1
|
Zhang B, Li J, Wang Y, Liu X, Yang X, Liao Z, Deng S, Deng Y, Zhou Z, Tian Y, Wei W, Meng J, Hu Y, Wan C, Zhang Z, Huang F, Wen L, Wu B, Sun Y, Li Y, Yang K. Deubiquitinase USP7 stabilizes KDM5B and promotes tumor progression and cisplatin resistance in nasopharyngeal carcinoma through the ZBTB16/TOP2A axis. Cell Death Differ 2024; 31:309-321. [PMID: 38287116 PMCID: PMC10923876 DOI: 10.1038/s41418-024-01257-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/31/2024] Open
Abstract
Cisplatin-based chemotherapy improves the control of distant metastases in patients with nasopharyngeal carcinoma (NPC); however, around 30% of patients fail treatment due to acquired drug resistance. Epigenetic regulation is known to contribute to cisplatin resistance; nevertheless, the underlying mechanisms remain poorly understood. Here, we showed that lysine-specific demethylase 5B (KDM5B) was overexpressed and correlates with tumor progression and cisplatin resistance in patients with NPC. We also showed that specific inhibition of KDM5B impaired the progression of NPC and reverses cisplatin resistance, both in vitro and in vivo. Moreover, we found that KDM5B inhibited the expression of ZBTB16 by directly reducing H3K4me3 at the ZBTB16 promoter, which subsequently increased the expression of Topoisomerase II- α (TOP2A) to confer cisplatin resistance in NPC. In addition, we showed that the deubiquitinase USP7 was critical for deubiquitinating and stabilizing KDM5B. More importantly, the deletion of USP7 increased sensitivity to cisplatin by disrupting the stability of KDM5B in NPC cells. Therefore, our findings demonstrated that USP7 stabilized KDM5B and promoted cisplatin resistance through the ZBTB16/TOP2A axis, suggesting that targeting KDM5B may be a promising cisplatin-sensitization strategy in the treatment of NPC.
Collapse
Affiliation(s)
- Bin Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Jie Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Yijun Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Xixi Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Xiao Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Zhiyun Liao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Suke Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Yue Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Zhiyuan Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Yu Tian
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Wenwen Wei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Jingshu Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Yan Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Zhanjie Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Fang Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Lu Wen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Bian Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
| | - Yan Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
| |
Collapse
|
2
|
Boroumand-Noughabi S, Pashaee A, Montazer M, Rahmati A, Ayatollahi H, Sadeghian MH, Keramati MR. Investigating the Expression Pattern of the SETMAR Gene Transcript Variants in Childhood Acute Leukemia: Revisiting an Old Gene. J Pediatr Hematol Oncol 2023; 45:e603-e608. [PMID: 36706314 DOI: 10.1097/mph.0000000000002624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/20/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND The chimeric enzyme SETMAR (or Metnase) has been associated with several DNA processes, including DNA damage repair through the non-homologous joining pathway and suppression of chromosomal translocation in mouse fibroblasts. SETMAR overexpression has been reported in certain cancers suggesting that it might contribute to the establishment or progression of these cancers. In leukemia, the SETMAR gene transcript variants have not been widely studied. Therefore, this study aimed to quantify 3 predominant SETMAR variants in 2 types of childhood acute leukemia, acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). METHODS In this study, using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), the relative expression of 3 SETMAR transcript variants (Var 1, Var 2, and Var A) were evaluated in the bone marrow samples collected from 30 newly diagnosed patients with AML, 65 newly diagnosed patients with ALL, and 15 healthy individuals. RESULTS The expression of SETMAR variants 1 and A were significantly higher in AML patients compared with controls ( P =0.02, and P =0.009, respectively). Variant A expression was significantly higher in ALL compared with controls ( P =0.003). When comparing the expression in translocation-positive and negative subgroups, the expression of variant 1 was significantly higher in translocation-positive ALL patients ( P =0.03). The variants' distribution patterns differed concerning translocation status ( P =0.041), as variants 1 and A were dominant in the translocation-positive ALL group, and variant 2 was more prevalent in translocation-negative ones. CONCLUSIONS According to the results, SETMAR showed increased expression in pediatric acute leukemia's bone marrow samples, indicating a role for this molecule in leukemia pathogenesis. As this is the first report of SETMAR expression in pediatric leukemias, further studies are needed to investigate the causality of this association.
Collapse
Affiliation(s)
- Samaneh Boroumand-Noughabi
- Department of Hematology and Blood Banking
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad
| | | | | | - Atefe Rahmati
- Department of Hematology and Blood Banking
- Department of Basic Medical Sciences, Faculty of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Hossein Ayatollahi
- Department of Hematology and Blood Banking
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad
| | - Mohammad Hadi Sadeghian
- Department of Hematology and Blood Banking
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad
| | - Mohammad Reza Keramati
- Department of Hematology and Blood Banking
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad
| |
Collapse
|
3
|
Endah E, Wulandari F, Putri Y, Jenie RI, Meiyanto E. Piperine Increases Pentagamavunon-1 Anti-cancer Activity on 4T1 Breast Cancer Through Mitotic Catastrophe Mechanism and Senescence with Sharing Targeting on Mitotic Regulatory Proteins. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e123820. [PMID: 35765510 PMCID: PMC9191230 DOI: 10.5812/ijpr.123820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 06/15/2023]
Abstract
Pentagamavunon-1 performs more potent anti-cancer effects than curcumin against various cancer cells, but it remains to be optimized. Piperine shows the activity as an enhancer of a therapeutic agent. This study expects to achieve higher effectiveness of PGV-1 on 4T1 breast cancer cells through co-treatment with piperine with exploring the effect of cytotoxicity, mitotic catastrophe, cellular senescence, and target proteins of PGV-1 and piperine on the regulation of mitosis in TNBC cells (4T1). The assays emphasize MTT assay, May Grünwald-Giemsa staining, SA-β-galactosidase assay, and bioinformatics analysis, respectively, to elicit the respected activities. The results revealed that PGV-1 performed a cytotoxic effect with an IC50 value of 9 µM while piperine showed a lower cytotoxic effect with an IC50 value of 800 µM on 4T1 cells 24 h treatment. However, the combination treatment of both showed a synergistic cytotoxic enhancement effect with an average CI value < 1. Furthermore, the combination of PGV-1 and piperine induced mitotic catastrophe and senescence better than the single treatment. Treatment of 1 µM of PGV-1 and 400 µM of piperine increased the percentage of senescent cells by 33%. Bioinformatics analysis revealed that PGV-1 and piperine target proteins play a role in mitotic regulation, namely CDK1, KIF11, AURKA, AURKB, and PLK1, to contribute to mitotic catastrophe. Therefore, piperine increases the effectiveness of PGV-1 to suppress 4T1 cells growth synergistically that may occur through mitotic catastrophe and senescence targeting on mitotic regulatory proteins.
Collapse
Affiliation(s)
- Endah Endah
- Department of Biotechnology, Graduate School, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Febri Wulandari
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yurananda Putri
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Riris Istighfari Jenie
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Edy Meiyanto
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
4
|
Lié O, Renault S, Augé-Gouillou C. SETMAR, a case of primate co-opted genes: towards new perspectives. Mob DNA 2022; 13:9. [PMID: 35395947 PMCID: PMC8994322 DOI: 10.1186/s13100-022-00267-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 03/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We carry out a review of the history and biological activities of one domesticated gene in higher primates, SETMAR, by discussing current controversies. Our purpose is to open a new outlook that will serve as a framework for future work about SETMAR, possibly in the field of cognition development. MAIN BODY What is newly important about SETMAR can be summarized as follows: (1) the whole protein sequence is under strong purifying pressure; (2) its role is to strengthen existing biological functions rather than to provide new ones; (3) it displays a tissue-specific pattern of expression, at least for the alternative-splicing it undergoes. Studies reported here demonstrate that SETMAR protein(s) may be involved in essential networks regulating replication, transcription and translation. Moreover, during embryogenesis, SETMAR appears to contribute to brain development. SHORT CONCLUSION Our review underlines for the first time that SETMAR directly interacts with genes involved in brain functions related to vocalization and vocal learning. These findings pave the way for future works regarding SETMAR and the development of cognitive abilities in higher primates.
Collapse
Affiliation(s)
- Oriane Lié
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,iBrain, Team Neurogenomics and Neuronal physiopathology, Faculty of Medicine, 10 Bd Tonnellé, Cedex 1, 37032, Tours, France
| | - Sylvaine Renault
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,iBrain, Team Neurogenomics and Neuronal physiopathology, Faculty of Medicine, 10 Bd Tonnellé, Cedex 1, 37032, Tours, France
| | - Corinne Augé-Gouillou
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France. .,iBrain, Team Neurogenomics and Neuronal physiopathology, Faculty of Medicine, 10 Bd Tonnellé, Cedex 1, 37032, Tours, France.
| |
Collapse
|
5
|
Nickoloff JA, Sharma N, Taylor L, Allen SJ, Hromas R. Nucleases and Co-Factors in DNA Replication Stress Responses. DNA 2022; 2:68-85. [PMID: 36203968 PMCID: PMC9534323 DOI: 10.3390/dna2010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DNA replication stress is a constant threat that cells must manage to proliferate and maintain genome integrity. DNA replication stress responses, a subset of the broader DNA damage response (DDR), operate when the DNA replication machinery (replisome) is blocked or replication forks collapse during S phase. There are many sources of replication stress, such as DNA lesions caused by endogenous and exogenous agents including commonly used cancer therapeutics, and difficult-to-replicate DNA sequences comprising fragile sites, G-quadraplex DNA, hairpins at trinucleotide repeats, and telomeres. Replication stress is also a consequence of conflicts between opposing transcription and replication, and oncogenic stress which dysregulates replication origin firing and fork progression. Cells initially respond to replication stress by protecting blocked replisomes, but if the offending problem (e.g., DNA damage) is not bypassed or resolved in a timely manner, forks may be cleaved by nucleases, inducing a DNA double-strand break (DSB) and providing a means to accurately restart stalled forks via homologous recombination. However, DSBs pose their own risks to genome stability if left unrepaired or misrepaired. Here we focus on replication stress response systems, comprising DDR signaling, fork protection, and fork processing by nucleases that promote fork repair and restart. Replication stress nucleases include MUS81, EEPD1, Metnase, CtIP, MRE11, EXO1, DNA2-BLM, SLX1-SLX4, XPF-ERCC1-SLX4, Artemis, XPG, and FEN1. Replication stress factors are important in cancer etiology as suppressors of genome instability associated with oncogenic mutations, and as potential cancer therapy targets to enhance the efficacy of chemo- and radiotherapeutics.
