1
|
Kasiński D, Szeliski K, Drewa T, Pokrywczyńska M. Extracellular vesicles-a new player in the development of urinary bladder cancer. Ther Adv Med Oncol 2025; 17:17588359241297529. [PMID: 39850919 PMCID: PMC11755519 DOI: 10.1177/17588359241297529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/18/2024] [Indexed: 01/25/2025] Open
Abstract
Bladder cancer was the 10th most commonly diagnosed cancer worldwide in 2020. Extracellular vesicles (EVs) are nano-sized membranous structures secreted by all types of cells into the extracellular space. EVs can transport proteins, lipids, or nucleic acids to specific target cells. What brings more attention and potential implications is the fact that cancer cells secrete more EVs than non-malignant cells. EVs are widely studied for their role in cancer development. This publication summarizes the impact of EVs secreted by urinary bladder cancer cells on urinary bladder cancer development and metastasis. EVs isolated from urinary bladder cancer cells affect other lower-grade cancer cells or normal cells by inducing different metabolic pathways (transforming growth factor β/Smads pathway; phosphoinositide 3-kinase/Akt pathway) that promote epithelial-mesenchymal transition. The cargo carried by EVs can also induce angiogenesis, another critical element in the development of bladder cancer, and modulate the immune system response in a tumor-beneficial manner. In summary, the transfer of substances produced by tumor cells via EVs to the environment influences many stages of tumor progression. An in-depth understanding of the role EVs play in the development of urinary bladder cancer is crucial for the development of future anticancer therapies.
Collapse
Affiliation(s)
- Damian Kasiński
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Jagiellońska 13/15, 85-067 Bydgoszcz, Poland
| | - Kamil Szeliski
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Drewa
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marta Pokrywczyńska
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
2
|
Zhang J, Wang T, Bi J, Ke M, Ren Y, Wang M, Du Z, Liu W, Hu L, Zhang X, Liu X, Wang B, Wu Z, Lv Y, Meng L, Wu R. Overexpression of HSF2 binding protein suppresses endoplasmic reticulum stress via regulating subcellular localization of CDC73 in hepatocytes. Cell Biosci 2023; 13:64. [PMID: 36964632 PMCID: PMC10039577 DOI: 10.1186/s13578-023-01010-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/07/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress plays an important role in the occurrence and development of various liver diseases. However, there are no effective prevention and treatment strategies. We aimed to determine the role of heat shock factor 2 binding protein (HSF2BP) in ER stress. METHODS HSF2BP expression in mice and cultured hepatocytes was measured during ER stress induced by tunicamycin, and its importance in ER stress was evaluated in hepatocyte-specific HSF2BP transgenic (TG) and knockout (KO) mice. The effects and mechanisms of HSF2BP on ER stress were further probed in hepatic ischemia-reperfusion (I/R) injury. RESULTS HSF2BP expression was significantly upregulated during tunicamycin-induced ER stress in mice and cultured hepatocytes. Liver injury and ER stress were reduced in HSF2BP overexpressing mice after treating with tunicamycin, but were aggravated in HSF2BP knockout mice compared to the controls. In hepatic I/R injury, HSF2BP expression was significantly upregulated, and HSF2BP overexpressing mice had reduced liver injury and inflammation. These improvements were associated with ER stress inhibition. However, these results were reversed in hepatocyte-specific HSF2BP knockout mice. HSF2BP overexpression increased cytoplasmic CDC73 levels and inhibited the JNK signaling pathway. CDC73 knockdown using siRNA eliminated the protection exerted by HSF2BP overexpression in hypoxia/reoxygenation (H/R)-induced ER stress in hepatocytes. CONCLUSION HSF2BP is a previously uncharacterized regulatory factor in ER stress-likely acts by regulating CDC73 subcellular localization. The feasibility of HSF2BP-targeted treatment in ER stress-related liver disease deserves future research.
Collapse
Affiliation(s)
- Jia Zhang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, Center for Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, 124, 76 West Yanta Road, Xi'an, Shaanxi, 710061, China
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tao Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, Center for Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, 124, 76 West Yanta Road, Xi'an, Shaanxi, 710061, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jianbin Bi
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, Center for Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, 124, 76 West Yanta Road, Xi'an, Shaanxi, 710061, China
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Mengyun Ke
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, Center for Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, 124, 76 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Yifan Ren
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, Center for Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, 124, 76 West Yanta Road, Xi'an, Shaanxi, 710061, China
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Mengzhou Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, Center for Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, 124, 76 West Yanta Road, Xi'an, Shaanxi, 710061, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhaoqing Du
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, Center for Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, 124, 76 West Yanta Road, Xi'an, Shaanxi, 710061, China
- Department of Hepatobiliary Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Wuming Liu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, Center for Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, 124, 76 West Yanta Road, Xi'an, Shaanxi, 710061, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Liangshuo Hu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaogang Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xuemin Liu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bo Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, Center for Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, 124, 76 West Yanta Road, Xi'an, Shaanxi, 710061, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lingzhong Meng
- Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, Center for Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, 124, 76 West Yanta Road, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
3
|
Bellchambers HM, Barratt KS, Diamand KEM, Arkell RM. SUMOylation Potentiates ZIC Protein Activity to Influence Murine Neural Crest Cell Specification. Int J Mol Sci 2021; 22:ijms221910437. [PMID: 34638777 PMCID: PMC8509024 DOI: 10.3390/ijms221910437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 01/17/2023] Open
Abstract
The mechanisms of neural crest cell induction and specification are highly conserved among vertebrate model organisms, but how similar these mechanisms are in mammalian neural crest cell formation remains open to question. The zinc finger of the cerebellum 1 (ZIC1) transcription factor is considered a core component of the vertebrate gene regulatory network that specifies neural crest fate at the neural plate border. In mouse embryos, however, Zic1 mutation does not cause neural crest defects. Instead, we and others have shown that murine Zic2 and Zic5 mutate to give a neural crest phenotype. Here, we extend this knowledge by demonstrating that murine Zic3 is also required for, and co-operates with, Zic2 and Zic5 during mammalian neural crest specification. At the murine neural plate border (a region of high canonical WNT activity) ZIC2, ZIC3, and ZIC5 function as transcription factors to jointly activate the Foxd3 specifier gene. This function is promoted by SUMOylation of the ZIC proteins at a conserved lysine immediately N-terminal of the ZIC zinc finger domain. In contrast, in the lateral regions of the neurectoderm (a region of low canonical WNT activity) basal ZIC proteins act as co-repressors of WNT/TCF-mediated transcription. Our work provides a mechanism by which mammalian neural crest specification is restricted to the neural plate border. Furthermore, given that WNT signaling and SUMOylation are also features of non-mammalian neural crest specification, it suggests that mammalian neural crest induction shares broad conservation, but altered molecular detail, with chicken, zebrafish, and Xenopus neural crest induction.
