibacterial target.
Collapse
Affiliation(s)
- Yichuan Qiu
- Department of Clinical Laboratory, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, Sichuan, China
| | - Li Xiang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Ming Yin
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Chengju Fang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoyi Dai
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Luhua Zhang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Ying Li
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
2
|
Spencer-Drakes TCJ, Sarabia A, Heussler G, Pierce EC, Morin M, Villareal S, Dutton RJ. Phage resistance mutations affecting the bacterial cell surface increase susceptibility to fungi in a model cheese community. ISME COMMUNICATIONS 2024; 4:ycae101. [PMID: 39296780 PMCID: PMC11409937 DOI: 10.1093/ismeco/ycae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/17/2024] [Indexed: 09/21/2024]
Abstract
Diverse populations of bacteriophages infect and coevolve with their bacterial hosts. Although host recognition and infection occur within microbiomes, the molecular mechanisms underlying host-phage interactions within a community context remain poorly studied. The biofilms (rinds) of aged cheeses contain taxonomically diverse microbial communities that follow reproducible growth patterns and can be manipulated under laboratory conditions. In this study, we use cheese as a model for studying phage-microbe interactions by identifying and characterizing a tractable host-phage pair co-occurring within a model Brie-like community. We isolated a novel bacteriophage, TS33, that kills Hafnia sp. JB232, a member of the model community. TS33 is easily propagated in the lab and naturally co-occurs in the cheese community, rendering it a prime candidate for the study of host-phage interactions. We performed growth assays of the Hafnia, TS33, and the fungal community members, Geotrichum candidum and Penicillium camemberti. Employing Random Barcode Transposon Sequencing experiments, we identified candidate host factors that contribute to TS33 infectivity, many of which are homologs of bacterial O-antigen genes. Hafnia mutants in these genes exhibit decreased susceptibility to phage infection, but experience negative fitness effects in the presence of the fungi. Therefore, mutations in O-antigen biosynthesis homologs may have antagonistic pleiotropic effects in Hafnia that have major consequences for its interactions with the rest of the community. Ongoing and future studies aim to unearth the molecular mechanisms by which the O-antigen of Hafnia mediates its interactions with its viral and fungal partners.
Collapse
Affiliation(s)
- Tara C J Spencer-Drakes
- Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Angel Sarabia
- Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, United States
| | - Gary Heussler
- Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Emily C Pierce
- Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
- Arcadia Science, 3100 San Pablo Avenue, Suite #120, Berkeley, CA 94702, United States
| | - Manon Morin
- Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
- Arcadia Science, 3100 San Pablo Avenue, Suite #120, Berkeley, CA 94702, United States
| | - Steven Villareal
- Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Rachel J Dutton
- Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
- Astera Institute, 2625 Alcatraz Ave, #201, Berkeley, CA 94705, United States
| |
Collapse
|
3
|
Yang KB, Cameranesi M, Gowder M, Martinez C, Shamovsky Y, Epshtein V, Hao Z, Nguyen T, Nirenstein E, Shamovsky I, Rasouly A, Nudler E. High-resolution landscape of an antibiotic binding site. Nature 2023; 622:180-187. [PMID: 37648864 PMCID: PMC10550828 DOI: 10.1038/s41586-023-06495-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
Antibiotic binding sites are located in important domains of essential enzymes and have been extensively studied in the context of resistance mutations; however, their study is limited by positive selection. Using multiplex genome engineering1 to overcome this constraint, we generate and characterize a collection of 760 single-residue mutants encompassing the entire rifampicin binding site of Escherichia coli RNA polymerase (RNAP). By genetically mapping drug-enzyme interactions, we identify an alpha helix where mutations considerably enhance or disrupt rifampicin binding. We find mutations in this region that prolong antibiotic binding, converting rifampicin from a bacteriostatic to bactericidal drug by inducing lethal DNA breaks. The latter are replication dependent, indicating that rifampicin kills by causing detrimental transcription-replication conflicts at promoters. We also identify additional binding site mutations that greatly increase the speed of RNAP.Fast RNAP depletes the cell of nucleotides, alters cell sensitivity to different antibiotics and provides a cold growth advantage. Finally, by mapping natural rpoB sequence diversity, we discover that functional rifampicin binding site mutations that alter RNAP properties or confer drug resistance occur frequently in nature.
Collapse
Affiliation(s)
- Kevin B Yang
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Maria Cameranesi
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Manjunath Gowder
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Criseyda Martinez
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Yosef Shamovsky
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Vitaliy Epshtein
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Zhitai Hao
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Thao Nguyen
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Eric Nirenstein
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ilya Shamovsky
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Aviram Rasouly
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA.
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA.
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA.
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Said N, Finazzo M, Hilal T, Wang B, Selinger TL, Gjorgjevikj D, Artsimovitch I, Wahl MC. Sm-like protein Rof inhibits transcription termination factor ρ by binding site obstruction and conformational insulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555460. [PMID: 37693585 PMCID: PMC10491184 DOI: 10.1101/2023.08.30.555460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Transcription termination factor ρ is a hexameric, RNA-dependent NTPase that can adopt active closed-ring and inactive open-ring conformations. The Sm-like protein Rof, a homolog of the RNA chaperone Hfq, inhibits ρ-dependent termination in vivo but recapitulation of this activity in vitro has proven difficult and the precise mode of Rof action is presently unknown. Our electron microscopic structures of ρ-Rof and ρ-RNA complexes show that Rof undergoes pronounced conformational changes to bind ρ at the protomer interfaces, undercutting ρ conformational dynamics associated with ring closure and occluding extended primary RNA-binding sites that are also part of interfaces between ρ and RNA polymerase. Consistently, Rof impedes ρ ring closure, ρ-RNA interactions, and ρ association with transcription elongation complexes. Structure-guided mutagenesis coupled with functional assays confirmed that the observed ρ-Rof interface is required for Rof-mediated inhibition of cell growth and ρ-termination in vitro. Bioinformatic analyses revealed that Rof is restricted to Pseudomonadota and that the ρ-Rof interface is conserved. Genomic contexts of rof differ between Enterobacteriaceae and Vibrionaceae, suggesting distinct modes of Rof regulation. We hypothesize that Rof and other cellular anti-terminators silence ρ under diverse, but yet to be identified, stress conditions when unrestrained transcription termination by ρ would be lethal.
Collapse
Affiliation(s)
- Nelly Said
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, D-14195 Berlin, Germany
| | - Mark Finazzo
- The Ohio State University, Department of Microbiology and Center for RNA Biology, Columbus, OH, USA
| | - Tarek Hilal
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, D-14195 Berlin, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Research Center of Electron Microscopy and Core Facility BioSupraMol, Fabeckstr. 36a, 14195 Berlin, Germany
| | - Bing Wang
- The Ohio State University, Department of Microbiology and Center for RNA Biology, Columbus, OH, USA
| | - Tim Luca Selinger
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, D-14195 Berlin, Germany
| | - Daniela Gjorgjevikj
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, D-14195 Berlin, Germany
| | - Irina Artsimovitch
- The Ohio State University, Department of Microbiology and Center for RNA Biology, Columbus, OH, USA
| | - Markus C. Wahl
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, D-14195 Berlin, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Albert-Einstein-Str. 15, D-12489 Berlin, Germany
| |
Collapse
|
5
|
Weaver JW, Proshkin S, Duan W, Epshtein V, Gowder M, Bharati BK, Afanaseva E, Mironov A, Serganov A, Nudler E. Control of transcription elongation and DNA repair by alarmone ppGpp. Nat Struct Mol Biol 2023; 30:600-607. [PMID: 36997761 PMCID: PMC10191844 DOI: 10.1038/s41594-023-00948-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/27/2023] [Indexed: 04/01/2023]
Abstract
Second messenger (p)ppGpp (collectively guanosine tetraphosphate and guanosine pentaphosphate) mediates bacterial adaptation to nutritional stress by modulating transcription initiation. More recently, ppGpp has been implicated in coupling transcription and DNA repair; however, the mechanism of ppGpp engagement remained elusive. Here we present structural, biochemical and genetic evidence that ppGpp controls Escherichia coli RNA polymerase (RNAP) during elongation via a specific site that is nonfunctional during initiation. Structure-guided mutagenesis renders the elongation (but not initiation) complex unresponsive to ppGpp and increases bacterial sensitivity to genotoxic agents and ultraviolet radiation. Thus, ppGpp binds RNAP at sites with distinct functions in initiation and elongation, with the latter being important for promoting DNA repair. Our data provide insights on the molecular mechanism of ppGpp-mediated adaptation during stress, and further highlight the intricate relationships between genome stability, stress responses and transcription.