Collapse
Affiliation(s)
- Jac A. Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Lynn Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Sage J. Allen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Robert Hromas
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
6
|
Nickoloff JA, Sharma N, Taylor L, Allen SJ, Lee SH, Hromas R. Metnase and EEPD1: DNA Repair Functions and Potential Targets in Cancer Therapy. Front Oncol 2022; 12:808757. [PMID: 35155245 PMCID: PMC8831698 DOI: 10.3389/fonc.2022.808757] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/12/2022] [Indexed: 12/30/2022] Open
Abstract
Cells respond to DNA damage by activating signaling and DNA repair systems, described as the DNA damage response (DDR). Clarifying DDR pathways and their dysregulation in cancer are important for understanding cancer etiology, how cancer cells exploit the DDR to survive endogenous and treatment-related stress, and to identify DDR targets as therapeutic targets. Cancer is often treated with genotoxic chemicals and/or ionizing radiation. These agents are cytotoxic because they induce DNA double-strand breaks (DSBs) directly, or indirectly by inducing replication stress which causes replication fork collapse to DSBs. EEPD1 and Metnase are structure-specific nucleases, and Metnase is also a protein methyl transferase that methylates histone H3 and itself. EEPD1 and Metnase promote repair of frank, two-ended DSBs, and both promote the timely and accurate restart of replication forks that have collapsed to single-ended DSBs. In addition to its roles in HR, Metnase also promotes DSB repair by classical non-homologous recombination, and chromosome decatenation mediated by TopoIIα. Although mutations in Metnase and EEPD1 are not common in cancer, both proteins are frequently overexpressed, which may help tumor cells manage oncogenic stress or confer resistance to therapeutics. Here we focus on Metnase and EEPD1 DNA repair pathways, and discuss opportunities for targeting these pathways to enhance cancer therapy.
Collapse
Affiliation(s)
- Jac A Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Lynn Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Sage J Allen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Suk-Hee Lee
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Robert Hromas
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, United States
| |
Collapse
|
7
|
Lié O, Virolle T, Gabut M, Pasquier C, Zemmoura I, Augé-Gouillou C. SETMAR Shorter Isoform: A New Prognostic Factor in Glioblastoma. Front Oncol 2022; 11:638397. [PMID: 35047379 PMCID: PMC8761672 DOI: 10.3389/fonc.2021.638397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 11/03/2021] [Indexed: 12/27/2022] Open
Abstract
Recent evidence suggests that the chimeric protein SETMAR is a factor of interest in cancer, especially in glioblastoma. However, little is known about the expression of this protein in glioblastoma tissues, and no study has been done to assess if SETMAR could be a prognostic and/or diagnostic marker of glioblastoma. We analyzed protein extracts of 47 glioblastoma samples coming from a local and a national cohort of patients. From the local cohort, we obtained localized biopsies from the central necrosis area, the tumor, and the perilesional brain. From the French Glioblastoma Biobank (FGB), we obtained three types of samples: from the same tumors before and after treatment, from long survivors, and from very short survivors. We studied the correlations between SETMAR amounts, clinical profiles of patients and other associated proteins (PTN, snRNP70 and OLIG2). In glioblastoma tissues, the shorter isoform of SETMAR (S-SETMAR) was predominant over the full-length isoform (FL-SETMAR), and the expression of both SETMAR variants was higher in the tumor compared to the perilesional tissues. Data from the FGB showed that SETMAR amounts were not different between the initial tumors and tumor relapses after treatment. These data also showed a trend toward higher amounts of S-SETMAR in long survivors. In localized biopsies, we found a positive correlation between good prognosis and large amounts of S-SETMAR in the perilesional area. This is the main result presented here: survival in Glioblastoma is correlated with amounts of S-SETMAR in perilesional brain, which should be considered as a new relevant prognosis marker.
Collapse
Affiliation(s)
- Oriane Lié
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Thierry Virolle
- Institut de Biologie Valrose, Université Côte D’Azur, CNRS, INSERM, Nice, France
| | - Mathieu Gabut
- INSERM 1052, CNRS 5286, Cancer Research Center of Lyon, Centre Léon Bérard, Lyon, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
| | | | - Ilyess Zemmoura
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- Service de Neurochirurgie, CHRU de Tours, Tours, France
| | | |
Collapse
|
8
|
Tellier M. Structure, Activity, and Function of SETMAR Protein Lysine Methyltransferase. Life (Basel) 2021; 11:life11121342. [PMID: 34947873 PMCID: PMC8704517 DOI: 10.3390/life11121342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/21/2022] Open
Abstract
SETMAR is a protein lysine methyltransferase that is involved in several DNA processes, including DNA repair via the non-homologous end joining (NHEJ) pathway, regulation of gene expression, illegitimate DNA integration, and DNA decatenation. However, SETMAR is an atypical protein lysine methyltransferase since in anthropoid primates, the SET domain is fused to an inactive DNA transposase. The presence of the DNA transposase domain confers to SETMAR a DNA binding activity towards the remnants of its transposable element, which has resulted in the emergence of a gene regulatory function. Both the SET and the DNA transposase domains are involved in the different cellular roles of SETMAR, indicating the presence of novel and specific functions in anthropoid primates. In addition, SETMAR is dysregulated in different types of cancer, indicating a potential pathological role. While some light has been shed on SETMAR functions, more research and new tools are needed to better understand the cellular activities of SETMAR and to investigate the therapeutic potential of SETMAR.
Collapse
Affiliation(s)
- Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
9
|
MiR-599 targeting TOP2A inhibits the malignancy of bladder cancer cells. Biochem Biophys Res Commun 2021; 570:154-161. [PMID: 34284141 DOI: 10.1016/j.bbrc.2021.06.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Recent research suggests that many miRNAs influence the development of bladder cancer (BC). However, the function of the miR-599/TOP2A axis in BC cells is still unclear. Our aim was to verify the effect of the miR-599/TOP2A axis on BC progression. METHODS The expression of TOP2A and miR-599 in BC tissues and cells was detected using RT-qPCR. Luciferase assays, RIP assays, and RNA pull-down assays were performed to determine the interaction between miR-599 and TOP2A. CCK-8, flow cytometry-based apoptosis, wound healing, and Transwell assays were utilized to determine the proliferation, migration, invasion and apoptosis of BC cells. RESULTS MiR-599 was significantly downregulated in the BC, and miR-599 overexpression impeded the malignancy of BC cells by regulating proliferation, migration, invasion and apoptosis. TOP2A proved to a downstream target of miR-599 could enhance the tumorigenesis phenotype of BC cells. The experimental results also indicated that miR-599 reversed the oncogenic effects induced by TOP2A. CONCLUSION Our study revealed that miR-599 represses BC tumorigenesis by inhibiting TOP2A.
Collapse
|
10
|
Antoine-Lorquin A, Arensburger P, Arnaoty A, Asgari S, Batailler M, Beauclair L, Belleannée C, Buisine N, Coustham V, Guyetant S, Helou L, Lecomte T, Pitard B, Stévant I, Bigot Y. Two repeated motifs enriched within some enhancers and origins of replication are bound by SETMAR isoforms in human colon cells. Genomics 2021; 113:1589-1604. [PMID: 33812898 DOI: 10.1016/j.ygeno.2021.03.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 11/15/2022]
Abstract
Setmar is a gene specific to simian genomes. The function(s) of its isoforms are poorly understood and their existence in healthy tissues remains to be validated. Here we profiled SETMAR expression and its genome-wide binding landscape in colon tissue. We found isoforms V3 and V6 in healthy and tumour colon tissues as well as incell lines. In two colorectal cell lines SETMAR binds to several thousand Hsmar1 and MADE1 terminal ends, transposons mostly located in non-genic regions of active chromatin including in enhancers. It also binds to a 12-bp motifs similar to an inner motif in Hsmar1 and MADE1 terminal ends. This motif is interspersed throughout the genome and is enriched in GC-rich regions as well as in CpG islands that contain constitutive replication origins. It is also found in enhancers other than those associated with Hsmar1 and MADE1. The role of SETMAR in the expression of genes, DNA replication and in DNA repair are discussed.
Collapse
Affiliation(s)
| | - Peter Arensburger
- Biological Sciences Department, California State Polytechnic University, Pomona, CA 91768, - United States
| | - Ahmed Arnaoty
- EA GICC, 7501, CHRU de Tours, 37044 TOURS, Cedex 09, France
| | - Sassan Asgari
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Martine Batailler
- PRC, UMR INRA 0085, CNRS 7247, Centre INRA Val de Loire, 37380 Nouzilly, France
| | - Linda Beauclair
- PRC, UMR INRA 0085, CNRS 7247, Centre INRA Val de Loire, 37380 Nouzilly, France
| | | | - Nicolas Buisine
- UMR CNRS 7221, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | | | - Serge Guyetant
- Tumorothèque du CHRU de Tours, 37044 Tours, Cedex, France
| | - Laura Helou
- PRC, UMR INRA 0085, CNRS 7247, Centre INRA Val de Loire, 37380 Nouzilly, France
| | | | - Bruno Pitard
- Université de Nantes, CNRS ERL6001, Inserm 1232, CRCINA, F-44000 Nantes, France
| | - Isabelle Stévant
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon, 1, 46 allée d'Italie, 69364 Lyon, France
| | - Yves Bigot
- PRC, UMR INRA 0085, CNRS 7247, Centre INRA Val de Loire, 37380 Nouzilly, France.
| |
Collapse
|
11
|
Cui H, Zuo S, Liu Z, Liu H, Wang J, You T, Zheng Z, Zhou Y, Qian X, Yao H, Xie L, Liu T, Sham PC, Yu Y, Li MJ. The support of genetic evidence for cardiovascular risk induced by antineoplastic drugs. SCIENCE ADVANCES 2020; 6:eabb8543. [PMID: 33055159 PMCID: PMC7556838 DOI: 10.1126/sciadv.abb8543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/28/2020] [Indexed: 05/04/2023]
Abstract
Cardiovascular dysfunction is one of the most common complications of long-term cancer treatment. Growing evidence has shown that antineoplastic drugs can increase cardiovascular risk during cancer therapy, seriously affecting patient survival. However, little is known about the genetic factors associated with the cardiovascular risk of antineoplastic drugs. We established a compendium of genetic evidence that supports cardiovascular risk induced by antineoplastic drugs. Most of this genetic evidence is attributed to causal alleles altering the expression of cardiovascular disease genes. We found that antineoplastic drugs predicted to induce cardiovascular risk are significantly enriched in drugs associated with cardiovascular adverse reactions, including many first-line cancer treatments. Functional experiments validated that retinoid X receptor agonists can reduce triglyceride lipolysis, thus modulating cardiovascular risk. Our results establish a link between the causal allele of cardiovascular disease genes and the direction of pharmacological modulation, which could facilitate cancer drug discovery and clinical trial design.