Collapse
|
4
|
Chen C, Zheng H, Luo Y, Kong Y, An M, Li Y, He W, Gao B, Zhao Y, Huang H, Huang J, Lin T. SUMOylation promotes extracellular vesicle-mediated transmission of lncRNA ELNAT1 and lymph node metastasis in bladder cancer. J Clin Invest 2021; 131:146431. [PMID: 33661764 DOI: 10.1172/jci146431] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/25/2021] [Indexed: 12/29/2022] Open
Abstract
Small ubiquitin-like modifier (SUMO) binding (termed SUMOylation) emerged as the inducer for the sorting of bioactive molecules into extracellular vesicles (EVs), triggering lymphangiogenesis and further driving tumor lymph node (LN) metastasis, but the precise mechanisms remain largely unclear. Here, we show that bladder cancer (BCa) cell-secreted EVs mediated intercellular communication with human lymphatic endothelial cells (HLECs) through transmission of the long noncoding RNA ELNAT1 and promoted lymphangiogenesis and LN metastasis in a SUMOylation-dependent manner in both cultured BCa cell lines and mouse models. Mechanistically, ELNAT1 induced UBC9 overexpression to catalyze the SUMOylation of hnRNPA1 at the lysine 113 residue, which mediated recognition of ELNAT1 by the endosomal sorting complex required for transport (ESCRT) and facilitated its packaging into EVs. EV-mediated ELNAT1 was specifically transmitted into HLECs and epigenetically activated SOX18 transcription to induce lymphangiogenesis. Importantly, blocking the SUMOylation of tumor cells by downregulating UBC9 expression markedly reduced lymphatic metastasis in EV-mediated, ELNAT1-treated BCa in vivo. Clinically, EV-mediated ELNAT1 was correlated with LN metastasis and a poor prognosis for patients with BCa. These findings highlight a molecular mechanism whereby the EV-mediated ELNAT1/UBC9/SOX18 regulatory axis promotes lymphangiogenesis and LN metastasis in BCa in a SUMOylation-dependent manner and implicate ELNAT1 as an attractive therapeutic target for LN metastatic BCa.
Collapse
Affiliation(s)
- Changhao Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Hanhao Zheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Yuming Luo
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yao Kong
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Mingjie An
- Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Yuting Li
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Wang He
- Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Bowen Gao
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Yue Zhao
- Department of Tumor Intervention, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Hao Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
DRG1 is a potential oncogene in lung adenocarcinoma and promotes tumor progression via spindle checkpoint signaling regulation. Oncotarget 2018; 7:72795-72806. [PMID: 27626498 PMCID: PMC5341944 DOI: 10.18632/oncotarget.11973] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/05/2016] [Indexed: 01/26/2023] Open
Abstract
Developmentally regulated GTP binding protein 1 (DRG1), a member of the DRG family, plays important roles in regulating cell growth. However, the molecular basis of DRG1 in cell proliferation regulation and the relationship between DRG1 and tumor progression remain poorly understood. Here, we demonstrate that DRG1 is elevated in lung adenocarcinomas while weakly expressed in adjacent lung tissues. DRG1 knockdown causes growth inhibition of tumor cells by significantly increasing the proportion of cells in M phase. Overexpression of DRG1 leads to chromosome missegregation which is an important index for tumorigenesis. Interestingly, ectopic of DRG1 reduces taxol induced apoptosis of lung adenocarcinoma cells. Mechanistic analyses confirm that DRG1 localizes at mitotic spindles in dividing cells and binds to spindle checkpoint signaling proteins in vivo. These studies highlight the expanding role of DRG1 in tumorigenesis and reveal a mechanism of DRG1 in taxol resistance.
Collapse
|
6
|
Wen D, Wu J, Wang L, Fu Z. SUMOylation Promotes Nuclear Import and Stabilization of Polo-like Kinase 1 to Support Its Mitotic Function. Cell Rep 2017; 21:2147-2159. [PMID: 29166606 PMCID: PMC5728694 DOI: 10.1016/j.celrep.2017.10.085] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/22/2017] [Accepted: 10/23/2017] [Indexed: 02/08/2023] Open
Abstract
As a pivotal mitotic regulator, polo-like kinase 1 (PLK1) is under highly coordinated and multi-layered regulation. However, the pathways that control PLK1's activity and function have just begun to be elucidated. PLK1 has recently been shown to be functionally modulated by post-translational modifications (PTMs), including phosphorylation and ubiquitination. Herein, we report that SUMOylation plays an essential role in regulating PLK1's mitotic function. We found that Ubc9 was recruited to PLK1 upon initial phosphorylation and activation by CDK1/cyclin B. By in vivo and in vitro SUMOylation assays, PLK1 was identified as a physiologically relevant small ubiquitin-related modifier (SUMO)-targeted protein, preferentially modified by SUMO-1. We further showed that K492 on PLK1 is essential for SUMOylation. SUMOylation causes PLK1's nuclear import and significantly increases its protein stability, both of which are critical for normal mitotic progression and genomic integrity. Our findings suggest that SUMOylation is an important regulatory mechanism governing PLK1's mitotic function.
