1
|
Translin facilitates RNA polymerase II dissociation and suppresses genome instability during RNase H2- and Dicer-deficiency. PLoS Genet 2022; 18:e1010267. [PMID: 35714159 PMCID: PMC9246224 DOI: 10.1371/journal.pgen.1010267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/30/2022] [Accepted: 05/19/2022] [Indexed: 11/25/2022] Open
Abstract
The conserved nucleic acid binding protein Translin contributes to numerous facets of mammalian biology and genetic diseases. It was first identified as a binder of cancer-associated chromosomal translocation breakpoint junctions leading to the suggestion that it was involved in genetic recombination. With a paralogous partner protein, Trax, Translin has subsequently been found to form a hetero-octomeric RNase complex that drives some of its functions, including passenger strand removal in RNA interference (RNAi). The Translin-Trax complex also degrades the precursors to tumour suppressing microRNAs in cancers deficient for the RNase III Dicer. This oncogenic activity has resulted in the Translin-Trax complex being explored as a therapeutic target. Additionally, Translin and Trax have been implicated in a wider range of biological functions ranging from sleep regulation to telomere transcript control. Here we reveal a Trax- and RNAi-independent function for Translin in dissociating RNA polymerase II from its genomic template, with loss of Translin function resulting in increased transcription-associated recombination and elevated genome instability. This provides genetic insight into the longstanding question of how Translin might influence chromosomal rearrangements in human genetic diseases and provides important functional understanding of an oncological therapeutic target. Human genetic diseases, including cancers, are frequently driven by substantial changes to chromosomes, including translocations, where one arm of a chromosome is exchanged for another. The human nucleic acid binding protein Translin was first identified by its ability to bind to the chromosomal sites at which some of these translocations occur. This resulted in Translin being implicated in the mechanism that generated the translocation and thus the associated disease state. However, since its discovery there has been little evidence to directly indicate Translin does contribute to this process. It is, however, known to contribute to a number of biological functions including, amongst others, neurological regulation, sleep control, vascular stiffening, cancer immunomodulation and it has been recently identified as a potential therapeutic target in some cancers. Here we demonstrate that Translin has conserved function in genome stability maintenance when other primary pathways are defective, a function independent of a key binding partner protein, Trax. Specifically, we demonstrate that Translin contributes to minimizing the deleterious genome destabilizing effects of retaining gene expression machineries on chromosomes. This offers the first evidence for how Translin might contribute to genetic disease-causing chromosomal changes and offers insight to inform therapeutic design.
Collapse
|
2
|
Gupta A, Pillai VS, Chittela RK. Translin: A multifunctional protein involved in nucleic acid metabolism. J Biosci 2019; 44:139. [PMID: 31894120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Translin, a highly conserved, DNA/RNA binding protein, is abundantly expressed in brain, testis and in certain malignancies. It was discovered initially in the quest to find proteins that bind to alternating polypurines-polypyrimidines repeats. It has been implicated to have a role in RNA metabolism (tRNA processing, RNAi, RNA transport, etc.), transcription, DNA damage response, etc. Studies from human, mice, drosophila and yeast have revealed that it forms an octameric ring, which is important for its function. Translin is a cytoplasmic protein, but under genotoxic stress, it migrates into the nucleus, binds to the break point hot spots and therefore, thought to be involved in chromosomal translocation events as well as DNA damage related response. Its structure is known and DNA binding regions, GTP binding region and regions responsible for homotypic and heterotypic interaction are known. It forms a ball like structure with open central channel for accommodating the substrate nucleic acids. Besides this, translin protein binds to 3' and 5' UTR of certain mRNAs and probably regulates their availability for translation. It is also involved in mRNA transport and cell cycle progression. It forms a heteromeric complex with translin associated factor-X (TRAX) to form C3PO complex which is involved in RNA silencing process. Recently, it has been shown that translin is upregulated under starvation conditions in Drosophila and is involved in the integration of sleep and metabolic rate of the flies. Earlier studies classified translin as a DNA repair protein; however subsequent studies showed that it is a multifunctional protein. With this background, in this review we have summarized the translin biochemical activities, cellular function as well as structural properties of this important protein.