Collapse
Affiliation(s)
- Hui Cui
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute for Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shengkai Zuo
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zipeng Liu
- Centre for PanorOmic Sciences-Genomics and Bioinformatics Cores, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Huanhuan Liu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jianhua Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Tianyi You
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhanye Zheng
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yao Zhou
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xinyi Qian
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hongcheng Yao
- Centre for PanorOmic Sciences-Genomics and Bioinformatics Cores, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lu Xie
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Pak Chung Sham
- Centre for PanorOmic Sciences-Genomics and Bioinformatics Cores, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ying Yu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute for Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mulin Jun Li
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Department of Epidemiology and Biostatistics, Tianjin Key Laboratory of Molecular Cancer Epidemiology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
12
|
Sharma N, Speed MC, Allen CP, Maranon DG, Williamson E, Singh S, Hromas R, Nickoloff JA. Distinct roles of structure-specific endonucleases EEPD1 and Metnase in replication stress responses. NAR Cancer 2020; 2:zcaa008. [PMID: 32743552 PMCID: PMC7380491 DOI: 10.1093/narcan/zcaa008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/20/2020] [Accepted: 05/31/2020] [Indexed: 12/16/2022] Open
Abstract
Accurate DNA replication and segregation are critical for maintaining genome integrity and suppressing cancer. Metnase and EEPD1 are DNA damage response (DDR) proteins frequently dysregulated in cancer and implicated in cancer etiology and tumor response to genotoxic chemo- and radiotherapy. Here, we examine the DDR in human cell lines with CRISPR/Cas9 knockout of Metnase or EEPD1. The knockout cell lines exhibit slightly slower growth rates, significant hypersensitivity to replication stress, increased genome instability and distinct alterations in DDR signaling. Metnase and EEPD1 are structure-specific nucleases. EEPD1 is recruited to and cleaves stalled forks to initiate fork restart by homologous recombination. Here, we demonstrate that Metnase is also recruited to stalled forks where it appears to dimethylate histone H3 lysine 36 (H3K36me2), raising the possibility that H3K36me2 promotes DDR factor recruitment or limits nucleosome eviction to protect forks from nucleolytic attack. We show that stalled forks are cleaved normally in the absence of Metnase, an important and novel result because a prior study indicated that Metnase nuclease is important for timely fork restart. A double knockout was as sensitive to etoposide as either single knockout, suggesting a degree of epistasis between Metnase and EEPD1. We propose that EEPD1 initiates fork restart by cleaving stalled forks, and that Metnase may promote fork restart by processing homologous recombination intermediates and/or inducing H3K36me2 to recruit DDR factors. By accelerating fork restart, Metnase and EEPD1 reduce the chance that stalled replication forks will adopt toxic or genome-destabilizing structures, preventing genome instability and cancer. Metnase and EEPD1 are overexpressed in some cancers and thus may also promote resistance to genotoxic therapeutics.
Collapse
Affiliation(s)
- Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, 1618 Campus Delivery, Fort Collins, CO 80523-1618, USA
| | - Michael C Speed
- Department of Environmental and Radiological Health Sciences, Colorado State University, 1618 Campus Delivery, Fort Collins, CO 80523-1618, USA
| | - Christopher P Allen
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601Campus Delivery, Fort Collins, CO 80523-1601, USA
| | - David G Maranon
- Department of Environmental and Radiological Health Sciences, Colorado State University, 1618 Campus Delivery, Fort Collins, CO 80523-1618, USA
| | - Elizabeth Williamson
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas HealthScience Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Sudha Singh
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas HealthScience Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Robert Hromas
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas HealthScience Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Jac A Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, 1618 Campus Delivery, Fort Collins, CO 80523-1618, USA
| |
Collapse
|
13
|
Tellier M, Chalmers R. Human SETMAR is a DNA sequence-specific histone-methylase with a broad effect on the transcriptome. Nucleic Acids Res 2019; 47:122-133. [PMID: 30329085 PMCID: PMC6326780 DOI: 10.1093/nar/gky937] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/12/2018] [Indexed: 12/26/2022] Open
Abstract
Transposons impart dynamism to the genomes they inhabit and their movements frequently rewire the control of nearby genes. Occasionally, their proteins are domesticated when they evolve a new function. SETMAR is a protein methylase with a sequence-specific DNA binding domain. It began to evolve about 50 million years ago when an Hsmar1 transposon integrated downstream of a SET-domain methylase gene. Here we show that the DNA-binding domain of the transposase targets the enzyme to transposon-end remnants and that this is capable of regulating gene expression, dependent on the methylase activity. When SETMAR was modestly overexpressed in human cells, almost 1500 genes changed expression by more than 2-fold (65% up- and 35% down-regulated). These genes were enriched for the KEGG Pathways in Cancer and include several transcription factors important for development and differentiation. Expression of a similar level of a methylase-deficient SETMAR changed the expression of many fewer genes, 77% of which were down-regulated with no significant enrichment of KEGG Pathways. Our data is consistent with a model in which SETMAR is part of an anthropoid primate-specific regulatory network centered on the subset of genes containing a transposon end.
Collapse
Affiliation(s)
- Michael Tellier
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Ronald Chalmers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
14
|
Tellier M, Chalmers R. The roles of the human SETMAR (Metnase) protein in illegitimate DNA recombination and non-homologous end joining repair. DNA Repair (Amst) 2019; 80:26-35. [PMID: 31238295 PMCID: PMC6715855 DOI: 10.1016/j.dnarep.2019.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023]
Abstract
Full length SETMAR expression has no effect on DNA repair and integration in vivo. SETMAR putative nuclease activity is not required in vivo. Separate expression of the SET and MAR domains affects DNA repair and integration. SETMAR isoform with a truncated SET-domain is specific to species containing the MAR domain.
SETMAR is a fusion between a SET-domain methyltransferase gene and a mariner-family transposase gene, which is specific to anthropoid primates. However, the ancestral SET gene is present in all other mammals and birds. SETMAR is reported to be involved in transcriptional regulation and a diverse set of reactions related to DNA repair. Since the transcriptional effects of SETMAR depend on site-specific DNA binding, and are perturbed by inactivating the methyltransferase, we wondered whether we could differentiate the effects of the SET and MAR domains in DNA repair assays. We therefore generated several stable U2OS cell lines expressing either wild type SETMAR or truncation or point mutant variants. We tested these cell lines with in vivo plasmid-based assays to determine the relevance of the different domains and activities of SETMAR in DNA repair. Contrary to previous reports, we found that wild type SETMAR had little to no effect on the rate of cell division, DNA integration into the genome or non-homologous end joining. Also contrary to previous reports, we failed to detect any effect of a strong active-site mutation that should have knocked out the putative nuclease activity of SETMAR.
Collapse
Affiliation(s)
- Michael Tellier
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| | - Ronald Chalmers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| |
Collapse
|
15
|
Pei YF, Yin XM, Liu XQ. TOP2A induces malignant character of pancreatic cancer through activating β-catenin signaling pathway. Biochim Biophys Acta Mol Basis Dis 2018; 1864:197-207. [DOI: 10.1016/j.bbadis.2017.10.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/07/2017] [Accepted: 10/13/2017] [Indexed: 12/20/2022]
|
16
|
Dussaussois-Montagne A, Jaillet J, Babin L, Verrelle P, Karayan-Tapon L, Renault S, Rousselot-Denis C, Zemmoura I, Augé-Gouillou C. SETMAR isoforms in glioblastoma: A matter of protein stability. Oncotarget 2017; 8:9835-9848. [PMID: 28038463 PMCID: PMC5354774 DOI: 10.18632/oncotarget.14218] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 12/05/2016] [Indexed: 01/10/2023] Open
Abstract
Glioblastomas (GBMs) are the most frequent and the most aggressive brain tumors, known for their chemo- and radio-resistance, making them often incurable. We also know that SETMAR is a protein involved in chromatin dynamics and genome plasticity, of which overexpression confers chemo- and radio-resistance to some tumors. The relationships between SETMAR and GBM have never been explored. To fill this gap, we define the SETMAR status of 44 resected tumors and of GBM derived cells, at both the mRNA and the protein levels. We identify a new, small SETMAR protein (so called SETMAR-1200), enriched in GBMs and GBM stem cells as compared to the regular enzyme (SETMAR-2100). We show that SETMAR-1200 is able to increase DNA repair by non-homologous end-joining, albeit with a lower efficiency than the regular SETMAR protein. Interestingly, the regular/small ratio of SETMAR in GBM cells changes depending on cell type, providing evidence that SETMAR expression is regulated by alternative splicing. We also demonstrate that SETMAR expression can be regulated by the use of an alternative ATG. In conclusion, various SETMAR proteins can be synthesized in human GBM that may each have specific biophysical and/or biochemical properties and characteristics. Among them, the small SETMAR may play a role in GBMs biogenesis. On this basis, we would like to consider SETMAR-1200 as a new potential therapeutic target to investigate, in addition to the regular SETMAR protein already considered by others.
Collapse
Affiliation(s)
| | - Jérôme Jaillet
- EA 6306 IGC, University François Rabelais, 37200 Tours, France
| | - Laetitia Babin
- EA 6306 IGC, University François Rabelais, 37200 Tours, France
- UMR CNRS 7292 GICC, University François Rabelais, 37000 Tours, France
| | - Pierre Verrelle
- EA 7283 CREaT, Université d′Auvergne, BP 10448, 63000 Clermont-Ferrand, France
- Institut Curie, Dpt d'Oncologie Radiothérapique, 75005 Paris, France
- Centre Jean Perrin, Service Radiothérapie, Laboratoire de Radio-Oncologie Expérimentale, 63000 Clermont-Ferrand, France
| | - Lucie Karayan-Tapon
- INSERM U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, F-86021 Poitiers, France
- University of Poitiers, F-86022 Poitiers, France
- CHU of Poitiers, Laboratoire de Cancérologie Biologique, F-86021 Poitiers, France
| | | | | | - Ilyess Zemmoura
- INSERM U930 Imagerie & Cerveau, University François Rabelais, 37000 Tours, France
- CHRU of Tours, Service de Neurochirurgie, 37000 Tours, France
| | | |
Collapse
|
17
|
Chen Q, Georgiadis M. Crystallization of and selenomethionine phasing strategy for a SETMAR-DNA complex. Acta Crystallogr F Struct Biol Commun 2016; 72:713-9. [PMID: 27599863 PMCID: PMC5012212 DOI: 10.1107/s2053230x16012723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/06/2016] [Indexed: 11/10/2022] Open
Abstract
Transposable elements have played a critical role in the creation of new genes in all higher eukaryotes, including humans. Although the chimeric fusion protein SETMAR is no longer active as a transposase, it contains both the DNA-binding domain (DBD) and catalytic domain of the Hsmar1 transposase. The amino-acid sequence of the DBD has been virtually unchanged in 50 million years and, as a consequence, SETMAR retains its sequence-specific binding to the ancestral Hsmar1 terminal inverted repeat (TIR) sequence. Thus, the DNA-binding activity of SETMAR is likely to have an important biological function. To determine the structural basis for the recognition of TIR DNA by SETMAR, the design of TIR-containing oligonucleotides and SETMAR DBD variants, crystallization of DBD-DNA complexes, phasing strategies and initial phasing experiments are reported here. An unexpected finding was that oligonucleotides containing two BrdUs in place of thymidines produced better quality crystals in complex with SETMAR than their natural counterparts.