Collapse
Affiliation(s)
- Donghua Wen
- Department of Human and Molecular Genetics, Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Jianguo Wu
- Department of Human and Molecular Genetics, Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Lei Wang
- Department of Human and Molecular Genetics, Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Zheng Fu
- Department of Human and Molecular Genetics, Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA.
| |
Collapse
|
7
|
Wieczorek E, Kędracka–Krok S, Sołtys K, Jankowska U, Hołubowicz R, Seliga J, Ożyhar A. Is Transthyretin a Regulator of Ubc9 SUMOylation? PLoS One 2016; 11:e0160536. [PMID: 27501389 PMCID: PMC4976990 DOI: 10.1371/journal.pone.0160536] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/20/2016] [Indexed: 12/21/2022] Open
Abstract
Ageing and mutations of transthyretin (TTR), the thyroid hormones and retinol transporting protein lead to amyloidosis by destabilizing the structure of TTR. Because protein structure is regulated through posttranslational modifications, we investigated the Small Ubiquitin-like Modifier (SUMO)ylation of TTR. We chose the widely used Ubc9 fusion-directed SUMOylation system, which is based on a fusion of the SUMOylation substrate of interest with Ubc9, a sole SUMO conjugating enzyme. Surprisingly, despite our presumptions, we found that Ubc9 fused to TTR was SUMOylated at a unique set of lysine residues. Three unknown SUMOylation sites of Ubc9-K154, K18 and K65-were revealed by mass spectrometry (MS). The previously reported SUMOylation at K49 of Ubc9 was also observed. SUMOylation of the lysine residues of TTR fused to Ubc9 was hardly detectable. However, non-fused TTR was SUMOylated via trans-SUMOylation by Ubc9 fused to TTR. Interestingly, mutating the catalytic residue of Ubc9 fused to TTR did not result in complete loss of the SUMOylation signal, suggesting that Ubc9 linked to TTR is directly cross-SUMOylated by the SUMO-activating enzyme E1. Ubc9, TTR or fusion proteins composed of TTR and Ubc9 specifically affected the global SUMOylation of cellular proteins. TTR or Ubc9 alone increased global SUMOylation, whereas concomitant presence of TTR and Ubc9 did not further increase the amount of high-molecular weight (HMW) SUMO conjugates. Our data suggest that TTR may influence the SUMOylation of Ubc9, thereby altering signalling pathways in the cell.
Collapse
Affiliation(s)
- Elżbieta Wieczorek
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław, Poland
- * E-mail:
| | - Sylwia Kędracka–Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Katarzyna Sołtys
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław, Poland
| | - Urszula Jankowska
- Department of Structural Biology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Rafał Hołubowicz
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław, Poland
| | - Justyna Seliga
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław, Poland
| |
Collapse
|
8
|
Abstract
α-Synuclein inclusion bodies are a pathological hallmark of several neurodegenerative diseases, including Parkinson’s disease, and contain aggregated α-synuclein and a variety of recruited factors, including protein chaperones, proteasome components, ubiquitin and the small ubiquitin-like modifier, SUMO-1. Cell culture and animal model studies suggest that misfolded, aggregated α-synuclein is actively translocated via the cytoskeletal system to a region of the cell where other factors that help to lessen the toxic effects can also be recruited. SUMO-1 covalently conjugates to various intracellular target proteins in a way analogous to ubiquitination to alter cellular distribution, function and metabolism and also plays an important role in a growing list of cellular pathways, including exosome secretion and apoptosis. Furthermore, SUMO-1 modified proteins have recently been linked to cell stress responses, such as oxidative stress response and heat shock response, with increased SUMOylation being neuroprotective in some cases. Several recent studies have linked SUMOylation to the ubiquitin-proteasome system, while other evidence implicates the lysosomal pathway. Other reports depict a direct mechanism whereby sumoylation reduced the aggregation tendency of α-synuclein, and reduced the toxicity. However, the precise role of SUMO-1 in neurodegeneration remains unclear. In this review, we explore the potential direct or indirect role(s) of SUMO-1 in the cellular response to misfolded α-synuclein in neurodegenerative disorders.
Collapse
|
9
|
Almeida B, Abreu IA, Matos CA, Fraga JS, Fernandes S, Macedo MG, Gutiérrez-Gallego R, Pereira PJB, Carvalho AL, Macedo-Ribeiro S. SUMOylation of the brain-predominant Ataxin-3 isoform modulates its interaction with p97. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1950-9. [PMID: 26073430 DOI: 10.1016/j.bbadis.2015.06.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/12/2015] [Accepted: 06/08/2015] [Indexed: 11/18/2022]
Abstract
BACKGROUND Machado-Joseph Disease (MJD), a form of dominantly inherited ataxia belonging to the group of polyQ expansion neurodegenerative disorders, occurs when a threshold value for the number of glutamines in Ataxin-3 (Atx3) polyglutamine region is exceeded. As a result of its modular multidomain architecture, Atx3 is known to engage in multiple macromolecular interactions, which might be unbalanced when the polyQ tract is expanded, culminating in the aggregation and formation of intracellular inclusions, a unifying fingerprint of this group of neurodegenerative disorders. Since aggregation is specific to certain brain regions, localization-dependent posttranslational modifications that differentially affect Atx3 might also contribute for MJD. METHODS We combined in vitro and cellular approaches to address SUMOylation in the brain-predominant Atx3 isoform and assessed the impact of this posttranslational modification on Atx3 self-assembly and interaction with its native partner, p97. RESULTS We demonstrate that Atx3 is SUMOylated at K356 both in vitro and in cells, which contributes for decreased formation of amyloid fibrils and for increased affinity towards p97. CONCLUSIONS AND GENERAL SIGNIFICANCE These findings highlight the role of SUMOylation as a regulator of Atx3 function, with implications on Atx3 protein interaction network and self-assembly, with potential impact for further understanding the molecular mechanisms underlying MJD pathogenesis.