Collapse
Affiliation(s)
- Alka Gupta
- Molecular Damage and Repair Section, Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | | | | |
Collapse
|
3
|
Gupta A, Pillai VS, Chittela RK. Translin: A multifunctional protein involved in nucleic acid metabolism. J Biosci 2019. [DOI: 10.1007/s12038-019-9947-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Gupta A, Pillai VS, Chittela RK. Role of amino acid residues important for nucleic acid binding in human Translin. Int J Biochem Cell Biol 2019; 115:105593. [PMID: 31442605 DOI: 10.1016/j.biocel.2019.105593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/25/2019] [Accepted: 08/19/2019] [Indexed: 11/15/2022]
Abstract
Translin is a multifunctional DNA/RNA binding protein involved in DNA repair and RNA metabolism. It has two basic regions and involvement of some residues in these regions in nucleic acid binding is established experimentally. Here we report the functional role of four residues of basic region II, Y85, R86, H88, R92 and one residue of C terminal region, K193 in nucleic acid binding using substitution mutant variants. CD analysis of the mutant proteins showed that secondary structure was maintained in all the mutant proteins in comparison to wild type protein. Octameric state was maintained in all the mutants of basic region as evidenced by TEM, DLS, native PAGE and gel filtration analyses. However, K193G mutation completely abolished the octameric state of Translin protein and consequently its ability to bind ssDNA/ssRNA. The mutants of the basic region II exhibited a differential effect on nucleic acid binding, with R86A and R92G as most deleterious. Interestingly, H88A mutant showed higher nucleic acid binding affinity in comparison to the wild type Translin. An in silico analysis of the mutant variant sequences predicted all the mutations to be destabilizing, causing increase in flexibility and also leading to disruption of local interactions. The differential effect of mutations on DNA/RNA binding where octameric state is maintained could be attributed to these predicted disturbances.
Collapse
Affiliation(s)
- Alka Gupta
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Vinayaki S Pillai
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400 094, India
| | - Rajani Kant Chittela
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400 094, India.
| |
Collapse
|
5
|
Gomez-Escobar N, Almobadel N, Alzahrani O, Feichtinger J, Planells-Palop V, Alshehri Z, Thallinger GG, Wakeman JA, McFarlane RJ. Translin and Trax differentially regulate telomere-associated transcript homeostasis. Oncotarget 2017; 7:33809-20. [PMID: 27183912 PMCID: PMC5085120 DOI: 10.18632/oncotarget.9278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/19/2016] [Indexed: 02/07/2023] Open
Abstract
Translin and Trax proteins are highly conserved nucleic acid binding proteins that have been implicated in RNA regulation in a range of biological processes including tRNA processing, RNA interference, microRNA degradation during oncogenesis, spermatogenesis and neuronal regulation. Here, we explore the function of this paralogue pair of proteins in the fission yeast. Using transcript analysis we demonstrate a reciprocal mechanism for control of telomere-associated transcripts. Mutation of tfx1+ (Trax) elevates transcript levels from silenced sub-telomeric regions of the genome, but not other silenced regions, such as the peri-centromeric heterochromatin. In the case of some sub-telomeric transcripts, but not all, this elevation is dependent on the Trax paralogue, Tsn1 (Translin). In a reciprocal fashion, Tsn1 (Translin) serves to repress levels of transcripts (TERRAs) from the telomeric repeats, whereas Tfx1 serves to maintain these elevated levels. This reveals a novel mechanism for the regulation of telomeric transcripts. We extend this to demonstrate that human Translin and Trax also control telomere-associated transcript levels in human cells in a telomere-specific fashion.