Collapse
Affiliation(s)
- Qiujia Chen
- Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Millie Georgiadis
- Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| |
Collapse
|
18
|
H3K36 methyltransferases as cancer drug targets: rationale and perspectives for inhibitor development. Future Med Chem 2016; 8:1589-607. [PMID: 27548565 DOI: 10.4155/fmc-2016-0071] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Methylation at histone 3, lysine 36 (H3K36) is a conserved epigenetic mark regulating gene transcription, alternative splicing and DNA repair. Genes encoding H3K36 methyltransferases (KMTases) are commonly overexpressed, mutated or involved in chromosomal translocations in cancer. Molecular biology studies have demonstrated that H3K36 KMTases regulate oncogenic transcriptional programs. Structural studies of the catalytic SET domain of H3K36 KMTases have revealed intriguing opportunities for design of small molecule inhibitors. Nevertheless, potent inhibitors for most H3K36 KMTases have not yet been developed, underlining the challenges associated with this target class. As we now have strong evidence linking H3K36 KMTases to cancer, drug development efforts are predicted to yield novel compounds in the near future.
Collapse
|
19
|
Kim HS, Kim SK, Hromas R, Lee SH. The SET Domain Is Essential for Metnase Functions in Replication Restart and the 5' End of SS-Overhang Cleavage. PLoS One 2015; 10:e0139418. [PMID: 26437079 PMCID: PMC4593633 DOI: 10.1371/journal.pone.0139418] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/14/2015] [Indexed: 11/19/2022] Open
Abstract
Metnase (also known as SETMAR) is a chimeric SET-transposase protein that plays essential role(s) in non-homologous end joining (NHEJ) repair and replication fork restart. Although the SET domain possesses histone H3 lysine 36 dimethylation (H3K36me2) activity associated with an improved association of early repair components for NHEJ, its role in replication restart is less clear. Here we show that the SET domain is necessary for the recovery from DNA damage at the replication forks following hydroxyurea (HU) treatment. Cells overexpressing the SET deletion mutant caused a delay in fork restart after HU release. Our In vitro study revealed that the SET domain but not the H3K36me2 activity is required for the 5’ end of ss-overhang cleavage with fork and non-fork DNA without affecting the Metnase-DNA interaction. Together, our results suggest that the Metnase SET domain has a positive role in restart of replication fork and the 5’ end of ss-overhang cleavage, providing a new insight into the functional interaction of the SET and the transposase domains.
Collapse
Affiliation(s)
- Hyun-Suk Kim
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Sung-Kyung Kim
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Robert Hromas
- Department of Medicine, University of Florida and Shands Health Care System, Gainesville, Florida, United States of America
| | - Suk-Hee Lee
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Indiana University Simon Cancer Center, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
20
|
hPso4/hPrp19: a critical component of DNA repair and DNA damage checkpoint complexes. Oncogene 2015; 35:2279-86. [PMID: 26364595 DOI: 10.1038/onc.2015.321] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/16/2015] [Accepted: 07/19/2015] [Indexed: 12/15/2022]
Abstract
Genome integrity is vital to cellular homeostasis and its forfeiture is linked to deleterious consequences-cancer, immunodeficiency, genetic disorders and premature aging. The human ubiquitin ligase Pso4/Prp19 has emerged as a critical component of multiple DNA damage response (DDR) signaling networks. It not only senses DNA damage, binds double-stranded DNA in a sequence-independent manner, facilitates processing of damaged DNA, promotes DNA end joining, regulates replication protein A (RPA2) phosphorylation and ubiquitination at damaged DNA, but also regulates RNA splicing and mitotic spindle formation in its integral capacity as a scaffold for a multimeric core complex. Accordingly, by virtue of its regulatory and structural interactions with key proteins critical for genome integrity-DNA double-strand break (DSB) repair, DNA interstrand crosslink repair, repair of stalled replication forks and DNA end joining-it fills a unique niche in restoring genomic integrity after multiple types of DNA damage and thus has a vital role in maintaining chromatin integrity and cellular functions. These properties may underlie its ability to thwart replicative senescence and, not surprisingly, have been linked to the self-renewal and colony-forming ability of murine hematopoietic stem cells. This review highlights recent advances in hPso4 research that provides a fascinating glimpse into the pleiotropic activities of a ubiquitously expressed multifunctional E3 ubiquitin ligase.
Collapse
|
21
|
Carlson SM, Moore KE, Sankaran SM, Reynoird N, Elias JE, Gozani O. A Proteomic Strategy Identifies Lysine Methylation of Splicing Factor snRNP70 by the SETMAR Enzyme. J Biol Chem 2015; 290:12040-7. [PMID: 25795785 DOI: 10.1074/jbc.m115.641530] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Indexed: 11/06/2022] Open
Abstract
The lysine methyltransferase (KMT) SETMAR is implicated in the response to and repair of DNA damage, but its molecular function is not clear. SETMAR has been associated with dimethylation of histone H3 lysine 36 (H3K36) at sites of DNA damage. However, SETMAR does not methylate H3K36 in vitro. This and the observation that SETMAR is not active on nucleosomes suggest that H3K36 methylation is not a physiologically relevant activity. To identify potential non-histone substrates, we utilized a strategy on the basis of quantitative proteomic analysis of methylated lysine. Our approach identified lysine 130 of the mRNA splicing factor snRNP70 as a SETMAR substrate in vitro, and we show that the enzyme primarily generates monomethylation at this position. Furthermore, we show that SETMAR methylates snRNP70 Lys-130 in cells. Because snRNP70 is a key early regulator of 5' splice site selection, our results suggest a model in which methylation of snRNP70 by SETMAR regulates constitutive and/or alternative splicing. In addition, the proteomic strategy described here is broadly applicable and is a promising route for large-scale mapping of KMT substrates.
Collapse
Affiliation(s)
| | - Kaitlyn E Moore
- From the Department of Biology and Department of Chemical and Systems Biology, School of Medicine, Stanford University, Stanford, California 94305
| | | | | | - Joshua E Elias
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, Stanford, California 94305
| | - Or Gozani
- From the Department of Biology and ogozani@stanfordedu
| |
Collapse
|
22
|
Jain CK, Roychoudhury S, Majumder HK. Selective killing of G2 decatenation checkpoint defective colon cancer cells by catalytic topoisomerase II inhibitor. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1195-204. [PMID: 25746763 DOI: 10.1016/j.bbamcr.2015.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 02/09/2015] [Accepted: 02/25/2015] [Indexed: 12/16/2022]
Abstract
Cancer cells with defective DNA decatenation checkpoint can be selectively targeted by the catalytic inhibitors of DNA topoisomerase IIα (topo IIα) enzyme. Upon treatment with catalytic topo IIα inhibitors, cells with defective decatenation checkpoint fail to arrest their cell cycle in G2 phase and enter into M phase with catenated and under-condensed chromosomes resulting into impaired mitosis and eventually cell death. In the present work we analyzed decatenation checkpoint in five different colon cancer cell lines (HCT116, HT-29, Caco2, COLO 205 and SW480) and in one non-cancerous cell line (HEK293T). Four out of the five colon cancer cell lines i.e. HCT116, HT-29, Caco2, and COLO 205 were found to be compromised for the decatenation checkpoint function at different extents, whereas SW480 and HEK293T cell lines were found to be proficient for the checkpoint function. Upon treatment with ICRF193, decatenation checkpoint defective cell lines failed to arrest the cell cycle in G2 phase and entered into M phase without proper chromosomal decatenation, resulting into the formation of tangled mass of catenated and under-condensed chromosomes. Such cells underwent mitotic catastrophe and rapid apoptosis like cell death and showed higher sensitivity for ICRF193. Our study suggests that catalytic inhibitors of topoisomerase IIα are promising therapeutic agents for the treatment of colon cancers with defective DNA decatenation checkpoint.
Collapse
Affiliation(s)
- Chetan Kumar Jain
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India; Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Susanta Roychoudhury
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Hemanta Kumar Majumder
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
23
|
Kiang JG, Garrison BR, Smith JT, Fukumoto R. Ciprofloxacin as a potential radio-sensitizer to tumor cells and a radio-protectant for normal cells: differential effects on γ-H2AX formation, p53 phosphorylation, Bcl-2 production, and cell death. Mol Cell Biochem 2014; 393:133-43. [PMID: 24802382 PMCID: PMC4122264 DOI: 10.1007/s11010-014-2053-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 04/03/2014] [Indexed: 02/07/2023]
Abstract
Ionizing radiation increases cell mortality in a dose-dependent manner. Increases in DNA double strand breaks, γ-H2AX, p53 phophorylation, and protein levels of p53 and Bax also occur. We investigated the ability of ciprofloxacin (CIP), a widely prescribed antibiotic, to inhibit DNA damage induced by ionizing radiation. Human tumor TK6, NH32 (p53 (-/-) of TK6) cells, and human normal peripheral blood mononuclear cells (PBMCs) were exposed to 2-8 Gy (60)Co-γ-photon radiation. γ-H2AX (an indicator of DNA strand breaks), phosphorylated p53 (responsible for cell-cycle arrest), Bcl-2 (an apoptotic protein, and cell death were measured. Ionizing irradiation increased γ-H2AX amounts in TK6 cells (p53(+/+)) within 1 h in a radiation dose-dependent manner. CIP pretreatment and posttreatment effectively inhibited the increase in γ-H2AX. CIP pretreatment reduced Bcl-2 production but promoted p53 phosphorylation, caspase-3 activation and cell death. In NH32 cells, CIP failed to significantly inhibit the radiation-induced γ-H2AX increase, suggesting that CIP inhibition involves in p53-dependent mechanisms. In normal healthy human PBMCs, CIP failed to block the radiation-induced γ-H2AX increase but effectively increased Bcl-2 production, but blocked the phospho-p53 increase and subsequent cell death. CIP increased Gadd45α, and enhanced p21 protein 24 h postirradiation. Results suggest that CIP exerts its effect in TK6 cells by promoting p53 phosphorylation and inhibiting Bcl-2 production and in PBMCs by inhibiting p53 phosphorylation and increasing Bcl-2 production. Our data are the first to support the view that CIP may be effective to protect normal tissue cells from radiation injury, while enhancing cancer cell death in radiation therapy.
