1
|
mRNA and tRNA modification states influence ribosome speed and frame maintenance during poly(lysine) peptide synthesis. J Biol Chem 2022; 298:102039. [PMID: 35595100 PMCID: PMC9207662 DOI: 10.1016/j.jbc.2022.102039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/16/2022] Open
Abstract
Ribosome speed is dictated by multiple factors including substrate availability, cellular conditions, and product (peptide) formation. Translation slows during the synthesis of cationic peptide sequences, potentially influencing the expression of thousands of proteins. Available evidence suggests that ionic interactions between positively charged nascent peptides and the negatively charged ribosome exit tunnel impede translation. However, this hypothesis was difficult to test directly because of inability to decouple the contributions of amino acid charge from mRNA sequence and tRNA identity/abundance in cells. Furthermore, it is unclear if other components of the translation system central to ribosome function (e.g., RNA modification) influence the speed and accuracy of positively charged peptide synthesis. In this study, we used a fully reconstituted Escherichia coli translation system to evaluate the effects of peptide charge, mRNA sequence, and RNA modification status on the translation of lysine-rich peptides. Comparison of translation reactions on poly(lysine)-encoding mRNAs conducted with either Lys-tRNALys or Val-tRNALys reveals that that amino acid charge, while important, only partially accounts for slowed translation on these transcripts. We further find that in addition to peptide charge, mRNA sequence and both tRNA and mRNA modification status influence the rates of amino acid addition and the ribosome’s ability to maintain frame (instead of entering the −2, −1, and +1 frames) during poly(lysine) peptide synthesis. Our observations lead us to expand the model for explaining how the ribosome slows during poly(lysine) peptide synthesis and suggest that posttranscriptional RNA modifications can provide cells a mechanism to precisely control ribosome movements along an mRNA.
Collapse
|
2
|
Fabret C, Namy O. Translational accuracy of a tethered ribosome. Nucleic Acids Res 2021; 49:5308-5318. [PMID: 33950196 PMCID: PMC8136817 DOI: 10.1093/nar/gkab259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/27/2021] [Accepted: 05/04/2021] [Indexed: 01/09/2023] Open
Abstract
Ribosomes are evolutionary conserved ribonucleoprotein complexes that function as two separate subunits in all kingdoms. During translation initiation, the two subunits assemble to form the mature ribosome, which is responsible for translating the messenger RNA. When the ribosome reaches a stop codon, release factors promote translation termination and peptide release, and recycling factors then dissociate the two subunits, ready for use in a new round of translation. A tethered ribosome, called Ribo-T, in which the two subunits are covalently linked to form a single entity, was recently described in Escherichia coli. A hybrid ribosomal RNA (rRNA) consisting of both the small and large subunit rRNA sequences was engineered. The ribosome with inseparable subunits generated in this way was shown to be functional and to sustain cell growth. Here, we investigated the translational properties of Ribo-T. We analyzed its behavior during amino acid misincorporation, -1 or +1 frameshifting, stop codon readthrough, and internal translation initiation. Our data indicate that covalent attachment of the two subunits modifies the properties of the ribosome, altering its ability to initiate and terminate translation correctly.
Collapse
Affiliation(s)
- Celine Fabret
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Olivier Namy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
3
|
Dever TE, Dinman JD, Green R. Translation Elongation and Recoding in Eukaryotes. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a032649. [PMID: 29610120 DOI: 10.1101/cshperspect.a032649] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this review, we highlight the current understanding of translation elongation and recoding in eukaryotes. In addition to providing an overview of the process, recent advances in our understanding of the role of the factor eIF5A in both translation elongation and termination are discussed. We also highlight mechanisms of translation recoding with a focus on ribosomal frameshifting during elongation. We see that the balance between the basic steps in elongation and the less common recoding events is determined by the kinetics of the different processes as well as by specific sequence determinants.
Collapse
Affiliation(s)
- Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
4
|
Makarova TM, Bogdanov AA. The Ribosome as an Allosterically Regulated Molecular Machine. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29523059 DOI: 10.1134/s0006297917130016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ribosome as a complex molecular machine undergoes significant conformational rearrangements during the synthesis of polypeptide chains of proteins. In this review, information obtained using various experimental methods on the internal consistency of such rearrangements is discussed. It is demonstrated that allosteric regulation involves all the main stages of the operation of the ribosome and connects functional elements remote by tens and even hundreds of angstroms. Data obtained using Förster resonance energy transfer (FRET) show that translocation is controlled in general by internal mechanisms of the ribosome, and not by the position of the ligands. Chemical probing data revealed the relationship of such remote sites as the decoding, peptidyl transferase, and GTPase centers of the ribosome. Nevertheless, despite the large amount of experimental data accumulated to date, many details and mechanisms of these phenomena are still not understood. Analysis of these data demonstrates that the development of new approaches is necessary for deciphering the mechanisms of allosteric regulation of the operation of the ribosome.