Collapse
Affiliation(s)
- Natalia Gomez-Escobar
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Nasser Almobadel
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Othman Alzahrani
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Julia Feichtinger
- Computational Biotechnology and Bioinformatics Group, Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria.,Omics Center Graz, BioTechMed Graz, Graz, Austria
| | - Vicente Planells-Palop
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Zafer Alshehri
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Gerhard G Thallinger
- Computational Biotechnology and Bioinformatics Group, Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria.,Omics Center Graz, BioTechMed Graz, Graz, Austria
| | - Jane A Wakeman
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Ramsay J McFarlane
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| |
Collapse
|
6
|
Gupta A, Nair A, Ballal A, Chittela RK. C-terminal residues of rice translin are essential for octamer formation and nucleic acid binding. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:600-608. [PMID: 28797959 DOI: 10.1016/j.plaphy.2017.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/25/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
Translin is a DNA/RNA binding protein involved in DNA repair and RNA metabolism. Previously, we had shown that rice translin (221 amino acids) exhibits biochemical activities similar to that of the human translin protein. Here we report the role of the C-terminal random coil in rice translin function by analyzing truncation (after 215th residue, Tra - 215) and substitution mutant proteins (Ser216Ala, Lys217Ala, Gln218Ala, Glu219Ala). Circular Dichroism (CD) analysis of Tra-215 showed deviations in comparison to Tra-WT. Truncation abolished the DNA binding activity and octamer formation as evidenced by the absence of ring like structures from TEM analysis. CD analysis of the substitution mutant proteins showed that the secondary structure was maintained in all the mutant proteins in comparison to wild type protein. Native PAGE and TEM analysis of the substitution mutants showed that Lys217Ala mutation completely abolished the octamer formation as rings and nucleic acid binding. Glu219Ala mutation also affected oligomerization but exhibited marginal RNA binding at higher protein concentrations and interestingly, failed to bind to DNA. However, Ser216Ala and Gln218Ala substitutions did not affect above mentioned activities of translin. Our results indicate that the C-terminal residues are one of the determinants of octamer formation in rice translin, with lysine at 217th position being the most important. Therefore, in conclusion, although the C-terminal residues do not form any defined secondary structure in the translin monomer, they are definitely involved in octamer formation and hence important for its molecular function. We have attempted to find the critical residues in translin function, which will advance our understanding of translin in DNA repair process in general and of rice translin in particular.
Collapse
Affiliation(s)
- Alka Gupta
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Mumbai, 400 094, India
| | - Anuradha Nair
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Mumbai, 400 094, India
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Mumbai, 400 094, India
| | - Rajani Kant Chittela
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Mumbai, 400 094, India.
| |
Collapse
|
7
|
Pérez-Cano L, Fernández-Recio J. Dissection and prediction of RNA-binding sites on proteins. Biomol Concepts 2015; 1:345-55. [PMID: 25962008 DOI: 10.1515/bmc.2010.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
RNA-binding proteins are involved in many important regulatory processes in cells and their study is essential for a complete understanding of living organisms. They show a large variability from both structural and functional points of view. However, several recent studies performed on protein-RNA crystal structures have revealed interesting common properties. RNA-binding sites usually constitute patches of positively charged or polar residues that make most of the specific and non-specific contacts with RNA. Negatively charged or aliphatic residues are less frequent at protein-RNA interfaces, although they can also be found either forming aliphatic and positive-negative pairs in protein RNA-binding sites or contacting RNA through their main chains. Aromatic residues found within these interfaces are usually involved in specific base recognition at RNA single-strand regions. This specific recognition, in combination with structural complementarity, represents the key source for specificity in protein-RNA association. From all this knowledge, a variety of computational methods for prediction of RNA-binding sites have been developed based either on protein sequence or on protein structure. Some reported methods are really successful in the identification of RNA-binding proteins or the prediction of RNA-binding sites. Given the growing interest in the field, all these studies and prediction methods will undoubtedly contribute to the identification and comprehension of protein-RNA interactions.