Collapse
Affiliation(s)
- Jacob W Weaver
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Sergey Proshkin
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Moscow, Russia
| | - Wenqian Duan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Vitaly Epshtein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Manjunath Gowder
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - Binod K Bharati
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - Elena Afanaseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Moscow, Russia
| | - Alexander Mironov
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Moscow, Russia
| | - Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
6
|
McGee LW, Barhoush Y, Shima R, Hennessy M. Phage-resistant mutations impact bacteria susceptibility to future phage infections and antibiotic response. Ecol Evol 2023; 13:e9712. [PMID: 36620417 PMCID: PMC9817185 DOI: 10.1002/ece3.9712] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 11/16/2022] [Accepted: 12/16/2022] [Indexed: 01/09/2023] Open
Abstract
Bacteriophage (phage) therapy in combination with antibiotic treatment serves as a potential strategy to overcome the continued rise in antibiotic resistance across bacterial pathogens. Understanding the impacts of evolutionary and ecological processes to the phage-antibiotic-resistance dynamic could advance the development of such combinatorial therapy. We tested whether the acquisition of mutations conferring phage resistance may have antagonistically pleiotropic consequences for antibiotic resistance. First, to determine the robustness of phage resistance across different phage strains, we infected resistant Escherichia coli cultures with phage that were not previously encountered. We found that phage-resistant E. coli mutants that gained resistance to a single phage strain maintain resistance to other phages with overlapping adsorption methods. Mutations underlying the phage-resistant phenotype affects lipopolysaccharide (LPS) structure and/or synthesis. Because LPS is implicated in both phage infection and antibiotic response, we then determined whether phage-resistant trade-offs exist when challenged with different classes of antibiotics. We found that only 1 out of the 4 phage-resistant E. coli mutants yielded trade-offs between phage and antibiotic resistance. Surprisingly, when challenged with novobiocin, we uncovered evidence of synergistic pleiotropy for some mutants allowing for greater antibiotic resistance, even though antibiotic resistance was never selected for. Our results highlight the importance of understanding the role of selective pressures and pleiotropic interactions in the bacterial response to phage-antibiotic combinatorial therapy.
Collapse
Affiliation(s)
| | - Yazid Barhoush
- Biology DepartmentEarlham CollegeRichmondIndianaUSA
- Department of Epidemiology and BiostatisticsDrexel UniversityPhiladelphiaPennsylvaniaUSA
| | - Rafaella Shima
- Biology DepartmentEarlham CollegeRichmondIndianaUSA
- Department of Physiology and Institute of Diabetes, Obesity, and Metabolism, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | |
Collapse
|
7
|
Artsimovitch I, Ramírez-Sarmiento CA. Metamorphic proteins under a computational microscope: Lessons from a fold-switching RfaH protein. Comput Struct Biotechnol J 2022; 20:5824-5837. [PMID: 36382197 PMCID: PMC9630627 DOI: 10.1016/j.csbj.2022.10.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/28/2022] Open
Abstract
Metamorphic proteins constitute unexpected paradigms of the protein folding problem, as their sequences encode two alternative folds, which reversibly interconvert within biologically relevant timescales to trigger different cellular responses. Once considered a rare aberration, metamorphism may be common among proteins that must respond to rapidly changing environments, exemplified by NusG-like proteins, the only transcription factors present in every domain of life. RfaH, a specialized paralog of bacterial NusG, undergoes an all-α to all-β domain switch to activate expression of virulence and conjugation genes in many animal and plant pathogens and is the quintessential example of a metamorphic protein. The dramatic nature of RfaH structural transformation and the richness of its evolutionary history makes for an excellent model for studying how metamorphic proteins switch folds. Here, we summarize the structural and functional evidence that sparked the discovery of RfaH as a metamorphic protein, the experimental and computational approaches that enabled the description of the molecular mechanism and refolding pathways of its structural interconversion, and the ongoing efforts to find signatures and general properties to ultimately describe the protein metamorphome.
Collapse
Affiliation(s)
- Irina Artsimovitch
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - César A. Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- ANID, Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
8
|
Molina JA, Galaz-Davison P, Komives EA, Artsimovitch I, Ramírez-Sarmiento CA. Allosteric couplings upon binding of RfaH to transcription elongation complexes. Nucleic Acids Res 2022; 50:6384-6397. [PMID: 35670666 PMCID: PMC9226497 DOI: 10.1093/nar/gkac453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/07/2022] [Accepted: 05/18/2022] [Indexed: 12/03/2022] Open
Abstract
In every domain of life, NusG-like proteins bind to the elongating RNA polymerase (RNAP) to support processive RNA synthesis and to couple transcription to ongoing cellular processes. Structures of factor-bound transcription elongation complexes (TECs) reveal similar contacts to RNAP, consistent with a shared mechanism of action. However, NusG homologs differ in their regulatory roles, modes of recruitment, and effects on RNA synthesis. Some of these differences could be due to conformational changes in RNAP and NusG-like proteins, which cannot be captured in static structures. Here, we employed hydrogen-deuterium exchange mass spectrometry to investigate changes in local and non-local structural dynamics of Escherichia coli NusG and its paralog RfaH, which have opposite effects on expression of xenogenes, upon binding to TEC. We found that NusG and RfaH regions that bind RNAP became solvent-protected in factor-bound TECs, whereas RNAP regions that interact with both factors showed opposite deuterium uptake changes when bound to NusG or RfaH. Additional changes far from the factor-binding site were observed only with RfaH. Our results provide insights into differences in structural dynamics exerted by NusG and RfaH during binding to TEC, which may explain their different functional outcomes and allosteric regulation of transcriptional pausing by RfaH.
Collapse
Affiliation(s)
- José Alejandro Molina
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Pablo Galaz-Davison
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Irina Artsimovitch
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - César A Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
9
|
Mittermeier M, Wang B, Said N, Gjorgjevikj D, Wahl MC, Artsimovitch I. A non-native C-terminal extension of the β' subunit compromises RNA polymerase and Rho functions. Mol Microbiol 2022; 117:871-885. [PMID: 35049093 PMCID: PMC9018486 DOI: 10.1111/mmi.14879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/30/2022]
Abstract
Escherichia coli RfaH abrogates Rho-mediated polarity in lipopolysaccharide core biosynthesis operons, and ΔrfaH cells are hypersensitive to antibiotics, bile salts, and detergents. Selection for rfaH suppressors that restore growth on SDS identified a temperature-sensitive mutant in which 46 C-terminal residues of the RNA polymerase (RNAP) β' subunit are replaced with 23 residues carrying a net positive charge. Based on similarity to rpoC397, which confers a temperature-sensitive phenotype and resistance to bacteriophages, we named this mutant rpoC397*. We show that SDS resistance depends on a single nonpolar residue within the C397* tail, whereas basic residues are dispensable. In line with its mimicry of RfaH, C397* RNAP is resistant to Rho but responds to pause signals, NusA, and NusG in vitro similarly to the wild-type enzyme and binds to Rho and Nus factors in vivo. Strikingly, the deletion of rpoZ, which encodes the ω "chaperone" subunit, restores rpoC397* growth at 42°C but has no effect on SDS sensitivity. Our results suggest that the C397* tail traps the ω subunit in an inhibitory state through direct contacts and hinders Rho-dependent termination through long-range interactions. We propose that the dynamic and hypervariable β'•ω module controls RNA synthesis in response to niche-specific signals.
Collapse
Affiliation(s)
- Maura Mittermeier
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Bing Wang
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Nelly Said
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Daniela Gjorgjevikj
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Markus C Wahl
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Irina Artsimovitch
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
10
|
RfaH May Oppose Silencing by H-NS and YmoA Proteins during Transcription Elongation. J Bacteriol 2022; 204:e0059921. [PMID: 35258322 DOI: 10.1128/jb.00599-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Nucleoid-associated proteins (NAPs) silence xenogenes by blocking RNA polymerase binding to promoters and hindering transcript elongation. In Escherichia coli, H-NS and its homolog SptA interact with YmoA proteins Hha and YdgT to assemble nucleoprotein filaments that facilitate transcription termination by Rho, which acts in synergy with NusG. Countersilencing during initiation is facilitated by proteins that exclude NAPs from promoter regions, but auxiliary factors that alleviate silencing during elongation are not known. A specialized NusG paralog, RfaH, activates lipopolysaccharide core biosynthesis operons, enabling survival in the presence of detergents and antibiotics. RfaH strongly inhibits Rho-dependent termination by reducing RNA polymerase pausing, promoting translation, and competing with NusG. We hypothesize that RfaH also acts as a countersilencer of NAP/YmoA filaments. We show that deletions of hns and hha+ydgT suppress the growth defects of ΔrfaH by alleviating Rho-mediated polarity within the waa operon. The absence of YmoA proteins exacerbates cellular defects caused by reduced Rho levels or Rho inhibition by bicyclomycin but has negligible effects at a strong model Rho-dependent terminator. Our findings that the distribution of Hha and RfaH homologs is strongly correlated supports a model in which they comprise a silencing/countersilencing pair that controls expression of chromosomal and plasmid-encoded xenogenes. IMPORTANCE Horizontally acquired DNA drives bacterial evolution, but its unregulated expression may harm the recipient. Xenogeneic silencers recognize foreign genes and inhibit their transcription. However, some xenogenes, such as those encoding lipo- and exopolysaccharides, confer resistance to antibiotics, bile salts, and detergents, necessitating the existence of countersilencing fitness mechanisms. Here, we present evidence that Escherichia coli antiterminator RfaH alleviates silencing of the chromosomal waa operon and propose that plasmid-encoded RfaH homologs promote dissemination of antibiotic resistance genes through conjugation.
Collapse
|
11
|
Xu W, Yan Y, Artsimovitch I, Dunlap D, Finzi L. Positive supercoiling favors transcription elongation through lac repressor-mediated DNA loops. Nucleic Acids Res 2022; 50:2826-2835. [PMID: 35188572 PMCID: PMC8934669 DOI: 10.1093/nar/gkac093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/22/2021] [Accepted: 02/20/2022] [Indexed: 11/30/2022] Open
Abstract
Some proteins, like the lac repressor (LacI), mediate long-range loops that alter DNA topology and create torsional barriers. During transcription, RNA polymerase generates supercoiling that may facilitate passage through such barriers. We monitored E. coli RNA polymerase progress along templates in conditions that prevented, or favored, 400 bp LacI-mediated DNA looping. Tethered particle motion measurements revealed that RNA polymerase paused longer at unlooped LacI obstacles or those barring entry to a loop than those barring exit from the loop. Enhanced dissociation of a LacI roadblock by the positive supercoiling generated ahead of a transcribing RNA polymerase within a torsion-constrained DNA loop may be responsible for this reduction in pause time. In support of this idea, RNA polymerase transcribed 6-fold more slowly through looped DNA and paused at LacI obstacles for 66% less time on positively supercoiled compared to relaxed templates, especially under increased tension (torque). Positive supercoiling propagating ahead of polymerase facilitated elongation along topologically complex, protein-coated templates.