Collapse
Affiliation(s)
- T M Makarova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | | |
Collapse
|
5
|
Qiao Q, Yan Y, Guo J, Du S, Zhang J, Jia R, Ren H, Qiao Y, Li Q. A review on architecture of the gag-pol ribosomal frameshifting RNA in human immunodeficiency virus: a variability survey of virus genotypes. J Biomol Struct Dyn 2016; 35:1629-1653. [PMID: 27485859 DOI: 10.1080/07391102.2016.1194231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Programmed '-1' ribosomal frameshifting is necessary for expressing the pol gene overlapped from a gag of human immunodeficiency virus. A viral RNA structure that requires base pairing across the overlapping sequence region suggests a mechanism of regulating ribosome and helicase traffic during expression. To get precise roles of an element around the frameshift site, a review on architecture of the frameshifting RNA is performed in combination of reported information with augments of a representative set of 19 viral samples. In spite of a different length for the viral RNAs, a canonical comparison on the element sequence allocation is performed for viewing variability associations between virus genotypes. Additionally, recent and historical insights recognized in frameshifting regulation are looked back as for indel and single nucleotide polymorphism of RNA. As specially noted, structural changes at a frameshift site, the spacer sequence, and a three-helix junction element, as well as two Watson-Crick base pairs near a bulge and a C-G pair close a loop, are the most vital strategies for the virus frameshifting regulations. All of structural changes, which are dependent upon specific sequence variations, facilitate an elucidation about the RNA element conformation-dependent mechanism for frameshifting. These facts on disrupting base pair interactions also allow solving the problem of competition between ribosome and helicase on a same RNA template, common to single-stranded RNA viruses. In a broad perspective, each new insight of frameshifting regulation in the competition systems introduced by the RNA element construct changes will offer a compelling target for antiviral therapy.
Collapse
Affiliation(s)
- Qi Qiao
- a School of Pharmaceutical Sciences, Xiamen University , Fujian 361102 , P.R. China
| | - Yanhua Yan
- b Department of Bioscience , Luliang University , Shanxi 033001 , P.R. China
| | - Jinmei Guo
- c Department of Chemistry & Chemical Engineering , Luliang University , Shanxi 033001 , P.R. China
| | - Shuqiang Du
- c Department of Chemistry & Chemical Engineering , Luliang University , Shanxi 033001 , P.R. China
| | - Jiangtao Zhang
- b Department of Bioscience , Luliang University , Shanxi 033001 , P.R. China
| | - Ruyue Jia
- c Department of Chemistry & Chemical Engineering , Luliang University , Shanxi 033001 , P.R. China
| | - Haimin Ren
- c Department of Chemistry & Chemical Engineering , Luliang University , Shanxi 033001 , P.R. China
| | - Yuanbiao Qiao
- d Graduate Institute of Pharmaceutical Chemistry, Luliang University , Shanxi 033001 , P.R. China
| | - Qingshan Li
- e School of Pharmaceutical Sciences , Shanxi Medical University , Shanxi 030001 , P.R. China
| |
Collapse
|
6
|
Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res 2016; 44:7007-78. [PMID: 27436286 PMCID: PMC5009743 DOI: 10.1093/nar/gkw530] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
Genetic decoding is not ‘frozen’ as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational ‘correction’ of problem or ‘savior’ indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5′ or 3′ of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3′ from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression.
Collapse
Affiliation(s)
- John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland School of Microbiology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pramod R Bhatt
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
7
|
Saffert P, Adamla F, Schieweck R, Atkins JF, Ignatova Z. An Expanded CAG Repeat in Huntingtin Causes +1 Frameshifting. J Biol Chem 2016; 291:18505-13. [PMID: 27382061 DOI: 10.1074/jbc.m116.744326] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Indexed: 01/08/2023] Open
Abstract
Maintenance of triplet decoding is crucial for the expression of functional protein because deviations either into the -1 or +1 reading frames are often non-functional. We report here that expression of huntingtin (Htt) exon 1 with expanded CAG repeats, implicated in Huntington pathology, undergoes a sporadic +1 frameshift to generate from the CAG repeat a trans-frame AGC repeat-encoded product. This +1 recoding is exclusively detected in pathological Htt variants, i.e. those with expanded repeats with more than 35 consecutive CAG codons. An atypical +1 shift site, UUC C at the 5' end of CAG repeats, which has some resemblance to the influenza A virus shift site, triggers the +1 frameshifting and is enhanced by the increased propensity of the expanded CAG repeats to form a stem-loop structure. The +1 trans-frame-encoded product can directly influence the aggregation of the parental Htt exon 1.