Collapse
|
8
|
Eliahoo E, Marx A, Manor H, Alian A. A novel open-barrel structure of octameric translin reveals a potential RNA entryway. J Mol Biol 2014; 427:756-762. [PMID: 25433126 DOI: 10.1016/j.jmb.2014.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/10/2014] [Accepted: 11/14/2014] [Indexed: 11/20/2022]
Abstract
The single-stranded DNA (ssDNA)/RNA binding protein translin was suggested to be involved in chromosomal translocations, telomere metabolism, and mRNA transport and translation. Oligonucleotide binding surfaces map within a closed cavity of translin octameric barrels, raising the question as to how DNA/RNA gain access to this inner cavity, particularly given that, to date, none of the barrel structures reported hint to an entryway. Here, we argue against a mechanism by which translin octamers may "dissociate and reassemble" upon RNA binding and report a novel "open"-barrel structure of human translin revealing a feasible DNA/RNA entryway into the cavity. Additionally, we report that translin not only is confined to binding of ssDNA oligonucleotides, or single-stranded extensions of double-stranded DNA (dsDNA), but also can bind single-stranded sequences internally embedded in dsDNA molecules.
Collapse
Affiliation(s)
- Elad Eliahoo
- Department of Biology, Technion-Israel Institute of Technology, Haifa 320003, Israel
| | - Ailie Marx
- Department of Biology, Technion-Israel Institute of Technology, Haifa 320003, Israel
| | - Haim Manor
- Department of Biology, Technion-Israel Institute of Technology, Haifa 320003, Israel
| | - Akram Alian
- Department of Biology, Technion-Israel Institute of Technology, Haifa 320003, Israel.
| |
Collapse
|
9
|
Chittela RK, Gupta GD, Ballal A. Characterization of a plant (rice) translin and its comparative analysis with human translin. PLANTA 2014; 240:357-368. [PMID: 24863060 DOI: 10.1007/s00425-014-2092-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 04/29/2014] [Indexed: 06/03/2023]
Abstract
For the first time, a plant (rice) translin was characterized. The rice translin protein, which was octameric in native state, bound efficiently to single-stranded DNA and RNA. Translin, a DNA-/RNA-binding protein, is expressed in brain, testis and in certain malignancies. It is involved in chromosomal translocation, mRNA metabolism, transcriptional regulation and telomere protection. Studies from human, mice, drosophila and yeast have revealed that it forms an octameric ring, which is important for its function. In spite of the absence of neuronal functions and cancer processes, translin is present in plant systems, but information on plant translin is lacking. Here we report the characterization of a plant (rice) translin. Translin cDNA from O. sativa was cloned into an expression vector; protein was over-expressed in E. coli and subsequently purified to homogeneity. Circular dichroism and homology-based modeling showed that the rice translin protein was similar to the other translin proteins. Native PAGE and gel-filtration analyses showed rice translin to form an octamer and this octameric assembly was independent of disulphide bonds. Rice translin bound to single-stranded DNA sequences like human translin, but not to the double-stranded DNA. Rice translin bound more efficiently to linear DNA (with staggered ends) than open or closed circular DNA. Rice translin also bound to RNA, like its human counterpart. Rice translin displays all the characteristic properties of the translin group of proteins and does indeed qualify as a bonafide "translin" protein. To our knowledge, this is the first report wherein the translin protein from a plant source has been functionally characterized. Understanding the translin biology from plant systems will give the new insights into its functional role during plant development.
