1
|
Fischer P, Thoms M, Lau B, Denk T, Kuvshinova M, Berninghausen O, Flemming D, Hurt E, Beckmann R. H/ACA snR30 snoRNP guides independent 18S rRNA subdomain formation. Nat Commun 2025; 16:4720. [PMID: 40399280 PMCID: PMC12095548 DOI: 10.1038/s41467-025-59656-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 04/25/2025] [Indexed: 05/23/2025] Open
Abstract
Ribosome biogenesis follows a cascade of pre-rRNA folding and processing steps, coordinated with ribosomal protein incorporation. Nucleolar 90S pre-ribosomes are well-described stable intermediates, composed of pre-18S rRNA, ribosomal S-proteins, U3 snoRNA, and ~70 assembly factors. However, how numerous snoRNAs control pre-rRNA modification and folding during early maturation events remains unclear. We identify snR30 (human U17), the only essential H/ACA snoRNA in yeast, which binds with Cbf5-Gar1-Nop10-Nhp2 to a pre-18S rRNA subdomain containing platform helices and ES6 of the 40S central domain. Integration into the 90S is blocked by RNA hybridization with snR30. The snoRNP complex coordinates the recruitment of early assembly factors Krr1-Utp23-Kri1 and ribosomal proteins uS11-uS15, enabling isolated subdomain assembly. Krr1-dependent release of snR30 culminates in integration of the platform into the 90S. Our study reveals the essential role of snR30 in chaperoning central domain formation as a discrete assembly unit externalized from the pre-ribosomal core.
Collapse
MESH Headings
- RNA, Ribosomal, 18S/metabolism
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/chemistry
- Saccharomyces cerevisiae Proteins/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae/genetics
- Humans
- RNA, Small Nucleolar/metabolism
- RNA, Small Nucleolar/genetics
- Ribonucleoproteins, Small Nucleolar/metabolism
- Ribonucleoproteins, Small Nucleolar/genetics
- RNA Precursors/metabolism
- RNA Precursors/genetics
- Ribosomal Proteins/metabolism
- Ribosomes/metabolism
- Protein Binding
Collapse
Affiliation(s)
- Paulina Fischer
- Biochemistry Center, Heidelberg University, Heidelberg, Germany
| | - Matthias Thoms
- Department of Biochemistry, Gene Center, University of Munich, Munich, Germany
| | - Benjamin Lau
- Biochemistry Center, Heidelberg University, Heidelberg, Germany
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, Heidelberg, Germany
| | - Timo Denk
- Department of Biochemistry, Gene Center, University of Munich, Munich, Germany
| | | | - Otto Berninghausen
- Department of Biochemistry, Gene Center, University of Munich, Munich, Germany
| | - Dirk Flemming
- Biochemistry Center, Heidelberg University, Heidelberg, Germany
| | - Ed Hurt
- Biochemistry Center, Heidelberg University, Heidelberg, Germany.
| | - Roland Beckmann
- Department of Biochemistry, Gene Center, University of Munich, Munich, Germany.
| |
Collapse
|
2
|
Mo C, Xie C, Wang G, Tian T, Liu J, Zhu C, Xiao X, Xiao Y. Cyclophilin acts as a ribosome biogenesis factor by chaperoning the ribosomal protein (PlRPS15) in filamentous fungi. Nucleic Acids Res 2021; 49:12358-12376. [PMID: 34792171 PMCID: PMC8643696 DOI: 10.1093/nar/gkab1102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 11/14/2022] Open
Abstract
The rapid transport of ribosomal proteins (RPs) into the nucleus and their efficient assembly into pre-ribosomal particles are prerequisites for ribosome biogenesis. Proteins that act as dedicated chaperones for RPs to maintain their stability and facilitate their assembly have not been identified in filamentous fungi. PlCYP5 is a nuclear cyclophilin in the nematophagous fungus Purpureocillium lilacinum, whose expression is up-regulated during abiotic stress and nematode egg-parasitism. Here, we found that PlCYP5 co-translationally interacted with the unassembled small ribosomal subunit protein, PlRPS15 (uS19). PlRPS15 contained an eukaryote-specific N-terminal extension that mediated the interaction with PlCYP5. PlCYP5 increased the solubility of PlRPS15 independent of its catalytic peptide-prolyl isomerase function and supported the integration of PlRPS15 into pre-ribosomes. Consistently, the phenotypes of the PlCYP5 loss-of-function mutant were similar to those of the PlRPS15 knockdown mutant (e.g. growth and ribosome biogenesis defects). PlCYP5 homologs in Arabidopsis thaliana, Homo sapiens, Schizosaccharomyces pombe, Sclerotinia sclerotiorum, Botrytis cinerea and Metarhizium anisopliae were identified. Notably, PlCYP5-PlRPS15 homologs from three filamentous fungi interacted with each other but not those from other species. In summary, our data disclosed a unique dedicated chaperone system for RPs by cyclophilin in filamentous fungi.