Collapse
Affiliation(s)
- Paul Saffert
- From the Institute of Biochemistry, University of Potsdam, 14467 Potsdam, Germany
| | - Frauke Adamla
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Rico Schieweck
- From the Institute of Biochemistry, University of Potsdam, 14467 Potsdam, Germany
| | - John F Atkins
- the School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland, and the Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112
| | - Zoya Ignatova
- From the Institute of Biochemistry, University of Potsdam, 14467 Potsdam, Germany, Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany,
| |
Collapse
|
8
|
Xie P. Model of the pathway of -1 frameshifting: Long pausing. Biochem Biophys Rep 2016; 5:408-424. [PMID: 28955849 PMCID: PMC5600365 DOI: 10.1016/j.bbrep.2016.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 11/25/2022] Open
Abstract
It has been characterized that the programmed ribosomal -1 frameshifting often occurs at the slippery sequence on the presence of a downstream mRNA pseudoknot. In some prokaryotic cases such as the dnaX gene of Escherichia coli, an additional stimulatory signal-an upstream, internal Shine-Dalgarno (SD) sequence-is also necessary to stimulate the efficient -1 frameshifting. However, the molecular and physical mechanism of the -1 frameshifting is poorly understood. Here, we propose a model of the pathway of the -1 translational frameshifting during ribosome translation of the dnaX -1 frameshift mRNA. With the model, the single-molecule fluorescence data (Chen et al. (2014) [29]) on the dynamics of the shunt either to long pausing or to normal translation, the tRNA transit and sampling dynamics in the long-paused rotated state, the EF-G sampling dynamics, the mean rotated-state lifetimes, etc., are explained quantitatively. Moreover, the model is also consistent with the experimental data (Yan et al. (2015) [30]) on translocation excursions and broad branching of frameshifting pathways. In addition, we present some predicted results, which can be easily tested by future optical trapping experiments.
Collapse
|
9
|
van den Doel PB, Prieto VR, van Rossum-Fikkert SE, Schaftenaar W, Latimer E, Howard L, Chapman S, Masters N, Osterhaus ADME, Ling PD, Dastjerdi A, Martina B. A novel antigen capture ELISA for the specific detection of IgG antibodies to elephant endotheliotropic herpes virus. BMC Vet Res 2015; 11:203. [PMID: 26268467 PMCID: PMC4535388 DOI: 10.1186/s12917-015-0522-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 07/31/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Elephants are classified as critically endangered animals by the International Union for Conservation of Species (IUCN). Elephant endotheliotropic herpesvirus (EEHV) poses a large threat to breeding programs of captive Asian elephants by causing fatal haemorrhagic disease. EEHV infection is detected by PCR in samples from both clinically ill and asymptomatic elephants with an active infection, whereas latent carriers can be distinguished exclusively via serological assays. To date, identification of latent carriers has been challenging, since there are no serological assays capable of detecting seropositive elephants. RESULTS Here we describe a novel ELISA that specifically detects EEHV antibodies circulating in Asian elephant plasma/serum. Approximately 80 % of PCR positive elephants display EEHV-specific antibodies. Monitoring three Asian elephant herds from European zoos revealed that the serostatus of elephants within a herd varied from non-detectable to high titers. The antibody titers showed typical herpes-like rise-and-fall patterns in time which occur in all seropositive animals in the herd more or less simultaneously. CONCLUSIONS This study shows that the developed ELISA is suitable to detect antibodies specific to EEHV. It allows study of EEHV seroprevalence in Asian elephants. Results confirm that EEHV prevalence among Asian elephants (whether captive-born or wild-caught) is high.
Collapse
Affiliation(s)
- Petra B van den Doel
- ViroScience Lab, Erasmus Medical Center, Erasmus MC, Room Ee1714, dr. Molewaterplein 50, 3015, GE, Rotterdam, The Netherlands.
| | | | | | | | - Erin Latimer
- Smithsonian Conservation Biology Institute, Smithsonian's National Zoo, Washington, DC, USA.
| | - Lauren Howard
- Department of Animal Health, Houston Zoo, Inc., Houston, TX, USA.
| | - Sarah Chapman
- East-Midland Zoological Society, Twycross Zoo, Warwickshire, UK.
| | - Nic Masters
- Veterinary Services, Zoological Society of London, London, UK.
| | - Albert D M E Osterhaus
- ViroScience Lab, Erasmus Medical Center, Erasmus MC, Room Ee1714, dr. Molewaterplein 50, 3015, GE, Rotterdam, The Netherlands. .,Artemis One Health Research Institute, Utrecht, The Netherlands.
| | - Paul D Ling
- Department of Molecular Virology and Microbiology, Baylor's College of Medicine, Houston, TX, USA.
| | | | - Byron Martina
- ViroScience Lab, Erasmus Medical Center, Erasmus MC, Room Ee1714, dr. Molewaterplein 50, 3015, GE, Rotterdam, The Netherlands. .,Artemis One Health Research Institute, Utrecht, The Netherlands.
| |
Collapse
|
10
|
Mathew SF, Crowe-McAuliffe C, Graves R, Cardno TS, McKinney C, Poole ES, Tate WP. The highly conserved codon following the slippery sequence supports -1 frameshift efficiency at the HIV-1 frameshift site. PLoS One 2015; 10:e0122176. [PMID: 25807539 PMCID: PMC4373837 DOI: 10.1371/journal.pone.0122176] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 02/08/2015] [Indexed: 01/18/2023] Open
Abstract
HIV-1 utilises -1 programmed ribosomal frameshifting to translate structural and enzymatic domains in a defined proportion required for replication. A slippery sequence, U UUU UUA, and a stem-loop are well-defined RNA features modulating -1 frameshifting in HIV-1. The GGG glycine codon immediately following the slippery sequence (the 'intercodon') contributes structurally to the start of the stem-loop but has no defined role in current models of the frameshift mechanism, as slippage is inferred to occur before the intercodon has reached the ribosomal decoding site. This GGG codon is highly conserved in natural isolates of HIV. When the natural intercodon was replaced with a stop codon two different decoding molecules-eRF1 protein or a cognate suppressor tRNA-were able to access and decode the intercodon prior to -1 frameshifting. This implies significant slippage occurs when the intercodon is in the (perhaps distorted) ribosomal A site. We accommodate the influence of the intercodon in a model of frame maintenance versus frameshifting in HIV-1.