Collapse
Affiliation(s)
- Rajani Kant Chittela
- Biomolecular Damage and Repair Section, Molecular Biology Division, Bhabha Atomic Research Center, Trombay, Mumbai, 400085, India,
| | | | | |
Collapse
|
10
|
Identification of proteins that form specific complexes with the highly conserved protein Translin in Schizosaccharomyces pombe. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:767-77. [DOI: 10.1016/j.bbapap.2013.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/18/2013] [Accepted: 12/22/2013] [Indexed: 11/23/2022]
|
11
|
Roche DB, Buenavista MT, McGuffin LJ. Assessing the quality of modelled 3D protein structures using the ModFOLD server. Methods Mol Biol 2014; 1137:83-103. [PMID: 24573476 DOI: 10.1007/978-1-4939-0366-5_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Model quality assessment programs (MQAPs) aim to assess the quality of modelled 3D protein structures. The provision of quality scores, describing both global and local (per-residue) accuracy are extremely important, as without quality scores we are unable to determine the usefulness of a 3D model for further computational and experimental wet lab studies.Here, we briefly discuss protein tertiary structure prediction, along with the biennial Critical Assessment of Techniques for Protein Structure Prediction (CASP) competition and their key role in driving the field of protein model quality assessment methods (MQAPs). We also briefly discuss the top MQAPs from the previous CASP competitions. Additionally, we describe our downloadable and webserver-based model quality assessment methods: ModFOLD3, ModFOLDclust, ModFOLDclustQ, ModFOLDclust2, and IntFOLD-QA. We provide a practical step-by-step guide on using our downloadable and webserver-based tools and include examples of their application for improving tertiary structure prediction, ligand binding site residue prediction, and oligomer predictions.
Collapse
Affiliation(s)
- Daniel Barry Roche
- Genoscope, Institut de Génomique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Evry, France
| | | | | |
Collapse
|
12
|
Pérez-Cano L, Eliahoo E, Lasker K, Wolfson HJ, Glaser F, Manor H, Bernadó P, Fernández-Recio J. Conformational transitions in human translin enable nucleic acid binding. Nucleic Acids Res 2013; 41:9956-66. [PMID: 23980029 PMCID: PMC3834833 DOI: 10.1093/nar/gkt765] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Translin is a highly conserved RNA- and DNA-binding protein that plays essential roles in eukaryotic cells. Human translin functions as an octamer, but in the octameric crystallographic structure, the residues responsible for nucleic acid binding are not accessible. Moreover, electron microscopy data reveal very different octameric configurations. Consequently, the functional assembly and the mechanism of nucleic acid binding by the protein remain unclear. Here, we present an integrative study combining small-angle X-ray scattering (SAXS), site-directed mutagenesis, biochemical analysis and computational techniques to address these questions. Our data indicate a significant conformational heterogeneity for translin in solution, formed by a lesser-populated compact octameric state resembling the previously solved X-ray structure, and a highly populated open octameric state that had not been previously identified. On the other hand, our SAXS data and computational analyses of translin in complex with the RNA oligonucleotide (GU)12 show that the internal cavity found in the octameric assemblies can accommodate different nucleic acid conformations. According to this model, the nucleic acid binding residues become accessible for binding, which facilitates the entrance of the nucleic acids into the cavity. Our data thus provide a structural basis for the functions that translin performs in RNA metabolism and transport.
Collapse
Affiliation(s)
- Laura Pérez-Cano
- Joint BSC-IRB research programme in Computational Biology, Barcelona Supercomputing Center (BSC), Jordi Girona 29, Barcelona 08034, Spain, Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel, Blavatnik School of Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel, Bioinformatics Knowledge Unit, The Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel and Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université Montpellier 1 and 2, F-34090 Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Parizotto EA, Lowe ED, Parker JS. Structural basis for duplex RNA recognition and cleavage by Archaeoglobus fulgidus C3PO. Nat Struct Mol Biol 2013; 20:380-6. [PMID: 23353787 PMCID: PMC3597040 DOI: 10.1038/nsmb.2487] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/10/2012] [Indexed: 01/01/2023]
Abstract
Oligomeric complexes of Trax and Translin proteins, known as C3POs, participate in a variety of eukaryotic nucleic acid metabolism pathways including RNAi and tRNA processing. In RNAi in humans and Drosophila, C3PO activates pre-RISC by removing the passenger strand of the siRNA precursor duplex using nuclease activity present in Trax. It is not known how C3POs engage with nucleic acid substrates. Here we identify a single protein from Archaeoglobus fulgidus that assembles into an octamer with striking similarity to human C3PO. The structure in complex with duplex RNA reveals that the octamer entirely encapsulates a single thirteen base-pair RNA duplex inside a large inner cavity. Trax-like subunit catalytic sites target opposite strands of the duplex for cleavage, separated by seven base pairs. The structure provides insight into the mechanism of RNA recognition and cleavage by an archaeal C3PO-like complex.
