1
|
Bresser K, Popović B, Wolkers MC. What's in a name: the multifaceted function of DNA- and RNA-binding proteins in T cell responses. FEBS J 2025; 292:1853-1867. [PMID: 39304985 PMCID: PMC12001178 DOI: 10.1111/febs.17273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/12/2024] [Accepted: 09/02/2024] [Indexed: 04/17/2025]
Abstract
Cellular differentiation allows cells to transition between different functional states and adapt to various environmental cues. The diversity and plasticity of this process is beautifully exemplified by T cells responding to pathogens, which undergo highly specialized differentiation tailored to the ongoing infection. Such antigen-induced T cell differentiation is regulated at the transcriptional level by DNA-binding proteins and at the post-transcriptional level by RNA-binding proteins. Although traditionally defined as separate protein classes, a growing body of evidence indicates an overlap between these two groups of proteins, collectively coined DNA/RNA-binding proteins (DRBPs). In this review, we describe how DRBPs might bind both DNA and RNA, discuss the putative functional relevance of this dual binding, and provide an exploratory analysis into characteristics that are associated with DRBPs. To exemplify the significance of DRBPs in T cell biology, we detail the activity of several established and putative DRBPs during the T cell response. Finally, we highlight several methodologies that allow untangling of the distinct functionalities of DRBPs at the DNA and RNA level, including key considerations to take into account when applying such methods.
Collapse
Affiliation(s)
- Kaspar Bresser
- T Cell Differentiation Lab, Department of ResearchSanquin Blood Supply FoundationAmsterdamThe Netherlands
- Landsteiner LaboratoryAmsterdam UMC, University of AmsterdamThe Netherlands
- Cancer Immunology, Cancer Center AmsterdamAmsterdam Institute for Infection & ImmunityThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Branka Popović
- T Cell Differentiation Lab, Department of ResearchSanquin Blood Supply FoundationAmsterdamThe Netherlands
- Landsteiner LaboratoryAmsterdam UMC, University of AmsterdamThe Netherlands
- Cancer Immunology, Cancer Center AmsterdamAmsterdam Institute for Infection & ImmunityThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Monika C. Wolkers
- T Cell Differentiation Lab, Department of ResearchSanquin Blood Supply FoundationAmsterdamThe Netherlands
- Landsteiner LaboratoryAmsterdam UMC, University of AmsterdamThe Netherlands
- Cancer Immunology, Cancer Center AmsterdamAmsterdam Institute for Infection & ImmunityThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| |
Collapse
|
2
|
An H, Yu X, Li J, Shi F, Liu Y, Shu M, Li Z, Li X, Li W, Chen J. Interleukin-2 enhancer binding factor 2 negatively regulates the replication of duck hepatitis A virus type 1 by disrupting the RNA-dependent RNA polymerase activity of 3D polymerase. Vet Res 2024; 55:40. [PMID: 38532469 DOI: 10.1186/s13567-024-01294-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
The interaction between viral components and cellular proteins plays a crucial role in viral replication. In a previous study, we showed that the 3'-untranslated region (3'-UTR) is an essential element for the replication of duck hepatitis A virus type 1 (DHAV-1). However, the underlying mechanism is still unclear. To gain a deeper understanding of this mechanism, we used an RNA pull-down and a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry assay to identify new host factors that interact with the 3'-UTR. We selected interleukin-2 enhancer binding factor 2 (ILF2) for further analysis. We showed that ILF2 interacts specifically with both the 3'-UTR and the 3D polymerase (3Dpol) of DHAV-1 through in vitro RNA pull-down and co-immunoprecipitation assays, respectively. We showed that ILF2 negatively regulates viral replication in duck embryo fibroblasts (DEFs), and that its overexpression in DEFs markedly suppresses DHAV-1 replication. Conversely, ILF2 silencing resulted in a significant increase in viral replication. In addition, the RNA-dependent RNA polymerase (RdRP) activity of 3Dpol facilitated viral replication by enhancing viral RNA translation efficiency, whereas ILF2 disrupted the role of RdRP in viral RNA translation efficiency to suppress DHAV-1 replication. At last, DHAV-1 replication markedly suppressed the expression of ILF2 in DEFs, duck embryo hepatocytes, and different tissues of 1 day-old ducklings. A negative correlation was observed between ILF2 expression and the viral load in primary cells and different organs of young ducklings, suggesting that ILF2 may affect the viral load both in vitro and in vivo.
Collapse
Affiliation(s)
- Hao An
- School of Public Health, Weifang Medical University, Weifang, 261042, Shandong, China
| | - Xiaoli Yu
- School of Public Health, Weifang Medical University, Weifang, 261042, Shandong, China
| | - Jing Li
- School of Public Health, Weifang Medical University, Weifang, 261042, Shandong, China
| | - Fuyan Shi
- School of Public Health, Weifang Medical University, Weifang, 261042, Shandong, China
| | - Yumei Liu
- School of Public Health, Weifang Medical University, Weifang, 261042, Shandong, China
| | - Ming Shu
- School of Public Health, Weifang Medical University, Weifang, 261042, Shandong, China
| | - Zihan Li
- School of Public Health, Weifang Medical University, Weifang, 261042, Shandong, China
| | - Xiaohong Li
- School of Public Health, Weifang Medical University, Weifang, 261042, Shandong, China
| | - Wanwei Li
- School of Public Health, Weifang Medical University, Weifang, 261042, Shandong, China
| | - Junhao Chen
- School of Public Health, Weifang Medical University, Weifang, 261042, Shandong, China.
| |
Collapse
|
3
|
Wang F, Hu Y, Wang H, Hu P, Xiong H, Zeng Z, Han S, Wang D, Wang J, Zhao Y, Huang Y, Zhuo W, Lv G, Zhao G. LncRNA FTO-IT1 promotes glycolysis and progression of hepatocellular carcinoma through modulating FTO-mediated N6-methyladenosine modification on GLUT1 and PKM2. J Exp Clin Cancer Res 2023; 42:267. [PMID: 37840133 PMCID: PMC10578010 DOI: 10.1186/s13046-023-02847-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (LncRNAs) have been extensively studied to play essential roles in tumor progression. However, more in-depth studies are waiting to be solved on how lncRNAs regulate the progression of hepatocellular carcinoma (HCC). METHODS Different expression levels of lncRNAs in HCC cells were compared by analysis of Gene Expression Omnibus and The Cancer Genome Atlas databases. The effects of lncRNA FTO Intronic Transcript 1 (FTO-IT1) on HCC cells were assessed by gain- and loss-of-function experiments. Colony formation assay, Edu assay, glucose uptake and lactic acid production assay were performed to evaluate the regulation of proliferation and glycolysis of HCC cells by FTO-IT1. The binding between protein interleukin enhancer binding factor 2/3 (ILF2/ILF3) and FTO-IT1 was determined by RNA pull-down, mass spectroscopy and RNA immunoprecipitation experiments. RNA stability assay, quantitative reverse transcription PCR and Western blot were employed to determine the regulatory mechanisms of FTO-IT1 on fat mass and obesity-associated (FTO). Methylated RNA immunoprecipitation assay was used to assessed the regulation of key enzymes of glycolysis by FTO. The role of FTO-IT1/FTO in vivo was confirmed via xenograft tumor model. RESULTS LncRNA FTO-IT1, an intronic region transcript of FTO gene, was highly expressed in HCC and associated with poor prognosis of patients with HCC. FTO-IT1 was related to proliferation and glycolysis of HCC cells, and contributed to the malignant progression of HCC by promoting glycolysis. Mechanistically, FTO-IT1 induced stabilization of FTO mRNA by recruiting ILF2/ILF3 protein complex to 3'UTR of FTO mRNA. As a demethylase for N6-methyladenosine (m6A), FTO decreased m6A modification on mRNAs of glycolysis associated genes including GLUT1, PKM2, and c-Myc which alleviated the YTH N6-methyladenosine RNA binding protein 2 (YTHDF2)-mediated mRNA degradation. Therefore, the upregulated expression of FTO-IT1 leaded to overexpression of GLUT1, PKM2, and c-Myc by which enhanced glycolysis of HCC. Meanwhile, it was found that c-Myc transcriptional regulated expression of FTO-IT1 by binding to its promoter area under hypo-glucose condition, forming a reciprocal loop between c-Myc and FTO-IT1. CONCLUSIONS This study identified an important role of the FTO-IT1/FTO axis mediated m6A modification of glycolytic genes contributed to glycolysis and tumorigenesis of HCC, and FTO-IT1 might be served as a new therapeutic target for HCC.