Collapse
Affiliation(s)
- Chenmi Mo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.,Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Chong Xie
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Gaofeng Wang
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Tian Tian
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Juan Liu
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Chunxiao Zhu
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xueqiong Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.,Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yannong Xiao
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
3
|
Abstract
In the past 25 years, genetic and biochemical analyses of ribosome assembly in yeast have identified most of the factors that participate in this complex pathway and have generated models for the mechanisms driving the assembly. More recently, the publication of numerous cryo-electron microscopy structures of yeast ribosome assembly intermediates has provided near-atomic resolution snapshots of ribosome precursor particles. Satisfyingly, these structural data support the genetic and biochemical models and provide additional mechanistic insight into ribosome assembly. In this Review, we discuss the mechanisms of assembly of the yeast small ribosomal subunit and large ribosomal subunit in the nucleolus, nucleus and cytoplasm. Particular emphasis is placed on concepts such as the mechanisms of RNA compaction, the functions of molecular switches and molecular mimicry, the irreversibility of assembly checkpoints and the roles of structural and functional proofreading of pre-ribosomal particles.
Collapse
|
4
|
Lackmann F, Belikov S, Burlacu E, Granneman S, Wieslander L. Maturation of the 90S pre-ribosome requires Mrd1 dependent U3 snoRNA and 35S pre-rRNA structural rearrangements. Nucleic Acids Res 2018; 46:3692-3706. [PMID: 29373706 PMCID: PMC5909432 DOI: 10.1093/nar/gky036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 01/25/2023] Open
Abstract
In eukaryotes, ribosome biogenesis requires folding and assembly of the precursor rRNA (pre-rRNA) with a large number of proteins and snoRNPs into huge RNA-protein complexes. In spite of intense genetic, biochemical and high-resolution cryo-EM studies in Saccharomyces cerevisiae, information about the structure of the 35S pre-rRNA is limited. To overcome this, we performed high-throughput SHAPE chemical probing on the 35S pre-rRNA within 90S pre-ribosomes. We focused our analyses on external (5'ETS) and internal (ITS1) transcribed spacers as well as the 18S rRNA region. We show that in the 35S pre-rRNA, the central pseudoknot is not formed and the central core of the 18S rRNA is in an open configuration but becomes more constrained in 20S pre-rRNA. The essential ribosome biogenesis protein Mrd1 influences the structure of the 18S rRNA region locally and is involved in organizing the central pseudoknot and surrounding structures. We demonstrate that U3 snoRNA dynamically interacts with the 35S pre-rRNA and that Mrd1 is required for disrupting U3 snoRNA base pairing interactions in the 5'ETS. We propose that the dynamic U3 snoRNA interactions and Mrd1 are essential for establishing the structure of the central core of 18S rRNA that is required for processing and 40S subunit function.
