1
|
León Machado JA, Steimle V. The MHC Class II Transactivator CIITA: Not (Quite) the Odd-One-Out Anymore among NLR Proteins. Int J Mol Sci 2021; 22:1074. [PMID: 33499042 PMCID: PMC7866136 DOI: 10.3390/ijms22031074] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
In this review, we discuss the major histocompatibility complex (MHC) class II transactivator (CIITA), which is the master regulator of MHC class II gene expression. CIITA is the founding member of the mammalian nucleotide-binding and leucine-rich-repeat (NLR) protein family but stood apart for a long time as the only transcriptional regulator. More recently, it was found that its closest homolog, NLRC5 (NLR protein caspase activation and recruitment domain (CARD)-containing 5), is a regulator of MHC-I gene expression. Both act as non-DNA-binding activators through multiple protein-protein interactions with an MHC enhanceosome complex that binds cooperatively to a highly conserved combinatorial cis-acting module. Thus, the regulation of MHC-II expression is regulated largely through the differential expression of CIITA. In addition to the well-defined role of CIITA in MHC-II GENE regulation, we will discuss several other aspects of CIITA functions, such as its role in cancer, its role as a viral restriction element contributing to intrinsic immunity, and lastly, its very recently discovered role as an inhibitor of Ebola and SARS-Cov-2 virus replication. We will briefly touch upon the recently discovered role of NLRP3 as a transcriptional regulator, which suggests that transcriptional regulation is, after all, not such an unusual feature for NLR proteins.
Collapse
Affiliation(s)
| | - Viktor Steimle
- Département de Biologie, Université de Sherbrooke, 2500 Boul., Sherbrooke, QC J1K 2R1, Canada;
| |
Collapse
|
2
|
Wang J, Liu S, Fu W. Nucleosome Positioning with Set of Key Positions and Nucleosome Affinity. Open Biomed Eng J 2014; 8:166-70. [PMID: 26322141 PMCID: PMC4549903 DOI: 10.2174/1874120701408010166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/08/2015] [Accepted: 06/28/2015] [Indexed: 02/07/2023] Open
Abstract
The formation and precise positioning of nucleosome in chromatin occupies a very important role in studying life process. Today, there are many researchers who discovered that the positioning where the location of a DNA sequence fragment wraps around a histone octamer in genome is not random but regular. However, the positioning is closely relevant to the concrete sequence of core DNA. So in this paper, we analyzed the relation between the affinity and sequence structure of core DNA, and extracted the set of key positions. In these positions, the nucleotide sequences probably occupy mainly action in the binding. First, we simplified and formatted the experimental data with the affinity. Then, to find the key positions in the wrapping, we used neural network to analyze the positive and negative effects of nucleosome generation for each position in core DNA sequences. However, we reached a class of weights with every position to describe this effect. Finally, based on the positions with high weights, we analyzed the reason why the chosen positions are key positions, and used these positions to construct a model for nucleosome positioning prediction. Experimental results show the effectiveness of our method.
Collapse
Affiliation(s)
- Jia Wang
- Experimental Instrument Center, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Shuai Liu
- College of Computer Science, Inner Mongolia University, Hohhot, Inner Mongolia, 010012, China ; School of Physical Science and Technology, Inner Mongolia University, Inner Mongolia, 010012, China
| | - Weina Fu
- College of Computer Science, Inner Mongolia University, Hohhot, Inner Mongolia, 010012, China
| |
Collapse
|
3
|
Mousavi K, Zare H, Koulnis M, Sartorelli V. The emerging roles of eRNAs in transcriptional regulatory networks. RNA Biol 2014; 11:106-10. [PMID: 24525859 DOI: 10.4161/rna.27950] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Following reports by ENCyclopedia Of DNA Elements (ENCODE; GENCODE) Consortium and others, it is now fairly evident that the majority (70-80%) of the mammalian genome has the potential to be transcribed into non-protein-coding RNAs (ncRNAs). Critical to our understanding of genetic processes is the mechanism by which ncRNAs exert their roles. Accordingly, ncRNAs are shown to regulate the expression of protein-coding loci (i.e., genes) at the transcriptional as well as post-transcriptional stages. We recently reported on a widespread transcription at the DNA enhancer elements in myogenic cells. In our study, we found certain enhancer RNAs (eRNAs) regulate chromatin accessibility of the transcriptional machinery at loci encoding master regulators of myogenesis (i.e., MyoD/MyoG), thus suggesting their significance and site-specific impact in cellular programming. Here, we examine recent discoveries pertinent to the proposed role(s) of eRNAs in regulating gene expression. We will highlight consistencies, discuss confounding observations, and consider a lack of critical information in a way to prioritize future objectives.