Collapse
Affiliation(s)
- Suneeth F. Mathew
- Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand
| | | | - Ryan Graves
- Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand
| | - Tony S. Cardno
- Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand
| | - Cushla McKinney
- Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand
| | - Elizabeth S. Poole
- Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand
| | - Warren P. Tate
- Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand
- * E-mail:
| |
Collapse
|
11
|
Björk GR, Hagervall TG. Transfer RNA Modification: Presence, Synthesis, and Function. EcoSal Plus 2014; 6. [PMID: 26442937 DOI: 10.1128/ecosalplus.esp-0007-2013] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Indexed: 06/05/2023]
Abstract
Transfer RNA (tRNA) from all organisms on this planet contains modified nucleosides, which are derivatives of the four major nucleosides. tRNA from Escherichia coli/Salmonella enterica serovar Typhimurium contains 33 different modified nucleosides, which are all, except one (Queuosine [Q]), synthesized on an oligonucleotide precursor, which by specific enzymes later matures into tRNA. The structural genes for these enzymes are found in mono- and polycistronic operons, the latter of which have a complex transcription and translation pattern. The synthesis of the tRNA-modifying enzymes is not regulated similarly, and it is not coordinated to that of their substrate, the tRNA. The synthesis of some of them (e.g., several methylated derivatives) is catalyzed by one enzyme, which is position and base specific, whereas synthesis of some has a very complex biosynthetic pathway involving several enzymes (e.g., 2-thiouridines, N 6-cyclicthreonyladenosine [ct6A], and Q). Several of the modified nucleosides are essential for viability (e.g., lysidin, ct6A, 1-methylguanosine), whereas the deficiency of others induces severe growth defects. However, some have no or only a small effect on growth at laboratory conditions. Modified nucleosides that are present in the anticodon loop or stem have a fundamental influence on the efficiency of charging the tRNA, reading cognate codons, and preventing missense and frameshift errors. Those that are present in the body of the tRNA primarily have a stabilizing effect on the tRNA. Thus, the ubiquitous presence of these modified nucleosides plays a pivotal role in the function of the tRNA by their influence on the stability and activity of the tRNA.
Collapse
Affiliation(s)
- Glenn R Björk
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
| | - Tord G Hagervall
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
| |
Collapse
|
12
|
Xie P. Dynamics of +1 ribosomal frameshifting. Math Biosci 2014; 249:44-51. [PMID: 24508018 DOI: 10.1016/j.mbs.2014.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 11/19/2022]
Abstract
It has been well characterized that the amino acid starvation can induce +1 frameshifting. However, how the +1 frameshifting occurs has not been fully understood. Here, taking Escherichia coli RF2 programmed frameshifting as an example we present systematical analysis of the +1 frameshifting that could occur during every state-transition step in elongation phase of protein synthesis, showing that the +1 frameshifting can occur only during the period after deacylated tRNA dissociation from the posttranslocation state and before the recognition of the next "hungry" codon. The +1 frameshifting efficiency is theoretically studied, with the simple analytical solutions showing that the high efficiency is almost solely due to the occurrence of ribosome pausing which in turn results from the insufficient RF2. The analytical solutions also provide a consistent explanation of a lot of independent experimental data.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
13
|
Firth AE, Jagger BW, Wise HM, Nelson CC, Parsawar K, Wills NM, Napthine S, Taubenberger JK, Digard P, Atkins JF. Ribosomal frameshifting used in influenza A virus expression occurs within the sequence UCC_UUU_CGU and is in the +1 direction. Open Biol 2013; 2:120109. [PMID: 23155484 PMCID: PMC3498833 DOI: 10.1098/rsob.120109] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/04/2012] [Indexed: 01/13/2023] Open
Abstract
Programmed ribosomal frameshifting is used in the expression of many virus genes and some cellular genes. In eukaryotic systems, the most well-characterized mechanism involves -1 tandem tRNA slippage on an X_XXY_YYZ motif. By contrast, the mechanisms involved in programmed +1 (or -2) slippage are more varied and often poorly characterized. Recently, a novel gene, PA-X, was discovered in influenza A virus and found to be expressed via a shift to the +1 reading frame. Here, we identify, by mass spectrometric analysis, both the site (UCC_UUU_CGU) and direction (+1) of the frameshifting that is involved in PA-X expression. Related sites are identified in other virus genes that have previously been proposed to be expressed via +1 frameshifting. As these viruses infect insects (chronic bee paralysis virus), plants (fijiviruses and amalgamaviruses) and vertebrates (influenza A virus), such motifs may form a new class of +1 frameshift-inducing sequences that are active in diverse eukaryotes.