Collapse
Affiliation(s)
- Fredrik Lackmann
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Sergey Belikov
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Elena Burlacu
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Sander Granneman
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Lars Wieslander
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
5
|
High-throughput RNA structure probing reveals critical folding events during early 60S ribosome assembly in yeast. Nat Commun 2017; 8:714. [PMID: 28959008 PMCID: PMC5620067 DOI: 10.1038/s41467-017-00761-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 07/26/2017] [Indexed: 11/25/2022] Open
Abstract
While the protein composition of various yeast 60S ribosomal subunit assembly intermediates has been studied in detail, little is known about ribosomal RNA (rRNA) structural rearrangements that take place during early 60S assembly steps. Using a high-throughput RNA structure probing method, we provide nucleotide resolution insights into rRNA structural rearrangements during nucleolar 60S assembly. Our results suggest that many rRNA-folding steps, such as folding of 5.8S rRNA, occur at a very specific stage of assembly, and propose that downstream nuclear assembly events can only continue once 5.8S folding has been completed. Our maps of nucleotide flexibility enable making predictions about the establishment of protein–rRNA interactions, providing intriguing insights into the temporal order of protein–rRNA as well as long-range inter-domain rRNA interactions. These data argue that many distant domains in the rRNA can assemble simultaneously during early 60S assembly and underscore the enormous complexity of 60S synthesis. Ribosome biogenesis is a dynamic process that involves the ordered assembly of ribosomal proteins and numerous RNA structural rearrangements. Here the authors apply ChemModSeq, a high-throughput RNA structure probing method, to quantitatively measure changes in RNA flexibility during the nucleolar stages of 60S assembly in yeast.
Collapse
|
6
|
Boissier F, Schmidt CM, Linnemann J, Fribourg S, Perez-Fernandez J. Pwp2 mediates UTP-B assembly via two structurally independent domains. Sci Rep 2017; 7:3169. [PMID: 28600509 PMCID: PMC5466602 DOI: 10.1038/s41598-017-03034-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/21/2017] [Indexed: 11/24/2022] Open
Abstract
The SSU processome constitutes a large ribonucleoprotein complex involved in the early steps of ribosome biogenesis. UTP-B is one of the first multi-subunit protein complexes that associates with the pre-ribosomal RNA to form the SSU processome. To understand the molecular basis of the hierarchical assembly of the SSU-processome, we have undergone a structural and functional analysis of the UTP-B subunit Pwp2p. We show that Pwp2p is required for the proper assembly of UTP-B and for a productive association of UTP-B with pre-rRNA. These two functions are mediated by two distinct structural domains. The N-terminal domain of Pwp2p folds into a tandem WD-repeat (tWD) that associates with Utp21p, Utp18p, and Utp6p to form a core complex. The CTDs of Pwp2p and Utp21p mediate the assembly of the heterodimer Utp12p:Utp13p that is required for the stable incorporation of the UTP-B complex in the SSU processome. Finally, we provide evidence suggesting a role of UTP-B as a platform for the binding of assembly factors during the maturation of 20S rRNA precursors.
Collapse
Affiliation(s)
- Fanny Boissier
- Université de Bordeaux, INSERM U1212, CNRS 5320, Bordeaux, France
| | - Christina Maria Schmidt
- Universität Regensburg, Biochemie-Zentrum Regensburg (BZR), Lehrstuhl Biochemie III, D-93053, Regensburg, Germany
| | - Jan Linnemann
- Universität Regensburg, Biochemie-Zentrum Regensburg (BZR), Lehrstuhl Biochemie III, D-93053, Regensburg, Germany
| | | | - Jorge Perez-Fernandez
- Universität Regensburg, Biochemie-Zentrum Regensburg (BZR), Lehrstuhl Biochemie III, D-93053, Regensburg, Germany.
| |
Collapse
|
7
|
Segerstolpe Å, Granneman S, Björk P, de Lima Alves F, Rappsilber J, Andersson C, Högbom M, Tollervey D, Wieslander L. Multiple RNA interactions position Mrd1 at the site of the small subunit pseudoknot within the 90S pre-ribosome. Nucleic Acids Res 2012. [PMID: 23193268 PMCID: PMC3553979 DOI: 10.1093/nar/gks1129] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ribosomal subunit biogenesis in eukaryotes is a complex multistep process. Mrd1 is an essential and conserved small (40S) ribosomal subunit synthesis factor that is required for early cleavages in the 35S pre-ribosomal RNA (rRNA). Yeast Mrd1 contains five RNA-binding domains (RBDs), all of which are necessary for optimal function of the protein. Proteomic data showed that Mrd1 is part of the early pre-ribosomal complexes, and deletion of individual RBDs perturbs the pre-ribosomal structure. In vivo ultraviolet cross-linking showed that Mrd1 binds to the pre-rRNA at two sites within the 18S region, in helix 27 (h27) and helix 28. The major binding site lies in h27, and mutational analyses shows that this interaction requires the RBD1-3 region of Mrd1. RBD2 plays the dominant role in h27 binding, but other RBDs also contribute directly. h27 and helix 28 are located close to the sequences that form the central pseudoknot, a key structural feature of the mature 40S subunit. We speculate that the modular structure of Mrd1 coordinates pseudoknot formation with pre-rRNA processing and subunit assembly.