Collapse
Affiliation(s)
- Fan Wang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Yuhang Hu
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Hongda Wang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Ping Hu
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Hewei Xiong
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Zhu Zeng
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Shengbo Han
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Decai Wang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Jie Wang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Yong Zhao
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Yan Huang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Wenfeng Zhuo
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Guozheng Lv
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Gang Zhao
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
4
|
Maharati A, Samsami Y, Latifi H, Tolue Ghasaban F, Moghbeli M. Role of the long non-coding RNAs in regulation of Gemcitabine response in tumor cells. Cancer Cell Int 2023; 23:168. [PMID: 37580768 PMCID: PMC10426205 DOI: 10.1186/s12935-023-03004-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/26/2023] [Indexed: 08/16/2023] Open
Abstract
Chemotherapy is widely used as one of the first line therapeutic methods in cancer patients. However, chemotherapeutic resistance is one of the most common problems in cancer patients, which leads to the therapeutic failure and tumor relapse. Considering the side effects of chemotherapy drugs in normal tissues, it is required to investigate the molecular mechanisms involved in drug resistance to improve the therapeutic strategies in cancer patients. Long non-coding RNAs (lncRNAs) have pivotal roles in regulation of cellular processes associated with drug resistance. LncRNAs deregulations have been frequently reported in a wide range of chemo-resistant tumors. Gemcitabine (GEM) as a nucleoside analog has a wide therapeutic application in different cancers. However, GEM resistance is considered as a therapeutic challenge. Considering the role of lncRNAs in the occurrence of GEM resistance, in the present review we discussed the molecular mechanisms of lncRNAs in regulation of GEM response among cancer patients. It has been reported that lncRNAs have mainly an oncogenic role as the inducers of GEM resistance through direct or indirect regulation of transcription factors, autophagy, polycomb complex, and signaling pathways such as PI3K/AKT, MAPK, WNT, JAK/STAT, and TGF-β. This review paves the way to present the lncRNAs as non-invasive markers to predict GEM response in cancer patients. Therefore, lncRNAs can be introduced as the efficient markers to reduce the possible chemotherapeutic side effects in GEM resistant cancer patients and define a suitable therapeutic strategy among these patients.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yalda Samsami
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanieh Latifi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Tolue Ghasaban
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Haque N, Will A, Cook AG, Hogg JR. A network of DZF proteins controls alternative splicing regulation and fidelity. Nucleic Acids Res 2023; 51:6411-6429. [PMID: 37144502 PMCID: PMC10325889 DOI: 10.1093/nar/gkad351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 04/12/2023] [Accepted: 05/03/2023] [Indexed: 05/06/2023] Open
Abstract
Proteins containing DZF (domain associated with zinc fingers) modules play important roles throughout gene expression, from transcription to translation. Derived from nucleotidyltransferases but lacking catalytic residues, DZF domains serve as heterodimerization surfaces between DZF protein pairs. Three DZF proteins are widely expressed in mammalian tissues, ILF2, ILF3 and ZFR, which form mutually exclusive ILF2-ILF3 and ILF2-ZFR heterodimers. Using eCLIP-Seq, we find that ZFR binds across broad intronic regions to regulate the alternative splicing of cassette and mutually exclusive exons. ZFR preferentially binds dsRNA in vitro and is enriched on introns containing conserved dsRNA elements in cells. Many splicing events are similarly altered upon depletion of any of the three DZF proteins; however, we also identify independent and opposing roles for ZFR and ILF3 in alternative splicing regulation. Along with widespread involvement in cassette exon splicing, the DZF proteins control the fidelity and regulation of over a dozen highly validated mutually exclusive splicing events. Our findings indicate that the DZF proteins form a complex regulatory network that leverages dsRNA binding by ILF3 and ZFR to modulate splicing regulation and fidelity.
Collapse
Affiliation(s)
- Nazmul Haque
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD20892, USA
| | - Alexander Will
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Atlanta G Cook
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - J Robert Hogg
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD20892, USA
| |
Collapse
|
6
|
The Polyvalent Role of NF90 in RNA Biology. Int J Mol Sci 2022; 23:ijms232113584. [DOI: 10.3390/ijms232113584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Double-stranded RNA-binding proteins (dsRBPs) are major players in the regulation of gene expression patterns. Among them, Nuclear Factor 90 (NF90) has a plethora of well-known functions in viral infection, transcription, and translation as well as RNA stability and degradation. In addition, NF90 has been identified as a regulator of microRNA (miRNA) maturation by competing with Microprocessor for the binding of pri-miRNAs in the nucleus. NF90 was recently shown to control the biogenesis of a subset of human miRNAs, which ultimately influences, not only the abundance, but also the expression of the host gene and the fate of the mRNA target repertoire. Moreover, recent evidence suggests that NF90 is also involved in RNA-Induced Silencing Complex (RISC)-mediated silencing by binding to target mRNAs and controlling their translation and degradation. Here, we review the many, and growing, functions of NF90 in RNA biology, with a focus on the miRNA pathway and RISC-mediated gene silencing.
Collapse
|
7
|
Shang R, Kretov DA, Adamson SI, Treiber T, Treiber N, Vedanayagam J, Chuang J, Meister G, Cifuentes D, Lai E. Regulated dicing of pre-mir-144 via reshaping of its terminal loop. Nucleic Acids Res 2022; 50:7637-7654. [PMID: 35801921 PMCID: PMC9303283 DOI: 10.1093/nar/gkac568] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/10/2022] [Accepted: 06/18/2022] [Indexed: 11/17/2022] Open
Abstract
Although the route to generate microRNAs (miRNAs) is often depicted as a linear series of sequential and constitutive cleavages, we now appreciate multiple alternative pathways as well as diverse strategies to modulate their processing and function. Here, we identify an unusually profound regulatory role of conserved loop sequences in vertebrate pre-mir-144, which are essential for its cleavage by the Dicer RNase III enzyme in human and zebrafish models. Our data indicate that pre-mir-144 dicing is positively regulated via its terminal loop, and involves the ILF3 complex (NF90 and its partner NF45/ILF2). We provide further evidence that this regulatory switch involves reshaping of the pre-mir-144 apical loop into a structure that is appropriate for Dicer cleavage. In light of our recent findings that mir-144 promotes the nuclear biogenesis of its neighbor mir-451, these data extend the complex hierarchy of nuclear and cytoplasmic regulatory events that can control the maturation of clustered miRNAs.
Collapse
Affiliation(s)
- Renfu Shang
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Dmitry A Kretov
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Scott I Adamson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Thomas Treiber
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Nora Treiber
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Jeffrey Vedanayagam
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Gunter Meister
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Daniel Cifuentes
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| |
Collapse
|
8
|
Zhao M, Wang Y, Tan F, Liu L, Hou X, Fan C, Tang L, Mo Y, Wang Y, Yan Q, Gong Z, Li Z, Liao Q, Guo C, Huang H, Zeng X, Li G, Zeng Z, Xiong W, Wang F. Circular RNA circCCNB1 inhibits the migration and invasion of nasopharyngeal carcinoma through binding and stabilizing TJP1 mRNA. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2233-2247. [PMID: 35471687 DOI: 10.1007/s11427-021-2089-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/12/2022] [Indexed: 10/18/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor that usually occurs in people from Southeast Asia and Southern China. NPC is prone to migration and invasion, leading to poor prognosis. A large number of circular RNAs (circRNAs) exacerbate the process of metastasis in NPC; however, their underlying mechanisms remain unclear. We found that the circular RNA circCCNB1, encoded by the oncogene CCNB1, was downregulated in NPC biopsies and cell lines. In vitro assays show that circCCNB1 inhibits NPC cell migration and invasion. Moreover, circCCNB1 induces a protein, nuclear factor 90 (NF90), to bind and prolong the half-life of tight junction protein 1 (TJP1) mRNA. Upregulation of TJP1 enhances tight junctions between cancer cells and inhibits NPC cell migration and invasion. This study reveals a novel biological function of circCCNB1 in the migration and invasion of NPC by enhancing the tight junctions of cancer cells by binding to NF90 proteins and TJP1 mRNA, and may provide a potential therapeutic target for NPC.
Collapse
Affiliation(s)
- Mengyao Zhao
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410083, China
| | - Yian Wang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410083, China
| | - Fenghua Tan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410083, China
| | - Lingyun Liu
- Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, 421009, China
| | - Xiangchan Hou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410083, China
| | - Chunmei Fan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410083, China
| | - Le Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410083, China
| | - Yongzhen Mo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410083, China
| | - Yumin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410083, China
| | - Qijia Yan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410083, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zheng Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410083, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410083, China
| | - He Huang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410083, China
| | - Xi Zeng
- Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, 421009, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410083, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410083, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410083, China.
| | - Fuyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410083, China.
| |
Collapse
|
9
|
Lodde V, Floris M, Munk R, Martindale JL, Piredda D, Napodano CMP, Cucca F, Uzzau S, Abdelmohsen K, Gorospe M, Noh JH, Idda ML. Systematic identification of NF90 target RNAs by iCLIP analysis. Sci Rep 2022; 12:364. [PMID: 35013429 PMCID: PMC8748789 DOI: 10.1038/s41598-021-04101-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/01/2021] [Indexed: 12/26/2022] Open
Abstract
RNA-binding proteins (RBPs) interact with and determine the fate of many cellular RNAs directing numerous essential roles in cellular physiology. Nuclear Factor 90 (NF90) is an RBP encoded by the interleukin enhancer-binding factor 3 (ILF3) gene that has been found to influence RNA metabolism at several levels, including pre-RNA splicing, mRNA turnover, and translation. To systematically identify the RNAs that interact with NF90, we carried out iCLIP (individual-nucleotide resolution UV crosslinking and immunoprecipitation) analysis in the human embryonic fibroblast cell line HEK-293. Interestingly, many of the identified RNAs encoded proteins involved in the response to viral infection and RNA metabolism. We validated a subset of targets and investigated the impact of NF90 on their expression levels. Two of the top targets, IRF3 and IRF9 mRNAs, encode the proteins IRF3 and IRF9, crucial regulators of the interferon pathway involved in the SARS-CoV-2 immune response. Our results support a role for NF90 in modulating key genes implicated in the immune response and offer insight into the immunological response to the SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Valeria Lodde
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Matteo Floris
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Institute for Genetic and Biomedical Research (IRGB-CNR), Sassari, Italy
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Davide Piredda
- Intensive Care Unit, Emergency Department, AOU Sassari, Sassari, Italy
| | | | - Francesco Cucca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Institute for Genetic and Biomedical Research (IRGB-CNR), Sassari, Italy
| | - Sergio Uzzau
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Microbiology and Virology Unit, Diagnostic Department, AOU Sassari, Sassari, Italy
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Ji Heon Noh
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
- Department of Biochemistry, Chungnam National University, Daejeon, Korea
| | - M Laura Idda
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA.