Collapse
Affiliation(s)
- Wenxuan Xu
- Physics Department, Emory University, Atlanta, GA, USA
| | - Yan Yan
- Physics Department, Emory University, Atlanta, GA, USA
| | | | - David Dunlap
- Physics Department, Emory University, Atlanta, GA, USA
| | - Laura Finzi
- Physics Department, Emory University, Atlanta, GA, USA
| |
Collapse
|
12
|
Analysing the fitness cost of antibiotic resistance to identify targets for combination antimicrobials. Nat Microbiol 2021; 6:1410-1423. [PMID: 34697460 DOI: 10.1038/s41564-021-00973-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/03/2021] [Indexed: 11/09/2022]
Abstract
Mutations in the rifampicin (Rif)-binding site of RNA polymerase (RNAP) confer antibiotic resistance and often have global effects on transcription that compromise fitness and stress tolerance of resistant mutants. We suggested that the non-essential genome, through its impact on the bacterial transcription cycle, may represent an untapped source of targets for combination antimicrobial therapies. Using transposon sequencing, we carried out a genome-wide analysis of fitness cost in a clinically common rpoB H526Y mutant. We find that genes whose products enable increased transcription elongation rates compound the fitness costs of resistance whereas genes whose products function in cell wall synthesis and division mitigate it. We validate our findings by showing that the cell wall synthesis and division defects of rpoB H526Y result from an increased transcription elongation rate that is further exacerbated by the activity of the uracil salvage pathway and unresponsiveness of the mutant RNAP to the alarmone ppGpp. We applied our findings to identify drugs that inhibit more readily rpoB H526Y and other RifR alleles from the same phenotypic class. Thus, genome-wide analysis of fitness cost of antibiotic-resistant mutants should expedite the discovery of new combination therapies and delineate cellular pathways that underlie the molecular mechanisms of cost.
Collapse
|
13
|
Webster MW, Weixlbaumer A. Macromolecular assemblies supporting transcription-translation coupling. Transcription 2021; 12:103-125. [PMID: 34570660 DOI: 10.1080/21541264.2021.1981713] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Coordination between the molecular machineries that synthesize and decode prokaryotic mRNAs is an important layer of gene expression control known as transcription-translation coupling. While it has long been known that translation can regulate transcription and vice-versa, recent structural and biochemical work has shed light on the underlying mechanistic basis. Complexes of RNA polymerase linked to a trailing ribosome (expressomes) have been structurally characterized in a variety of states at near-atomic resolution, and also directly visualized in cells. These data are complemented by recent biochemical and biophysical analyses of transcription-translation systems and the individual components within them. Here, we review our improved understanding of the molecular basis of transcription-translation coupling. These insights are discussed in relation to our evolving understanding of the role of coupling in cells.
Collapse
Affiliation(s)
- Michael W Webster
- Department of Integrated Structural Biology, Institut de Gé né tique et de Biologie Molé culaire et Cellulaire (IGBMC), Illkirch Cedex, France.,Université de Strasbourg, Strasbourg, France.,CNRS Umr 7104, Illkirch Cedex.,Inserm U1258, Illkirch Cedex, France
| | - Albert Weixlbaumer
- Department of Integrated Structural Biology, Institut de Gé né tique et de Biologie Molé culaire et Cellulaire (IGBMC), Illkirch Cedex, France.,Université de Strasbourg, Strasbourg, France.,CNRS Umr 7104, Illkirch Cedex.,Inserm U1258, Illkirch Cedex, France
| |
Collapse
|
14
|
Mosaei H, Zenkin N. Two distinct pathways of RNA polymerase backtracking determine the requirement for the Trigger Loop during RNA hydrolysis. Nucleic Acids Res 2021; 49:8777-8784. [PMID: 34365509 PMCID: PMC8421135 DOI: 10.1093/nar/gkab675] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 12/30/2022] Open
Abstract
Transcribing RNA polymerase (RNAP) can fall into backtracking, phenomenon when the 3' end of the transcript disengages from the template DNA. Backtracking is caused by sequences of the nucleic acids or by misincorporation of erroneous nucleotides. To resume productive elongation backtracked complexes have to be resolved through hydrolysis of RNA. There is currently no consensus on the mechanism of catalysis of this reaction by Escherichia coli RNAP. Here we used Salinamide A, that we found inhibits RNAP catalytic domain Trigger Loop (TL), to show that the TL is required for RNA cleavage during proofreading of misincorporation events but plays little role during cleavage in sequence-dependent backtracked complexes. Results reveal that backtracking caused by misincorporation is distinct from sequence-dependent backtracking, resulting in different conformations of the 3' end of RNA within the active center. We show that the TL is required to transfer the 3' end of misincorporated transcript from cleavage-inefficient 'misincorporation site' into the cleavage-efficient 'backtracked site', where hydrolysis takes place via transcript-assisted catalysis and is largely independent of the TL. These findings resolve the controversy surrounding mechanism of RNA hydrolysis by E. coli RNA polymerase and indicate that the TL role in RNA cleavage has diverged among bacteria.
Collapse
Affiliation(s)
- Hamed Mosaei
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle Upon Tyne, NE2 4AX, UK
| | - Nikolay Zenkin
- To whom correspondence should be addressed. Tel: +44 0 1912083227; Fax: +44 0 1912083205;
| |
Collapse
|
15
|
Wang B, Artsimovitch I. NusG, an Ancient Yet Rapidly Evolving Transcription Factor. Front Microbiol 2021; 11:619618. [PMID: 33488562 PMCID: PMC7819879 DOI: 10.3389/fmicb.2020.619618] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
Timely and accurate RNA synthesis depends on accessory proteins that instruct RNA polymerase (RNAP) where and when to start and stop transcription. Among thousands of transcription factors, NusG/Spt5 stand out as the only universally conserved family of regulators. These proteins interact with RNAP to promote uninterrupted RNA synthesis and with diverse cellular partners to couple transcription to RNA processing, modification or translation, or to trigger premature termination of aberrant transcription. NusG homologs are present in all cells that utilize bacterial-type RNAP, from endosymbionts to plants, underscoring their ancient and essential function. Yet, in stark contrast to other core RNAP components, NusG family is actively evolving: horizontal gene transfer and sub-functionalization drive emergence of NusG paralogs, such as bacterial LoaP, RfaH, and UpxY. These specialized regulators activate a few (or just one) operons required for expression of antibiotics, capsules, secretion systems, toxins, and other niche-specific macromolecules. Despite their common origin and binding site on the RNAP, NusG homologs differ in their target selection, interacting partners and effects on RNA synthesis. Even among housekeeping NusGs from diverse bacteria, some factors promote pause-free transcription while others slow the RNAP down. Here, we discuss structure, function, and evolution of NusG proteins, focusing on unique mechanisms that determine their effects on gene expression and enable bacterial adaptation to diverse ecological niches.
Collapse
Affiliation(s)
- Bing Wang
- Department of Microbiology and the Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Irina Artsimovitch
- Department of Microbiology and the Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
16
|
Said N, Hilal T, Sunday ND, Khatri A, Bürger J, Mielke T, Belogurov GA, Loll B, Sen R, Artsimovitch I, Wahl MC. Steps toward translocation-independent RNA polymerase inactivation by terminator ATPase ρ. Science 2021; 371:eabd1673. [PMID: 33243850 PMCID: PMC7864586 DOI: 10.1126/science.abd1673] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/26/2020] [Indexed: 12/31/2022]
Abstract
Factor-dependent transcription termination mechanisms are poorly understood. We determined a series of cryo-electron microscopy structures portraying the hexameric adenosine triphosphatase (ATPase) ρ on a pathway to terminating NusA/NusG-modified elongation complexes. An open ρ ring contacts NusA, NusG, and multiple regions of RNA polymerase, trapping and locally unwinding proximal upstream DNA. NusA wedges into the ρ ring, initially sequestering RNA. Upon deflection of distal upstream DNA over the RNA polymerase zinc-binding domain, NusA rotates underneath one capping ρ subunit, which subsequently captures RNA. After detachment of NusG and clamp opening, RNA polymerase loses its grip on the RNA:DNA hybrid and is inactivated. Our structural and functional analyses suggest that ρ, and other termination factors across life, may use analogous strategies to allosterically trap transcription complexes in a moribund state.