Collapse
Affiliation(s)
- A E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Depletion of cognate charged transfer RNA causes translational frameshifting within the expanded CAG stretch in huntingtin. Cell Rep 2013; 3:148-59. [PMID: 23352662 DOI: 10.1016/j.celrep.2012.12.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 10/17/2012] [Accepted: 12/28/2012] [Indexed: 11/20/2022] Open
Abstract
Huntington disease (HD), a dominantly inherited neurodegenerative disorder caused by the expansion of a CAG-encoded polyglutamine (polyQ) repeat in huntingtin (Htt), displays a highly heterogeneous etiopathology and disease onset. Here, we show that the translation of expanded CAG repeats in mutant Htt exon 1 leads to a depletion of charged glutaminyl-transfer RNA (tRNA)(Gln-CUG) that pairs exclusively to the CAG codon. This results in translational frameshifting and the generation of various transframe-encoded species that differently modulate the conformational switch to nucleate fibrillization of the parental polyQ protein. Intriguingly, the frameshifting frequency varies strongly among different cell lines and is higher in cells with intrinsically lower concentrations of tRNA(Gln-CUG). The concentration of tRNA(Gln-CUG) also differs among different brain areas in the mouse. We propose that translational frameshifting may act as a significant disease modifier that contributes to the cell-selective neurotoxicity and disease course heterogeneity of HD on both cellular and individual levels.
Collapse
|
15
|
Dinman JD. Mechanisms and implications of programmed translational frameshifting. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:661-73. [PMID: 22715123 PMCID: PMC3419312 DOI: 10.1002/wrna.1126] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
While ribosomes must maintain translational reading frame in order to translate primary genetic information into polypeptides, cis‐acting signals located in mRNAs represent higher order information content that can be used to fine‐tune gene expression. Classes of signals have been identified that direct a fraction of elongating ribosomes to shift reading frame by one base in the 5′ (−1) or 3′ (+1) direction. This is called programmed ribosomal frameshifting (PRF). Although mechanisms of PRF differ, a common feature is induction of ribosome pausing, which alters kinetic partitioning rates between in‐frame and out‐of‐frame codons at specific ‘slippery’ sequences. Many viruses use PRF to ensure synthesis of the correct ratios of virus‐encoded proteins required for proper viral particle assembly and maturation, thus identifying PRF as an attractive target for antiviral therapeutics. In contrast, recent studies indicate that PRF signals may primarily function as mRNA destabilizing elements in cellular mRNAs. These studies suggest that PRF may be used to fine‐tune gene expression through mRNA decay pathways. The possible regulation of PRF by noncoding RNAs is also discussed. WIREs RNA 2012 doi: 10.1002/wrna.1126 This article is categorized under:
RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Evolution and Genomics > Computational Analyses of RNA Translation > Translation Regulation
Collapse
Affiliation(s)
- Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.
| |
Collapse
|
16
|
Jack K, Bellodi C, Landry DM, Niederer RO, Meskauskas A, Musalgaonkar S, Kopmar N, Krasnykh O, Dean AM, Thompson SR, Ruggero D, Dinman JD. rRNA pseudouridylation defects affect ribosomal ligand binding and translational fidelity from yeast to human cells. Mol Cell 2012; 44:660-6. [PMID: 22099312 DOI: 10.1016/j.molcel.2011.09.017] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 05/17/2011] [Accepted: 09/01/2011] [Indexed: 01/04/2023]
Abstract
How pseudouridylation (Ψ), the most common and evolutionarily conserved modification of rRNA, regulates ribosome activity is poorly understood. Medically, Ψ is important because the rRNA Ψ synthase, DKC1, is mutated in X-linked dyskeratosis congenita (X-DC) and Hoyeraal-Hreidarsson (HH) syndrome. Here, we characterize ribosomes isolated from a yeast strain in which Cbf5p, the yeast homolog of DKC1, is catalytically impaired through a D95A mutation (cbf5-D95A). Ribosomes from cbf5-D95A cells display decreased affinities for tRNA binding to the A and P sites as well as the cricket paralysis virus internal ribosome entry site (IRES), which interacts with both the P and the E sites of the ribosome. This biochemical impairment in ribosome activity manifests as decreased translational fidelity and IRES-dependent translational initiation, which are also evident in mouse and human cells deficient for DKC1 activity. These findings uncover specific roles for Ψ modification in ribosome-ligand interactions that are conserved in yeast, mouse, and humans.
Collapse
Affiliation(s)
- Karen Jack
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sharma V, Firth AE, Antonov I, Fayet O, Atkins JF, Borodovsky M, Baranov PV. A pilot study of bacterial genes with disrupted ORFs reveals a surprising profusion of protein sequence recoding mediated by ribosomal frameshifting and transcriptional realignment. Mol Biol Evol 2011; 28:3195-211. [PMID: 21673094 PMCID: PMC3199440 DOI: 10.1093/molbev/msr155] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bacterial genome annotations contain a number of coding sequences (CDSs) that, in spite of reading frame disruptions, encode a single continuous polypeptide. Such disruptions have different origins: sequencing errors, frameshift, or stop codon mutations, as well as instances of utilization of nontriplet decoding. We have extracted over 1,000 CDSs with annotated disruptions and found that about 75% of them can be clustered into 64 groups based on sequence similarity. Analysis of the clusters revealed deep phylogenetic conservation of open reading frame organization as well as the presence of conserved sequence patterns that indicate likely utilization of the nonstandard decoding mechanisms: programmed ribosomal frameshifting (PRF) and programmed transcriptional realignment (PTR). Further enrichment of these clusters with additional homologous nucleotide sequences revealed over 6,000 candidate genes utilizing PRF or PTR. Analysis of the patterns of conservation apparently associated with nontriplet decoding revealed the presence of both previously characterized frameshift-prone sequences and a few novel ones. Since the starting point of our analysis was a set of genes with already annotated disruptions, it is highly plausible that in this study, we have identified only a fraction of all bacterial genes that utilize PRF or PTR. In addition to the identification of a large number of recoded genes, a surprising observation is that nearly half of them are expressed via PTR-a mechanism that, in contrast to PRF, has not yet received substantial attention.