- Institute for Genetic and Biomedical Research (IRGB-CNR), Sassari, Italy.
| |
Collapse
|
10
|
The role of long noncoding RNAs in regulating invasion and metastasis of malignant tumors. Anticancer Drugs 2021; 31:319-325. [PMID: 32011368 DOI: 10.1097/cad.0000000000000899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Long noncoding RNAs (lncRNAs) are a group of non-protein-coding transcripts exceeding 200 nucleotides in length, which are emerging as key players in various fundamental biological processes. Furthermore, it is increasingly recognized that mutation and dysregulation of lncRNAs contribute importantly to a variety of human diseases, particularly human cancers. Previous studies have revealed that altered lncRNAs have a close association with tumorigenesis, metastasis, prognosis and diagnosis of cancers. The present review aims to exhibit a brief overview of the associated reports of lncRNAs in cancers, including colorectal cancer, gastric cancer, lung adenocarcinoma, nasopharyngeal carcinoma, cervical cancer and esophageal cancer. Altogether, we argue that lncRNAs have potential as new biomarkers in cancer prognosis and diagnosis, and as promising therapeutic targets for the prevention and treatment of human cancers.
Collapse
|
11
|
Cheung Y, Wu Z, Garcia-Barcelo MM, Tam PKH, Ma ACH, Lui VCH. Deletion of interleukin enhancer binding factor 2 (ILF2) resulted in defective biliary development and bile flow blockage. J Pediatr Surg 2021; 56:352-359. [PMID: 32709532 DOI: 10.1016/j.jpedsurg.2020.06.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/29/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Biliary atresia (BA) is a devastating obstructive bile duct disease of newborns. BA has the highest incidence in Asians (1/5000), and its pathogenesis is unclear. We identified BA-private rare copy number variants (CNVs; 22 duplications and 6 deletions). ILF2 gene locates in the chromosome region (Chr1:153410347-153,634,058) which was deleted in a nonsyndromic BA patient. However, it is still not known whether ILF2 plays a role in hepatobiliary development and its deletion impacts on the bile duct development. METHODS To investigate if ILF2 is required for biliary development, we knock-out the zebrafish homologs of ILF2 by CRISPR/Cas9 approach, and discover that deletion of ILF2 causes a defective biliary development and a lack of bile flow from the liver to the gall bladder in zebrafish, which is a resemblance of phenotypes of BA. RESULTS Our data indicate that ILF2 gene is required for biliary development; deletion of ILF2 impairs bile duct development and could contribute to BA pathogenesis. This will be the first study to functionally evaluate the genes interfered by BA-private CNVs in hepatobiliary development and in BA pathogenesis. CONCLUSIONS Such functional study may reveal the potential value of these BA-private CNVs in the disease pathogenesis for BA. LEVEL OF EVIDENCE N/A (animal and laboratory study).
Collapse
Affiliation(s)
- Yim Cheung
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Zhongluan Wu
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Maria-Mercedes Garcia-Barcelo
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong; Dr. Li Dak-Sum Research Centre, The University of Hong Kong-Karolinska Institutet Collaboration in Regenerative Medicine, 5/F The Hong Kong Jockey Club Building for Interdisciplinary Research, The University of Hong Kong 5 Sassoon Road, Pokfulam, Hong Kong
| | - Paul Kwong Hang Tam
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong; Dr. Li Dak-Sum Research Centre, The University of Hong Kong-Karolinska Institutet Collaboration in Regenerative Medicine, 5/F The Hong Kong Jockey Club Building for Interdisciplinary Research, The University of Hong Kong 5 Sassoon Road, Pokfulam, Hong Kong; Department of Surgery, The University of Hong Kong-Shenzhen Hospital, 1, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R.C
| | - Alvin Chung Hang Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, 9/F, Lee Shau Kee Building, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Vincent Chi Hang Lui
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong; Dr. Li Dak-Sum Research Centre, The University of Hong Kong-Karolinska Institutet Collaboration in Regenerative Medicine, 5/F The Hong Kong Jockey Club Building for Interdisciplinary Research, The University of Hong Kong 5 Sassoon Road, Pokfulam, Hong Kong; Department of Surgery, The University of Hong Kong-Shenzhen Hospital, 1, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R.C..
| |
Collapse
|
12
|
Wang X, Zhao D, Xie H, Hu Y. Interplay of long non-coding RNAs and HIF-1α: A new dimension to understanding hypoxia-regulated tumor growth and metastasis. Cancer Lett 2020; 499:49-59. [PMID: 33217445 DOI: 10.1016/j.canlet.2020.11.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/11/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022]
Abstract
Hypoxia is a feature of the solid tumor microenvironment that is associated with poor clinical outcomes in multiple tumor types. Hypoxia-induced factor-1 alpha (HIF-1α) is a master regulator of hypoxic adaption, has been demonstrated to modulate hypoxic gene expression profiling and signaling transduction networks, and is thus a potential therapeutic target. Despite hypoxic response signaling having being extensively studied, the involvement of long non-coding RNAs (lncRNAs) in the hypoxic response has become a new focus of attention. Emerging evidence has documented complex interactions between HIF-1α and lncRNAs, which contribute to the acquisition of multiple hallmarks of cancer. In this review, we focus on recent advances in the study of hypoxia and HIF-1α-regulated lncRNAs, and summarize the molecular mechanisms and functional outcomes of the interplay between lncRNAs and HIF-1α, which may provide important insights into cancer diagnosis and prognosis, enabling better control of cancer.
Collapse
Affiliation(s)
- Xingwen Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, 150001, China
| | - Dong Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, 150001, China
| | - Hui Xie
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, Harbin, 150001, China
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, 150001, China; Shenzhen Graduate School of Harbin Institute of Technology, Shenzhen, 518055, China.
| |
Collapse
|
13
|
Non coding RNAs as the critical factors in chemo resistance of bladder tumor cells. Diagn Pathol 2020; 15:136. [PMID: 33183321 PMCID: PMC7659041 DOI: 10.1186/s13000-020-01054-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Bladder cancer (BCa) is the ninth frequent and 13th leading cause of cancer related deaths in the world which is mainly observed among men. There is a declining mortality rates in developed countries. Although, the majority of BCa patients present Non-Muscle-Invasive Bladder Cancer (NMIBC) tumors, only 30% of patients suffer from muscle invasion and distant metastases. Radical cystoprostatectomy, radiation, and chemotherapy have proven to be efficient in metastatic tumors. However, tumor relapse is observed in a noticeable ratio of patients following the chemotherapeutic treatment. Non-coding RNAs (ncRNAs) are important factors during tumor progression and chemo resistance which can be used as diagnostic and prognostic biomarkers of BCa. MAIN BODY In present review we summarized all of the lncRNAs and miRNAs associated with chemotherapeutic resistance in bladder tumor cells. CONCLUSIONS This review paves the way of introducing a prognostic panel of ncRNAs for the BCa patients which can be useful to select a proper drug based on the lncRNA profiles of patients to reduce the cytotoxic effects of chemotherapy in such patients.
Collapse
|
14
|
Sun Q, Hao Q, Lin YC, Song YJ, Bangru S, Arif W, Tripathi V, Zhang Y, Cho JH, Freier SM, Jenkins LM, Ma J, Yoon JH, Kalsotra A, Lal A, Prasanth SG, Prasanth KV. Antagonism between splicing and microprocessor complex dictates the serum-induced processing of lnc- MIRHG for efficient cell cycle reentry. RNA (NEW YORK, N.Y.) 2020; 26:1603-1620. [PMID: 32675111 PMCID: PMC7566567 DOI: 10.1261/rna.075309.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/08/2020] [Indexed: 05/03/2023]
Abstract
Cellular quiescence and cell cycle reentry regulate vital biological processes such as cellular development and tissue homeostasis and are controlled by precise regulation of gene expression. The roles of long noncoding RNAs (lncRNAs) during these processes remain to be elucidated. By performing genome-wide transcriptome analyses, we identify differential expression of several hundreds of lncRNAs, including a significant number of the less-characterized class of microRNA-host-gene (MIRHG) lncRNAs or lnc-MIRHGs, during cellular quiescence and cell cycle reentry in human diploid fibroblasts. We observe that MIR222HG lncRNA displays serum-stimulated RNA processing due to enhanced splicing of the host nascent pri-MIR222HG transcript. The pre-mRNA splicing factor SRSF1 negatively regulates the microprocessor-catalyzed cleavage of pri-miR-222, thereby increasing the cellular pool of the mature MIR222HG Association of SRSF1 to pri-MIR222HG, including to a mini-exon, which partially overlaps with the primary miR-222 precursor, promotes serum-stimulated splicing over microRNA processing of MIR222HG Further, we observe that the increased levels of spliced MIR222HG in serum-stimulated cells promote the cell cycle reentry post quiescence in a microRNA-independent manner. MIR222HG interacts with DNM3OS, another lncRNA whose expression is elevated upon serum-stimulation, and promotes cell cycle reentry. The double-stranded RNA binding protein ILF3/2 complex facilitates MIR222HG:DNM3OS RNP complex assembly, thereby promoting DNM3OS RNA stability. Our study identifies a novel mechanism whereby competition between the splicing and microprocessor machinery modulates the serum-induced RNA processing of MIR222HG, which dictates cell cycle reentry.