Collapse
|
14
|
Molecular Evolution of Translin Superfamily Proteins Within the Genomes of Eubacteria, Archaea and Eukaryotes. J Mol Evol 2012. [DOI: 10.1007/s00239-012-9534-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Computational prediction of protein-protein complexes. BMC Res Notes 2012; 5:495. [PMID: 22958278 PMCID: PMC3599296 DOI: 10.1186/1756-0500-5-495] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 07/05/2012] [Indexed: 11/30/2022] Open
Abstract
Background Protein-protein interactions form the core of several biological processes. With protein-protein interfaces being considered as drug targets, studies on their interactions and molecular mechanisms are gaining ground. As the number of protein complexes in databases is scarce as compared to a spectrum of independent protein molecules, computational approaches are being considered for speedier model derivation and assessment of a plausible complex. In this study, a good approach towards in silico generation of protein-protein heterocomplex and identification of the most probable complex among thousands of complexes thus generated is documented. This approach becomes even more useful in the event of little or no binding site information between the interacting protein molecules. Findings A plausible protein-protein hetero-complex was fished out from 10 docked complexes which are a representative set of complexes obtained after clustering of 2000 generated complexes using protein-protein docking softwares. The interfacial area for this complex was predicted by two “hotspot” prediction programs employing different algorithms. Further, this complex had the lowest energy and most buried surface area of all the complexes with the same interfacial residues. Conclusions For the generation of a plausible protein heterocomplex, various software tools were employed. Prominent are the protein-protein docking methods, prediction of ‘hotspots’ which are the amino acid residues likely to be in an interface and measurement of buried surface area of the complexes. Consensus generated in their predictions lends credence to the use of the various softwares used.
Collapse
|
16
|
Kumar V, Gupta GD. Low-resolution structure of Drosophila translin. FEBS Open Bio 2012; 2:37-46. [PMID: 23650579 PMCID: PMC3642112 DOI: 10.1016/j.fob.2012.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 03/06/2012] [Accepted: 03/06/2012] [Indexed: 11/27/2022] Open
Abstract
Crystals of native Drosophila melanogaster translin diffracted to 7 Å resolution. Reductive methylation of the protein improved crystal quality. The native and methylated proteins showed similar profiles in size-exclusion chromatography analyses but the methylated protein displayed reduced DNA-binding activity. Crystals of the methylated protein diffracted to 4.2 Å resolution at BM14 of the ESRF synchrotron. Crystals with 49% solvent content belonged to monoclinic space group P21 with eight protomers in the asymmetric unit. Only 2% of low-resolution structures with similar low percentage solvent content were found in the PDB. The crystal structure, solved by molecular replacement method, refined to R work (R free) of 0.24 (0.29) with excellent stereochemistry. The crystal structure clearly shows that drosophila protein exists as an octamer, and not as a decamer as expected from gel-filtration elution profiles. The similar octameric quaternary fold in translin orthologs and in translin-TRAX complexes suggests an up-down dimer as the basic structural subunit of translin-like proteins. The drosophila oligomer displays asymmetric assembly and increased radius of gyration that accounts for the observed differences between the elution profiles of human and drosophila proteins on gel-filtration columns. This study demonstrates clearly that low-resolution X-ray structure can be useful in understanding complex biological oligomers.