Collapse
Affiliation(s)
- Nelly Said
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Tarek Hilal
- Research Center of Electron Microscopy and Core Facility BioSupraMol, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Nicholas D Sunday
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Ajay Khatri
- Laboratory of Transcription, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Jörg Bürger
- Microscopy and Cryo-Electron Microscopy Service Group, Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
- Institute of Medical Physics und Biophysics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thorsten Mielke
- Microscopy and Cryo-Electron Microscopy Service Group, Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | | | - Bernhard Loll
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Ranjan Sen
- Laboratory of Transcription, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Irina Artsimovitch
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| | - Markus C Wahl
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| |
Collapse
|
17
|
Agapov A, Ignatov A, Turtola M, Belogurov G, Esyunina D, Kulbachinskiy A. Role of the trigger loop in translesion RNA synthesis by bacterial RNA polymerase. J Biol Chem 2020; 295:9583-9595. [PMID: 32439804 DOI: 10.1074/jbc.ra119.011844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 05/20/2020] [Indexed: 11/06/2022] Open
Abstract
DNA lesions can severely compromise transcription and block RNA synthesis by RNA polymerase (RNAP), leading to subsequent recruitment of DNA repair factors to the stalled transcription complex. Recent structural studies have uncovered molecular interactions of several DNA lesions within the transcription elongation complex. However, little is known about the role of key elements of the RNAP active site in translesion transcription. Here, using recombinantly expressed proteins, in vitro transcription, kinetic analyses, and in vivo cell viability assays, we report that point amino acid substitutions in the trigger loop, a flexible element of the active site involved in nucleotide addition, can stimulate translesion RNA synthesis by Escherichia coli RNAP without altering the fidelity of nucleotide incorporation. We show that these substitutions also decrease transcriptional pausing and strongly affect the nucleotide addition cycle of RNAP by increasing the rate of nucleotide addition but also decreasing the rate of translocation. The secondary channel factors DksA and GreA modulated translesion transcription by RNAP, depending on changes in the trigger loop structure. We observed that although the mutant RNAPs stimulate translesion synthesis, their expression is toxic in vivo, especially under stress conditions. We conclude that the efficiency of translesion transcription can be significantly modulated by mutations affecting the conformational dynamics of the active site of RNAP, with potential effects on cellular stress responses and survival.
Collapse
Affiliation(s)
- Aleksei Agapov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Artem Ignatov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Matti Turtola
- Department of Biochemistry, University of Turku, Turku, Finland
| | | | - Daria Esyunina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
18
|
Structure of complete Pol II-DSIF-PAF-SPT6 transcription complex reveals RTF1 allosteric activation. Nat Struct Mol Biol 2020; 27:668-677. [PMID: 32541898 DOI: 10.1038/s41594-020-0437-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/22/2020] [Indexed: 12/20/2022]
Abstract
Transcription by RNA polymerase II (Pol II) is carried out by an elongation complex. We previously reported an activated porcine Pol II elongation complex, EC*, encompassing the human elongation factors DSIF, PAF1 complex (PAF) and SPT6. Here we report the cryo-EM structure of the complete EC* that contains RTF1, a dissociable PAF subunit critical for chromatin transcription. The RTF1 Plus3 domain associates with Pol II subunit RPB12 and the phosphorylated C-terminal region of DSIF subunit SPT5. RTF1 also forms four α-helices that extend from the Plus3 domain along the Pol II protrusion and RPB10 to the polymerase funnel. The C-terminal 'fastener' helix retains PAF and is followed by a 'latch' that reaches the end of the bridge helix, a flexible element of the Pol II active site. RTF1 strongly stimulates Pol II elongation, and this requires the latch, possibly suggesting that RTF1 activates transcription allosterically by influencing Pol II translocation.
Collapse
|
19
|
Galaz-Davison P, Molina JA, Silletti S, Komives EA, Knauer SH, Artsimovitch I, Ramírez-Sarmiento CA. Differential Local Stability Governs the Metamorphic Fold Switch of Bacterial Virulence Factor RfaH. Biophys J 2019; 118:96-104. [PMID: 31810657 DOI: 10.1016/j.bpj.2019.11.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/21/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022] Open
Abstract
RfaH, a two-domain protein from a universally conserved NusG/Spt5 family of regulators, is required for the transcription and translation of long virulence and conjugation operons in many Gram-negative bacterial pathogens. Escherichia coli RfaH action is controlled by a unique large-scale structural rearrangement triggered by recruitment to transcription elongation complexes through a specific DNA element. Upon recruitment, the C-terminal domain of RfaH refolds from an α-hairpin, which is bound to RNA polymerase binding site within the N-terminal domain, into an unbound β-barrel that interacts with the ribosome. Although structures of the autoinhibited (α-hairpin) and active (β-barrel) states and plausible refolding pathways have been reported, how this reversible switch is encoded within RfaH sequence and structure is poorly understood. Here, we combined hydrogen-deuterium exchange measurements by mass spectrometry and nuclear magnetic resonance with molecular dynamics to evaluate the differential local stability between both RfaH folds. Deuteron incorporation reveals that the tip of the C-terminal hairpin (residues 125-145) is stably folded in the autoinhibited state (∼20% deuteron incorporation), whereas the rest of this domain is highly flexible (>40% deuteron incorporation), and its flexibility only decreases in the β-folded state. Computationally predicted ΔG agree with these results by displaying similar anisotropic stability within the tip of the α-hairpin and on neighboring N-terminal domain residues. Remarkably, the β-folded state shows comparable structural flexibility than nonmetamorphic homologs. Our findings provide information critical for understanding the metamorphic behavior of RfaH and other chameleon proteins and for devising targeted strategies to combat bacterial infections.
Collapse
Affiliation(s)
- Pablo Galaz-Davison
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Alejandro Molina
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Steve Silletti
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | - Stefan H Knauer
- Lehrstuhl Biopolymere, Universität Bayreuth, Bayreuth, Germany
| | - Irina Artsimovitch
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, Ohio.
| | - César A Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
20
|
Belogurov GA, Artsimovitch I. The Mechanisms of Substrate Selection, Catalysis, and Translocation by the Elongating RNA Polymerase. J Mol Biol 2019; 431:3975-4006. [PMID: 31153902 DOI: 10.1016/j.jmb.2019.05.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 11/15/2022]
Abstract
Multi-subunit DNA-dependent RNA polymerases synthesize all classes of cellular RNAs, ranging from short regulatory transcripts to gigantic messenger RNAs. RNA polymerase has to make each RNA product in just one try, even if it takes millions of successive nucleotide addition steps. During each step, RNA polymerase selects a correct substrate, adds it to a growing chain, and moves one nucleotide forward before repeating the cycle. However, RNA synthesis is anything but monotonous: RNA polymerase frequently pauses upon encountering mechanical, chemical and torsional barriers, sometimes stepping back and cleaving off nucleotides from the growing RNA chain. A picture in which these intermittent dynamics enable processive, accurate, and controllable RNA synthesis is emerging from complementary structural, biochemical, computational, and single-molecule studies. Here, we summarize our current understanding of the mechanism and regulation of the on-pathway transcription elongation. We review the details of substrate selection, catalysis, proofreading, and translocation, focusing on rate-limiting steps, structural elements that modulate them, and accessory proteins that appear to control RNA polymerase translocation.
Collapse
Affiliation(s)
| | - Irina Artsimovitch
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
21
|
Abstract
In every cell from bacteria to mammals, NusG-like proteins bind transcribing RNA polymerase to modulate the rate of nascent RNA synthesis and to coordinate it with numerous cotranscriptional processes that ultimately determine the transcript fate. Housekeeping NusG factors regulate expression of the bulk of the genome, whereas their highly specialized paralogs control just a few targets. In every cell from bacteria to mammals, NusG-like proteins bind transcribing RNA polymerase to modulate the rate of nascent RNA synthesis and to coordinate it with numerous cotranscriptional processes that ultimately determine the transcript fate. Housekeeping NusG factors regulate expression of the bulk of the genome, whereas their highly specialized paralogs control just a few targets. In Escherichia coli, NusG stimulates silencing of horizontally acquired genes, while its paralog RfaH counters NusG action by activating a subset of these genes. Acting alone or as part of regulatory complexes, NusG factors can promote uninterrupted RNA synthesis, bring about transcription pausing or premature termination, modulate RNA processing, and facilitate translation. Recent structural and mechanistic studies of NusG homologs from all domains of life reveal molecular details of multifaceted interactions that underpin their unexpectedly diverse regulatory roles. NusG proteins share conserved binding sites on RNA polymerase and many effects on the transcription elongation complex but differ in their mechanisms of recruitment, interactions with nucleic acids and secondary partners, and regulatory outcomes. Strikingly, some can alternate between autoinhibited and activated states that possess dramatically different secondary structures to achieve exquisite target specificity.
Collapse
|
22
|
Turtola M, Mäkinen JJ, Belogurov GA. Active site closure stabilizes the backtracked state of RNA polymerase. Nucleic Acids Res 2018; 46:10870-10887. [PMID: 30256972 PMCID: PMC6237748 DOI: 10.1093/nar/gky883] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/30/2018] [Accepted: 09/19/2018] [Indexed: 01/02/2023] Open
Abstract
All cellular RNA polymerases (RNAP) occasionally backtrack along the template DNA as part of transcriptional proofreading and regulation. Here, we studied the mechanism of RNAP backtracking by one nucleotide using two complementary approaches that allowed us to precisely measure the occupancy and lifetime of the backtracked state. Our data show that the stability of the backtracked state is critically dependent on the closure of the RNAP active site by a mobile domain, the trigger loop (TL). The lifetime and occupancy of the backtracked state measurably decreased by substitutions of the TL residues that interact with the nucleoside triphosphate (NTP) substrate, whereas amino acid substitutions that stabilized the closed active site increased the lifetime and occupancy. These results suggest that the same conformer of the TL closes the active site during catalysis of nucleotide incorporation into the nascent RNA and backtracking by one nucleotide. In support of this hypothesis, we construct a model of the 1-nt backtracked complex with the closed active site and the backtracked nucleotide in the entry pore area known as the E-site. We further propose that 1-nt backtracking mimics the reversal of the NTP substrate loading into the RNAP active site during on-pathway elongation.