Collapse
Affiliation(s)
- Virag Sharma
- Department of Biochemistry, University College Cork, Cork, Ireland
| | - Andrew E. Firth
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Ivan Antonov
- School of Computational Science and Engineering, Georgia Institute of Technology
| | - Olivier Fayet
- Laboratoire de Microbiologie et Génétique Moléculaire, UMR5100, Centre National de la Recherche Scientifique and Université Paul Sabatier, Toulouse, France
| | - John F. Atkins
- Biosciences Institute, University College Cork, Cork, Ireland
- Department of Human Genetics, University of Utah
| | - Mark Borodovsky
- School of Computational Science and Engineering, Georgia Institute of Technology
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology
| | - Pavel V. Baranov
- Department of Biochemistry, University College Cork, Cork, Ireland
| |
Collapse
|
18
|
Allosteric vs. spontaneous exit-site (E-site) tRNA dissociation early in protein synthesis. Proc Natl Acad Sci U S A 2011; 108:16980-5. [PMID: 21969541 DOI: 10.1073/pnas.1106999108] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During protein synthesis, deacylated transfer RNAs leave the ribosome via an exit (E) site after mRNA translocation. How the ribosome regulates tRNA dissociation and whether functional linkages between the aminoacyl (A) and E sites modulate the dynamics of protein synthesis have long been debated. Using single molecule fluorescence resonance energy transfer experiments, we find that, during early cycles of protein elongation, tRNAs are often held in the E site until being allosterically released when the next aminoacyl tRNA binds to the A site. This process is regulated by the length and sequence of the nascent peptide and by the conformational state, detected by tRNA proximity, prior to translocation. In later cycles, E-site tRNA dissociates spontaneously. Our results suggest that the distribution of pretranslocation tRNA states and posttranslocation pathways are correlated within each elongation cycle via communication between distant subdomains in the ribosome, but that this correlation between elongation cycle intermediates does not persist into succeeding cycles.
Collapse
|
19
|
Liao PY, Choi YS, Dinman JD, Lee KH. The many paths to frameshifting: kinetic modelling and analysis of the effects of different elongation steps on programmed -1 ribosomal frameshifting. Nucleic Acids Res 2010; 39:300-12. [PMID: 20823091 PMCID: PMC3017607 DOI: 10.1093/nar/gkq761] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Several important viruses including the human immunodeficiency virus type 1 (HIV-1) and the SARS-associated Coronavirus (SARS-CoV) employ programmed −1 ribosomal frameshifting (PRF) for their protein expression. Here, a kinetic framework is developed to describe −1 PRF. The model reveals three kinetic pathways to −1 PRF that yield two possible frameshift products: those incorporating zero frame encoded A-site tRNAs in the recoding site, and products incorporating −1 frame encoded A-site tRNAs. Using known kinetic rate constants, the individual contributions of different steps of the translation elongation cycle to −1 PRF and the ratio between two types of frameshift products were evaluated. A dual fluorescence reporter was employed in Escherichia coli to empirically test the model. Additionally, the study applied a novel mass spectrometry approach to quantify the ratios of the two frameshift products. A more detailed understanding of the mechanisms underlying −1 PRF may provide insight into developing antiviral therapeutics.
Collapse
Affiliation(s)
- Pei-Yu Liao
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
20
|
Liao PY, Choi YS, Lee KH. FSscan: a mechanism-based program to identify +1 ribosomal frameshift hotspots. Nucleic Acids Res 2010; 37:7302-11. [PMID: 19783813 PMCID: PMC2790909 DOI: 10.1093/nar/gkp796] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In +1 programmed ribosomal frameshifting (PRF), ribosomes skip one nucleotide toward the 3'-end during translation. Most of the genes known to demonstrate +1 PRF have been discovered by chance or by searching homologous genes. Here, a bioinformatic framework called FSscan is developed to perform a systematic search for potential +1 frameshift sites in the Escherichia coli genome. Based on a current state of the art understanding of the mechanism of +1 PRF, FSscan calculates scores for a 16-nt window along a gene sequence according to different effects of the stimulatory signals, and ribosome E-, P- and A-site interactions. FSscan successfully identified the +1 PRF site in prfB and predicted yehP, pepP, nuoE and cheA as +1 frameshift candidates in the E. coli genome. Empirical results demonstrated that potential +1 frameshift sequences identified promoted significant levels of +1 frameshifting in vivo. Mass spectrometry analysis confirmed the presence of the frameshifted proteins expressed from a yehP-egfp fusion construct. FSscan allows a genome-wide and systematic search for +1 frameshift sites in E. coli. The results have implications for bioinformatic identification of novel frameshift proteins, ribosomal frameshifting, coding sequence detection and the application of mass spectrometry on studying frameshift proteins.