Collapse
Affiliation(s)
- Juliann G Kiang
- Radiation Combined Injury Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, MD, 20889-5603, USA,
| | | | | | | |
Collapse
|
24
|
Kim HS, Chen Q, Kim SK, Nickoloff JA, Hromas R, Georgiadis MM, Lee SH. The DDN catalytic motif is required for Metnase functions in non-homologous end joining (NHEJ) repair and replication restart. J Biol Chem 2014; 289:10930-10938. [PMID: 24573677 PMCID: PMC4036204 DOI: 10.1074/jbc.m113.533216] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Metnase (or SETMAR) arose from a chimeric fusion of the Hsmar1 transposase downstream of a protein methylase in anthropoid primates. Although the Metnase transposase domain has been largely conserved, its catalytic motif (DDN) differs from the DDD motif of related transposases, which may be important for its role as a DNA repair factor and its enzymatic activities. Here, we show that substitution of DDN610 with either DDD610 or DDE610 significantly reduced in vivo functions of Metnase in NHEJ repair and accelerated restart of replication forks. We next tested whether the DDD or DDE mutants cleave single-strand extensions and flaps in partial duplex DNA and pseudo-Tyr structures that mimic stalled replication forks. Neither substrate is cleaved by the DDD or DDE mutant, under the conditions where wild-type Metnase effectively cleaves ssDNA overhangs. We then characterized the ssDNA-binding activity of the Metnase transposase domain and found that the catalytic domain binds ssDNA but not dsDNA, whereas dsDNA binding activity resides in the helix-turn-helix DNA binding domain. Substitution of Asn-610 with either Asp or Glu within the transposase domain significantly reduces ssDNA binding activity. Collectively, our results suggest that a single mutation DDN610 → DDD610, which restores the ancestral catalytic site, results in loss of function in Metnase.
Collapse
Affiliation(s)
- Hyun-Suk Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Qiujia Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Sung-Kyung Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Jac A Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Robert Hromas
- Department of Medicine, University of Florida and Shands Health Care System, Gainesville, Florida 32610
| | - Millie M Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202
| | - Suk-Hee Lee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202.
| |
Collapse
|
25
|
Farr CJ, Antoniou-Kourounioti M, Mimmack ML, Volkov A, Porter ACG. The α isoform of topoisomerase II is required for hypercompaction of mitotic chromosomes in human cells. Nucleic Acids Res 2014; 42:4414-26. [PMID: 24476913 PMCID: PMC3985649 DOI: 10.1093/nar/gku076] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
As proliferating cells transit from interphase into M-phase, chromatin undergoes extensive reorganization, and topoisomerase (topo) IIα, the major isoform of this enzyme present in cycling vertebrate cells, plays a key role in this process. In this study, a human cell line conditional null mutant for topo IIα and a derivative expressing an auxin-inducible degron (AID)-tagged version of the protein have been used to distinguish real mitotic chromosome functions of topo IIα from its more general role in DNA metabolism and to investigate whether topo IIβ makes any contribution to mitotic chromosome formation. We show that topo IIβ does contribute, with endogenous levels being sufficient for the initial stages of axial shortening. However, a significant effect of topo IIα depletion, seen with or without the co-depletion of topo IIβ, is the failure of chromosomes to hypercompact when delayed in M-phase. This requires much higher levels of topo II protein and is impaired by drugs or mutations that affect enzyme activity. A prolonged delay at the G2/M border results in hyperefficient axial shortening, a process that is topo IIα-dependent. Rapid depletion of topo IIα has allowed us to show that its function during late G2 and M-phase is truly required for shaping mitotic chromosomes.
Collapse
Affiliation(s)
- Christine J Farr
- Department of Genetics, University of Cambridge, Downing St, Cambridge CB2 3EH, UK and Centre for Haematology, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Rd, London W12 0NN, UK
| | | | | | | | | |
Collapse
|
26
|
Patel A, Vought VE, Swatkoski S, Viggiano S, Howard B, Dharmarajan V, Monteith KE, Kupakuwana G, Namitz KE, Shinsky SA, Cotter RJ, Cosgrove MS. Automethylation activities within the mixed lineage leukemia-1 (MLL1) core complex reveal evidence supporting a "two-active site" model for multiple histone H3 lysine 4 methylation. J Biol Chem 2013; 289:868-84. [PMID: 24235145 PMCID: PMC3887211 DOI: 10.1074/jbc.m113.501064] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The mixed lineage leukemia-1 (MLL1) core complex predominantly catalyzes mono- and dimethylation of histone H3 at lysine 4 (H3K4) and is frequently altered in aggressive acute leukemias. The molecular mechanisms that account for conversion of mono- to dimethyl H3K4 (H3K4me1,2) are not well understood. In this investigation, we report that the suppressor of variegation, enhancer of zeste, trithorax (SET) domains from human MLL1 and Drosophila Trithorax undergo robust intramolecular automethylation reactions at an evolutionarily conserved cysteine residue in the active site, which is inhibited by unmodified histone H3. The location of the automethylation in the SET-I subdomain indicates that the MLL1 SET domain possesses significantly more conformational plasticity in solution than suggested by its crystal structure. We also report that MLL1 methylates Ash2L in the absence of histone H3, but only when assembled within a complex with WDR5 and RbBP5, suggesting a restraint for the architectural arrangement of subunits within the complex. Using MLL1 and Ash2L automethylation reactions as probes for histone binding, we observed that both automethylation reactions are significantly inhibited by stoichiometric amounts of unmethylated histone H3, but not by histones previously mono-, di-, or trimethylated at H3K4. These results suggest that the H3K4me1 intermediate does not significantly bind to the MLL1 SET domain during the dimethylation reaction. Consistent with this hypothesis, we demonstrate that the MLL1 core complex assembled with a catalytically inactive SET domain variant preferentially catalyzes H3K4 dimethylation using the H3K4me1 substrate. Taken together, these results are consistent with a “two-active site” model for multiple H3K4 methylation by the MLL1 core complex.
Collapse
Affiliation(s)
- Anamika Patel
- From the Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Herz HM, Garruss A, Shilatifard A. SET for life: biochemical activities and biological functions of SET domain-containing proteins. Trends Biochem Sci 2013; 38:621-39. [PMID: 24148750 DOI: 10.1016/j.tibs.2013.09.004] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 09/06/2013] [Accepted: 09/12/2013] [Indexed: 01/23/2023]
Affiliation(s)
- Hans-Martin Herz
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | | | | |
Collapse
|
28
|
Gil E, Bosch A, Lampe D, Lizcano JM, Perales JC, Danos O, Chillon M. Functional characterization of the human mariner transposon Hsmar2. PLoS One 2013; 8:e73227. [PMID: 24039890 PMCID: PMC3770610 DOI: 10.1371/journal.pone.0073227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/19/2013] [Indexed: 12/23/2022] Open
Abstract
DNA transposons are mobile elements with the ability to mobilize and transport genetic information between different chromosomal loci. Unfortunately, most transposons copies are currently inactivated, little is known about mariner elements in humans despite their role in the evolution of the human genome, even though the Hsmar2 transposon is associated to hotspots for homologous recombination involved in human genetic disorders as Charcot–Marie–Tooth, Prader-Willi/Angelman, and Williams syndromes. This manuscript describes the functional characterization of the human HSMAR2 transposase generated from fossil sequences and shows that the native HSMAR2 is active in human cells, but also in bacteria, with an efficiency similar to other mariner elements. We observe that the sub-cellular localization of HSMAR2 is dependent on the host cell type, and is cytotoxic when overexpressed in HeLa cells. Finally, we also demonstrate that the binding of HSMAR2 to its own ITRs is specific, and that the excision reaction leaves non-canonical footprints both in bacteria and eukaryotic cells.
Collapse
Affiliation(s)
- Estel Gil
- Department of Biochemistry and Molecular Biology, Edifici H, Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Assumpcio Bosch
- Department of Biochemistry and Molecular Biology, Edifici H, Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - David Lampe
- Department of Biological Sciences, Bayer School of Natural and Environmental Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Jose M. Lizcano
- Department of Biochemistry and Molecular Biology, Institut de Neurociences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jose C. Perales
- Department of Physiological Sciences II, IDIBELL, University of Barcelona, Campus de Bellvitge, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Olivier Danos
- Institut National de la Sante et de la recherche Medicale U845, Hôpital Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Miguel Chillon
- Department of Biochemistry and Molecular Biology, Edifici H, Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- * E-mail:
| |
Collapse
|
29
|
Arnaoty A, Gouilleux-Gruart V, Casteret S, Pitard B, Bigot Y, Lecomte T. Reliability of the nanopheres-DNA immunization technology to produce polyclonal antibodies directed against human neogenic proteins. Mol Genet Genomics 2013; 288:347-63. [DOI: 10.1007/s00438-013-0754-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 03/11/2013] [Indexed: 10/26/2022]
|
30
|
Patananan AN, Palmer JM, Garvey GS, Keller NP, Clarke SG. A novel automethylation reaction in the Aspergillus nidulans LaeA protein generates S-methylmethionine. J Biol Chem 2013; 288:14032-14045. [PMID: 23532849 PMCID: PMC3656261 DOI: 10.1074/jbc.m113.465765] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The filamentous fungi in the genus Aspergillus are opportunistic plant and animal pathogens that can adapt to their environment by producing various secondary metabolites, including lovastatin, penicillin, and aflatoxin. The synthesis of these small molecules is dependent on gene clusters that are globally regulated by the LaeA protein. Null mutants of LaeA in all pathogenic fungi examined to date show decreased virulence coupled with reduced secondary metabolism. Although the amino acid sequence of LaeA contains the motifs characteristic of seven-β-strand methyltransferases, a methyl-accepting substrate of LaeA has not been identified. In this work we did not find a methyl-accepting substrate in Aspergillus nidulans with various assays, including in vivo S-adenosyl-[methyl-(3)H]methionine labeling, targeted in vitro methylation experiments using putative protein substrates, or in vitro methylation assays using whole cell extracts grown under different conditions. However, in each experiment LaeA was shown to self-methylate. Amino acid hydrolysis of radioactively labeled LaeA followed by cation exchange and reverse phase chromatography identified methionine as the modified residue. Point mutations show that the major site of modification of LaeA is on methionine 207. However, in vivo complementation showed that methionine 207 is not required for the biological function of LaeA. LaeA is the first protein to exhibit automethylation at a methionine residue. These findings not only indicate LaeA may perform novel chemistry with S-adenosylmethionine but also provide new insights into the physiological function of LaeA.