Collapse
Affiliation(s)
- Matti Turtola
- University of Turku, Department of Biochemistry, FIN-20014 Turku, Finland
| | - Janne J Mäkinen
- University of Turku, Department of Biochemistry, FIN-20014 Turku, Finland
| | | |
Collapse
|
23
|
Nedialkov Y, Svetlov D, Belogurov GA, Artsimovitch I. Locking the nontemplate DNA to control transcription. Mol Microbiol 2018; 109:445-457. [PMID: 29758107 PMCID: PMC6173972 DOI: 10.1111/mmi.13983] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2018] [Indexed: 12/31/2022]
Abstract
Universally conserved NusG/Spt5 factors reduce RNA polymerase pausing and arrest. In a widely accepted model, these proteins bridge the RNA polymerase clamp and lobe domains across the DNA channel, inhibiting the clamp opening to promote pause-free RNA synthesis. However, recent structures of paused transcription elongation complexes show that the clamp does not open and suggest alternative mechanisms of antipausing. Among these mechanisms, direct contacts of NusG/Spt5 proteins with the nontemplate DNA in the transcription bubble have been proposed to prevent unproductive DNA conformations and thus inhibit arrest. We used Escherichia coli RfaH, whose interactions with DNA are best characterized, to test this idea. We report that RfaH stabilizes the upstream edge of the transcription bubble, favoring forward translocation, and protects the upstream duplex DNA from exonuclease cleavage. Modeling suggests that RfaH loops the nontemplate DNA around its surface and restricts the upstream DNA duplex mobility. Strikingly, we show that RfaH-induced DNA protection and antipausing activity can be mimicked by shortening the nontemplate strand in elongation complexes assembled on synthetic scaffolds. We propose that remodeling of the nontemplate DNA controls recruitment of regulatory factors and R-loop formation during transcription elongation across all life.
Collapse
Affiliation(s)
- Yuri Nedialkov
- Department of Microbiology, The Ohio State University, Columbus, OH 43210
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210
| | - Dmitri Svetlov
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | | | - Irina Artsimovitch
- Department of Microbiology, The Ohio State University, Columbus, OH 43210
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
24
|
Differential impact of lipopolysaccharide defects caused by loss of RfaH in Yersinia pseudotuberculosis and Yersinia pestis. Sci Rep 2017; 7:10915. [PMID: 28883503 PMCID: PMC5589760 DOI: 10.1038/s41598-017-11334-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/22/2017] [Indexed: 01/11/2023] Open
Abstract
RfaH enhances transcription of a select group of operons controlling bacterial surface features such as lipopolysaccharide (LPS). Previous studies have suggested that rfaH may be required for Yersinia pseudotuberculosis resistance to antimicrobial chemokines and survival during mouse infections. In order to further investigate the role of RfaH in LPS synthesis, resistance to host defense peptides, and virulence of Yersinia, we constructed ΔrfaH mutants of Y. pseudotuberculosis IP32953 and Y. pestis KIM6+. Loss of rfaH affected LPS synthesis in both species, resulting in a shorter core oligosaccharide. Susceptibility to polymyxin and the antimicrobial chemokine CCL28 was increased by loss of rfaH in Y. pseudotuberculosis but not in Y. pestis. Transcription of genes in the ddhD-wzz O-antigen gene cluster, but not core oligosaccharide genes, was reduced in ΔrfaH mutants. In addition, mutants with disruptions in specific ddhD-wzz O-antigen cluster genes produced LPS that was indistinguishable from the ΔrfaH mutant. This suggests that both Y. pseudotuberculosis and Y. pestis produce an oligosaccharide core with a single O-antigen unit attached in an RfaH-dependent fashion. Despite enhanced sensitivity to host defense peptides, the Y. pseudotuberculosis ΔrfaH strain was not attenuated in mice, suggesting that rfaH is not required for acute infection.
Collapse
|
25
|
Ray-Soni A, Bellecourt MJ, Landick R. Mechanisms of Bacterial Transcription Termination: All Good Things Must End. Annu Rev Biochem 2016; 85:319-47. [PMID: 27023849 DOI: 10.1146/annurev-biochem-060815-014844] [Citation(s) in RCA: 241] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transcript termination is essential for accurate gene expression and the removal of RNA polymerase (RNAP) at the ends of transcription units. In bacteria, two mechanisms are responsible for proper transcript termination: intrinsic termination and Rho-dependent termination. Intrinsic termination is mediated by signals directly encoded within the DNA template and nascent RNA, whereas Rho-dependent termination relies upon the adenosine triphosphate-dependent RNA translocase Rho, which binds nascent RNA and dissociates the elongation complex. Although significant progress has been made in understanding these pathways, fundamental details remain undetermined. Among those that remain unresolved are the existence of an inactivated intermediate in the intrinsic termination pathway, the role of Rho-RNAP interactions in Rho-dependent termination, and the mechanisms by which accessory factors and nucleoid-associated proteins affect termination. We describe current knowledge, discuss key outstanding questions, and highlight the importance of defining the structural rearrangements of RNAP that are involved in the two mechanisms of transcript termination.
Collapse
Affiliation(s)
- Ananya Ray-Soni
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706; ,
| | - Michael J Bellecourt
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706; ,
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706; , .,Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706;
| |
Collapse
|
26
|
Abstract
The highly conserved Nus factors of bacteria were discovered as essential host proteins for the growth of temperate phage λ in Escherichia coli. Later, their essentiality and functions in transcription, translation, and, more recently, in DNA repair have been elucidated. Close involvement of these factors in various gene networks and circuits is also emerging from recent genomic studies. We have described a detailed overview of their biochemistry, structures, and various cellular functions, as well as their interactions with other macromolecules. Towards the end, we have envisaged different uncharted areas of studies with these factors, including their participation in pathogenicity.
Collapse
|
27
|
Abstract
The Nus factors-NusA, NusB, NusE, and NusG-area set of well-conserved proteins in bacteria and are involved in transcription elongation, termination, antitermination, and translation processes. Originally, Escherichia coli host mutations defective for supporting bacteriophage λ N-mediated antitermination were mapped to the nusA (nusA1), nusB (nusB5, nusB101), and nusE (nusE71) genes, and hence, these genes were named nus for Nutilization substances (Nus). Subsequently,the Nus factors were purified and their roles in different host functions were elucidated. Except for NusB, deletion of which is conditionally lethal, all the other Nus factors are essential for E. coli. Among the Nus factors, NusA has the most varied functions. It specifically binds to RNA polymerase (RNAP), nascent RNA, and antiterminator proteins like N and Q and hence takes part in modulating transcription elongation, termination, and antitermination. It is also involved in DNA repair pathways. NusG interacts with RNAP and the transcription termination factor Rho and therefore is involved in both factor-dependent termination and transcription elongation processes. NusB and NusE are mostly important in antitermination at the ribosomal operon-transcription. NusE is a component of ribosome and may take part in facilitating the coupling between transcription and translation. This chapter emphasizes the structure-function relationship of these factors and their involvement in different fundamental cellular processes from a mechanistic angle.
Collapse
|
28
|
NandyMazumdar M, Artsimovitch I. Ubiquitous transcription factors display structural plasticity and diverse functions: NusG proteins - Shifting shapes and paradigms. Bioessays 2015; 37:324-34. [PMID: 25640595 DOI: 10.1002/bies.201400177] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Numerous accessory factors modulate RNA polymerase response to regulatory signals and cellular cues and establish communications with co-transcriptional RNA processing. Transcription regulators are astonishingly diverse, with similar mechanisms arising via convergent evolution. NusG/Spt5 elongation factors comprise the only universally conserved and ancient family of regulators. They bind to the conserved clamp helices domain of RNA polymerase, which also interacts with non-homologous initiation factors in all domains of life, and reach across the DNA channel to form processivity clamps that enable uninterrupted RNA chain synthesis. In addition to this ubiquitous function, NusG homologs exert diverse, and sometimes opposite, effects on gene expression by competing with each other and other regulators for binding to the clamp helices and by recruiting auxiliary factors that facilitate termination, antitermination, splicing, translation, etc. This surprisingly diverse range of activities and the underlying unprecedented structural changes make studies of these "transformer" proteins both challenging and rewarding.
Collapse
Affiliation(s)
- Monali NandyMazumdar
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
29
|
Windgassen TA, Mooney RA, Nayak D, Palangat M, Zhang J, Landick R. Trigger-helix folding pathway and SI3 mediate catalysis and hairpin-stabilized pausing by Escherichia coli RNA polymerase. Nucleic Acids Res 2014; 42:12707-21. [PMID: 25336618 PMCID: PMC4227799 DOI: 10.1093/nar/gku997] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The conformational dynamics of the polymorphous trigger loop (TL) in RNA polymerase (RNAP) underlie multiple steps in the nucleotide addition cycle and diverse regulatory mechanisms. These mechanisms include nascent RNA hairpin-stabilized pausing, which inhibits TL folding into the trigger helices (TH) required for rapid nucleotide addition. The nascent RNA pause hairpin forms in the RNA exit channel and promotes opening of the RNAP clamp domain, which in turn stabilizes a partially folded, paused TL conformation that disfavors TH formation. We report that inhibiting TH unfolding with a disulfide crosslink slowed multiround nucleotide addition only modestly but eliminated hairpin-stabilized pausing. Conversely, a substitution that disrupts the TH folding pathway and uncouples establishment of key TH–NTP contacts from complete TH formation and clamp movement allowed rapid catalysis and eliminated hairpin-stabilized pausing. We also report that the active-site distal arm of the TH aids TL folding, but that a 188-aa insertion in the Escherichia coli TL (sequence insertion 3; SI3) disfavors TH formation and stimulates pausing. The effect of SI3 depends on the jaw domain, but not on downstream duplex DNA. Our results support the view that both SI3 and the pause hairpin modulate TL folding in a constrained pathway of intermediate states.