Collapse
Affiliation(s)
- Åsa Segerstolpe
- Department of Molecular Biology and Functional Genomics, Stockholm University SE-106 91, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kallberg Y, Segerstolpe Å, Lackmann F, Persson B, Wieslander L. Evolutionary conservation of the ribosomal biogenesis factor Rbm19/Mrd1: implications for function. PLoS One 2012; 7:e43786. [PMID: 22984444 PMCID: PMC3440411 DOI: 10.1371/journal.pone.0043786] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/24/2012] [Indexed: 12/23/2022] Open
Abstract
Ribosome biogenesis in eukaryotes requires coordinated folding and assembly of a pre-rRNA into sequential pre-rRNA-protein complexes in which chemical modifications and RNA cleavages occur. These processes require many small nucleolar RNAs (snoRNAs) and proteins. Rbm19/Mrd1 is one such protein that is built from multiple RNA-binding domains (RBDs). We find that Rbm19/Mrd1 with five RBDs is present in all branches of the eukaryotic phylogenetic tree, except in animals and Choanoflagellates, that instead have a version with six RBDs and Microsporidia which have a minimal Rbm19/Mrd1 protein with four RBDs. Rbm19/Mrd1 therefore evolved as a multi-RBD protein very early in eukaryotes. The linkers between the RBDs have conserved properties; they are disordered, except for linker 3, and position the RBDs at conserved relative distances from each other. All but one of the RBDs have conserved properties for RNA-binding and each RBD has a specific consensus sequence and a conserved position in the protein, suggesting a functionally important modular design. The patterns of evolutionary conservation provide information for experimental analyses of the function of Rbm19/Mrd1. In vivo mutational analysis confirmed that a highly conserved loop 5-β4-strand in RBD6 is essential for function.
Collapse
Affiliation(s)
- Yvonne Kallberg
- Bioinformatics Infrastructure for Life Sciences, Science for Life Laboratory, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Åsa Segerstolpe
- Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden
| | - Fredrik Lackmann
- Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden
| | - Bengt Persson
- Bioinformatics Infrastructure for Life Sciences and Swedish eScience Research Centre, IFM Bioinformatics, Linköping University, Linköping, Sweden
- Science for Life Laboratory, Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Wieslander
- Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
9
|
Regulation of ribosomal RNA production by RNA polymerase I: does elongation come first? GENETICS RESEARCH INTERNATIONAL 2012; 2012:276948. [PMID: 22567380 PMCID: PMC3335655 DOI: 10.1155/2012/276948] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/27/2011] [Indexed: 11/17/2022]
Abstract
Ribosomal RNA (rRNA) production represents the most active transcription in the cell. Synthesis of the large rRNA precursors (35-47S) can be achieved by up to 150 RNA polymerase I (Pol I) enzymes simultaneously transcribing each rRNA gene. In this paper, we present recent advances made in understanding the regulatory mechanisms that control elongation. Built-in Pol I elongation factors, such as Rpa34/Rpa49 in budding yeast and PAF53/CAST in humans, are instrumental to the extremely high rate of rRNA production per gene. rRNA elongation mechanisms are intrinsically linked to chromatin structure and to the higher-order organization of the rRNA genes (rDNA). Factors such as Hmo1 in yeast and UBF1 in humans are key players in rDNA chromatin structure in vivo. Finally, elongation factors known to regulate messengers RNA production by RNA polymerase II are also involved in rRNA production and work cooperatively with Rpa49 in vivo.