Collapse
Affiliation(s)
- Alexander N. Patananan
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095 and
| | | | | | - Nancy P. Keller
- the Departments of Medical Microbiology and Immunology and ,Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
| | - Steven G. Clarke
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095 and , To whom correspondence should be addressed: Dept. of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, 607 Charles E. Young Dr. East, Los Angeles, CA. Tel.: 310-825-8754; Fax: 310-825-1968; E-mail:
| |
Collapse
|
31
|
Human calmodulin methyltransferase: expression, activity on calmodulin, and Hsp90 dependence. PLoS One 2012; 7:e52425. [PMID: 23285036 PMCID: PMC3527508 DOI: 10.1371/journal.pone.0052425] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/15/2012] [Indexed: 12/12/2022] Open
Abstract
Deletion of the first exon of calmodulin-lysine N-methyltransferase (CaM KMT, previously C2orf34) has been reported in two multigene deletion syndromes, but additional studies on the gene have not been reported. Here we show that in the cells from 2p21 deletion patients the loss of CaM KMT expression results in accumulation of hypomethylated calmodulin compared to normal controls, suggesting that CaM KMT is essential for calmodulin methylation and there are no compensatory mechanisms for CaM methylation in humans. We have further studied the expression of this gene at the transcript and protein levels. We have identified 2 additional transcripts in cells of the 2p21 deletion syndrome patients that start from alternative exons positioned outside the deletion region. One of them starts in the 2nd known exon, the other in a novel exon. The transcript starting from the novel exon was also identified in a variety of tissues from normal individuals. These new transcripts are not expected to produce proteins. Immunofluorescent localization of tagged CaM KMT in HeLa cells indicates that it is present in both the cytoplasm and nucleus of cells whereas the short isoform is localized to the Golgi apparatus. Using Western blot analysis we show that the CaM KMT protein is broadly expressed in mouse tissues. Finally we demonstrate that the CaM KMT interacts with the middle portion of the Hsp90 molecular chaperon and is probably a client protein since it is degraded upon treatment of cells with the Hsp90 inhibitor geldanamycin. These findings suggest that the CaM KMT is the major, possibly the single, methyltransferase of calmodulin in human cells with a wide tissue distribution and is a novel Hsp90 client protein. Thus our data provides basic information for a gene potentially contributing to the patient phenotype of two contiguous gene deletion syndromes.
Collapse
|
32
|
Yang H, Liu C, Jamsen J, Wu Z, Wang Y, Chen J, Zheng L, Shen B. The DNase domain-containing protein TATDN1 plays an important role in chromosomal segregation and cell cycle progression during zebrafish eye development. Cell Cycle 2012. [PMID: 23187801 DOI: 10.4161/cc.22886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The DNase domain-containing protein TATDN1 is a conserved nuclease in both prokaryotes and eukaryotes. It was previously implicated to play a role in apoptotic DNA fragmentation in yeast and C. elegans. However, its biological function in higher organisms, such as vertebrates, is unknown. Here, we report that zebrafish TATDN1 (zTATDN1) possesses a novel endonuclease activity, which first makes a nick at the DNA duplex and subsequently converts the nick into a DNA double-strand break in vitro. This biochemical property allows zTATDN1 to catalyze decatenation of catenated kinetoplast DNA to produce separated linear DNA in vitro. We further determine that zTATDN1 is predominantly expressed in eye cells during embryonic development. Knockdown of TATDN1 in zebrafish embryos results in an abnormal cell cycle progression, formation of polyploidy and aberrant chromatin structures. Consequently, the TATDN1-deficient morphants have disordered eye cell layers and significantly smaller eyes compared with the WT control. Altogether, our current studies suggest that zTATDN1 plays an important role in chromosome segregation and eye development in zebrafish.
Collapse
Affiliation(s)
- Hui Yang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Williamson EA, Damiani L, Leitao A, Hu C, Hathaway H, Oprea T, Sklar L, Shaheen M, Bauman J, Wang W, Nickoloff JA, Lee SH, Hromas R. Targeting the transposase domain of the DNA repair component Metnase to enhance chemotherapy. Cancer Res 2012; 72:6200-8. [PMID: 23090115 DOI: 10.1158/0008-5472.can-12-0313] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Previous studies have shown that the DNA repair component Metnase (SETMAR) mediates resistance to DNA damaging cancer chemotherapy. Metnase has a nuclease domain that shares homology with the Transposase family. We therefore virtually screened the tertiary Metnase structure against the 550,000 compound ChemDiv library to identify small molecules that might dock in the active site of the transposase nuclease domain of Metnase. We identified eight compounds as possible Metnase inhibitors. Interestingly, among these candidate inhibitors were quinolone antibiotics and HIV integrase inhibitors, which share common structural features. Previous reports have described possible activity of quinolones as antineoplastic agents. Therefore, we chose the quinolone ciprofloxacin for further study, based on its wide clinical availability and low toxicity. We found that ciprofloxacin inhibits the ability of Metnase to cleave DNA and inhibits Metnase-dependent DNA repair. Ciprofloxacin on its own did not induce DNA damage, but it did reduce repair of chemotherapy-induced DNA damage. Ciprofloxacin increased the sensitivity of cancer cell lines and a xenograft tumor model to clinically relevant chemotherapy. These studies provide a mechanism for the previously postulated antineoplastic activity of quinolones, and suggest that ciprofloxacin might be a simple yet effective adjunct to cancer chemotherapy.
Collapse
Affiliation(s)
- Elizabeth A Williamson
- Department of Medicine, University of Florida and Shands Health Care System, Gainesville, Florida, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hromas R, Williamson EA, Fnu S, Lee YJ, Park SJ, Beck BD, You JS, Leitao A, Laitao A, Nickoloff JA, Lee SH. Chk1 phosphorylation of Metnase enhances DNA repair but inhibits replication fork restart. Oncogene 2012; 31:4245-54. [PMID: 22231448 DOI: 10.1038/onc.2011.586] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Chk1 both arrests replication forks and enhances repair of DNA damage by phosphorylating downstream effectors. Although there has been a concerted effort to identify effectors of Chk1 activity, underlying mechanisms of effector action are still being identified. Metnase (also called SETMAR) is a SET and transposase domain protein that promotes both DNA double-strand break (DSB) repair and restart of stalled replication forks. In this study, we show that Metnase is phosphorylated only on Ser495 (S495) in vivo in response to DNA damage by ionizing radiation. Chk1 is the major mediator of this phosphorylation event. We had previously shown that wild-type (wt) Metnase associates with chromatin near DSBs and methylates histone H3 Lys36. Here we show that a Ser495Ala (S495A) Metnase mutant, which is not phosphorylated by Chk1, is defective in DSB-induced chromatin association. The S495A mutant also fails to enhance repair of an induced DSB when compared with wt Metnase. Interestingly, the S495A mutant demonstrated increased restart of stalled replication forks compared with wt Metnase. Thus, phosphorylation of Metnase S495 differentiates between these two functions, enhancing DSB repair and repressing replication fork restart. In summary, these data lend insight into the mechanism by which Chk1 enhances repair of DNA damage while at the same time repressing stalled replication fork restart.
Collapse
Affiliation(s)
- R Hromas
- Department of Medicine, University of Florida and Shands Health Care System, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ponder J, Yoo BH, Abraham AD, Li Q, Ashley AK, Amerin CL, Zhou Q, Reid BG, Reigan P, Hromas R, Nickoloff JA, LaBarbera DV. Neoamphimedine circumvents metnase-enhanced DNA topoisomerase IIα activity through ATP-competitive inhibition. Mar Drugs 2011; 9:2397-2408. [PMID: 22163192 PMCID: PMC3229241 DOI: 10.3390/md9112397] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 12/13/2022] Open
Abstract
Type IIα DNA topoisomerase (TopoIIα) is among the most important clinical drug targets for the treatment of cancer. Recently, the DNA repair protein Metnase was shown to enhance TopoIIα activity and increase resistance to TopoIIα poisons. Using in vitro DNA decatenation assays we show that neoamphimedine potently inhibits TopoIIα-dependent DNA decatenation in the presence of Metnase. Cell proliferation assays demonstrate that neoamphimedine can inhibit Metnase-enhanced cell growth with an IC50 of 0.5 μM. Additionally, we find that the apparent Km of TopoIIα for ATP increases linearly with higher concentrations of neoamphimedine, indicating ATP-competitive inhibition, which is substantiated by molecular modeling. These findings support the continued development of neoamphimedine as an anticancer agent, particularly in solid tumors that over-express Metnase.
Collapse
Affiliation(s)
- Jessica Ponder
- Department of Pharmaceutical Sciences, The University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Anschutz Medical Campus, Aurora, CO 80045, USA; E-Mails: (J.P.); (B.H.Y.); (A.D.A.); (Q.L.); (Q.Z.); (B.G.R.); (P.R.)
| | - Byong Hoon Yoo
- Department of Pharmaceutical Sciences, The University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Anschutz Medical Campus, Aurora, CO 80045, USA; E-Mails: (J.P.); (B.H.Y.); (A.D.A.); (Q.L.); (Q.Z.); (B.G.R.); (P.R.)
| | - Adedoyin D. Abraham
- Department of Pharmaceutical Sciences, The University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Anschutz Medical Campus, Aurora, CO 80045, USA; E-Mails: (J.P.); (B.H.Y.); (A.D.A.); (Q.L.); (Q.Z.); (B.G.R.); (P.R.)
| | - Qun Li
- Department of Pharmaceutical Sciences, The University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Anschutz Medical Campus, Aurora, CO 80045, USA; E-Mails: (J.P.); (B.H.Y.); (A.D.A.); (Q.L.); (Q.Z.); (B.G.R.); (P.R.)
| | - Amanda K. Ashley
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA; E-Mails: (A.K.A.); (C.L.A.); (J.A.N.)
| | - Courtney L. Amerin
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA; E-Mails: (A.K.A.); (C.L.A.); (J.A.N.)
| | - Qiong Zhou
- Department of Pharmaceutical Sciences, The University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Anschutz Medical Campus, Aurora, CO 80045, USA; E-Mails: (J.P.); (B.H.Y.); (A.D.A.); (Q.L.); (Q.Z.); (B.G.R.); (P.R.)
| | - Brian G. Reid
- Department of Pharmaceutical Sciences, The University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Anschutz Medical Campus, Aurora, CO 80045, USA; E-Mails: (J.P.); (B.H.Y.); (A.D.A.); (Q.L.); (Q.Z.); (B.G.R.); (P.R.)
| | - Philip Reigan
- Department of Pharmaceutical Sciences, The University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Anschutz Medical Campus, Aurora, CO 80045, USA; E-Mails: (J.P.); (B.H.Y.); (A.D.A.); (Q.L.); (Q.Z.); (B.G.R.); (P.R.)
| | - Robert Hromas
- Department of Medicine, University of Florida and Shands Health Care System, Gainesville, FL 32610, USA; E-Mail:
| | - Jac A. Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA; E-Mails: (A.K.A.); (C.L.A.); (J.A.N.)
| | - Daniel V. LaBarbera
- Department of Pharmaceutical Sciences, The University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Anschutz Medical Campus, Aurora, CO 80045, USA; E-Mails: (J.P.); (B.H.Y.); (A.D.A.); (Q.L.); (Q.Z.); (B.G.R.); (P.R.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-303-724-4116; Fax: +1-303-724-7266
| |
Collapse
|
36
|
Allen C, Ashley AK, Hromas R, Nickoloff JA. More forks on the road to replication stress recovery. J Mol Cell Biol 2011; 3:4-12. [PMID: 21278446 DOI: 10.1093/jmcb/mjq049] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
High-fidelity replication of DNA, and its accurate segregation to daughter cells, is critical for maintaining genome stability and suppressing cancer. DNA replication forks are stalled by many DNA lesions, activating checkpoint proteins that stabilize stalled forks. Stalled forks may eventually collapse, producing a broken DNA end. Fork restart is typically mediated by proteins initially identified by their roles in homologous recombination repair of DNA double-strand breaks (DSBs). In recent years, several proteins involved in DSB repair by non-homologous end joining (NHEJ) have been implicated in the replication stress response, including DNA-PKcs, Ku, DNA Ligase IV-XRCC4, Artemis, XLF and Metnase. It is currently unclear whether NHEJ proteins are involved in the replication stress response through indirect (signaling) roles, and/or direct roles involving DNA end joining. Additional complexity in the replication stress response centers around RPA, which undergoes significant post-translational modification after stress, and RAD52, a conserved HR protein whose role in DSB repair may have shifted to another protein in higher eukaryotes, such as BRCA2, but retained its role in fork restart. Most cancer therapeutic strategies create DNA replication stress. Thus, it is imperative to gain a better understanding of replication stress response proteins and pathways to improve cancer therapy.