Collapse
Affiliation(s)
| | - Hossein Zare
- Laboratory of Muscle Stem Cells and Gene Regulation; National Institute of Arthritis, Musculoskeletal, and Skin Diseases; National Institutes of Health; Bethesda, MD USA
| | - Miroslav Koulnis
- Laboratory of Muscle Stem Cells and Gene Regulation; National Institute of Arthritis, Musculoskeletal, and Skin Diseases; National Institutes of Health; Bethesda, MD USA
| | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation; National Institute of Arthritis, Musculoskeletal, and Skin Diseases; National Institutes of Health; Bethesda, MD USA
| |
Collapse
|
4
|
Yang Z, Yoshioka H, McCarrey JR. Sequence-specific promoter elements regulate temporal-specific changes in chromatin required for testis-specific activation of the Pgk2 gene. Reproduction 2013; 146:501-16. [PMID: 24000349 DOI: 10.1530/rep-13-0311] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The phosphoglycerate kinase-2 (Pgk2) gene is regulated in a tissue-, cell type-, and developmental stage-specific manner during spermatogenesis and is required for normal sperm motility and fertility in mammals. Activation of Pgk2 transcription is regulated by testis-specific demethylation of DNA and binding of testis-specific transcription factors to enhancer and core promoter elements. Here, we show that chromatin remodeling including reconfiguration of nucleosomes and changes in histone modifications is also associated with transcriptional activation of the Pgk2 gene during spermatogenesis. Developmental studies indicate that the order of events involved in transcriptional activation of the Pgk2 gene includes demethylation of DNA in T₁- and T₂-prospermatogonia, binding of a factor to the CAAT box in type A and B spermatogonia, followed by recruitment of chromatin remodeling factors, displacement of a nucleosome from the Pgk2 promoter region, binding of factors to the Pgk2 core promoter and enhancer regions, and, finally, initiation of transcription in primary spermatocytes. Transgene studies show that Pgk2 core promoter elements are required to direct demethylation of DNA and reconfiguration of nucleosomes, whereas both enhancer and core promoter elements are required to direct changes in histone modifications and initiation of transcription. These results provide novel insight into the developmental order of molecular events required to activate tissue-specific transcription of the Pgk2 gene, the distinct elements in the 5'-regulatory region of the Pgk2 gene that regulate each of these events, and the relationship among these events in that each step in this process appears to be a necessary prerequisite for the subsequent step.