Collapse
Affiliation(s)
- Qinyu Sun
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Qinyu Hao
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yo-Chuen Lin
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - You Jin Song
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Waqar Arif
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Vidisha Tripathi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yang Zhang
- School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Jung-Hyun Cho
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Susan M Freier
- Ionis Pharmaceuticals Inc., Carlsbad, California 92008, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | - Jian Ma
- School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Supriya G Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
15
|
Liu Y, Zhang H, Li Y, Yan L, Du W, Wang S, Zheng X, Zhang M, Zhang J, Qi J, Sun H, Zhang L, Li G, Zhu D. Long Noncoding RNA Rps4l Mediates the Proliferation of Hypoxic Pulmonary Artery Smooth Muscle Cells. Hypertension 2020; 76:1124-1133. [PMID: 32772647 DOI: 10.1161/hypertensionaha.120.14644] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pulmonary hypertension (PH) is a rare and fatal disorder involving the vascular remodeling of pulmonary arteries mediated by the enhanced proliferation of pulmonary artery smooth muscle cells (PASMCs). Long noncoding RNAs are a subclass of regulatory molecules with diverse cellular functions, but their role in PH remains largely unexplored. We aimed to identify and determine the functions of long noncoding RNAs involved in hypoxia-induced PH and PASMC proliferation. RNA sequencing in a hypoxic mouse model identified hypoxia-regulated long noncoding RNAs, including Rps4l. Rps4l expression was significantly reduced in PH-model mice and hypoxic PASMCs. The subcellular localization of Rps4l was detected by RNA fluorescence in situ hybridization and quantification of nuclear/cytoplasmic RNA. Rps4l overexpression rescued pulmonary arterial hypertension features, as demonstrated by right ventricle hypertrophy, right ventricular systolic pressure, hemodynamics, cardiac function, and vascular remodeling. At the cellular level, Rps4l overexpression weakened cell viability and proliferation and suppressed cell cycle progression. Potential Rps4l-binding proteins were identified via RNA pull-down followed by mass spectrometry, RNA immunoprecipitation, and microscale thermophoresis. These results indicated that Rps4l is associated with and affects the stabilization of ILF3 (interleukin enhancer-binding factor 3). Rps41 further regulates the levels of HIF-1α and consequently leads to hypoxia-induced PASMC proliferation and migration. Our results showed that in hypoxic PASMCs, Rps4l expression decreases due to regulation by hypoxia. This decrease affects the proliferation, migration, and cell cycle progression of PASMCs through ILF3/HIF-1α. These results provide a theoretical basis for further investigations into the pathological mechanism of hypoxic PH and may provide insight for the development of novel treatments.
Collapse
Affiliation(s)
- Ying Liu
- From the Biopharmaceutical Key Laboratory of Heilongjiang Province, College of Pharmacy, Harbin Medical University, P.R. China (Y. Liu, H.Z., Y. Li, L. Yan, M.Z., J.Z., J.Q., H.S., D.Z.)
| | - Hongyue Zhang
- From the Biopharmaceutical Key Laboratory of Heilongjiang Province, College of Pharmacy, Harbin Medical University, P.R. China (Y. Liu, H.Z., Y. Li, L. Yan, M.Z., J.Z., J.Q., H.S., D.Z.)
| | - Yiying Li
- From the Biopharmaceutical Key Laboratory of Heilongjiang Province, College of Pharmacy, Harbin Medical University, P.R. China (Y. Liu, H.Z., Y. Li, L. Yan, M.Z., J.Z., J.Q., H.S., D.Z.)
| | - Lixin Yan
- From the Biopharmaceutical Key Laboratory of Heilongjiang Province, College of Pharmacy, Harbin Medical University, P.R. China (Y. Liu, H.Z., Y. Li, L. Yan, M.Z., J.Z., J.Q., H.S., D.Z.)
| | - Wei Du
- College of Pharmacy, Harbin University of Commerce, Heilongjiang Province, China (W.D., S.W., D.Z.)
| | - Siqi Wang
- College of Pharmacy, Harbin University of Commerce, Heilongjiang Province, China (W.D., S.W., D.Z.)
| | - Xiaodong Zheng
- Department of Pathophysiology, College of Basic Medicine, Harbin Medical University, Daqing, China (X.Z.)
| | - Min Zhang
- From the Biopharmaceutical Key Laboratory of Heilongjiang Province, College of Pharmacy, Harbin Medical University, P.R. China (Y. Liu, H.Z., Y. Li, L. Yan, M.Z., J.Z., J.Q., H.S., D.Z.)
| | - Junting Zhang
- From the Biopharmaceutical Key Laboratory of Heilongjiang Province, College of Pharmacy, Harbin Medical University, P.R. China (Y. Liu, H.Z., Y. Li, L. Yan, M.Z., J.Z., J.Q., H.S., D.Z.)
| | - Jing Qi
- From the Biopharmaceutical Key Laboratory of Heilongjiang Province, College of Pharmacy, Harbin Medical University, P.R. China (Y. Liu, H.Z., Y. Li, L. Yan, M.Z., J.Z., J.Q., H.S., D.Z.)
| | - Hanliang Sun
- From the Biopharmaceutical Key Laboratory of Heilongjiang Province, College of Pharmacy, Harbin Medical University, P.R. China (Y. Liu, H.Z., Y. Li, L. Yan, M.Z., J.Z., J.Q., H.S., D.Z.)
| | - Lixin Zhang
- Central Laboratory of Harbin Medical University (Daqing), P.R. China (L.Z.)
| | - Guangqun Li
- College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, Heilongjiang Province, China (G.L.)
| | - Daling Zhu
- From the Biopharmaceutical Key Laboratory of Heilongjiang Province, College of Pharmacy, Harbin Medical University, P.R. China (Y. Liu, H.Z., Y. Li, L. Yan, M.Z., J.Z., J.Q., H.S., D.Z.)
- College of Pharmacy, Harbin University of Commerce, Heilongjiang Province, China (W.D., S.W., D.Z.)
| |
Collapse
|
16
|
Kuo TC, Kung HJ, Shih JW. Signaling in and out: long-noncoding RNAs in tumor hypoxia. J Biomed Sci 2020; 27:59. [PMID: 32370770 PMCID: PMC7201962 DOI: 10.1186/s12929-020-00654-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023] Open
Abstract
Over the past few years, long non-coding RNAs (lncRNAs) are recognized as key regulators of gene expression at chromatin, transcriptional and posttranscriptional level with pivotal roles in various biological and pathological processes, including cancer. Hypoxia, a common feature of the tumor microenvironment, profoundly affects gene expression and is tightly associated with cancer progression. Upon tumor hypoxia, the central regulator HIF (hypoxia-inducible factor) is upregulated and orchestrates transcription reprogramming, contributing to aggressive phenotypes in numerous cancers. Not surprisingly, lncRNAs are also transcriptional targets of HIF and serve as effectors of hypoxia response. Indeed, the number of hypoxia-associated lncRNAs (HALs) identified has risen sharply, illustrating the expanding roles of lncRNAs in hypoxia signaling cascade and responses. Moreover, through extra-cellular vesicles, lncRNAs could transmit hypoxia responses between cancer cells and the associated microenvironment. Notably, the aberrantly expressed cellular or exosomal HALs can serve as potential prognostic markers and therapeutic targets. In this review, we provide an update of the current knowledge about the expression, involvement and potential clinical impact of lncRNAs in tumor hypoxia, with special focus on their unique molecular regulation of HIF cascade and hypoxia-induced malignant progression.
Collapse
Affiliation(s)
- Tse-Chun Kuo
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, 35053, Taiwan, ROC
| | - Hsing-Jien Kung
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, 35053, Taiwan, ROC.,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan, ROC.,Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan, ROC.,Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, University of California at Davis, Sacramento, CA, 95817, USA.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 110, Taiwan, ROC
| | - Jing-Wen Shih
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan, ROC. .,Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan, ROC. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 110, Taiwan, ROC. .,Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan, ROC.
| |
Collapse
|
17
|
Zhang Y, Sun J, Qi Y, Wang Y, Ding Y, Wang K, Zhou Q, Wang J, Ma F, Zhang J, Guo B. Long non-coding RNA TPT1-AS1 promotes angiogenesis and metastasis of colorectal cancer through TPT1-AS1/NF90/VEGFA signaling pathway. Aging (Albany NY) 2020; 12:6191-6205. [PMID: 32248186 PMCID: PMC7185097 DOI: 10.18632/aging.103016] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
LncRNAs have been proven closely correlated to tumor progression. A recent study identified LncRNA TPT1-AS1 (TPT1-AS1) as one of the liver-metastasis associated LncRNAs in colorectal cancer (CRC). In this study, we report that TPT1-AS1 is upregulated in CRC tissues, which is associated with poor prognosis. Functional assays unravel a pro-angiogenesis and metastasis role of TPT1-AS1. Mechanistically, Flexmap 3D assays reveal that TPT1-AS1 upregulates the VEGFA secretion in CRC cells. RNA immunoprecipitation and mRNA stability assays further show that TPT1-AS1 interacts with nuclear factor 90 (NF90) and subsequently promotes the association between NF90 and VEGFA mRNA, which leads to the upregulation of VEGFA mRNA stability. Therefore, we elucidate a new regulatory mechanism of TPT1-AS1 in CRC angiogenesis and targeting the TPT1-AS1/NF90/VEGFA axis may provide a useful strategy for diagnosis and treatment for colorectal cancer patients.