Collapse
Affiliation(s)
- Chris Allen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft Collins, CO 80523, USA
| | | | | | | |
Collapse
|
37
|
Beck BD, Lee SS, Williamson E, Hromas RA, Lee SH. Biochemical characterization of metnase's endonuclease activity and its role in NHEJ repair. Biochemistry 2011; 50:4360-70. [PMID: 21491884 PMCID: PMC3388547 DOI: 10.1021/bi200333k] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Metnase (SETMAR) is a SET-transposase fusion protein that promotes nonhomologous end joining (NHEJ) repair in humans. Although both SET and the transposase domains were necessary for its function in DSB repair, it is not clear what specific role Metnase plays in the NHEJ. In this study, we show that Metnase possesses a unique endonuclease activity that preferentially acts on ssDNA and ssDNA-overhang of a partial duplex DNA. Cell extracts lacking Metnase poorly supported DNA end joining, and addition of wt-Metnase to cell extracts lacking Metnase markedly stimulated DNA end joining, while a mutant (D483A) lacking endonuclease activity did not. Given that Metnase overexpression enhanced DNA end processing in vitro, our finding suggests a role for Metnase's endonuclease activity in promoting the joining of noncompatible ends.
Collapse
Affiliation(s)
- Brian D. Beck
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Sung-Sook Lee
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Elizabeth Williamson
- Department of Medicine, University of Florida and Shands Health Care System, Gainesville, Florida 32610, USA
| | - Robert A. Hromas
- Department of Medicine, University of Florida and Shands Health Care System, Gainesville, Florida 32610, USA
| | - Suk-Hee Lee
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
- Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| |
Collapse
|
38
|
Multiple metastases from cutaneous malignant melanoma patients may display heterogeneous genomic and epigenomic patterns. Melanoma Res 2010. [DOI: 10.1097/cmr.0b013e32833b7c7c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Wray J, Williamson EA, Chester S, Farrington J, Sterk R, Weinstock DM, Jasin M, Lee SH, Nickoloff JA, Hromas R. The transposase domain protein Metnase/SETMAR suppresses chromosomal translocations. ACTA ACUST UNITED AC 2010; 200:184-90. [PMID: 20620605 DOI: 10.1016/j.cancergencyto.2010.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 04/09/2010] [Accepted: 04/10/2010] [Indexed: 01/12/2023]
Abstract
Chromosomal translocations are common in leukemia, but little is known about their mechanism. Metnase (also termed SETMAR) is a fusion of a histone methylase and transposase protein that arose specifically in primates. Transposases were thought to be extinct in primates because they would mediate deleterious DNA movement. In primates, Metnase interacts with DNA Ligase IV (Lig IV) and promotes nonhomologous end-joining (NHEJ) DNA repair. We show here that the primate-specific protein Metnase can also enhance NHEJ in murine cells and can also interact with murine Lig IV, indicating that it integrated into the preexisting NHEJ pathway after its development in primates. Significantly, expressing Metnase in murine cells significantly reduces chromosomal translocations. We propose that the fusion of the histone methylase SET domain and the transposase domain in the anthropoid lineage to form primate Metnase promotes accurate intrachromosomal NHEJ and thereby suppresses interchromosomal translocations. Metnase may have been selected for because it has a function opposing transposases and may thus play a key role in suppressing translocations that underlie oncogenicity.
Collapse
Affiliation(s)
- Justin Wray
- Division of Hematology-Oncology, Cancer Research and Treatment Center, Department of Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Goodwin KD, He H, Imasaki T, Lee SH, Georgiadis MM. Crystal structure of the human Hsmar1-derived transposase domain in the DNA repair enzyme Metnase. Biochemistry 2010; 49:5705-13. [PMID: 20521842 DOI: 10.1021/bi100171x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Although the human genome is littered with sequences derived from the Hsmar1 transposon, the only intact Hsmar1 transposase gene exists within a chimeric SET-transposase fusion protein referred to as Metnase or SETMAR. Metnase retains many of the transposase activities including terminal inverted repeat (TIR) specific DNA-binding activity, DNA cleavage activity, albeit uncoupled from TIR-specific binding, and the ability to form a synaptic complex. However, Metnase has evolved as a DNA repair protein that is specifically involved in nonhomologous end joining. Here, we present two crystal structures of the transposase catalytic domain of Metnase revealing a dimeric enzyme with unusual active site plasticity that may be involved in modulating metal binding. We show through characterization of a dimerization mutant, F460K, that the dimeric form of the enzyme is required for its DNA cleavage, DNA-binding, and nonhomologous end joining activities. Of significance is the conservation of F460 along with residues that we propose may be involved in the modulation of metal binding in both the predicted ancestral Hsmar1 transposase sequence as well as in the modern enzyme. The Metnase transposase has been remarkably conserved through evolution; however, there is a clustering of substitutions located in alpha helices 4 and 5 within the putative DNA-binding site, consistent with loss of transposition specific DNA cleavage activity and acquisition of DNA repair specific cleavage activity.
Collapse
Affiliation(s)
- Kristie D Goodwin
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | |
Collapse
|
41
|
Pennini ME, Perrinet S, Dautry-Varsat A, Subtil A. Histone methylation by NUE, a novel nuclear effector of the intracellular pathogen Chlamydia trachomatis. PLoS Pathog 2010; 6:e1000995. [PMID: 20657819 PMCID: PMC2904774 DOI: 10.1371/journal.ppat.1000995] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 06/10/2010] [Indexed: 12/30/2022] Open
Abstract
Sequence analysis of the genome of the strict intracellular pathogen Chlamydia trachomatis revealed the presence of a SET domain containing protein, proteins that primarily function as histone methyltransferases. In these studies, we demonstrated secretion of this protein via a type III secretion mechanism. During infection, the protein is translocated to the host cell nucleus and associates with chromatin. We therefore named the protein nuclear effector (NUE). Expression of NUE in mammalian cells by transfection reconstituted nuclear targeting and chromatin association. In vitro methylation assays confirmed NUE is a histone methyltransferase that targets histones H2B, H3 and H4 and itself (automethylation). Mutants deficient in automethylation demonstrated diminished activity towards histones suggesting automethylation functions to enhance enzymatic activity. Thus, NUE is secreted by Chlamydia, translocates to the host cell nucleus and has enzymatic activity towards eukaryotic substrates. This work is the first description of a bacterial effector that directly targets mammalian histones.
Collapse
Affiliation(s)
- Meghan E. Pennini
- Institut Pasteur, Unité de Biologie des Interactions Cellulaires, Paris, France
- CNRS URA 2582, Paris, France
| | - Stéphanie Perrinet
- Institut Pasteur, Unité de Biologie des Interactions Cellulaires, Paris, France
- CNRS URA 2582, Paris, France
| | - Alice Dautry-Varsat
- Institut Pasteur, Unité de Biologie des Interactions Cellulaires, Paris, France
- CNRS URA 2582, Paris, France
| | - Agathe Subtil
- Institut Pasteur, Unité de Biologie des Interactions Cellulaires, Paris, France
- CNRS URA 2582, Paris, France
- * E-mail:
| |
Collapse
|
42
|
Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 2010; 79:181-211. [PMID: 20192759 DOI: 10.1146/annurev.biochem.052308.093131] [Citation(s) in RCA: 2037] [Impact Index Per Article: 135.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Double-strand DNA breaks are common events in eukaryotic cells, and there are two major pathways for repairing them: homologous recombination (HR) and nonhomologous DNA end joining (NHEJ). The various causes of double-strand breaks (DSBs) result in a diverse chemistry of DNA ends that must be repaired. Across NHEJ evolution, the enzymes of the NHEJ pathway exhibit a remarkable degree of structural tolerance in the range of DNA end substrate configurations upon which they can act. In vertebrate cells, the nuclease, DNA polymerases, and ligase of NHEJ are the most mechanistically flexible and multifunctional enzymes in each of their classes. Unlike repair pathways for more defined lesions, NHEJ repair enzymes act iteratively, act in any order, and can function independently of one another at each of the two DNA ends being joined. NHEJ is critical not only for the repair of pathologic DSBs as in chromosomal translocations, but also for the repair of physiologic DSBs created during variable (diversity) joining [V(D)J] recombination and class switch recombination (CSR). Therefore, patients lacking normal NHEJ are not only sensitive to ionizing radiation (IR), but also severely immunodeficient.
Collapse
Affiliation(s)
- Michael R Lieber
- Norris Comprehensive Cancer Center, Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, California 90089, USA.
| |
Collapse
|
43
|
De Haro LP, Wray J, Williamson EA, Durant ST, Corwin L, Gentry AC, Osheroff N, Lee SH, Hromas R, Nickoloff JA. Metnase promotes restart and repair of stalled and collapsed replication forks. Nucleic Acids Res 2010; 38:5681-91. [PMID: 20457750 PMCID: PMC2943610 DOI: 10.1093/nar/gkq339] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Metnase is a human protein with methylase (SET) and nuclease domains that is widely expressed, especially in proliferating tissues. Metnase promotes non-homologous end-joining (NHEJ), and knockdown causes mild hypersensitivity to ionizing radiation. Metnase also promotes plasmid and viral DNA integration, and topoisomerase IIα (TopoIIα)-dependent chromosome decatenation. NHEJ factors have been implicated in the replication stress response, and TopoIIα has been proposed to relax positive supercoils in front of replication forks. Here we show that Metnase promotes cell proliferation, but it does not alter cell cycle distributions, or replication fork progression. However, Metnase knockdown sensitizes cells to replication stress and confers a marked defect in restart of stalled replication forks. Metnase promotes resolution of phosphorylated histone H2AX, a marker of DNA double-strand breaks at collapsed forks, and it co-immunoprecipitates with PCNA and RAD9, a member of the PCNA-like RAD9–HUS1–RAD1 intra-S checkpoint complex. Metnase also promotes TopoIIα-mediated relaxation of positively supercoiled DNA. Metnase is not required for RAD51 focus formation after replication stress, but Metnase knockdown cells show increased RAD51 foci in the presence or absence of replication stress. These results establish Metnase as a key factor that promotes restart of stalled replication forks, and implicate Metnase in the repair of collapsed forks.