Collapse
Affiliation(s)
- Pei-Yu Liao
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York and Chemical Engineering Department and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Yong Seok Choi
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York and Chemical Engineering Department and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Kelvin H. Lee
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York and Chemical Engineering Department and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
- *To whom correspondence should be addressed. Tel: +1 302 831 0344;
| |
Collapse
|
21
|
Bekaert M, Firth AE, Zhang Y, Gladyshev VN, Atkins JF, Baranov PV. Recode-2: new design, new search tools, and many more genes. Nucleic Acids Res 2009; 38:D69-74. [PMID: 19783826 PMCID: PMC2808893 DOI: 10.1093/nar/gkp788] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
‘Recoding’ is a term used to describe non-standard read-out of the genetic code, and encompasses such phenomena as programmed ribosomal frameshifting, stop codon readthrough, selenocysteine insertion and translational bypassing. Although only a small proportion of genes utilize recoding in protein synthesis, accurate annotation of ‘recoded’ genes lags far behind annotation of ‘standard’ genes. In order to address this issue, provide a service to researchers in the field, and offer training data for developers of gene-annotation software, we have gathered together known cases of recoding within the Recode database. Recode-2 is an improved and updated version of the database. It provides access to detailed information on genes known to utilize translational recoding and allows complex search queries, browsing of recoding data and enhanced visualization of annotated sequence elements. At present, the Recode-2 database stores information on approximately 1500 genes that are known to utilize recoding in their expression—a factor of approximately three increase over the previous version of the database. Recode-2 is available at http://recode.ucc.ie
Collapse
Affiliation(s)
- Michaël Bekaert
- School of Biology and Environmental Science, University College Dublin, BioSciences Institute, University College Cork, Ireland
| | | | | | | | | | | |
Collapse
|
22
|
Cardno TS, Poole ES, Mathew SF, Graves R, Tate WP. A homogeneous cell-based bicistronic fluorescence assay for high-throughput identification of drugs that perturb viral gene recoding and read-through of nonsense stop codons. RNA (NEW YORK, N.Y.) 2009; 15:1614-21. [PMID: 19535460 PMCID: PMC2714747 DOI: 10.1261/rna.1586709] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 04/24/2009] [Indexed: 05/27/2023]
Abstract
Recoding mechanisms are programmed protein synthesis events used commonly by viruses but only very rarely in cells for cellular gene expression. For example, HIV-1 has an absolute reliance on frameshifting to produce the correct ratio of key proteins critical for infectivity. To exploit such recoding sites as therapeutic targets, a simple homogeneous assay capable of detecting small perturbations in these low-frequency (<5%) events is required. Current assays based on dual luciferase reporters use expensive substrates and are labor-intensive, both impediments for high-throughput screening. We have developed a cell-based bifluorophore assay able to measure accurately small recoding changes (<0.1%) with a high Z'-factor in 24- or 96-well formats that could be extended to 384 wells. In cases of nonsense mutations arising within coding regions of genes, the assay is suitable for assessing the potential of screened compounds to increase read-through at these nonprogrammed stop signals of variable termination efficiency.
Collapse
Affiliation(s)
- Tony S Cardno
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | | | | | | | | |
Collapse
|
23
|
Atkins JF, Gesteland RF. Sequences Promoting Recoding Are Singular Genomic Elements. RECODING: EXPANSION OF DECODING RULES ENRICHES GENE EXPRESSION 2009; 24. [PMCID: PMC7122551 DOI: 10.1007/978-0-387-89382-2_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The distribution of sequences which induce non-standard decoding, especially of shift-prone sequences, is very unusual. On one hand, since they can disrupt standard genetic readout, they are avoided within the coding regions of most genes. On the other hand, they play important regulatory roles for the expression of those genes where they do occur. As a result, they are preserved among homologs and exhibit deep phylogenetic conservation. The combination of these two constraints results in a characteristic distribution of recoding sequences across genomes: they are highly conserved at specific locations while they are very rare in other locations. We term such sequences singular genomic elements to signify their rare occurrence and biological importance.