Collapse
Affiliation(s)
- Yiyun Zhang
- Department of Endoscopy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jiangyun Sun
- Department of Acupuncture, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuan Qi
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yimin Wang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Ding
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kun Wang
- Department of Central Sterile Supply, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingxin Zhou
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jingxuan Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Fei Ma
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianguo Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baoliang Guo
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
18
|
Lulli M, Nencioni D, Papucci L, Schiavone N. Zeta-crystallin: a moonlighting player in cancer. Cell Mol Life Sci 2020; 77:965-976. [PMID: 31563996 PMCID: PMC11104887 DOI: 10.1007/s00018-019-03301-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
Crystallins were firstly found as structural proteins of the eye lens. To this family belong proteins, such as ζ-crystallin, expressed ubiquitously, and endowed with enzyme activity. ζ-crystallin is a moonlighting protein endowed with two main different functions: (1) mRNA binding with stabilizing activity; (2) NADPH:quinone oxidoreductase. ζ-crystallin has been clearly demonstrated to stabilize mRNAs encoding proteins involved in renal glutamine catabolism during metabolic acidosis resulting in ammoniagenesis and bicarbonate ion production that concur to compensate such condition. ζ-crystallin binds also mRNAs encoding for antiapoptotic proteins, such as Bcl-2 in leukemia cells. On the other hand, the physiological role of its enzymatic activity is still elusive. Gathering research evidences and data mined from public databases, we provide a framework where all the known ζ-crystallin properties are called into question, making it a hypothetical pivotal player in cancer, allowing cells to hijack or subjugate the acidity response mechanism to increase their ability to resist oxidative stress and apoptosis, while fueling their glutamine addicted metabolism.
Collapse
Affiliation(s)
- Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi di Firenze, Viale G.B. Morgagni, 50, Firenze, 50134, Italy.
| | - Daniele Nencioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi di Firenze, Viale G.B. Morgagni, 50, Firenze, 50134, Italy
| | - Laura Papucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi di Firenze, Viale G.B. Morgagni, 50, Firenze, 50134, Italy
| | - Nicola Schiavone
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi di Firenze, Viale G.B. Morgagni, 50, Firenze, 50134, Italy.
| |
Collapse
|
19
|
Ding D, Huang H, Li Q, Yu W, Wang C, Ma H, Wu J, Dang Y, Yu L, Jiang W. NF90 stabilizes cyclin E1 mRNA through phosphorylation of NF90-Ser382 by CDK2. Cell Death Discov 2020; 6:3. [PMID: 32123579 PMCID: PMC7026180 DOI: 10.1038/s41420-020-0236-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/17/2019] [Accepted: 01/02/2020] [Indexed: 12/19/2022] Open
Abstract
Nuclear factor 90 (NF90), an RNA-binding protein, has been implicated in regulating interleukin-2 (IL-2) and the immune response. It was recently reported that NF90 is upregulated in hepatocellular carcinoma (HCC) tissues and promotes HCC proliferation through upregulating cyclin E1 at the posttranscription level. However, the regulation of NF90 in HCC remains unclear. We demonstrate here that cyclin-dependent kinase (CDK) 2 interacts with NF90 and phosphorylated it at serine382. Mechanistically, phosphorylation of NF90-Ser382 determines the nuclear export of NF90 and stabilization of cyclin E1 mRNA. We also demonstrate that the phosphorylation deficient mutant NF90-S382A inhibits cell growth and induces cell cycle arrest at the G1 phase in HCC cells. Moreover, an NF90-S382A xenograft tumor had a decreased size and weight compared with the wildtype NF90. The NF90-S382A xenograft contained a significantly lower level of the proliferation marker Ki-67. Additionally, in HCC patients, NF90-Ser382 phosphorylation was stronger in tumor than in non-tumor tissues. Clinically, phosphorylation of NF90-Ser382 is significantly associated with larger tumor sizes, higher AFP levels, and shorter overall survival rates. These results suggest NF90-Ser382 phosphorylation serves as a potential diagnosis and prognostic marker and a promising pharmacological target for HCC.
Collapse
Affiliation(s)
- Donglin Ding
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN USA
| | - Huixing Huang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Quanfu Li
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wenbo Yu
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Chenji Wang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Haijie Ma
- Laboratory of Cytobiology and Molecular Biology, The Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang China
| | - Jiaxue Wu
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Yongjun Dang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Long Yu
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Wei Jiang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Watson SF, Bellora N, Macias S. ILF3 contributes to the establishment of the antiviral type I interferon program. Nucleic Acids Res 2020; 48:116-129. [PMID: 31701124 PMCID: PMC7145544 DOI: 10.1093/nar/gkz1060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/21/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022] Open
Abstract
Upon detection of viral infections, cells activate the expression of type I interferons (IFNs) and pro-inflammatory cytokines to control viral dissemination. As part of their antiviral response, cells also trigger the translational shutoff response which prevents translation of viral mRNAs and cellular mRNAs in a non-selective manner. Intriguingly, mRNAs encoding for antiviral factors bypass this translational shutoff, suggesting the presence of additional regulatory mechanisms enabling expression of the self-defence genes. Here, we identified the dsRNA binding protein ILF3 as an essential host factor required for efficient translation of the central antiviral cytokine, IFNB1, and a subset of interferon-stimulated genes. By combining polysome profiling and next-generation sequencing, ILF3 was also found to be necessary to establish the dsRNA-induced transcriptional and translational programs. We propose a central role for the host factor ILF3 in enhancing expression of the antiviral defence mRNAs in cellular conditions where cap-dependent translation is compromised.
Collapse
Affiliation(s)
- Samir F Watson
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, UK
| | | | - Sara Macias
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, UK
| |
Collapse
|
21
|
ILF3 is a substrate of SPOP for regulating serine biosynthesis in colorectal cancer. Cell Res 2019; 30:163-178. [PMID: 31772275 PMCID: PMC7015059 DOI: 10.1038/s41422-019-0257-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/02/2019] [Indexed: 01/22/2023] Open
Abstract
The Serine–Glycine–One-Carbon (SGOC) pathway is pivotal in multiple anabolic processes. Expression levels of SGOC genes are deregulated under tumorigenic conditions, suggesting participation of oncogenes in deregulating the SGOC biosynthetic pathway. However, the underlying mechanism remains elusive. Here, we identified that Interleukin enhancer-binding factor 3 (ILF3) is overexpressed in primary CRC patient specimens and correlates with poor prognosis. ILF3 is critical in regulating the SGOC pathway by directly regulating the mRNA stability of SGOC genes, thereby increasing SGOC genes expression and facilitating tumor growth. Mechanistic studies showed that the EGF–MEK–ERK pathway mediates ILF3 phosphorylation, which hinders E3 ligase speckle-type POZ protein (SPOP)-mediated poly-ubiquitination and degradation of ILF3. Significantly, combination of SGOC inhibitor and the anti-EGFR monoclonal antibody cetuximab can hinder the growth of patient-derived xenografts that sustain high ERK-ILF3 levels. Taken together, deregulation of ILF3 via the EGF–ERK signaling plays an important role in systemic serine metabolic reprogramming and confers a predilection toward CRC development. Our findings indicate that clinical evaluation of SGOC inhibitor is warranted for CRC patients with ILF3 overexpression.
Collapse
|
22
|
Li H, Hu J, Wei H, Solomon PS, Stubbs KA, Chooi YH. Biosynthesis of a Tricyclo[6.2.2.0 2,7 ]dodecane System by a Berberine Bridge Enzyme-Like Aldolase. Chemistry 2019; 25:15062-15066. [PMID: 31553484 DOI: 10.1002/chem.201904360] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Indexed: 11/06/2022]
Abstract
The aldol reaction is one of the most fundamental stereocontrolled carbon-carbon bond-forming reactions and is mainly catalyzed by aldolases in nature. Despite the fact that the aldol reaction has been widely proposed to be involved in fungal secondary metabolite biosynthesis, a dedicated aldolase that catalyzes stereoselective aldol reactions has only rarely been reported in fungi. Herein, we activated a cryptic polyketide biosynthetic gene cluster that was upregulated in the fungal wheat pathogen Parastagonospora nodorum during plant infection; this resulted in the production of the phytotoxic stemphyloxin II (1). Through heterologous reconstruction of the biosynthetic pathway and in vitro assay by using cell-free lysate from Aspergillus nidulans, we demonstrated that a berberine bridge enzyme (BBE)-like protein SthB catalyzes an intramolecular aldol reaction to establish the bridged tricyclo[6.2.2.02,7 ]dodecane skeleton in the post-assembly tailoring step. The characterization of SthB as an aldolase enriches the catalytic toolbox of classic reactions and the functional diversities of the BBE superfamily of enzymes.