Collapse
Affiliation(s)
- Tricia A Windgassen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rachel Anne Mooney
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dhananjaya Nayak
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Murali Palangat
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jinwei Zhang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
30
|
Hein PP, Kolb KE, Windgassen T, Bellecourt MJ, Darst SA, Mooney RA, Landick R. RNA polymerase pausing and nascent-RNA structure formation are linked through clamp-domain movement. Nat Struct Mol Biol 2014; 21:794-802. [PMID: 25108353 PMCID: PMC4156911 DOI: 10.1038/nsmb.2867] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/03/2014] [Indexed: 12/11/2022]
Abstract
The rates of RNA synthesis and the folding of nascent RNA into biologically active structures are linked via pausing by RNA polymerase (RNAP). Structures that form within the RNA-exit channel can either increase pausing by interacting with RNAP or decrease pausing by preventing backtracking. Conversely, pausing is required for proper folding of some RNAs. Opening of the RNAP clamp domain has been proposed to mediate some effects of nascent-RNA structures. However, the connections among RNA structure formation and RNAP clamp movement and catalytic activity remain uncertain. Here, we assayed exit-channel structure formation in Escherichia coli RNAP with disulfide cross-links that favor closed- or open-clamp conformations and found that clamp position directly influences RNA structure formation and RNAP catalytic activity. We report that exit-channel RNA structures slow pause escape by favoring clamp opening through interactions with the flap that slow translocation.
Collapse
Affiliation(s)
- Pyae P. Hein
- Department of Biochemistry, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Kellie E. Kolb
- Department of Biochemistry, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Tricia Windgassen
- Department of Biochemistry, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Michael J. Bellecourt
- Department of Biochemistry, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Seth A. Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Rachel A. Mooney
- Department of Biochemistry, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin – Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin – Madison, Madison, WI 53706, USA
| |
Collapse
|
31
|
Markov DA, Wojtas ID, Tessitore K, Henderson S, McAllister WT. Yeast DEAD box protein Mss116p is a transcription elongation factor that modulates the activity of mitochondrial RNA polymerase. Mol Cell Biol 2014; 34:2360-9. [PMID: 24732805 PMCID: PMC4054322 DOI: 10.1128/mcb.00160-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 02/20/2014] [Accepted: 04/01/2014] [Indexed: 01/08/2023] Open
Abstract
DEAD box proteins have been widely implicated in regulation of gene expression. Here, we show that the yeast Saccharomyces cerevisiae DEAD box protein Mss116p, previously known as a mitochondrial splicing factor, also acts as a transcription factor that modulates the activity of the single-subunit mitochondrial RNA polymerase encoded by RPO41. Binding of Mss116p stabilizes paused mitochondrial RNA polymerase elongation complexes in vitro and favors the posttranslocated state of the enzyme, resulting in a lower concentration of nucleotide substrate required to escape the pause; this mechanism of action is similar to that of elongation factors that enhance the processivity of multisubunit RNA polymerases. In a yeast strain in which the RNA splicing-related functions of Mss116p are dispensable, overexpression of RPO41 or MSS116 increases cell survival from colonies that were exposed to low temperature, suggesting a role for Mss116p in enhancing the efficiency of mitochondrial transcription under stress conditions.
Collapse
Affiliation(s)
- Dmitriy A Markov
- Department of Cell Biology, Rowan University, School of Osteopathic Medicine, Stratford, New Jersey, USA
| | - Ireneusz D Wojtas
- Department of Cell Biology, Rowan University, School of Osteopathic Medicine, Stratford, New Jersey, USA
| | - Kassandra Tessitore
- Summer Undergraduate Research Experience Program, Rowan University, School of Osteopathic Medicine, Stratford, New Jersey, USA
| | - Simmone Henderson
- Graduate School of Biomedical Sciences, Rowan University, School of Osteopathic Medicine, Stratford, New Jersey, USA
| | - William T McAllister
- Department of Cell Biology, Rowan University, School of Osteopathic Medicine, Stratford, New Jersey, USA
| |
Collapse
|
32
|
Malinen AM, NandyMazumdar M, Turtola M, Malmi H, Grocholski T, Artsimovitch I, Belogurov GA. CBR antimicrobials alter coupling between the bridge helix and the β subunit in RNA polymerase. Nat Commun 2014; 5:3408. [PMID: 24598909 PMCID: PMC3959191 DOI: 10.1038/ncomms4408] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/06/2014] [Indexed: 01/17/2023] Open
Abstract
Bacterial RNA polymerase (RNAP) is a validated target for antibacterial drugs. CBR703 series antimicrobials allosterically inhibit transcription by binding to a conserved α helix (β' bridge helix, BH) that interconnects the two largest RNAP subunits. Here we show that disruption of the BH-β subunit contacts by amino-acid substitutions invariably results in accelerated catalysis, slowed-down forward translocation and insensitivity to regulatory pauses. CBR703 partially reverses these effects in CBR-resistant RNAPs while inhibiting catalysis and promoting pausing in CBR-sensitive RNAPs. The differential response of variant RNAPs to CBR703 suggests that the inhibitor binds in a cavity walled by the BH, the β' F-loop and the β fork loop. Collectively, our data are consistent with a model in which the β subunit fine tunes RNAP elongation activities by altering the BH conformation, whereas CBRs deregulate transcription by increasing coupling between the BH and the β subunit.
Collapse
Affiliation(s)
- Anssi M. Malinen
- Department of Biochemistry, University of Turku, Turku 20014, Finland
| | - Monali NandyMazumdar
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Matti Turtola
- Department of Biochemistry, University of Turku, Turku 20014, Finland
| | - Henri Malmi
- Department of Biochemistry, University of Turku, Turku 20014, Finland
| | - Thadee Grocholski
- Department of Biochemistry, University of Turku, Turku 20014, Finland
| | - Irina Artsimovitch
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
33
|
Kolb KE, Hein PP, Landick R. Antisense oligonucleotide-stimulated transcriptional pausing reveals RNA exit channel specificity of RNA polymerase and mechanistic contributions of NusA and RfaH. J Biol Chem 2013; 289:1151-63. [PMID: 24275665 DOI: 10.1074/jbc.m113.521393] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcript elongation by bacterial RNA polymerase (RNAP) is thought to be regulated at pause sites by open versus closed positions of the RNAP clamp domain, pause-suppressing regulators like NusG and RfaH that stabilize the closed-clampRNAP conformation, and pause-enhancing regulators like NusA and exit channel nascent RNA structures that stabilize the open clamp RNAP conformation. However, the mutual effects of these protein and RNA regulators on RNAP conformation are incompletely understood. For example, it is unknown whether NusA directly interacts with exit channel duplexes and whether formation of exit channel duplexes and RfaH binding compete by favoring the open and closed RNAP conformations. We report new insights into these mechanisms using antisense oligonucleotide mimics of a pause RNA hairpin from the leader region of the his biosynthetic operon of enteric bacteria like Escherichia coli. By systematically varying the structure and length of the oligonucleotide mimic, we determined that full pause stabilization requires an RNA-RNA duplex of at least 8 bp or a DNA-RNA duplex of at least 11 bp; RNA-RNA duplexes were more effective than DNA-RNA. NusA stimulation of pausing was optimal with 10-bp RNA-RNA duplexes and was aided by single-stranded RNA upstream of the duplex but was significantly reduced with DNA-RNA duplexes. Our results favor direct NusA stabilization of exit channel duplexes, which consequently affect RNAP clamp conformation. Effects of RfaH, which suppresses oligo-stabilization of pausing, were competitive with antisense oligonucleotide concentration, suggesting that RfaH and exit channel duplexes compete via opposing effects on RNAP clamp conformation.
Collapse
|
34
|
Tomar SK, Artsimovitch I. NusG-Spt5 proteins-Universal tools for transcription modification and communication. Chem Rev 2013; 113:8604-19. [PMID: 23638618 PMCID: PMC4259564 DOI: 10.1021/cr400064k] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sushil Kumar Tomar
- Department of Microbiology and The Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| | | |
Collapse
|
35
|
Nedialkov YA, Opron K, Assaf F, Artsimovitch I, Kireeva ML, Kashlev M, Cukier RI, Nudler E, Burton ZF. The RNA polymerase bridge helix YFI motif in catalysis, fidelity and translocation. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1829:187-98. [PMID: 23202476 PMCID: PMC3619131 DOI: 10.1016/j.bbagrm.2012.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/14/2012] [Accepted: 11/17/2012] [Indexed: 01/22/2023]
Abstract
The bridge α-helix in the β' subunit of RNA polymerase (RNAP) borders the active site and may have roles in catalysis and translocation. In Escherichia coli RNAP, a bulky hydrophobic segment near the N-terminal end of the bridge helix is identified (β' 772-YFI-774; the YFI motif). YFI is located at a distance from the active center and adjacent to a glycine hinge (β' 778-GARKG-782) involved in dynamic bending of the bridge helix. Remarkably, amino acid substitutions in YFI significantly alter intrinsic termination, pausing, fidelity and translocation of RNAP. F773V RNAP largely ignores the λ tR2 terminator at 200μM NTPs and is strongly reduced in λ tR2 recognition at 1μM NTPs. F773V alters RNAP pausing and backtracking and favors misincorporation. By contrast, the adjacent Y772A substitution increases fidelity and exhibits other transcriptional defects generally opposite to those of F773V. All atom molecular dynamics simulation revealed two separate functional connections emanating from YFI explaining the distinct effects of substitutions: Y772 communicates with the active site through the link domain in the β subunit, whereas F773 communicates through the fork domain in the β subunit. I774 interacts with the F-loop, which also contacts the glycine hinge of the bridge helix. These results identified negative and positive circuits coupled at YFI and employed for regulation of catalysis, elongation, termination and translocation.