Collapse
Affiliation(s)
- Zhangsheng Yang
- Department of Biology, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, Texas 78249, USA
| | | | | |
Collapse
|
5
|
|
6
|
Choi NM, Boss JM. Multiple histone methyl and acetyltransferase complex components bind the HLA-DRA gene. PLoS One 2012; 7:e37554. [PMID: 22701520 PMCID: PMC3365104 DOI: 10.1371/journal.pone.0037554] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 04/25/2012] [Indexed: 01/17/2023] Open
Abstract
Major histocompatibility complex class II (MHC-II) genes are fundamental components that contribute to adaptive immune responses. While characterization of the chromatin features at the core promoter region of these genes has been studied, the scope of histone modifications and the modifying factors responsible for activation of these genes are less well defined. Using the MHC-II gene HLA-DRA as a model, the extent and distribution of major histone modifications associated with active expression were defined in interferon-γ induced epithelial cells, B cells, and B-cell mutants for MHC-II expression. With active transcription, nucleosome density around the proximal regulatory region was diminished and histone acetylation and methylation modifications were distributed throughout the gene in distinct patterns that were dependent on the modification examined. Irrespective of the location, the majority of these modifications were dependent on the binding of either the X-box binding factor RFX or the class II transactivator (CIITA) to the proximal regulatory region. Importantly, once established, the modifications were stable through multiple cell divisions after the activating stimulus was removed, suggesting that activation of this system resulted in an epigenetic state. A dual crosslinking chromatin immunoprecipitation method was used to detect histone modifying protein components that interacted across the gene. Components of the MLL methyltransferase and GCN5 acetyltransferase complexes were identified. Some MLL complex components were found to be CIITA independent, including MLL1, ASH2L and RbBP5. Likewise, GCN5 containing acetyltransferase complex components belonging to the ATAC and STAGA complexes were also identified. These results suggest that multiple complexes are either used or are assembled as the gene is activated for expression. Together the results define and illustrate a complex network of histone modifying proteins and multisubunit complexes participating in MHC-II transcription.
Collapse
Affiliation(s)
- Nancy M. Choi
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jeremy M. Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
7
|
Dyggve H, Meri S, Spillmann T, Lohi H, Kennedy LJ, Speeti M. Evaluation of DLA promoters in Doberman hepatitis. ACTA ACUST UNITED AC 2012; 78:446-50. [PMID: 22077625 DOI: 10.1111/j.1399-0039.2011.01784.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Doberman hepatitis (DH) is associated with homozygous DLA-DRB1*00601/DQA1*00401/DQB1*01303 indicating a role for the immune system in the development of the disease. The dog leucocyte antigen (DLA) class II expression is controlled at the transcriptional level with proximal promoters. Differential expression of DLA class II molecules of antigen-presenting cells is reported to affect susceptibility to or protection from different immune-mediated diseases. The aim of this study was to evaluate, whether the variation in promoter areas of homozygous DLA-DRB1*00601/DQA1*00401/DQB1*01303 Dobermans could explain why some dogs become afflicted with DH and others do not. Our findings suggest that promoter variants are not associated as risk modifiers in homozygous DLA-DRB1*00601/DQA1*00401/DQB1*01303 Dobermans, but additional factors are needed. Nevertheless, our study indicates that the whole DLA block is associated to the disease.
Collapse
Affiliation(s)
- H Dyggve
- Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
8
|
Dolfini D, Gatta R, Mantovani R. NF-Y and the transcriptional activation of CCAAT promoters. Crit Rev Biochem Mol Biol 2011; 47:29-49. [PMID: 22050321 DOI: 10.3109/10409238.2011.628970] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The CCAAT box promoter element and NF-Y, the transcription factor (TF) that binds to it, were among the first cis-elements and trans-acting factors identified; their interplay is required for transcriptional activation of a sizeable number of eukaryotic genes. NF-Y consists of three evolutionarily conserved subunits: a dimer of NF-YB and NF-YC which closely resembles a histone, and the "innovative" NF-YA. In this review, we will provide an update on the functional and biological features that make NF-Y a fundamental link between chromatin and transcription. The last 25 years have witnessed a spectacular increase in our knowledge of how genes are regulated: from the identification of cis-acting sequences in promoters and enhancers, and the biochemical characterization of the corresponding TFs, to the merging of chromatin studies with the investigation of enzymatic machines that regulate epigenetic states. Originally identified and studied in yeast and mammals, NF-Y - also termed CBF and CP1 - is composed of three subunits, NF-YA, NF-YB and NF-YC. The complex recognizes the CCAAT pentanucleotide and specific flanking nucleotides with high specificity (Dorn et al., 1997; Hatamochi et al., 1988; Hooft van Huijsduijnen et al, 1987; Kim & Sheffery, 1990). A compelling set of bioinformatics studies clarified that the NF-Y preferred binding site is one of the most frequent promoter elements (Suzuki et al., 2001, 2004; Elkon et al., 2003; Mariño-Ramírez et al., 2004; FitzGerald et al., 2004; Linhart et al., 2005; Zhu et al., 2005; Lee et al., 2007; Abnizova et al., 2007; Grskovic et al., 2007; Halperin et al., 2009; Häkkinen et al., 2011). The same consensus, as determined by mutagenesis and SELEX studies (Bi et al., 1997), was also retrieved in ChIP-on-chip analysis (Testa et al., 2005; Ceribelli et al., 2006; Ceribelli et al., 2008; Reed et al., 2008). Additional structural features of the CCAAT box - position, orientation, presence of multiple Transcriptional Start Sites - were previously reviewed (Dolfini et al., 2009) and will not be considered in detail here.