Collapse
Affiliation(s)
- Hang Li
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Jinyu Hu
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Haochen Wei
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Peter S Solomon
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Keith A Stubbs
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
23
|
Fasolo F, Patrucco L, Volpe M, Bon C, Peano C, Mignone F, Carninci P, Persichetti F, Santoro C, Zucchelli S, Sblattero D, Sanges R, Cotella D, Gustincich S. The RNA-binding protein ILF3 binds to transposable element sequences in SINEUP lncRNAs. FASEB J 2019; 33:13572-13589. [PMID: 31570000 PMCID: PMC6894054 DOI: 10.1096/fj.201901618rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transposable elements (TEs) compose about half of the mammalian genome and, as embedded sequences, up to 40% of long noncoding RNA (lncRNA) transcripts. Embedded TEs may represent functional domains within lncRNAs, providing a structured RNA platform for protein interaction. Here we show the interactome profile of the mouse inverted short interspersed nuclear element (SINE) of subfamily B2 (invSINEB2) alone and embedded in antisense (AS) ubiquitin C-terminal hydrolase L1 (Uchl1), an lncRNA that is AS to Uchl1 gene. AS Uchl1 is the representative member of a functional class of AS lncRNAs, named SINEUPs, in which the invSINEB2 acts as effector domain (ED)-enhancing translation of sense protein-coding mRNAs. By using RNA-interacting domainome technology, we identify the IL enhancer-binding factor 3 (ILF3) as a protein partner of AS Uchl1 RNA. We determine that this interaction is mediated by the RNA-binding motif 2 of ILF3 and the invSINEB2. Furthermore, we show that ILF3 is able to bind a free right Arthrobacter luteus (Alu) monomer sequence, the embedded TE acting as ED in human SINEUPs. Bioinformatic analysis of Encyclopedia of DNA Elements-enhanced cross-linking immunoprecipitation data reveals that ILF3 binds transcribed human SINE sequences at transcriptome-wide levels. We then demonstrate that the embedded TEs modulate AS Uchl1 RNA nuclear localization to an extent moderately influenced by ILF3. This work unveils the existence of a specific interaction between embedded TEs and an RNA-binding protein, strengthening the model of TEs as functional modules in lncRNAs.-Fasolo, F., Patrucco, L., Volpe, M., Bon, C., Peano, C., Mignone, F., Carninci, P., Persichetti, F., Santoro, C., Zucchelli, S., Sblattero, D., Sanges, R., Cotella, D., Gustincich, S. The RNA-binding protein ILF3 binds to transposable element sequences in SINEUP lncRNAs.
Collapse
Affiliation(s)
- Francesca Fasolo
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Laura Patrucco
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Massimiliano Volpe
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Carlotta Bon
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.,Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Clelia Peano
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Flavio Mignone
- Department of Sciences and Innovation, Università del Piemonte Orientale, Alessandria, Italy
| | - Piero Carninci
- Division of Genomic Technologies, Riken Center for Life Science Technologies, Yokohama, Japan
| | | | - Claudio Santoro
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Silvia Zucchelli
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.,Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | | | - Remo Sanges
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.,Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Diego Cotella
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Stefano Gustincich
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.,Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| |
Collapse
|
24
|
Hia F, Yang SF, Shichino Y, Yoshinaga M, Murakawa Y, Vandenbon A, Fukao A, Fujiwara T, Landthaler M, Natsume T, Adachi S, Iwasaki S, Takeuchi O. Codon bias confers stability to human mRNAs. EMBO Rep 2019; 20:e48220. [PMID: 31482640 DOI: 10.15252/embr.201948220] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 11/09/2022] Open
Abstract
Codon bias has been implicated as one of the major factors contributing to mRNA stability in several model organisms. However, the molecular mechanisms of codon bias on mRNA stability remain unclear in humans. Here, we show that human cells possess a mechanism to modulate RNA stability through a unique codon bias. Bioinformatics analysis showed that codons could be clustered into two distinct groups-codons with G or C at the third base position (GC3) and codons with either A or T at the third base position (AT3): the former stabilizing while the latter destabilizing mRNA. Quantification of codon bias showed that increased GC3-content entails proportionately higher GC-content. Through bioinformatics, ribosome profiling, and in vitro analysis, we show that decoupling the effects of codon bias reveals two modes of mRNA regulation, one GC3- and one GC-content dependent. Employing an immunoprecipitation-based strategy, we identify ILF2 and ILF3 as RNA-binding proteins that differentially regulate global mRNA abundances based on codon bias. Our results demonstrate that codon bias is a two-pronged system that governs mRNA abundance.
Collapse
Affiliation(s)
- Fabian Hia
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sheng Fan Yang
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Masanori Yoshinaga
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhiro Murakawa
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan.,RIKEN Preventive Medicine and Diagnosis Innovation Program, Yokohama, Japan
| | - Alexis Vandenbon
- Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Akira Fukao
- Laboratory of Biochemistry, Department of Pharmacy, Kindai University, Higashiosaka City, Japan
| | - Toshinobu Fujiwara
- Laboratory of Biochemistry, Department of Pharmacy, Kindai University, Higashiosaka City, Japan
| | - Markus Landthaler
- RNA Biology and Posttranscriptional Regulation, Max Delbrück Center for Molecular Medicine Berlin, Berlin Institute for Molecular Systems Biology, Berlin, Germany.,IRI Life Sciences, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Shungo Adachi
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
25
|
Idda ML, Lodde V, Galleri G, Martindale JL, Munk R, Abdelmohsen K, Cucca F, Gorospe M. NF90 regulation of immune factor expression in response to malaria antigens. Cell Cycle 2019; 18:708-722. [PMID: 30784348 DOI: 10.1080/15384101.2019.1580496] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Nuclear factor 90 (NF90) is a dual DNA- and RNA-binding protein expressed ubiquitously in mammalian cells, including monocytes. Here, to elucidate the function of NF90 in the immune response, we analyzed systematically its influence on gene expression programs in the human monocytic cell line THP-1 expressing normal or reduced NF90 levels. RNA sequencing analysis revealed many mRNAs showing differential abundance in NF90-silenced cells, many of them encoding proteins implicated in the response to immune stimuli and malaria infection. The transcription of some of them (e.g. TNF, LILRB1, and CCL2 mRNAs) was modulated by silencing NF90. Ribonucleoprotein immunoprecipitation (RIP) analysis further revealed that a subset of these mRNAs associated directly with NF90. To understand how NF90 influenced globally the immune response to malaria infection, lysates of red blood cells infected with Plasmodium falciparum (iRBC lysates) or uninfected/mock-infected (uRBC lysates) were used to treat THP-1 cells as a surrogate of malaria infection. NF90 affected the stability of a few target mRNAs, but influenced more generally the translation and secretion of the encoded cytokines after treatment with either uRBC or iRBC lysates. Taken together, these results indicate that NF90 contributes to repressing the immune response in cells responding to P. falciparum infection and suggest that NF90 can be a therapeutic target in malaria.
Collapse
Affiliation(s)
- M Laura Idda
- a Laboratory of Genetics and Genomics , National Institute on Aging Intramural Research Program, National Institutes of Health , Baltimore , MD , USA.,b Istituto di Ricerca Genetica e Biomedica , Consiglio Nazionale delle Ricerche (CNR) , Cagliari , Italy
| | - Valeria Lodde
- b Istituto di Ricerca Genetica e Biomedica , Consiglio Nazionale delle Ricerche (CNR) , Cagliari , Italy.,c Department of Biomedical Sciences , University of Sassari , Sassari , Italy
| | - Grazia Galleri
- c Department of Biomedical Sciences , University of Sassari , Sassari , Italy
| | - Jennifer L Martindale
- a Laboratory of Genetics and Genomics , National Institute on Aging Intramural Research Program, National Institutes of Health , Baltimore , MD , USA
| | - Rachel Munk
- a Laboratory of Genetics and Genomics , National Institute on Aging Intramural Research Program, National Institutes of Health , Baltimore , MD , USA
| | - Kotb Abdelmohsen
- a Laboratory of Genetics and Genomics , National Institute on Aging Intramural Research Program, National Institutes of Health , Baltimore , MD , USA
| | - Francesco Cucca
- b Istituto di Ricerca Genetica e Biomedica , Consiglio Nazionale delle Ricerche (CNR) , Cagliari , Italy.,c Department of Biomedical Sciences , University of Sassari , Sassari , Italy
| | - Myriam Gorospe
- a Laboratory of Genetics and Genomics , National Institute on Aging Intramural Research Program, National Institutes of Health , Baltimore , MD , USA
| |
Collapse
|
26
|
Idda M, Lodde V, McClusky W, Martindale J, Yang X, Munk R, Steri M, Orrù V, Mulas A, Cucca F, Abdelmohsen K, Gorospe M. Cooperative translational control of polymorphic BAFF by NF90 and miR-15a. Nucleic Acids Res 2018; 46:12040-12051. [PMID: 30272251 PMCID: PMC6294513 DOI: 10.1093/nar/gky866] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/31/2018] [Accepted: 09/13/2018] [Indexed: 12/22/2022] Open
Abstract
Polymorphisms in untranslated regions (UTRs) of disease-associated mRNAs can alter protein production. We recently identified a genetic variant in the 3'UTR of the TNFSF13B gene, encoding the cytokine BAFF (B-cell-activating factor), that generates an alternative polyadenylation site yielding a shorter, more actively translated variant, BAFF-var mRNA. Accordingly, individuals bearing the TNFSF13B variant had higher circulating BAFF and elevated risk of developing autoimmune diseases. Here, we investigated the molecular mechanisms controlling the enhanced translation of BAFF-var mRNA. We identified nuclear factor 90 (NF90, also known as ILF3) as an RNA-binding protein that bound preferentially the wild-type (BAFF-WT mRNA) but not BAFF-var mRNA in human monocytic leukemia THP-1 cells. NF90 selectively suppressed BAFF translation by recruiting miR-15a to the 3'UTR of BAFF-WT mRNA. Our results uncover a paradigm whereby an autoimmunity-causing BAFF polymorphism prevents NF90-mediated recruitment of microRNAs to suppress BAFF translation, raising the levels of disease-associated BAFF.