Collapse
Affiliation(s)
- Vinay Kumar
- High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | | |
Collapse
|
17
|
Identification of nucleic acid binding sites on translin-associated factor X (TRAX) protein. PLoS One 2012; 7:e33035. [PMID: 22427937 PMCID: PMC3299731 DOI: 10.1371/journal.pone.0033035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 02/08/2012] [Indexed: 11/19/2022] Open
Abstract
Translin and TRAX proteins play roles in very important cellular processes such as DNA recombination, spatial and temporal expression of mRNA, and in siRNA processing. Translin forms a homomeric nucleic acid binding complex and binds to ssDNA and RNA. However, a mutant translin construct that forms homomeric complex lacking nucleic acid binding activity is able to form fully active heteromeric translin-TRAX complex when co-expressed with TRAX. A substantial progress has been made in identifying translin sites that mediate its binding activity, while TRAX was thought not to bind DNA or RNA on its own. We here for the first time demonstrate nucleic acid binding to TRAX by crosslinking radiolabeled ssDNA to heteromeric translin-TRAX complex using UV-laser. The TRAX and translin, photochemically crosslinked with ssDNA, were individually detected on SDS-PAGE. We mutated two motifs in TRAX and translin, designated B2 and B3, to help define the nucleic acid binding sites in the TRAX sequence. The most pronounced effect was observed in the mutants of B3 motif that impaired nucleic acid binding activity of the heteromeric complexes. We suggest that both translin and TRAX are binding competent and contribute to the nucleic acid binding activity.
Collapse
|
18
|
McDevitt ME, Lambert LA. Molecular evolution and selection pressure in alpha-class carbonic anhydrase family members. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1854-61. [DOI: 10.1016/j.bbapap.2011.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 06/30/2011] [Accepted: 07/04/2011] [Indexed: 12/18/2022]
|
19
|
Characterization of voltage-dependent calcium channel blocking peptides from the venom of the tarantula Grammostola rosea. Toxicon 2011; 58:265-76. [PMID: 21740921 DOI: 10.1016/j.toxicon.2011.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 06/13/2011] [Accepted: 06/15/2011] [Indexed: 12/22/2022]
Abstract
Voltage-dependent calcium channel blocking peptides were purified and sequenced from the venom of the tarantula, Grammostola rosea. cDNAs encoding the peptide sequences were cloned from the venom gland cDNA library. The electrophysiological effects of the peptides on several types of voltage-dependent calcium channels were evaluated using a Xenopus laevis oocyte expression system. A peptide contained in one of the HPLC peak fractions inhibited P/Q type voltage-dependent calcium channels (Ca(v)2.1). The amino acid sequence of this peptide is identical to that of ω-grammotoxin SIA. A peptide from another discrete peak, which is identical to GsAFII except for one tryptophan residue in the C-terminus, inhibited L-type voltage-dependent calcium channels (Ca(v)1.2). A novel peptide, named GTx1-15 (Accession number, AB201016), shows 76.5% sequence homology with the sodium channel blocker phrixotoxin 3, however, GTx1-15 preferentially inhibited T-type voltage-dependent calcium channels (Ca(v)3.1). In silico secondary and tertiary structure prediction revealed that GTx1-15 and sodium channel blockers such as hainantoxin-IV, phrixotoxin 3, and ceratotoxin 2 show very similar β-strand composition, distribution of Optimal Docking Areas (continuous surface patches likely to be involved in protein-protein interactions), and surface electrostatic potential. These findings suggest that these peptide toxins evolved from common ancestors by gene duplication to maintain surface atmospheres appropriate for interaction with low-voltage-dependent ion channels.
Collapse
|
20
|
Tian Y, Simanshu DK, Ascano M, Diaz-Avalos R, Park AY, Juranek SA, Rice WJ, Yin Q, Robinson CV, Tuschl T, Patel DJ. Multimeric assembly and biochemical characterization of the Trax-translin endonuclease complex. Nat Struct Mol Biol 2011; 18:658-64. [PMID: 21552261 PMCID: PMC3109869 DOI: 10.1038/nsmb.2069] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 04/13/2011] [Indexed: 11/08/2022]
Abstract
Trax-translin heteromers, also known as C3PO, have been proposed to activate the RNA-induced silencing complex (RISC) by facilitating endonucleolytic cleavage of the siRNA passenger strand. We report on the crystal structure of hexameric Drosophila C3PO formed by truncated translin and Trax, along with electron microscopic and mass spectrometric studies on octameric C3PO formed by full-length translin and Trax. Our studies establish that Trax adopts the translin fold, possesses catalytic centers essential for C3PO's endoRNase activity and interacts extensively with translin to form an octameric assembly. The catalytic pockets of Trax subunits are located within the interior chamber of the octameric scaffold. Truncated C3PO, like full-length C3PO, shows endoRNase activity that leaves 3'-hydroxyl-cleaved ends. We have measured the catalytic activity of C3PO and shown it to cleave almost stoichiometric amounts of substrate per second.