Collapse
|
10
|
Choque E, Marcellin M, Burlet-Schiltz O, Gadal O, Dez C. The nucleolar protein Nop19p interacts preferentially with Utp25p and Dhr2p and is essential for the production of the 40S ribosomal subunit in Saccharomyces cerevisiae. RNA Biol 2011; 8:1158-72. [PMID: 21941128 DOI: 10.4161/rna.8.6.17699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In eukaryotes, ribosome biogenesis is a process of major interest that requires more than 200 factors acting coordinately in time and space. Using genetic and proteomic studies, most of the components have now been identified. Based on its nucleolar localization, we characterized the protein encoded by the open reading frame YGR251W, we renamed Nop19p as playing an essential role in ribosome biogenesis. Depletion of the Nop19p in yeast impairs pre-rRNA processing at sites A₀, A₁ and A₂, leading to a strong decrease in 18S rRNA and 40S subunit levels. Nop19p is a component of 90S preribosomes which assembly is believed to result from stepwise incorporation of UTP modules. We show that Nop19p depletion does not impair the incorporation of UTP subcomplexes on preribosomes and conversely that depletion of UTP subcomplexes does not affect Nop19p recruitment on 90S preribosomes. TAP experiments under stringent conditions revealed that Nop19p interacts preferentially with the DEAH-box RNA helicase Dhr2p and Utp25p, both required for A 0, A 1 and A 2 cleavages. Nop19p appeared essential for the incorporation of Utp25p in preribosomes. In addition, our results suggest that in absence of Nop19p, Dhr2p remains trapped within aberrant preribosomes.
Collapse
Affiliation(s)
- Elodie Choque
- Centre National de la Recherche Scientifique, Laboratoire de Biologie Moléculaire Eukaryote, Toulouse, France
| | | | | | | | | |
Collapse
|
11
|
Cao Y, Li K, Xia Y. Downregulation of pre-rRNA processing gene Mamrd1 decreases growth, conidiation and virulence in the entomopathogenic fungus Metarhizium acridum. Res Microbiol 2011; 162:729-36. [DOI: 10.1016/j.resmic.2011.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Accepted: 04/26/2011] [Indexed: 10/18/2022]
|
12
|
Pérez-Fernández J, Martín-Marcos P, Dosil M. Elucidation of the assembly events required for the recruitment of Utp20, Imp4 and Bms1 onto nascent pre-ribosomes. Nucleic Acids Res 2011; 39:8105-21. [PMID: 21724601 PMCID: PMC3185420 DOI: 10.1093/nar/gkr508] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The 90S pre-ribosome, also known as the small subunit (SSU) processome, is a large multisubunit particle required for the production of the 18S rRNA from a pre-rRNA precursor. Recently, it has been shown that the formation of this particle entails the initial association of the tUTP subunit with the nascent pre-RNA and, subsequently, the binding of Rrp5/UTP-C and U3 snoRNP/UTP-B subunits in two independent assembly branches. However, the mode of assembly of other 90S pre-ribosome components remains obscure as yet. In this study, we have investigated the assembly of three proteins (Utp20, Imp4 and Bms1) previously regarded as potential nucleating factors of the 90S particle. Here, we demonstrate that the loading of those three proteins onto the pre-rRNA takes place independently of Rrp5/UTP-C and, instead, occurs downstream of the tUTP and U3/UTP-B subcomplexes. We also demonstrate that Bms1 and Utp20 are required for the recruitment of a subset of proteins to nascent pre-ribosomes. Finally, we show that proteins associated through secondary steps condition the stability of the two assembly branches in partially assembled pre-ribosomes. These results provide new information about the functional relationships among 90S particle components and the events that are required for their stepwise incorporation onto the primary pre-rRNA.
Collapse
Affiliation(s)
- Jorge Pérez-Fernández
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Campus Unamuno s/n, E37007 Salamanca, Spain
| | | | | |
Collapse
|
13
|
Lamanna AC, Karbstein K. An RNA conformational switch regulates pre-18S rRNA cleavage. J Mol Biol 2011; 405:3-17. [PMID: 20934433 PMCID: PMC3006654 DOI: 10.1016/j.jmb.2010.09.064] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 09/27/2010] [Accepted: 09/29/2010] [Indexed: 12/30/2022]
Abstract
To produce mature ribosomal RNAs (rRNAs), polycistronic rRNA transcripts are cleaved in an ordered series of events. We have uncovered the molecular basis for the ordering of two essential cleavage steps at the 3'-end of 18S rRNA. Using in vitro and in vivo structure probing, RNA binding and cleavage experiments, and yeast genetics, we demonstrate that a conserved RNA sequence in the spacer region between the 18S and 5.8S rRNAs base-pairs with the decoding site of 18S rRNA in early assembly intermediates. Nucleolar cleavage at site A(2) excises this sequence element, leading to a conformational switch in pre-18S rRNA, by which the ribosomal decoding site is formed. This conformational switch positions the nuclease Nob1 for cytoplasmic cleavage at the 3'-end of 18S rRNA and is required for the final maturation step of 18S rRNA in vivo and in vitro. More generally, our data show that the intrinsic ability of RNA to form stable structural switches is exploited to order and regulate RNA-dependent biological processes.