Collapse
Affiliation(s)
- Diletta Dolfini
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milan, Italy
| | | | | |
Collapse
|
9
|
Choi NM, Majumder P, Boss JM. Regulation of major histocompatibility complex class II genes. Curr Opin Immunol 2011; 23:81-7. [PMID: 20970972 PMCID: PMC3033992 DOI: 10.1016/j.coi.2010.09.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 09/23/2010] [Indexed: 12/11/2022]
Abstract
The major histocompatibility complex class II (MHC-II) genes are regulated at the level of transcription. Recent studies have shown that chromatin modification is critical for efficient transcription of these genes, and a number of chromatin modifying complexes recruited to MHC-II genes have been described. The MHC-II genes are segregated from each other by a series of chromatin elements, termed MHC-II insulators. Interactions between MHC-insulators and the promoters of MHC-II genes are mediated by the insulator factor CCCTC-binding factor and are critical for efficient expression. This regulatory mechanism provides a novel view of how the entire MHC-II locus is assembled architecturally and can be coordinately controlled.
Collapse
Affiliation(s)
| | | | - Jeremy M. Boss
- Department of Microbiology & Immunology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, Telephone: 404-727-5973
| |
Collapse
|
10
|
Seguín-Estévez Q, De Palma R, Krawczyk M, Leimgruber E, Villard J, Picard C, Tagliamacco A, Abbate G, Gorski J, Nocera A, Reith W. The transcription factor RFX protects MHC class II genes against epigenetic silencing by DNA methylation. THE JOURNAL OF IMMUNOLOGY 2009; 183:2545-53. [PMID: 19620312 DOI: 10.4049/jimmunol.0900376] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Classical and nonclassical MHC class II (MHCII) genes are coregulated by the transcription factor RFX (regulatory factor X) and the transcriptional coactivator CIITA. RFX coordinates the assembly of a multiprotein "enhanceosome" complex on MHCII promoters. This enhanceosome serves as a docking site for the binding of CIITA. Whereas the role of the enhanceosome in recruiting CIITA is well established, little is known about its CIITA-independent functions. A novel role of the enhanceosome was revealed by the analysis of HLA-DOA expression in human MHCII-negative B cell lines lacking RFX or CIITA. HLA-DOA was found to be reactivated by complementation of CIITA-deficient but not RFX-deficient B cells. Silencing of HLA-DOA was associated with DNA methylation at its promoter, and was relieved by the demethylating agent 5-azacytidine. Surprisingly, DNA methylation was also established at the HLA-DRA and HLA-DQB loci in RFX-deficient cells. This was a direct consequence of the absence of RFX, as it could be reversed by restoring RFX function. DNA methylation at the HLA-DOA, HLA-DRA, and HLA-DQB promoters was observed in RFX-deficient B cells and fibroblasts, but not in CIITA-deficient B cells and fibroblasts, or in wild-type fibroblasts, which lack CIITA expression. These results indicate that RFX and/or enhanceosome assembly plays a key CIITA-independent role in protecting MHCII promoters against DNA methylation. This function is likely to be crucial for retaining MHCII genes in an open chromatin configuration permissive for activation in MHCII-negative cells, such as the precursors of APC and nonprofessional APC before induction with IFN-gamma.
Collapse
|