Collapse
Affiliation(s)
- M Laura Idda
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Valeria Lodde
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), 09042 Monserrato, Cagliari, Italy
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Waverly G McClusky
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Maristella Steri
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), 09042 Monserrato, Cagliari, Italy
| | - Valeria Orrù
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), 09042 Monserrato, Cagliari, Italy
| | - Antonella Mulas
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), 09042 Monserrato, Cagliari, Italy
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), 09042 Monserrato, Cagliari, Italy
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
27
|
Wen X, Liu X, Mao YP, Yang XJ, Wang YQ, Zhang PP, Lei Y, Hong XH, He QM, Ma J, Liu N, Li YQ. Long non-coding RNA DANCR stabilizes HIF-1α and promotes metastasis by interacting with NF90/NF45 complex in nasopharyngeal carcinoma. Theranostics 2018; 8:5676-5689. [PMID: 30555573 PMCID: PMC6276287 DOI: 10.7150/thno.28538] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) play an important role in the development and progression of cancers. However, the clinical significances of lncRNAs and their functions and mechanisms in nasopharyngeal carcinoma (NPC) remain largely unclear. Methods: Quantitative RT-PCR was used to determine DANCR expression and Kaplan-Meier curves were used to evaluate its prognostic value. RNA sequencing followed by bioinformatic analysis was performed to determine the potential function of DANCR. In vitro and in vivo experiments were conducted to investigate its biological effects. DANCR-interacting proteins were identified by RNA pull-down assay followed by mass spectrometry and western blotting, and then confirmed by RNA immunoprecipitation (RIP) assays. Results: Our previous microarray analysis identified a metastasis-associated lncRNA DANCR. Here, we found that DANCR was upregulated in NPC, especially in those with lymph lode metastasis, and its upregulation could predict poor survival. We then constructed a prognostic predictive model. RNA sequencing followed by bioinformatic analysis revealed that DANCR was responsible for NPC metastasis and hypoxia phenotype. Functional studies showed that DANCR promoted NPC cell invasion and metastasis in vitro and in vivo. Further investigation suggested that DANCR could increase HIF-1α mRNA stability through interacting with the NF90/NF45 complex. Additionally, overexpression of HIF-1α in DANCR knockdown cells restored its suppressive effects on NPC cell migration and invasion. Conclusions: Taken together, our results suggest that DANCR acts as a prognostic biomarker and increases HIF-1α mRNA stability by interacting with NF90/NF45, leading to metastasis and disease progression of NPC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jun Ma
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, No. 651 Dongfeng Road East, Guangzhou 510060, People's Republic of China
| | - Na Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, No. 651 Dongfeng Road East, Guangzhou 510060, People's Republic of China
| | - Ying-Qin Li
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, No. 651 Dongfeng Road East, Guangzhou 510060, People's Republic of China
| |
Collapse
|
28
|
Garcia-Moreno M, Järvelin AI, Castello A. Unconventional RNA-binding proteins step into the virus-host battlefront. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1498. [PMID: 30091184 PMCID: PMC7169762 DOI: 10.1002/wrna.1498] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022]
Abstract
The crucial participation of cellular RNA‐binding proteins (RBPs) in virtually all steps of virus infection has been known for decades. However, most of the studies characterizing this phenomenon have focused on well‐established RBPs harboring classical RNA‐binding domains (RBDs). Recent proteome‐wide approaches have greatly expanded the census of RBPs, discovering hundreds of proteins that interact with RNA through unconventional RBDs. These domains include protein–protein interaction platforms, enzymatic cores, and intrinsically disordered regions. Here, we compared the experimentally determined census of RBPs to gene ontology terms and literature, finding that 472 proteins have previous links with viruses. We discuss what these proteins are and what their roles in infection might be. We also review some of the pioneering examples of unorthodox RBPs whose RNA‐binding activity has been shown to be critical for virus infection. Finally, we highlight the potential of these proteins for host‐based therapies against viruses. This article is categorized under:
RNA Interactions with Proteins and Other Molecules > Protein–RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > RNA–Protein Complexes
Collapse
Affiliation(s)
| | - Aino I Järvelin
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | |
Collapse
|
29
|
Jin J, Li A, Wang W, Wu J. Interleukin-enhanced binding factor 2 interacts with NLRP3 to inhibit the NLRP3 inflammasome activation. Biochem Biophys Res Commun 2018; 500:398-404. [DOI: 10.1016/j.bbrc.2018.04.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/11/2018] [Indexed: 01/19/2023]
|
30
|
Wu TH, Shi L, Adrian J, Shi M, Nair RV, Snyder MP, Kao PN. NF90/ILF3 is a transcription factor that promotes proliferation over differentiation by hierarchical regulation in K562 erythroleukemia cells. PLoS One 2018; 13:e0193126. [PMID: 29590119 PMCID: PMC5873942 DOI: 10.1371/journal.pone.0193126] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/05/2018] [Indexed: 11/19/2022] Open
Abstract
NF90 and splice variant NF110 are DNA- and RNA-binding proteins encoded by the Interleukin enhancer-binding factor 3 (ILF3) gene that have been established to regulate RNA splicing, stabilization and export. The roles of NF90 and NF110 in regulating transcription as chromatin-interacting proteins have not been comprehensively characterized. Here, chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) identified 9,081 genomic sites specifically occupied by NF90/NF110 in K562 cells. One third of NF90/NF110 peaks occurred at promoters of annotated genes. NF90/NF110 occupancy colocalized with chromatin marks associated with active promoters and strong enhancers. Comparison with 150 ENCODE ChIP-seq experiments revealed that NF90/NF110 clustered with transcription factors exhibiting preference for promoters over enhancers (POLR2A, MYC, YY1). Differential gene expression analysis following shRNA knockdown of NF90/NF110 in K562 cells revealed that NF90/NF110 activates transcription factors that drive growth and proliferation (EGR1, MYC), while attenuating differentiation along the erythroid lineage (KLF1). NF90/NF110 associates with chromatin to hierarchically regulate transcription factors that promote proliferation and suppress differentiation.
Collapse
Affiliation(s)
- Ting-Hsuan Wu
- Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Biomedical Informatics, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (PNK.); (THW)
| | - Lingfang Shi
- Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jessika Adrian
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Minyi Shi
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ramesh V. Nair
- Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Peter N. Kao
- Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (PNK.); (THW)
| |
Collapse
|
31
|
Nuclear factor 90 promotes angiogenesis by regulating HIF-1α/VEGF-A expression through the PI3K/Akt signaling pathway in human cervical cancer. Cell Death Dis 2018; 9:276. [PMID: 29449553 PMCID: PMC5833414 DOI: 10.1038/s41419-018-0334-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 01/28/2023]
Abstract
Vascular endothelial growth factor A (VEGF-A), a fundamental component of angiogenesis, provides nutrients and oxygen to solid tumors, and enhances tumor cell survival, invasion, and migration. Nuclear factor 90 (NF90), a double-stranded RNA-binding protein, is strongly expressed in several human cancers, promotes tumor growth by reducing apoptosis, and increasing cell cycle process. The mechanisms by which cervical cancer cells inducing VEGF-A expression and angiogenesis upon NF90 upregulation remain to be fully established. We demonstrated that NF90 is upregulated in human cervical cancer specimens and the expression of NF90 is paralleled with that of VEGF-A under hypoxia. The expressions of hypoxia inducible factor-1α (HIF-1α) and VEGF-A are downregulated upon NF90 knockdown, which can be rescued by ectopic expression of NF90. Suppression of NF90 decreases the tube formation and cell migration of HUVECs. Moreover, the PI3K/Akt signaling pathway participates in the regulation. Knockdown of NF90 also reduces the tumor growth and angiogenesis of cervical cancer cell line in the mouse xenograft model. Taken together, suppression of NF90 in cervical cancer cell lines can decrease VEGF-A expression, inhibit angiogenesis, and reduce tumorigenic capacity in vivo.
Collapse
|
32
|
Schmidt T, Friedrich S, Golbik RP, Behrens SE. NF90-NF45 is a selective RNA chaperone that rearranges viral and cellular riboswitches: biochemical analysis of a virus host factor activity. Nucleic Acids Res 2017; 45:12441-12454. [PMID: 29040738 PMCID: PMC5716087 DOI: 10.1093/nar/gkx931] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/10/2017] [Indexed: 01/28/2023] Open
Abstract
The heterodimer NF90-NF45 is an RNA-binding protein complex that modulates the expression of various cellular mRNAs on the post-transcriptional level. Furthermore, it acts as a host factor that supports the replication of several RNA viruses. The molecular mechanisms underlying these activities have yet to be elucidated. Recently, we showed that the RNA-binding capabilities and binding specificity of NF90 considerably improves when it forms a complex with NF45. Here, we demonstrate that NF90 has a substrate-selective RNA chaperone activity (RCA) involving RNA annealing and strand displacement activities. The mechanism of the NF90-catalyzed RNA annealing was elucidated to comprise a combination of 'matchmaking' and compensation of repulsive charges, which finally results in the population of dsRNA products. Heterodimer formation with NF45 enhances 'matchmaking' of complementary ssRNAs and substantially increases the efficiency of NF90's RCA. During investigations of the relevance of the NF90-NF45 RCA, the complex was shown to stimulate the first step in the RNA replication process of hepatitis C virus (HCV) in vitro and to stabilize a regulatory element within the mRNA of vascular endothelial growth factor (VEGF) by protein-guided changes of the RNAs' structures. Thus, our study reveals how the intrinsic properties of an RNA-binding protein determine its biological activities.