Collapse
Affiliation(s)
- Bruno Almeida
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Isabel A Abreu
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Carlos A Matos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Joana S Fraga
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Sara Fernandes
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Maria G Macedo
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Ricardo Gutiérrez-Gallego
- Bioanalysis Group, Neurosciences Research Program, Hospital del Mar Medical Research Institute (IMIM)-Parque de Salud Mar, 08003 Barcelona, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University, 08003 Barcelona, Spain
| | - Pedro José Barbosa Pereira
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Ana Luísa Carvalho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Sandra Macedo-Ribeiro
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.
| |
Collapse
|
10
|
SUMO modification of TBK1 at the adaptor-binding C-terminal coiled-coil domain contributes to its antiviral activity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:136-43. [PMID: 25409927 DOI: 10.1016/j.bbamcr.2014.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/05/2014] [Accepted: 10/07/2014] [Indexed: 01/01/2023]
Abstract
The non-canonical IKK kinase TBK1 serves as an important signal transmitter of the antiviral interferon response, but is also involved in the regulation of further processes such as autophagy. The activity of TBK1 is regulated by posttranslational modifications comprising phosphorylation and ubiquitination. This study identifies SUMOylation as a novel posttranslational TBK1 modification. TBK1 kinase activity is required to allow the attachment of SUMO1 or SUMO2/3 proteins. Since TBK1 does not bind to the E2 enzyme Ubc9, this modification most likely proceeds via trans-SUMOylation. Mass spectrometry allowed identifying K694 as the SUMO acceptor site, a residue located in the C-terminal coiled-coil domain which is exclusively responsible for the association with the adaptor proteins NAP1, Sintbad and TANK. SUMO modification at K694 contributes to the antiviral function of TBK1 and accordingly the viral protein Gam1 antagonizes this posttranslational modification.
Collapse
|
11
|
Seliga J, Bielska K, Wieczorek E, Orłowski M, Niedenthal R, Ożyhar A. Multidomain sumoylation of the ecdysone receptor (EcR) from Drosophila melanogaster. J Steroid Biochem Mol Biol 2013; 138:162-73. [PMID: 23727127 DOI: 10.1016/j.jsbmb.2013.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/16/2013] [Accepted: 05/18/2013] [Indexed: 02/05/2023]
Abstract
The 20-hydroxyecdysone receptor (EcR) is a transcription factor belonging to the nuclear receptor superfamily. Together with the ultraspiracle nuclear receptor (Usp) it coordinates critical biological processes in insects such as development and reproduction. EcR and its ligands are used in commercially available ecdysone-inducible expression systems and are considered to be artificial gene switches with potential therapeutic applications. However, the regulation of EcR action is still unclear, especially in mammals and as far as posttranslational modifications are concerned. Up until now, there has been no study on EcR sumoylation. Using bioinformatic predictors, a Ubc9 fusion-directed sumoylation system and mutagenesis experiments, we present EcR as a new target of SUMO1 and SUMO3 modification. Our research revealed that EcR undergoes isoform-specific multisumoylation. The pattern of modification remains unchanged in the presence of the ligand and the dimerization partner. The SUMO acceptor sites are located in the DNA-binding domain and the ligand-binding domain that both exhibit structural plasticity. We also demonstrated the existence of a sumoylation site in the F region and EcRA-A/B region, both revealing characteristics of intrinsically disordered regions. The consequences of modification and the resulting impact on conformation and function may be especially crucial for the disordered sequences in these two areas. The isoform-specificity of sumoylation may explain the differences in the transcriptional activity of EcR isoforms.
Collapse
Affiliation(s)
- Justyna Seliga
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | | | | | | | | | | |
Collapse
|
12
|
TAB2, an important upstream adaptor of interleukin-1 signaling pathway, is subject to SUMOylation. Mol Cell Biochem 2013; 385:69-77. [PMID: 24096733 DOI: 10.1007/s11010-013-1815-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 09/13/2013] [Indexed: 10/26/2022]
Abstract
SUMOylation has been considered as an important mechanism to regulate multiple cellular processes, including inflammation. TAB2 (TAK1-binding protein 2) is an upstream adaptor protein in the IL-1 signaling pathway. Covalent modifications of TAB2 have not been well studied. In this study, we demonstrated that TAB2 could be modified by SUMO. Using Ubc9 (SUMO-conjugating enzyme) fusion and mutation analysis, we identified evolutionarily conserved lysine 329 as the major SUMOylation site of TAB2. PIAS3, a SUMO E3 ligase, preferentially interacted with and promoted its SUMOylation. Interestingly, block of SUMOylation by mutation of lysine 329 enhanced the activity of TAB2, as reflected by AP-1 luciferase reporter assays. Taken together, these results suggest that SUMOylation may serve as a novel mechanism for the regulation of TAB2.