Collapse
Affiliation(s)
- Yuri A Nedialkov
- Department of Biochemistry and Molecular Biology, Michigan State University, E. Lansing, MI 48824-1319, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
An insertion in the catalytic trigger loop gates the secondary channel of RNA polymerase. J Mol Biol 2012; 425:82-93. [PMID: 23147217 DOI: 10.1016/j.jmb.2012.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 10/29/2012] [Accepted: 11/06/2012] [Indexed: 12/20/2022]
Abstract
Escherichia coli DksA and GreB bind to RNA polymerase (RNAP), reaching inside the secondary channel, with similar affinities but have different cellular functions. DksA destabilizes promoter complexes whereas GreB facilitates RNA cleavage in arrested elongation complexes (ECs). Although the less abundant GreB may not interfere with DksA regulation during initiation, reports that DksA acts during elongation and termination suggest that it may exclude GreB from arrested complexes, potentially triggering genome instability. Here, we show that GreB does not compete with DksA during termination whereas DksA, even when present in several hundredfold molar excess, does not inhibit GreB-mediated cleavage of the nascent RNA. Our findings that DksA does not bind to backtracked or active ECs provide an explanation for the lack of DksA activity on most ECs that we reported previously, raising a question of what makes a transcription complex susceptible to DksA. Structural modeling suggests that i6, an insertion in the catalytic trigger loop, hinders DksA access into the channel, restricting DksA action to a subset of transcription complexes. In support of this hypothesis, we demonstrate that deletion of i6 permits DksA binding to ECs and that the distribution of DksA and i6 in bacterial genomes is strongly concordant. We hypothesize that DksA binds to transcription complexes in which i6 becomes mobile, for example, as a consequence of weakened RNAP interactions with the downstream duplex DNA.
Collapse
|
37
|
Hartzog GA, Fu J. The Spt4-Spt5 complex: a multi-faceted regulator of transcription elongation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:105-15. [PMID: 22982195 DOI: 10.1016/j.bbagrm.2012.08.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/21/2012] [Accepted: 08/29/2012] [Indexed: 10/27/2022]
Abstract
In all domains of life, elongating RNA polymerases require the assistance of accessory factors to maintain their processivity and regulate their rate. Among these elongation factors, the Spt5/NusG factors stand out. Members of this protein family appear to be the only transcription accessory proteins that are universally conserved across all domains of life. In archaea and eukaryotes, Spt5 associates with a second protein, Spt4. In addition to regulating elongation, the eukaryotic Spt4-Spt5 complex appears to couple chromatin modification states and RNA processing to transcription elongation. This review discusses the experimental bases for our current understanding of Spt4-Spt5 function and recent studies that are beginning to elucidate the structure of Spt4-Spt5/RNA polymerase complexes and mechanism of Spt4-Spt5 action. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Grant A Hartzog
- Department of MCD Biology, University of California, Santa Cruz, CA 95064, USA.
| | | |
Collapse
|
38
|
Abstract
There is mounting evidence that there are frequent conflicts between complexes that replicate DNA and those that transcribe the same template, and that these conflicts lead to blockage of replication and genome instability. Such problems are perhaps best understood in bacteria, but it is becoming apparent that replicative barriers associated with transcription are a universal feature of life. This review summarizes what is currently known about how collisions between replisomes and transcription complexes are minimized and the mechanisms that help to resolve such collisions when they do occur. Although our understanding of these processes is still far from complete, a picture is emerging of a wide variety of different types of transcriptional blocks to replication that have resulted in a complex, overlapping system of mechanisms to avoid or tolerate such collisions.
Collapse
Affiliation(s)
- Peter McGlynn
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK.
| | | | | |
Collapse
|
39
|
Iwamoto A, Osawa A, Kawai M, Honda H, Yoshida S, Furuya N, Kato JI. Mutations in the essential Escherichia coli gene, yqgF, and their effects on transcription. J Mol Microbiol Biotechnol 2012; 22:17-23. [PMID: 22353788 DOI: 10.1159/000336517] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Escherichia coli yqgF gene is highly conserved across a broad spectrum of bacterial genomes. The gene was first identified as being essential for cell growth during screening for targets for broad-spectrum antibiotics. YqgF is structurally similar to RuvC, a Holliday junction resolvase, but its function has not been established. This study describes the isolation of a temperature-sensitive yqgF mutant, the growth of which was inhibited by rho or nusA multicopy plasmids, indicating that YqgF is involved in transcription. Rho is a global transcription termination factor that acts at Rho-dependent terminator sites, which exist not only at the ends of genes but also within genes. The transcription of genes possessing intragenic, or upstream, Rho-dependent terminators was reduced in temperature-sensitive yqgF mutants. This transcription inhibition was sensitive to the Rho inhibitor, bicyclomycin. In addition, the transcription of mutant tnaA genes defective for upstream Rho-dependent termination was not significantly affected by the yqgF mutation. Taken together, these results suggest that YqgF is involved in anti-termination at Rho-dependent terminators in vivo.
Collapse
Affiliation(s)
- Akira Iwamoto
- Department of Biology, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Transcriptional pausing coordinates folding of the aptamer domain and the expression platform of a riboswitch. Proc Natl Acad Sci U S A 2012; 109:3323-8. [PMID: 22331895 DOI: 10.1073/pnas.1113086109] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Riboswitches are cis-acting elements that regulate gene expression by affecting transcriptional termination or translational initiation in response to binding of a metabolite. A typical riboswitch is made of an upstream aptamer domain and a downstream expression platform. Both domains participate in the folding and structural rearrangement in the absence or presence of its cognate metabolite. RNA polymerase pausing is a fundamental property of transcription that can influence RNA folding. Here we show that pausing plays an important role in the folding and conformational rearrangement of the Escherichia coli btuB riboswitch during transcription by the E. coli RNA polymerase. This riboswitch consists of an approximately 200 nucleotide, coenzyme B12 binding aptamer domain and an approximately 40 nucleotide expression platform that controls the ribosome access for translational initiation. We found that transcriptional pauses at strategic locations facilitate folding and structural rearrangement of the full-length riboswitch, but have minimal effect on the folding of the isolated aptamer domain. Pausing at these regulatory sites blocks the formation of alternate structures and plays a chaperoning role that couples folding of the aptamer domain and the expression platform. Pausing at strategic locations may be a general mechanism for coordinated folding and conformational rearrangements of riboswitch structures that underlie their response to environmental cues.
Collapse
|
41
|
Werner F. A nexus for gene expression-molecular mechanisms of Spt5 and NusG in the three domains of life. J Mol Biol 2012; 417:13-27. [PMID: 22306403 PMCID: PMC3382729 DOI: 10.1016/j.jmb.2012.01.031] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/10/2012] [Accepted: 01/13/2012] [Indexed: 11/25/2022]
Abstract
Evolutionary related multisubunit RNA polymerases (RNAPs) transcribe the genomes of all living organisms. Whereas the core subunits of RNAPs are universally conserved in all three domains of life—indicative of a common evolutionary descent—this only applies to one RNAP-associated transcription factor—Spt5, also known as NusG in bacteria. All other factors that aid RNAP during the transcription cycle are specific for the individual domain or only conserved between archaea and eukaryotes. Spt5 and its bacterial homologue NusG regulate gene expression in several ways by (i) modulating transcription processivity and promoter proximal pausing, (ii) coupling transcription and RNA processing or translation, and (iii) recruiting termination factors and thereby silencing laterally transferred DNA and protecting the genome against double-stranded DNA breaks. This review discusses recent discoveries that identify Spt5-like factors as evolutionary conserved nexus for the regulation and coordination of the machineries responsible for information processing in the cell.
Collapse
Affiliation(s)
- Finn Werner
- RNAP Laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
42
|
Berdygulova Z, Esyunina D, Miropolskaya N, Mukhamedyarov D, Kuznedelov K, Nickels BE, Severinov K, Kulbachinskiy A, Minakhin L. A novel phage-encoded transcription antiterminator acts by suppressing bacterial RNA polymerase pausing. Nucleic Acids Res 2012; 40:4052-63. [PMID: 22238378 PMCID: PMC3351154 DOI: 10.1093/nar/gkr1285] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gp39, a small protein encoded by Thermus thermophilus phage P23–45, specifically binds the host RNA polymerase (RNAP) and inhibits transcription initiation. Here, we demonstrate that gp39 also acts as an antiterminator during transcription through intrinsic terminators. The antitermination activity of gp39 relies on its ability to suppress transcription pausing at poly(U) tracks. Gp39 also accelerates transcription elongation by decreasing RNAP pausing and backtracking but does not significantly affect the rates of catalysis of individual reactions in the RNAP active center. We mapped the RNAP-gp39 interaction site to the β flap, a domain that forms a part of the RNA exit channel and is also a likely target for λ phage antiterminator proteins Q and N, and for bacterial elongation factor NusA. However, in contrast to Q and N, gp39 does not depend on NusA or other auxiliary factors for its activity. To our knowledge, gp39 is the first characterized phage-encoded transcription factor that affects every step of the transcription cycle and suppresses transcription termination through its antipausing activity.