Collapse
Affiliation(s)
- John F. Atkins
- Molecular Biology Program, University of Utah, N. 2030 E. 15, Salt Late City, 84112-5330 U.S.A
| | | |
Collapse
|
24
|
Atkins JF, Björk GR. A gripping tale of ribosomal frameshifting: extragenic suppressors of frameshift mutations spotlight P-site realignment. Microbiol Mol Biol Rev 2009; 73:178-210. [PMID: 19258537 PMCID: PMC2650885 DOI: 10.1128/mmbr.00010-08] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutants of translation components which compensate for both -1 and +1 frameshift mutations showed the first evidence for framing malleability. Those compensatory mutants isolated in bacteria and yeast with altered tRNA or protein factors are reviewed here and are considered to primarily cause altered P-site realignment and not altered translocation. Though the first sequenced tRNA mutant which suppressed a +1 frameshift mutation had an extra base in its anticodon loop and led to a textbook "yardstick" model in which the number of anticodon bases determines codon size, this model has long been discounted, although not by all. Accordingly, the reviewed data suggest that reading frame maintenance and translocation are two distinct features of the ribosome. None of the -1 tRNA suppressors have anticodon loops with fewer than the standard seven nucleotides. Many of the tRNA mutants potentially affect tRNA bending and/or stability and can be used for functional assays, and one has the conserved C74 of the 3' CCA substituted. The effect of tRNA modification deficiencies on framing has been particularly informative. The properties of some mutants suggest the use of alternative tRNA anticodon loop stack conformations by individual tRNAs in one translation cycle. The mutant proteins range from defective release factors with delayed decoding of A-site stop codons facilitating P-site frameshifting to altered EF-Tu/EF1alpha to mutant ribosomal large- and small-subunit proteins L9 and S9. Their study is revealing how mRNA slippage is restrained except where it is programmed to occur and be utilized.
Collapse
Affiliation(s)
- John F Atkins
- BioSciences Institute, University College, Cork, Ireland.
| | | |
Collapse
|
25
|
Näsvall SJ, Nilsson K, Björk GR. The ribosomal grip of the peptidyl-tRNA is critical for reading frame maintenance. J Mol Biol 2008; 385:350-67. [PMID: 19013179 DOI: 10.1016/j.jmb.2008.10.069] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 10/21/2008] [Accepted: 10/22/2008] [Indexed: 11/15/2022]
Abstract
If a ribosome shifts to an alternative reading frame during translation, the information in the message is usually lost. We have selected mutants of Salmonella typhimurium with alterations in tRNA(cmo5UGG)(Pro) that cause increased frameshifting when present in the ribosomal P-site. In 108 such mutants, two parts of the tRNA molecule are altered: the anticodon stem and the D-arm, including its tertiary interactions with the variable arm. Some of these alterations in tRNA(cmo5UGG)(Pro) are in close proximity to ribosomal components in the P-site. The crystal structure of the 30S subunit suggests that the C-terminal end of ribosomal protein S9 contacts nucleotides 32-34 of peptidyl-tRNA. We have isolated mutants with defects in the C-terminus of S9 that induce +1 frameshifting. Combinations of changes in tRNA(cmo5UGG)(Pro) and S9 suggest that an interaction occurs between position 32 of the peptidyl-tRNA and the C-terminal end of S9. Together, our results suggest that the cause of frameshifting is an aberrant interaction between the peptidyl-tRNA and the P-site environment. We suggest that the "ribosomal grip" of the peptidyl-tRNA is pivotal for maintaining the reading frame.
Collapse
MESH Headings
- Frameshifting, Ribosomal
- Models, Molecular
- Mutation, Missense
- Nucleic Acid Conformation
- Point Mutation
- Protein Biosynthesis
- RNA, Messenger/metabolism
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Pro/genetics
- RNA, Transfer, Pro/metabolism
- Reading Frames
- Ribosomal Protein S9
- Ribosomal Proteins/genetics
- Ribosomes/metabolism
- Salmonella typhimurium/physiology
Collapse
Affiliation(s)
- S Joakim Näsvall
- Department of Molecular Biology, Umeå University, S-901 87 Umeå, Sweden
| | | | | |
Collapse
|
26
|
Sanders CL, Lohr KJ, Gambill HL, Curran RB, Curran JF. Anticodon loop mutations perturb reading frame maintenance by the E site tRNA. RNA (NEW YORK, N.Y.) 2008; 14:1874-1881. [PMID: 18669442 PMCID: PMC2525952 DOI: 10.1261/rna.1170008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 06/09/2008] [Indexed: 05/26/2023]
Abstract
The ribosomal E site helps hold the reading frame. Certain tRNA mutations affect translation, and anticodon loop mutations can be especially detrimental. We studied the effects of mutations saturating the anticodon loop of the amber suppressor tRNA, Su7, on the ability to help hold the reading frame when in the E site. We also tested three mutations in the anticodon stem, as well as a mutation in the D stem (the "Hirsh" mutation). We used the Escherichia coli RF2 programmed frameshift site to monitor frame maintenance. Most anticodon loop mutations increase frameshifting, possibly by decreasing codon:anticodon stability. However, it is likely that the A site is more sensitive to anticodon loop structure than is the E site. Unexpectedly, the Hirsh mutation also increases frameshifting from the E site. Other work shows that mutation may increase the ability of tRNA to react in the A site, possibly by facilitating conformational changes required for aminoacyl-tRNA selection. We suggest that this property may decrease its ability to bind to the E site. Finally, the absence of the ms(2)io(6)A nucleoside modifications at A37 does not decrease the ability of tRNA to help hold the reading frame from the E site. This was also unexpected because the absence of these modifications affects translational properties of tRNA in A and P sites. The absence of a negative effect in the E site further highlights the differences among the substrate requirements of the ribosomal coding sites.
Collapse
Affiliation(s)
- Christina L Sanders
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27106, USA
| | | | | | | | | |
Collapse
|