Collapse
Affiliation(s)
- Leyma P De Haro
- Department of Molecular Genetics and Microbiology, Division of Hematology-Oncology, Cancer Research and Treatment Center, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Metnase/SETMAR: a domesticated primate transposase that enhances DNA repair, replication, and decatenation. Genetica 2010; 138:559-66. [PMID: 20309721 PMCID: PMC2847698 DOI: 10.1007/s10709-010-9452-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 02/28/2010] [Indexed: 01/14/2023]
Abstract
Metnase is a fusion gene comprising a SET histone methyl transferase domain and a transposase domain derived from the Mariner transposase. This fusion gene appeared first in anthropoid primates. Because of its biochemical activities, both histone (protein) methylase and endonuclease, we termed the protein Metnase (also called SETMAR). Metnase methylates histone H3 lysine 36 (H3K36), improves the integration of foreign DNA, and enhances DNA double-strand break (DSB) repair by the non-homologous end joining (NHEJ) pathway, potentially dependent on its interaction with DNA Ligase IV. Metnase interacts with PCNA and enhances replication fork restart after stalling. Metnase also interacts with and stimulates TopoIIα-dependent chromosome decatenation and regulates cellular sensitivity to topoisomerase inhibitors used as cancer chemotherapeutics. Metnase has DNA nicking and endonuclease activity that linearizes but does not degrade supercoiled plasmids. Metnase has many but not all of the properties of a transposase, including Terminal Inverted Repeat (TIR) sequence-specific DNA binding, DNA looping, paired end complex formation, and cleavage of the 5′ end of a TIR, but it cannot efficiently complete transposition reactions. Interestingly, Metnase suppresses chromosomal translocations. It has been hypothesized that transposase activity would be deleterious in primates because unregulated DNA movement would predispose to malignancy. Metnase may have been selected for in primates because of its DNA repair and translocation suppression activities. Thus, its transposase activities may have been subverted to prevent deleterious DNA movement.
Collapse
|
45
|
Kapoor P, Kumar A, Naik R, Ganguli M, Siddiqi MI, Sahasrabuddhe AA, Gupta CM. Leishmania actin binds and nicks kDNA as well as inhibits decatenation activity of type II topoisomerase. Nucleic Acids Res 2010; 38:3308-17. [PMID: 20147461 PMCID: PMC2879525 DOI: 10.1093/nar/gkq051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Leishmania actin (LdACT) is an unconventional form of eukaryotic actin in that it markedly differs from other actins in terms of its filament forming as well as toxin and DNase-1-binding properties. Besides being present in the cytoplasm, cortical regions, flagellum and nucleus, it is also present in the kinetoplast where it appears to associate with the kinetoplast DNA (kDNA). However, nothing is known about its role in this organelle. Here, we show that LdACT is indeed associated with the kDNA disc in Leishmania kinetoplast, and under in vitro conditions, it specifically binds DNA primarily through electrostatic interactions involving its unique DNase-1-binding region and the DNA major groove. We further reveal that this protein exhibits DNA-nicking activity which requires its polymeric state as well as ATP hydrolysis and through this activity it converts catenated kDNA minicircles into open form. In addition, we show that LdACT specifically binds bacterial type II topoisomerase and inhibits its decatenation activity. Together, these results strongly indicate that LdACT could play a critical role in kDNA remodeling.
Collapse
Affiliation(s)
- Prabodh Kapoor
- Division of Molecular and Structural Biology, Central Drug Research Institute, Chattar Manzil Palace, CSIR, Lucknow 226001, India
| | | | | | | | | | | | | |
Collapse
|
46
|
Claeys Bouuaert C, Chalmers R. Transposition of the human Hsmar1 transposon: rate-limiting steps and the importance of the flanking TA dinucleotide in second strand cleavage. Nucleic Acids Res 2009; 38:190-202. [PMID: 19858101 PMCID: PMC2800235 DOI: 10.1093/nar/gkp891] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hsmar1 is a member of the mariner family of DNA transposons. Although widespread in nature, their molecular mechanism remains obscure. Many other cut-and-paste elements use a hairpin intermediate to cleave the two strands of DNA at each transposon end. However, this intermediate is absent in mariner, suggesting that these elements use a fundamentally different mechanism for second-strand cleavage. We have taken advantage of the faithful and efficient in vitro reaction provided by Hsmar1 to characterize the products and intermediates of transposition. We report different factors that particularly affect the reaction, which are the reaction pH and the transposase concentration. Kinetic analysis revealed that first-strand nicking and integration are rapid. The rate of the reaction is limited in part by the divalent metal ion-dependent assembly of a complex between transposase and the transposon end(s) prior to the first catalytic step. Second-strand cleavage is the rate-limiting catalytic step of the reaction. We discuss our data in light of a model for the two metal ion catalytic mechanism and propose that mariner excision involves a significant conformational change between first- and second-strand cleavage at each transposon end. Furthermore, this conformational change requires specific contacts between transposase and the flanking TA dinucleotide.
Collapse
|
47
|
Decatenation: fixing your knots. Blood 2009; 114:1721-2. [PMID: 19713475 DOI: 10.1182/blood-2009-06-224279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
How tumor cells gain resistance to drugs is critically important to elucidate for developing better cancer therapy. In this issue of Blood, Wray and colleagues have identified a mechanism whereby acute leukemia cells use a stimulator of topoisomerase II activity to allow proliferation despite drug inhibition of this essential enzyme.
Collapse
|
48
|
Emi1 maintains genomic integrity during zebrafish embryogenesis and cooperates with p53 in tumor suppression. Mol Cell Biol 2009; 29:5911-22. [PMID: 19704007 DOI: 10.1128/mcb.00558-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A growing body of evidence indicates that early mitotic inhibitor 1 (Emi1) is essential for genomic stability, but how this function relates to embryonic development and cancer pathogenesis remains unclear. We have identified a zebrafish mutant line in which deficient emi1 gene expression results in multilineage hematopoietic defects and widespread developmental defects that are p53 independent. Cell cycle analyses of Emi1-depleted zebrafish or human cells showed chromosomal rereplication, and metaphase preparations from mutant zebrafish embryos revealed rereplicated, unsegregated chromosomes and polyploidy. Furthermore, EMI1-depleted mammalian cells relied on topoisomerase II alpha-dependent mitotic decatenation to progress through metaphase. Interestingly, the loss of a single emi1 allele in the absence of p53 enhanced the susceptibility of adult fish to neural sheath tumorigenesis. Our results cast Emi1 as a critical regulator of genomic fidelity during embryogenesis and suggest that the factor may act as a tumor suppressor.
Collapse
|
49
|
Abstract
After DNA replication, sister chromatids must be untangled, or decatenated, before mitosis so that chromatids do not tear during anaphase. Topoisomerase IIalpha (Topo IIalpha) is the major decatenating enzyme. Topo IIalpha inhibitors prevent decatenation, causing cells to arrest during mitosis. Here we report that acute myeloid leukemia cells fail to arrest at the mitotic decatenation checkpoint, and their progression through this checkpoint is regulated by the DNA repair component Metnase (also termed SETMAR). Metnase contains a SET histone methylase and transposase nuclease domain, and is a component of the nonhomologous end-joining DNA double-strand break repair pathway. Metnase interacts with Topo IIalpha and enhances its decatenation activity. Here we show that multiple types of acute leukemia cells have an attenuated mitotic arrest when decatenation is inhibited and that in an acute myeloid leukemia (AML) cell line this is mediated by Metnase. Of further importance, Metnase permits continued proliferation of these AML cells even in the presence of the clinical Topo IIalpha inhibitor VP-16. In vitro, purified Metnase prevents VP-16 inhibition of Topo IIalpha decatenation of tangled DNA. Thus, Metnase expression levels may predict AML resistance to Topo IIalpha inhibitors, and Metnase is a potential therapeutic target for small molecule interference.
Collapse
|
50
|
Wray J, Williamson EA, Royce M, Shaheen M, Beck BD, Lee SH, Nickoloff JA, Hromas R. Metnase mediates resistance to topoisomerase II inhibitors in breast cancer cells. PLoS One 2009; 4:e5323. [PMID: 19390626 PMCID: PMC2669129 DOI: 10.1371/journal.pone.0005323] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 03/23/2009] [Indexed: 12/25/2022] Open
Abstract
DNA replication produces tangled, or catenated, chromatids, that must be decatenated prior to mitosis or catastrophic genomic damage will occur. Topoisomerase IIalpha (Topo IIalpha) is the primary decatenating enzyme. Cells monitor catenation status and activate decatenation checkpoints when decatenation is incomplete, which occurs when Topo IIalpha is inhibited by chemotherapy agents such as the anthracyclines and epididophyllotoxins. We recently demonstrated that the DNA repair component Metnase (also called SETMAR) enhances Topo IIalpha-mediated decatenation, and hypothesized that Metnase could mediate resistance to Topo IIalpha inhibitors. Here we show that Metnase interacts with Topo IIalpha in breast cancer cells, and that reducing Metnase expression significantly increases metaphase decatenation checkpoint arrest. Repression of Metnase sensitizes breast cancer cells to Topo IIalpha inhibitors, and directly blocks the inhibitory effect of the anthracycline adriamycin on Topo IIalpha-mediated decatenation in vitro. Thus, Metnase may mediate resistance to Topo IIalpha inhibitors, and could be a biomarker for clinical sensitivity to anthracyclines. Metnase could also become an important target for combination chemotherapy with current Topo IIalpha inhibitors, specifically in anthracycline-resistant breast cancer.
Collapse
Affiliation(s)
- Justin Wray
- Division of Hematology-Oncology, Cancer Research and Treatment Center, Department of Medicine, University of New Mexico Health Science Center, Albuquerque, New Mexico, United States of America
| | - Elizabeth A. Williamson
- Division of Hematology-Oncology, Cancer Research and Treatment Center, Department of Medicine, University of New Mexico Health Science Center, Albuquerque, New Mexico, United States of America
| | - Melanie Royce
- Division of Hematology-Oncology, Cancer Research and Treatment Center, Department of Medicine, University of New Mexico Health Science Center, Albuquerque, New Mexico, United States of America
| | - Montaser Shaheen
- Division of Hematology-Oncology, Cancer Research and Treatment Center, Department of Medicine, University of New Mexico Health Science Center, Albuquerque, New Mexico, United States of America
| | - Brian D. Beck
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Suk-Hee Lee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Jac A. Nickoloff
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Robert Hromas
- Division of Hematology-Oncology, Cancer Research and Treatment Center, Department of Medicine, University of New Mexico Health Science Center, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|