Collapse
MESH Headings
- Base Pairing
- Base Sequence
- Cell Nucleolus/metabolism
- Conserved Sequence/genetics
- DNA, Ribosomal Spacer/genetics
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- RNA, Ribosomal, 5.8S/genetics
- RNA, Ribosomal, 5.8S/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
Collapse
Affiliation(s)
- Allison C Lamanna
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | |
Collapse
|
14
|
Phipps KR, Charette JM, Baserga SJ. The small subunit processome in ribosome biogenesis—progress and prospects. WILEY INTERDISCIPLINARY REVIEWS. RNA 2011; 2:1-21. [PMID: 21318072 PMCID: PMC3035417 DOI: 10.1002/wrna.57] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The small subunit (SSU) processome is a 2.2-MDa ribonucleoprotein complex involved in the processing, assembly, and maturation of the SSU of eukaryotic ribosomes. The identities of many of the factors involved in SSU biogenesis have been elucidated over the past 40 years. However, as our understanding increases, so do the number of questions about the nature of this complicated process. Cataloging the components is the first step toward understanding the molecular workings of a system. This review will focus on how identifying components of ribosome biogenesis has led to the knowledge of how these factors, protein and RNA alike, associate with one another into subcomplexes, with a concentration on the small ribosomal subunit. We will also explore how this knowledge of subcomplex assembly has informed our understanding of the workings of the ribosome synthesis system as a whole.
Collapse
MESH Headings
- Animals
- Eukaryota/genetics
- Eukaryota/metabolism
- Humans
- Models, Biological
- Models, Molecular
- Nucleic Acid Conformation
- Protein Modification, Translational/genetics
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/metabolism
- Ribonucleoproteins/chemistry
- Ribonucleoproteins/metabolism
- Ribosome Subunits, Small/metabolism
- Ribosomes/metabolism
Collapse
Affiliation(s)
- Kathleen R. Phipps
- Depts. of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - J. Michael Charette
- Depts. of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
- Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Susan J. Baserga
- Depts. of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
- Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
15
|
Evolutionarily conserved function of RRP36 in early cleavages of the pre-rRNA and production of the 40S ribosomal subunit. Mol Cell Biol 2009; 30:1130-44. [PMID: 20038530 DOI: 10.1128/mcb.00999-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribosome biogenesis in eukaryotes is a major cellular activity mobilizing the products of over 200 transcriptionally coregulated genes referred to as the rRNA and ribosome biosynthesis regulon. We investigated the function of an essential, uncharacterized gene of this regulon, renamed RRP36. We show that the Rrp36p protein is nucleolar and interacts with 90S and pre-40S preribosomal particles. Its depletion affects early cleavages of the 35S pre-rRNA and results in a rapid decrease in mature 18S rRNA levels. Rrp36p is a novel component of the 90S preribosome, the assembly of which has been suggested to result from the stepwise incorporation of several modules, including the tUTP/UTP-A, PWP2/UTP-B, and UTP-C subcomplexes. We show that Rrp36p depletion does not impair the incorporation of these subcomplexes and the U3 small nucleolar RNP into preribosomes. In contrast, depletion of components of the UTP-A or UTP-B modules, but not Rrp5p, prevents Rrp36p recruitment and reduces its accumulation levels. In parallel, we studied the human orthologue of Rrp36p in HeLa cells, and we show that the function of this protein in early cleavages of the pre-rRNA has been conserved through evolution in eukaryotes.