Collapse
|
13
|
Pérez-Arellano I, Spínola-Amilibia M, Bravo J. Human Drg1 is a potassium-dependent GTPase enhanced by Lerepo4. FEBS J 2013; 280:3647-57. [PMID: 23711155 DOI: 10.1111/febs.12356] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/15/2013] [Accepted: 05/23/2013] [Indexed: 11/26/2022]
Abstract
Human Drg1, a guanine nucleotide binding protein conserved in archaea and eukaryotes, is regulated by Lerepo4. Together they form a complex which interacts with translating ribosomes. Here we have purified and characterized the GTPase activity of Drg1 and three variants, a shortened mutant depleted of the TGS domain, a phosphomimicking mutant and a construct with the two combined mutations. Our data reveal that potassium strongly stimulates the GTPase activity, without changing the monomeric status of Drg1 and that this activity is notably reduced in the mutants. The nature of Lerepo4 association has also been investigated. Dissecting the role of the different domains revealed that Dfrp domain is the sole responsible for the Drg1 increase in thermal stability and the four fold stimulation over its catalytic activity. Lerepo4 action leaves Drg1 affinity for nucleotides unaffected, feasibly favoring a switch I reorientation, mainly via the TGS domain. Drg1 displayed a high temperature optimum of activity at 42°C, suggesting the ability of being active under possible heat stress conditions.
Collapse
Affiliation(s)
- Isabel Pérez-Arellano
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | | | | |
Collapse
|
14
|
HSF2BP represses BNC1 transcriptional activity by sequestering BNC1 to the cytoplasm. FEBS Lett 2013; 587:2099-104. [PMID: 23707421 DOI: 10.1016/j.febslet.2013.04.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/21/2013] [Accepted: 04/26/2013] [Indexed: 11/23/2022]
Abstract
Basonuclin (BNC1), a zinc finger transcriptional factor, is essential for mouse spermatogenesis. However, the regulatory mechanisms of BNC1 in spermatogenesis are poorly understood. In this study, we identified HSF2BP, a testis-specific binding protein of HSF2, as a binding partner of BNC1 by using yeast two-hybrid screening. HSF2BP could interact with and inhibit BNC1 transcriptional activity without affecting its expression level. Moreover, coexpression of HSF2BP with BNC1 resulted in a striking redistribution of BNC1 to the cytoplasm. These data suggest that HSF2BP may play a pivotal role in regulating BNC1 transcriptional activity and subcellular localization during spermatogenesis.
Collapse
|
15
|
Deficient sumoylation of yeast 2-micron plasmid proteins Rep1 and Rep2 associated with their loss from the plasmid-partitioning locus and impaired plasmid inheritance. PLoS One 2013; 8:e60384. [PMID: 23555963 PMCID: PMC3610928 DOI: 10.1371/journal.pone.0060384] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 02/26/2013] [Indexed: 11/19/2022] Open
Abstract
The 2-micron plasmid of the budding yeast Saccharomyces cerevisiae encodes copy-number amplification and partitioning systems that enable the plasmid to persist despite conferring no advantage to its host. Plasmid partitioning requires interaction of the plasmid Rep1 and Rep2 proteins with each other and with the plasmid-partitioning locus STB. Here we demonstrate that Rep1 stability is reduced in the absence of Rep2, and that both Rep proteins are sumoylated. Lysine-to-arginine substitutions in Rep1 and Rep2 that inhibited their sumoylation perturbed plasmid inheritance without affecting Rep protein stability or two-hybrid interaction between Rep1 and Rep2. One-hybrid and chromatin immunoprecipitation assays revealed that Rep1 was required for efficient retention of Rep2 at STB and that sumoylation-deficient mutants of Rep1 and Rep2 were impaired for association with STB. The normal co-localization of both Rep proteins with the punctate nuclear plasmid foci was also lost when Rep1 was sumoylation-deficient. The correlation of Rep protein sumoylation status with plasmid-partitioning locus association suggests a theme common to eukaryotic chromosome segregation proteins, sumoylated forms of which are found enriched at centromeres, and between the yeast 2-micron plasmid and viral episomes that depend on sumoylation of their maintenance proteins for persistence in their hosts.
Collapse
|
16
|
Yang Y, Zhang CY. Simultaneous Measurement of SUMOylation using SNAP/CLIP-Tag-Mediated Translation at the Single-Molecule Level. Angew Chem Int Ed Engl 2012; 52:691-4. [DOI: 10.1002/anie.201206695] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Indexed: 12/28/2022]
|
17
|
Yang Y, Zhang CY. Simultaneous Measurement of SUMOylation using SNAP/CLIP-Tag-Mediated Translation at the Single-Molecule Level. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201206695] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
Bielska K, Seliga J, Wieczorek E, Kędracka-Krok S, Niedenthal R, Ożyhar A. Alternative sumoylation sites in the Drosophila nuclear receptor Usp. J Steroid Biochem Mol Biol 2012; 132:227-38. [PMID: 22676916 DOI: 10.1016/j.jsbmb.2012.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/24/2012] [Accepted: 05/28/2012] [Indexed: 01/09/2023]
Abstract
The ultraspiracle protein (Usp), together with an ecdysone receptor (EcR) forms a heterodimeric ecdysteroid receptor complex, which controls metamorphosis in Drosophila melanogaster. Although the ecdysteroid receptor is considered to be a source of elements for ecdysteroid inducible gene switches in mammals, nothing is known about posttranslational modifications of the receptor constituents in mammalian cells. Up until now there has been no study about Usp sumoylation. Using Ubc9 fusion-directed sumoylation system, we identified Usp as a new target of SUMO1 and SUMO3 modification. Mutagenesis studies on the fragments of Usp indicated that sumoylation can occur alternatively on several defined Lys residues, i.e. three (Lys16, Lys20, Lys37) in A/B region, one (Lys424) in E region and one (Lys506) in F region. However, sumoylation of one Lys residue within A/B region prevents modification of other residues in this region. This was also observed for Lys residues in carboxyl-terminal fragment of Usp, i.e. comprising E and F regions. Mass spectrometry analysis of the full-length Usp indicated that the main SUMO attachment site is at Lys20. EcR, the heterodimerization partner of Usp, and muristerone A, the EcR ligand, do not influence sumoylation patterns of Usp. Another heterodimerization partner of Usp - HR38 fused with Ubc9 interacts with Usp in HEK293 cells and allows sumoylation of Usp independent of the direct fusion to Ubc9. Taken together, we propose that sumoylation of DmUsp can be an important factor in modulating its activity by changing molecular interactions.