Collapse
|
43
|
Sevostyanova A, Belogurov GA, Mooney RA, Landick R, Artsimovitch I. The β subunit gate loop is required for RNA polymerase modification by RfaH and NusG. Mol Cell 2012; 43:253-62. [PMID: 21777814 DOI: 10.1016/j.molcel.2011.05.026] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/25/2011] [Accepted: 05/16/2011] [Indexed: 10/18/2022]
Abstract
In all organisms, RNA polymerase (RNAP) relies on accessory factors to complete synthesis of long RNAs. These factors increase RNAP processivity by reducing pausing and termination, but their molecular mechanisms remain incompletely understood. We identify the β gate loop as an RNAP element required for antipausing activity of a bacterial virulence factor RfaH, a member of the universally conserved NusG family. Interactions with the gate loop are necessary for suppression of pausing and termination by RfaH, but are dispensable for RfaH binding to RNAP mediated by the β' clamp helices. We hypothesize that upon binding to the clamp helices and the gate loop RfaH bridges the gap across the DNA channel, stabilizing RNAP contacts with nucleic acid and disfavoring isomerization into a paused state. We show that contacts with the gate loop are also required for antipausing by NusG and propose that most NusG homologs use similar mechanisms to increase RNAP processivity.
Collapse
Affiliation(s)
- Anastasia Sevostyanova
- Department of Microbiology and the RNA Group, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
44
|
Furman R, Sevostyanova A, Artsimovitch I. Transcription initiation factor DksA has diverse effects on RNA chain elongation. Nucleic Acids Res 2011; 40:3392-402. [PMID: 22210857 PMCID: PMC3333854 DOI: 10.1093/nar/gkr1273] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacterial transcription factors DksA and GreB belong to a family of coiled-coil proteins that bind within the secondarychannel of RNA polymerase (RNAP). These proteins display structural homology but play different regulatory roles. DksA disrupts RNAP interactions with promoter DNA and inhibits formation of initiation complexes, sensitizing rRNA synthesis to changes in concentrations of ppGpp and NTPs. Gre proteins remodel the RNAP active site and facilitate cleavage of the nascent RNA in elongation complexes. However, DksA and GreB were shown to have overlapping effects during initiation, and in vivo studies suggested that DksA may also function at post-initiation steps. Here we show that DksA has many features of an elongation factor: it inhibits both RNA chain extension and RNA shortening by exonucleolytic cleavage or pyrophosphorolysis and increases intrinsic termination in vitro and in vivo. However, DksA has no effect on Rho- or Mfd-mediated RNA release or nascent RNA cleavage in backtracked complexes, the regulatory target of Gre factors. Our results reveal that DksA effects on elongating RNAP are very different from those of GreB, suggesting that these regulators recognize distinct states of the transcription complex.
Collapse
Affiliation(s)
- Ran Furman
- Department of Microbiology and The Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
45
|
Effects on growth by changes of the balance between GreA, GreB, and DksA suggest mutual competition and functional redundancy in Escherichia coli. J Bacteriol 2011; 194:261-73. [PMID: 22056927 DOI: 10.1128/jb.06238-11] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is well known that ppGpp and DksA interact with bacterial RNA polymerase (RNAP) to alter promoter activity. This study suggests that GreA plays a major role and GreB plays a minor role in the ppGpp-DksA regulatory network. We present evidence that DksA and GreA/GreB are redundant and/or share similar functions: (i) on minimal medium GreA overproduction suppresses the growth defects of a dksA mutant; (ii) GreA and DksA overexpression partially suppresses the auxotrophy of a ppGpp-deficient strain; (iii) microarrays show that many genes are regulated similarly by GreA and DksA. We also find instances where GreA and DksA seem to act in opposition: (i) complete suppression of auxotrophy occurs by overexpression of GreA or DksA only in the absence of the other protein; (ii) PgadA and PgadE promoter fusions, along with many other genes, are dramatically affected in vivo by GreA overproduction only when DksA is absent; (iii) GreA and DksA show opposite regulation of a subset of genes. Mutations in key acidic residues of GreA and DksA suggest that properties seen here probably are not explained by known biochemical activities of these proteins. Our results indicate that the general pattern of gene expression and, in turn, the ability of Escherichia coli to grow under a defined condition are the result of a complex interplay between GreA, GreB, and DksA that also involves mutual control of their gene expression, competition for RNA polymerase binding, and similar or opposite action on RNA polymerase activity.
Collapse
|
46
|
Santangelo TJ, Artsimovitch I. Termination and antitermination: RNA polymerase runs a stop sign. Nat Rev Microbiol 2011; 9:319-29. [PMID: 21478900 DOI: 10.1038/nrmicro2560] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Termination signals induce rapid and irreversible dissociation of the nascent transcript from RNA polymerase. Terminators at the end of genes prevent unintended transcription into the downstream genes, whereas terminators in the upstream regulatory leader regions adjust expression of the structural genes in response to metabolic and environmental signals. Premature termination within an operon leads to potentially deleterious defects in the expression of the downstream genes, but also provides an important surveillance mechanism. This Review discusses the actions of bacterial and phage antiterminators that allow RNA polymerase to override a terminator when the circumstances demand it.
Collapse
Affiliation(s)
- Thomas J Santangelo
- Department of Microbiology and The RNA Group, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
47
|
Swapna G, Chakraborty A, Kumari V, Sen R, Nagaraja V. Mutations in β' subunit of Escherichia coli RNA polymerase perturb the activator polymerase functional interaction required for promoter clearance. Mol Microbiol 2011; 80:1169-85. [PMID: 21435034 DOI: 10.1111/j.1365-2958.2011.07636.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transcription activator C employs a unique mechanism to activate mom gene of bacteriophage Mu. The activation process involves, facilitating the recruitment of RNA polymerase (RNAP) by altering the topology of the promoter and enhancing the promoter clearance by reducing the abortive transcription. To understand the basis of this multi-step activation mechanism, we investigated the nature of the physical interaction between C and RNAP during the process. A variety of assays revealed that only DNA-bound C contacts the β' subunit of RNAP. Consistent to these results, we have also isolated RNAP mutants having mutations in the β' subunit which were compromised in C-mediated activation. Mutant RNAPs show reduced productive transcription and increased abortive initiation specifically at the C-dependent mom promoter. Positive control (pc) mutants of C, defective in interaction with RNAP, retained the property of recruiting RNAP to the promoter but were unable to enhance promoter clearance. These results strongly suggest that the recruitment of RNAP to the mom promoter does not require physical interaction with C, whereas a contact between the β' subunit and the activator, and the subsequent allosteric changes in the active site of the enzyme are essential for the enhancement of promoter clearance.
Collapse
Affiliation(s)
- Ganduri Swapna
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | |
Collapse
|
48
|
Jovanovic M, Burrows PC, Bose D, Cámara B, Wiesler S, Zhang X, Wigneshweraraj S, Weinzierl ROJ, Buck M. Activity map of the Escherichia coli RNA polymerase bridge helix. J Biol Chem 2011; 286:14469-79. [PMID: 21357417 PMCID: PMC3077646 DOI: 10.1074/jbc.m110.212902] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Transcription, the synthesis of RNA from a DNA template, is performed by multisubunit RNA polymerases (RNAPs) in all cellular organisms. The bridge helix (BH) is a distinct feature of all multisubunit RNAPs and makes direct interactions with several active site-associated mobile features implicated in the nucleotide addition cycle and RNA and DNA binding. Because the BH has been captured in both kinked and straight conformations in different crystals structures of RNAP, recently supported by molecular dynamics studies, it has been proposed that cycling between these conformations is an integral part of the nucleotide addition cycle. To further evaluate the role of the BH, we conducted systematic alanine scanning mutagenesis of the Escherichia coli RNAP BH to determine its contributions to activities required for transcription. Combining our data with an atomic model of E. coli RNAP, we suggest that alterations in the interactions between the BH and (i) the trigger loop, (ii) fork loop 2, and (iii) switch 2 can help explain the observed changes in RNAP functionality associated with some of the BH variants. Additionally, we show that extensive defects in E. coli RNAP functionality depend upon a single previously not studied lysine residue (Lys-781) that is strictly conserved in all bacteria. It appears that direct interactions made by the BH with other conserved features of RNAP are lost in some of the E. coli alanine substitution variants, which we infer results in conformational changes in RNAP that modify RNAP functionality.
Collapse
Affiliation(s)
- Milija Jovanovic
- Division of Biology, Faculty of Medicine and Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, United Kindgom
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Werner F, Grohmann D. Evolution of multisubunit RNA polymerases in the three domains of life. Nat Rev Microbiol 2011; 9:85-98. [PMID: 21233849 DOI: 10.1038/nrmicro2507] [Citation(s) in RCA: 313] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
50
|
Sevostyanova A, Artsimovitch I. Functional analysis of Thermus thermophilus transcription factor NusG. Nucleic Acids Res 2010; 38:7432-45. [PMID: 20639538 PMCID: PMC2995049 DOI: 10.1093/nar/gkq623] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transcription elongation factors from the NusG family are ubiquitous from bacteria to humans and play diverse roles in the regulation of gene expression. These proteins consist of at least two domains. The N-terminal domains directly bind to the largest, β′ in bacteria, subunit of RNA polymerase (RNAP), whereas the C-terminal domains interact with other cellular components and serve as platforms for the assembly of large nucleoprotein complexes. Escherichia coli NusG and its paralog RfaH modify RNAP into a fast, pause-resistant state but the detailed molecular mechanism of this modification remains unclear since no high-resolution structural data are available for the E. coli system. We wanted to investigate whether Thermus thermophilus (Tth) NusG can be used as a model for structural studies of this family of regulators. Here, we show that Tth NusG slows down rather than facilitates transcript elongation by its cognate RNAP. On the other hand, similarly to the E. coli regulators, Tth NusG apparently binds near the upstream end of the transcription bubble, competes with σA, and favors forward translocation by RNAP. Our data suggest that the mechanism of NusG recruitment to RNAP is universally conserved even though the regulatory outcomes among its homologs may appear distinct.
Collapse
Affiliation(s)
- Anastasiya Sevostyanova
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|