Collapse
Affiliation(s)
- Yuan Tian
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA. Graduate Program in Neuroscience, Weill Medical College of Cornell University, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Swevers L, Liu J, Huvenne H, Smagghe G. Search for limiting factors in the RNAi pathway in silkmoth tissues and the Bm5 cell line: the RNA-binding proteins R2D2 and Translin. PLoS One 2011; 6:e20250. [PMID: 21637842 PMCID: PMC3102679 DOI: 10.1371/journal.pone.0020250] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 04/28/2011] [Indexed: 11/30/2022] Open
Abstract
RNA interference (RNAi), an RNA-dependent gene silencing process that is initiated by double-stranded RNA (dsRNA) molecules, has been applied with variable success in lepidopteran insects, in contrast to the high efficiency achieved in the coleopteran Tribolium castaneum. To gain insight into the factors that determine the efficiency of RNAi, a survey was carried out to check the expression of factors that constitute the machinery of the small interfering RNA (siRNA) and microRNA (miRNA) pathways in different tissues and stages of the silkmoth, Bombyx mori. It was found that the dsRNA-binding protein R2D2, an essential component in the siRNA pathway in Drosophila, was expressed at minimal levels in silkmoth tissues. The silkmoth-derived Bm5 cell line was also deficient in expression of mRNA encoding full-length BmTranslin, an RNA-binding factor that has been shown to stimulate the efficiency of RNAi. However, despite the lack of expression of the RNA-binding proteins, silencing of a luciferase reporter gene was observed by co-transfection of luc dsRNA using a lipophilic reagent. In contrast, gene silencing was not detected when the cells were soaked in culture medium supplemented with dsRNA. The introduction of an expression construct for Tribolium R2D2 (TcR2D2) did not influence the potency of luc dsRNA to silence the luciferase reporter. Immunostaining experiments further showed that both TcR2D2 and BmTranslin accumulated at defined locations within the cytoplasm of transfected cells. Our results offer a first evaluation of the expression of the RNAi machinery in silkmoth tissues and Bm5 cells and provide evidence for a functional RNAi response to intracellular dsRNA in the absence of R2D2 and Translin. The failure of TcR2D2 to stimulate the intracellular RNAi pathway in Bombyx cells is discussed.
Collapse
Affiliation(s)
- Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biology, National Centre for Scientific Research “Demokritos,” Athens, Greece
- * E-mail: (LS); (GS)
| | - Jisheng Liu
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Hanneke Huvenne
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- * E-mail: (LS); (GS)
| |
Collapse
|
22
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
23
|
Biological roles of translin and translin-associated factor-X: RNA metabolism comes to the fore. Biochem J 2010; 429:225-34. [PMID: 20578993 DOI: 10.1042/bj20100273] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Translin, and its binding partner protein TRAX (translin-associated factor-X) are a paralogous pair of conserved proteins, which have been implicated in a broad spectrum of biological activities, including cell growth regulation, mRNA processing, spermatogenesis, neuronal development/function, genome stability regulation and carcinogenesis, although their precise role in some of these processes remains unclear. Furthermore, translin (with or without TRAX) has nucleic-acid-binding activity and it is apparent that controlling nucleic acid metabolism and distribution are central to the biological role(s) of this protein and its partner TRAX. More recently, translin and TRAX have together been identified as enhancer components of an RNAi (RNA interference) pathway in at least one organism and this might provide critical insight into the biological roles of this enigmatic partnership. In the present review we discuss the biological and the biochemical properties of these proteins that indicate that they play a central and important role in eukaryotic cell biology.
Collapse
|