Collapse
|
16
|
Abstract
Ribosome assembly is required for cell growth in all organisms. Classic in vitro work in bacteria has led to a detailed understanding of the biophysical, thermodynamic, and structural basis for the ordered and correct assembly of ribosomal proteins on ribosomal RNA. Furthermore, it has enabled reconstitution of active subunits from ribosomal RNA and proteins in vitro. Nevertheless, recent work has shown that eukaryotic ribosome assembly requires a large macromolecular machinery in vivo. Many of these assembly factors such as ATPases, GTPases, and kinases hydrolyze nucleotide triphosphates. Because these enzymes are likely regulatory proteins, much work to date has focused on understanding their role in the assembly process. Here, we review these factors, as well as other sources of energy, and their roles in the ribosome assembly process. In addition, we propose roles of energy-releasing enzymes in the assembly process, to explain why energy is used for a process that occurs largely spontaneously in bacteria. Finally, we use literature data to suggest testable models for how these enzymes could be used as targets for regulation of ribosome assembly.
Collapse
Affiliation(s)
- Bethany S Strunk
- Chemical Biology Doctoral Program, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | |
Collapse
|
17
|
Mrd1p is required for release of base-paired U3 snoRNA within the preribosomal complex. Mol Cell Biol 2009; 29:5763-74. [PMID: 19704003 DOI: 10.1128/mcb.00428-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In eukaryotes, ribosomes are made from precursor rRNA (pre-rRNA) and ribosomal proteins in a maturation process that requires a large number of snoRNPs and processing factors. A fundamental problem is how the coordinated and productive folding of the pre-rRNA and assembly of successive pre-rRNA-protein complexes is achieved cotranscriptionally. The conserved protein Mrd1p, which contains five RNA binding domains (RBDs), is essential for processing events leading to small ribosomal subunit synthesis. We show that full function of Mrd1p requires all five RBDs and that the RBDs are functionally distinct and needed during different steps in processing. Mrd1p mutations trap U3 snoRNA in pre-rRNP complexes both in base-paired and non-base-paired interactions. A single essential RBD, RBD5, is involved in both types of interactions, but its conserved RNP1 motif is not needed for releasing the base-paired interactions. RBD5 is also required for the late pre-rRNP compaction preceding A(2) cleavage. Our results suggest that Mrd1p modulates successive conformational rearrangements within the pre-rRNP that influence snoRNA-pre-rRNA contacts and couple U3 snoRNA-pre-rRNA remodeling and late steps in pre-rRNP compaction that are essential for cleavage at A(0) to A(2). Mrd1p therefore coordinates key events in biosynthesis of small ribosome subunits.
Collapse
|
18
|
Kent T, Lapik YR, Pestov DG. The 5' external transcribed spacer in mouse ribosomal RNA contains two cleavage sites. RNA (NEW YORK, N.Y.) 2009; 15:14-20. [PMID: 19029311 PMCID: PMC2612764 DOI: 10.1261/rna.1384709] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Accepted: 10/16/2008] [Indexed: 05/07/2023]
Abstract
The 5' external transcribed spacer (5'ETS) is critical for 18S rRNA formation and is the longest noncoding region in a ribosomal RNA transcript. Here we show that processing in mouse 5'ETS involves two cleavage events. Processing at site A' corresponds to the previously described "primary cleavage," which precedes other processing steps. Processing at the novel site A0 occurs 1 kb downstream from A' yielding two new rRNA precursors: 43S and 29S. The excised 5'-A' and A'-A0 fragments are rapidly degraded under normal conditions. Depletion of the exosome component EXOSC10/PM-Scl100 (ortholog of yeast Rrp6p) results in a strong accumulation of the A'-A0 spacer fragment in mouse cells. We discuss the finding of a second processing site in mammalian 5'ETS in relation to the involvement of the U3 snoRNA in pre-rRNA processing and present a revised map of the mouse 18S rRNA processing pathway.
Collapse
MESH Headings
- Animals
- DNA, Ribosomal Spacer/chemistry
- Exoribonucleases/chemistry
- Exoribonucleases/metabolism
- Exosome Multienzyme Ribonuclease Complex
- Exosomes/metabolism
- Humans
- Mice
- Models, Biological
- Models, Genetic
- Molecular Sequence Data
- NIH 3T3 Cells
- RNA Precursors/chemistry
- RNA Precursors/metabolism
- RNA Splicing/physiology
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/metabolism
- RNA, Small Nucleolar/metabolism
- RNA, Untranslated/chemistry
- RNA, Untranslated/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/metabolism
Collapse
Affiliation(s)
- Tatyana Kent
- Department of Cell Biology, School of Osteopathic Medicine, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey 08084, USA
| | | | | |
Collapse
|