Collapse
Affiliation(s)
- Katarzyna Bielska
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | | | | | | | | | | |
Collapse
|
19
|
Francis SM, Gas ME, Daugeron MC, Bravo J, Séraphin B. Rbg1-Tma46 dimer structure reveals new functional domains and their role in polysome recruitment. Nucleic Acids Res 2012; 40:11100-14. [PMID: 23002146 PMCID: PMC3510508 DOI: 10.1093/nar/gks867] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Developmentally Regulated GTP-binding (DRG) proteins are highly conserved GTPases that associate with DRG Family Regulatory Proteins (DFRP). The resulting complexes have recently been shown to participate in eukaryotic translation. The structure of the Rbg1 GTPase, a yeast DRG protein, in complex with the C-terminal region of its DFRP partner, Tma46, was solved by X-ray diffraction. These data reveal that DRG proteins are multimodular factors with three additional domains, helix–turn–helix (HTH), S5D2L and TGS, packing against the GTPase platform. Surprisingly, the S5D2L domain is inserted in the middle of the GTPase sequence. In contrast, the region of Tma46 interacting with Rbg1 adopts an extended conformation typical of intrinsically unstructured proteins and contacts the GTPase and TGS domains. Functional analyses demonstrate that the various domains of Rbg1, as well as Tma46, modulate the GTPase activity of Rbg1 and contribute to the function of these proteins in vivo. Dissecting the role of the different domains revealed that the Rbg1 TGS domain is essential for the recruitment of this factor in polysomes, supporting further the implication of these conserved factors in translation.
Collapse
Affiliation(s)
- Sandrea M Francis
- Instituto de Biomedicina de Valencia (IBV-CSIC), Calle Jaime Roig, 11, Valencia E-46010, Spain
| | | | | | | | | |
Collapse
|
20
|
Abstract
Protein-protein interactions are essential for almost all cellular processes, hence understanding these processes mainly depends on the identification and characterization of the relevant protein-protein interactions. In the present paper, we introduce the concept of TRS (trans-SUMOylation), a new method developed to identify and verify protein-protein interactions in mammalian cells in vivo. TRS utilizes Ubc9-fusion proteins that trans-SUMOylate co-expressed interacting proteins. Using TRS, we analysed interactions of 65 protein pairs co-expressed in HEK (human embryonic kidney)-293 cells. We identified seven new and confirmed 16 known protein interactions, which were determined via endogenous SUMOylation sites of the binding partners or by using SUMOylation-site tags respectively. Four of the new protein interactions were confirmed by GST (glutathione transferase) pull-down and the p38α-Edr2 interaction was verified by co-localization analysis. Functionally, this p38α-Edr2 interaction could possibly be involved in the recruitment of p38α to the polycomb chromatin-remodelling complex to phosphorylate Bmi1. We also used TRS to characterize protein-interaction domains of the protein kinase pairs p38α-MK2 [MK is MAPK (mitogen-activated protein kinase)-activated protein kinase] and ERK3 (extracellular-signal-regulated kinase 3)-MK5 and of the p38α-p53 complex. The ability of TRS to monitor protein interactions in mammalian cells in vivo at levels similar to endogenous expression makes it an excellent new tool that can help in defining the protein interactome of mammalian cells.
Collapse
|
21
|
Wang Y, Wang Y, Xu Y, Tong W, Pan T, Li J, Sun S, Shao J, Ding H, Toyoda T, Yuan Z. Hepatitis C virus NS5B protein delays s phase progression in human hepatocyte-derived cells by relocalizing cyclin-dependent kinase 2-interacting protein (CINP). J Biol Chem 2011; 286:26603-15. [PMID: 21628470 DOI: 10.1074/jbc.m111.225672] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cell cycle dysregulation is a critical event in virus infection-associated tumorigenesis. Previous studies have suggested that hepatitis C virus NS5B modulates cell cycle progression in addition to participating in RNA synthesis as an RNA-dependent RNA polymerase. However, the molecular mechanisms have thus far remained unclear. In this study, a HepG2 Tet-On NS5B stable cell line was generated to confirm the effect of NS5B on the cell cycle. To better understand the role of NS5B in cell cycle regulation, yeast two-hybrid assays were performed using a human liver cDNA library. The cyclin-dependent kinase 2-interacting protein (CINP) was identified. The interaction between NS5B and CINP was further demonstrated by in vivo and in vitro assays, and their association was found to be indispensable for S phase delay and cell proliferation suppression. Further experiments indicated that NS5B relocalized CINP from the nucleus to the cytoplasm. Directly knocking down CINP by specific siRNA resulted in a significant alteration in the DNA damage response and expression of cell cycle checkpoint proteins, including an increase in p21 and a decrease in phosphorylated Retinoblastoma and Chk1. Similar results were observed in cells expressing NS5B, and the effects were partially reversed upon ectopic overexpression of CINP. These studies suggest that the DNA damage response might be exploited by NS5B to hinder cell cycle progression. Taken together, our data demonstrate that NS5B delays cells in S phase through interaction with CINP and relocalization of the protein from the nucleus to the cytoplasm. Such effects might contribute to hepatitis C virus persistence and pathogenesis.
Collapse
Affiliation(s)
- Yaohui Wang
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Grant MM. Identification of SUMOylated proteins in neuroblastoma cells after treatment with hydrogen peroxide or ascorbate. BMB Rep 2011; 43:720-5. [PMID: 21110914 DOI: 10.5483/bmbrep.2010.43.11.720] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The small ubiquitin-like modifier (SUMO) proteins have been implicated in the pathology of a number of diseases, including neurodegenerative diseases. The conjugation machinery for SUMOylation consists of a number of proteins which are redox sensitive. Here, under oxidative stress (100 μM hydrogen peroxide), antioxidant (100 μM ascorbate) or control conditions 169 proteins were identified by electrospray ionisation fourier transform ion cyclotron resonance mass spectrometry. The majority of these proteins (70%) were found to contain SUMOylation consensus sequences. From the remaining proteins a small number (12%) were found to contain possible SUMO interacting motifs. The proteins identified included DNA and RNA binding proteins, structural proteins and proteasomal proteins. Several of the proteins identified under oxidative stress conditions had previously been identified as SUMOylated proteins, thus validating the method presented.
Collapse
Affiliation(s)
- Melissa M Grant
- School of Dentistry, University of Birmingham, Birmingham, B4 6NN, UK.
| |
Collapse
|
23
|
Jiang J, Li N, Wang X, Lu Y, Bi Y, Wang W, Li X, Ning G. Aberrant expression and modification of silencing mediator of retinoic acid and thyroid hormone receptors involved in the pathogenesis of tumoral cortisol resistance. Endocrinology 2010; 151:3697-705. [PMID: 20555024 DOI: 10.1210/en.2010-0335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ectopic ACTH syndrome (EAS) accounts for 10-15% of cases of Cushing's syndrome and is mostly caused by small cell lung cancers or thymic carcinoids. EAS is characterized by tumoral cortisol resistance, whose underlying mechanism remains unknown. In this study, we reported that silencing mediator of retinoic acid and thyroid hormone receptors (SMRT), a major nuclear corepressor, was aberrantly expressed in ACTH-secreting thymic carcinoids. Overexpression and knockdown of SMRT in the ACTH-secreting AtT-20 cell line demonstrated that SMRT participated in the negative feedback of dexamethasone-mediated suppression of proopiomelanocortin. Posttranslational modification by the small ubiquitin-like modifiers (SUMO), i.e. SUMOylation plays an important role in fine-tuning transcriptional activities. SUMOylation of SMRT was observed in dexamethasone-resistant cell lines. Moreover, overexpression of the deSUMOylation enzyme enhanced the suppression of proopiomelanocortin by dexamethasone in AtT-20 cells. An evolutionarily conserved consensus SUMOylation site was identified close to the histone deacetylase 3 recruiting domain of SMRT, which might interfere with the recruiting process. These results suggested that aberrant expression and modification of SMRT might be involved in the pathogenesis of tumoral cortisol resistance. A therapeutic approach targeting SMRT SUMOylation might be developed for EAS patients.
Collapse
Affiliation(s)
- Jingjing Jiang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Pal S, Rosas JM, Rosas-Acosta G. Identification of the non-structural influenza A viral protein NS1A as a bona fide target of the Small Ubiquitin-like MOdifier by the use of dicistronic expression constructs. J Virol Methods 2009; 163:498-504. [PMID: 19917317 DOI: 10.1016/j.jviromet.2009.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/26/2009] [Accepted: 11/05/2009] [Indexed: 01/01/2023]
Abstract
The cellular SUMOylation system affects the function of numerous viral proteins. Hence, the identification of novel viral targets for the Small Ubiquitin-like MOdifier (SUMO) is key to our understanding of virus-host interactions. The data obtained in this study demonstrate that the non-structural influenza A viral protein NS1A is an authentic SUMO target through the use of a dicistronic expression plasmid containing SUMO (the modifier) and Ubc9 (the SUMO-conjugating enzyme) separated by an Internal Ribosomal Entry Site (IRES). This dual expression plasmid produces a robust increase in cellular SUMOylation, therefore facilitating the characterization of cellular and viral SUMO targets. The identification of NS1A as a bona fide SUMO target suggests, for the first time, a role for SUMOylation during influenza virus infection.
Collapse
Affiliation(s)
- Sangita Pal
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, United States
| | | | | |
Collapse
|
25
|
Blomster HA, Hietakangas V, Wu J, Kouvonen P, Hautaniemi S, Sistonen L. Novel proteomics strategy brings insight into the prevalence of SUMO-2 target sites. Mol Cell Proteomics 2009; 8:1382-90. [PMID: 19240082 DOI: 10.1074/mcp.m800551-mcp200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO) is covalently conjugated to its target proteins thereby altering their activity. The mammalian SUMO protein family includes four members (SUMO-1-4) of which SUMO-2 and SUMO-3 are conjugated in a stress-inducible manner. The vast majority of known SUMO substrates are recognized by the single SUMO E2-conjugating enzyme Ubc9 binding to a consensus tetrapeptide (PsiKXE where Psi stands for a large hydrophobic amino acid) or extended motifs that contain phosphorylated or negatively charged amino acids called PDSM (phosphorylation-dependent sumoylation motif) and NDSM (negatively charged amino acid-dependent sumoylation motif), respectively. We identified 382 SUMO-2 targets using a novel method based on SUMO protease treatment that improves separation of SUMO substrates on SDS-PAGE before LC-ESI-MS/MS. We also implemented a software SUMOFI (SUMO motif finder) to facilitate identification of motifs for SUMO substrates from a user-provided set of proteins and to classify the substrates according to the type of SUMO-targeting consensus site. Surprisingly more than half of the substrates lacked any known consensus site, suggesting that numerous SUMO substrates are recognized by a yet unknown consensus site-independent mechanism. Gene ontology analysis revealed that substrates in distinct functional categories display strikingly different prevalences of NDSM sites. Given that different types of motifs are bound by Ubc9 using alternative mechanisms, our data suggest that the preference of SUMO-2 targeting mechanism depends on the biological function of the substrate.
Collapse
Affiliation(s)
- Henri A Blomster
- Department of Biology, Abo Akademi University and University of Turku, FI-20521 Turku, Finland
| | | | | | | | | | | |
Collapse
|
26
|
Zimnik S, Gaestel M, Niedenthal R. Mutually exclusive STAT1 modifications identified by Ubc9/substrate dimerization-dependent SUMOylation. Nucleic Acids Res 2009; 37:e30. [PMID: 19174562 PMCID: PMC2651805 DOI: 10.1093/nar/gkp020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Post-translational modifications control the physiological activity of the signal transducer and activator of transcription STAT1. While phosphorylation at tyrosine Y701 is a prerequisite for STAT1 dimerization, its SUMOylation represses the transcriptional activity. Recently, we have demonstrated that SUMOylation at lysine K703 inhibits the phosphorylation of nearby localized Y701 of STAT1. Here, we analysed the influence of phosphorylation of Y701 on SUMOylation of K703 in vivo. For that reason, an Ubc9/substrate dimerization-dependent SUMOylation (USDDS) system was developed, which consists of fusions of the SUMOylation substrate and of the SUMO-conjugating enzyme Ubc9 to the chemically activatable heterodimerization domains FKBP and FRB, respectively. When FKBP fusion proteins of STAT1, p53, CRSP9, FOS, CSNK2B, HES1, TCF21 and MYF6 are coexpressed with Ubc9-FRB, treatment of HEK293 cells with the rapamycin-related dimerizer compound AP21967 induces SUMOylation of these proteins in vivo. For STAT1-FKBP and p53-FKBP we show that this SUMOylation takes place at their specific SUMOylation sites in vivo. Using USDDS, we then demonstrate that STAT1 phosphorylation at Y701 induced by interferon-β treatment inhibits SUMOylation of K703 in vivo. Thus, pY701 and SUMO-K703 of STAT1 represent mutually exclusive modifications, which prevent signal integration at this molecule and probably ensure the existence of differentially modified subpopulations of STAT1 necessary for its regulated nuclear cytoplasmic activation/inactivation cycle.
Collapse
Affiliation(s)
- Susan Zimnik
- Institute for Physiological Chemistry/Biochemistry, Medical School Hannover, Carl-Neuberg Strasse 1, 30625 Hannover, Germany
| | | | | |
Collapse
|
27
|
Niedenthal R. Enhanced detection of in vivo SUMO conjugation by Ubc9 fusion-dependent sumoylation (UFDS). Methods Mol Biol 2009; 497:63-79. [PMID: 19107411 DOI: 10.1007/978-1-59745-566-4_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The bottleneck in studying protein sumoylation-the conjugation of the small ubiquitin-like modifier (SUMO)-is the detection of the low level of in vivo sumoylated proteins. The Ubc9 fusion-directed sumoylation (UFDS) system strongly enhances the in vivo sumoylation of a substrate protein at its specific sumoylation site. UFDS utilizes an expression plasmid for the protein of interest fused to the SUMO-conjugating enzyme Ubc9. When expressed in HEK293, COS-7, HeLa, or CHO cells, the fused target protein is conjugated with endogenous or coexpressed SUMO at its native sumoylation sites. This sumoylation requires neither SUMO ligase nor any extracellular stimulation and is easily detectable by fusion protein- or Ubc9-specific Western blotting with commercially available antibodies.
Collapse
Affiliation(s)
- Rainer Niedenthal
- Institute of Biochemistry/Physiological Chemistry, Medical School Hannover, Germany
| |
Collapse
|
28
|
Yu J, Zhang SS, Saito K, Williams S, Arimura Y, Ma Y, Ke Y, Baron V, Mercola D, Feng GS, Adamson E, Mustelin T. PTEN regulation by Akt-EGR1-ARF-PTEN axis. EMBO J 2008; 28:21-33. [PMID: 19057511 DOI: 10.1038/emboj.2008.238] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 10/22/2008] [Indexed: 11/09/2022] Open
Abstract
The PTEN tumour suppressor gene is induced by the early growth response 1 (EGR1) transcription factor, which also transactivates p53, p73, and p300/CBP as well as other proapoptotic and anti-cancer genes. Here, we describe a novel Akt-EGR1-alternate reading frame (ARF)-PTEN axis, in which PTEN activation in vivo requires p14ARF-mediated sumoylation of EGR1. This modification is dependent on the phosphorylation of EGR1 at S350 and T309 by Akt, which promotes interaction of EGR1 with ARF at K272 in its repressor domain by the ARF/Ubc9/SUMO system. EGR1 sumoylation is decreased by ARF reduction, and no EGR1 sumoylation is detected in ARF(-/-) mice, which also exhibit reduced amounts of PTEN. Our model predicts that perturbation of any of the clinically important tumour suppressors, PTEN, EGR1, and ARF, will cause some degree of dysfunction of the others. These results also explain the known negative feedback regulation by PTEN on its own synthesis through PI3 kinase inhibition.
Collapse
Affiliation(s)
- Jianxiu Yu
- The Burnham Institute for Medical Research, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
SUMOylation is a post-translational modification that is involved in the regulation of proteins of different cellular processes. Dependent on the transient, small SUMOylated portion of most target proteins, it is difficult to identify and characterize this modification and its functions, and it is even more difficult to study the interplay between SUMOylation and other modifications on a specific protein. To facilitate the analysis of protein SUMOylation and its interplay with other protein modifications, the UFDS (Ubc9 fusion-directed SUMOylation) system has been developed. The identification of new SUMOylation substrates and the elucidation of the interplay between STAT1 (signal transducer and activator of transcription 1) phosphorylation and SUMOylation demonstrate UFDS as a useful tool for analysing protein SUMOylation.
Collapse
|