Collapse
Affiliation(s)
- Tobias Schmidt
- Institute of Biochemistry and Biotechnology (NFI), Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle/Saale, Germany
- To whom correspondence should be addressed. Tel: +49 3455 5249 60; Fax: +49 3455 5273 87; . Correspondence may also be addressed to Tobias Schmidt.
| | - Susann Friedrich
- Institute of Biochemistry and Biotechnology (NFI), Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle/Saale, Germany
| | - Ralph Peter Golbik
- Institute of Biochemistry and Biotechnology (NFI), Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle/Saale, Germany
| | - Sven-Erik Behrens
- Institute of Biochemistry and Biotechnology (NFI), Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle/Saale, Germany
- To whom correspondence should be addressed. Tel: +49 3455 5249 60; Fax: +49 3455 5273 87; . Correspondence may also be addressed to Tobias Schmidt.
| |
Collapse
|
33
|
Gronland GR, Ramos A. The devil is in the domain: understanding protein recognition of multiple RNA targets. Biochem Soc Trans 2017; 45:1305-1311. [PMID: 29150526 DOI: 10.1042/bst20160362] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2024]
Abstract
RNA regulation provides a finely tuned and highly co-ordinated control of gene expression. Regulation is mediated by hundreds to thousands of multi-functional RNA-binding proteins which often interact with large sets of RNAs. In this brief review, we focus on a recent work that highlights how the proteins use multiple RNA-binding domains to interact selectively with the different RNA targets. Deconvoluting the molecular complexity of the RNA regulatory network is essential to understanding cell differentiation and function, and requires accurate models for protein-RNA recognition and protein target selectivity. We discuss that the structural and molecular understanding of the key determinant of recognition, together with the availability of methods to examine protein-RNA interactions at the transcriptome level, may provide an avenue to establish these models.
Collapse
Affiliation(s)
- Glen R Gronland
- Institute of Structural and Molecular Biology, University College London, London WC1E 6XA, U.K
| | - Andres Ramos
- Institute of Structural and Molecular Biology, University College London, London WC1E 6XA, U.K.
| |
Collapse
|
34
|
Yang L, Tang Y, Xiong F, He Y, Wei F, Zhang S, Guo C, Xiang B, Zhou M, Xie N, Li X, Li Y, Li G, Xiong W, Zeng Z. LncRNAs regulate cancer metastasis via binding to functional proteins. Oncotarget 2017; 9:1426-1443. [PMID: 29416704 PMCID: PMC5787449 DOI: 10.18632/oncotarget.22840] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 11/13/2017] [Indexed: 12/22/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide, and metastasis is a crucial characteristic of malignancy. Recent studies have shown that lncRNAs play an important role in regulating cancer metastasis through various molecular mechanisms. We briefly summarize four known molecular functions of lncRNAs, including their role as a signal, decoy, guide and scaffold. No matter which pattern lncRNAs follow to carry out their functions, the proteins that lncRNAs bind to are important for them to exhibit their gene-regulating properties. We further illustrate that lncRNAs regulate the localization, stabilization or modification of their binding proteins to realize the binding role of lncRNAs. In this review, we focus on the interactions between lncRNAs and their binding proteins; moreover, we focus on the mechanisms of the collaborative work of lncRNAs and their binding proteins in cancer metastasis, thus evaluating the potential of lncRNAs as prospective novel therapeutic targets in cancer.
Collapse
Affiliation(s)
- Liting Yang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanyan Tang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi He
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Fang Wei
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Shanshan Zhang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Can Guo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ni Xie
- Core Laboratory, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
35
|
Shih JW, Kung HJ. Long non-coding RNA and tumor hypoxia: new players ushered toward an old arena. J Biomed Sci 2017; 24:53. [PMID: 28789687 PMCID: PMC5547530 DOI: 10.1186/s12929-017-0358-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/25/2017] [Indexed: 01/17/2023] Open
Abstract
Hypoxia is a classic feature of the tumor microenvironment with a profound impact on cancer progression and therapeutic response. Activation of complex hypoxia pathways orchestrated by the transcription factor HIF (hypoxia-inducible factor) contributes to aggressive phenotypes and metastasis in numerous cancers. Over the past few decades, exponentially growing research indicated the importance of the non-coding genome in hypoxic tumor regions. Recently, key roles of long non coding RNAs (lncRNAs) in hypoxia-driven cancer progression have begun to emerge. These hypoxia-responsive lncRNAs (HRLs) play pivotal roles in regulating hypoxic gene expression at chromatic, transcriptional, and post-transcriptional levels by acting as effectors of the indirect response to HIF or direct modulators of the HIF-transcriptional cascade. Notably, the aberrant expression of HRLs significantly correlates with poor outcomes in cancer patients, showing promise for future utility as a tumor marker or therapeutic target. Here we address the latest advances made toward understanding the functional relevance of HRLs, the involvement of these transcripts in hypoxia response and the underlying action mechanisms, highlighting their specific roles in HIF-1 signaling regulation and hypoxia-associated malignant transformation.
Collapse
Affiliation(s)
- Jing-Wen Shih
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan. .,Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 110, Taiwan. .,Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.
| | - Hsing-Jien Kung
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.,Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 110, Taiwan.,Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, University of California at Davis, Sacramento, CA, 95817, USA.,Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, 350, Taiwan
| |
Collapse
|
36
|
Ye J, Jin H, Pankov A, Song JS, Blelloch R. NF45 and NF90/NF110 coordinately regulate ESC pluripotency and differentiation. RNA (NEW YORK, N.Y.) 2017; 23:1270-1284. [PMID: 28487382 PMCID: PMC5513071 DOI: 10.1261/rna.061499.117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
While years of investigation have elucidated many aspects of embryonic stem cell (ESC) regulation, the contributions of post-transcriptional and translational mechanisms to the pluripotency network remain largely unexplored. In particular, little is known in ESCs about the function of RNA binding proteins (RBPs), the protein agents of post-transcriptional regulation. We performed an unbiased RNAi screen of RBPs in an ESC differentiation assay and identified two related genes, NF45 (Ilf2) and NF90/NF110 (Ilf3), whose knockdown promoted differentiation to an epiblast-like state. Characterization of NF45 KO, NF90 + NF110 KO, and NF110 KO ESCs showed that loss of NF45 or NF90 + NF110 impaired ESC proliferation and led to dysregulated differentiation down embryonic lineages. Additionally, we found that NF45 and NF90/NF110 physically interact and influence the expression of each other at different levels of regulation. Globally across the transcriptome, NF45 KO ESCs and NF90 + NF110 KO ESCs show similar expression changes. Moreover, NF90 + NF110 RNA immunoprecipitation (RIP)-seq in ESCs suggested that NF90/NF110 directly regulate proliferation, differentiation, and RNA-processing genes. Our data support a model in which NF45, NF90, and NF110 operate in feedback loops that enable them, through both overlapping and independent targets, to help balance the push and pull of pluripotency and differentiation cues.
Collapse
Affiliation(s)
- Julia Ye
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, USA
- Department of Urology, University of California, San Francisco, San Francisco, California 94143, USA
| | - Hu Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Physics, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Aleksandr Pankov
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California 94158, USA
| | - Jun S Song
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Physics, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Robert Blelloch
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, USA
- Department of Urology, University of California, San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
37
|
Zhuang J, Shen L, Yang L, Huang X, Lu Q, Cui Y, Zheng X, Zhao X, Zhang D, Huang R, Guo H, Yan J. TGFβ1 Promotes Gemcitabine Resistance through Regulating the LncRNA-LET/NF90/miR-145 Signaling Axis in Bladder Cancer. Am J Cancer Res 2017; 7:3053-3067. [PMID: 28839463 PMCID: PMC5566105 DOI: 10.7150/thno.19542] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/08/2017] [Indexed: 01/05/2023] Open
Abstract
High tumor recurrence is frequently observed in patients with urinary bladder cancers (UBCs), with the need for biomarkers of prognosis and drug response. Chemoresistance and subsequent recurrence of cancers are driven by a subpopulation of tumor initiating cells, namely cancer stem-like cells (CSCs). However, the underlying molecular mechanism in chemotherapy-induced CSCs enrichment remains largely unclear. In this study, we found that during gemcitabine treatment lncRNA-Low Expression in Tumor (lncRNA-LET) was downregulated in chemoresistant UBC, accompanied with the enrichment of CSC population. Knockdown of lncRNA-LET increased UBC cell stemness, whereas forced expression of lncRNA-LET delayed gemcitabine-induced tumor recurrence. Furthermore, lncRNA-LET was directly repressed by gemcitabine treatment-induced overactivation of TGFβ/SMAD signaling through SMAD binding element (SBE) in the lncRNA-LET promoter. Consequently, reduced lncRNA-LET increased the NF90 protein stability, which in turn repressed biogenesis of miR-145 and subsequently resulted in accumulation of CSCs evidenced by the elevated levels of stemness markers HMGA2 and KLF4. Treatment of gemcitabine resistant xenografts with LY2157299, a clinically relevant specific inhibitor of TGFβRI, sensitized them to gemcitabine and significantly reduced tumorigenecity in vivo. Notably, overexpression of TGFβ1, combined with decreased levels of lncRNA-LET and miR-145 predicted poor prognosis in UBC patients. Collectively, we proved that the dysregulated lncRNA-LET/NF90/miR-145 axis by gemcitabine-induced TGFβ1 promotes UBC chemoresistance through enhancing cancer cell stemness. The combined changes in TGFβ1/lncRNA-LET/miR-145 provide novel molecular prognostic markers in UBC outcome. Therefore, targeting this axis could be a promising therapeutic approach in treating UBC patients.
Collapse
|
38
|
Interleukin-2 enhancer binding factor 2 interacts with the nsp9 or nsp2 of porcine reproductive and respiratory syndrome virus and exerts negatively regulatory effect on the viral replication. Virol J 2017; 14:125. [PMID: 28693575 PMCID: PMC5504599 DOI: 10.1186/s12985-017-0794-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/03/2017] [Indexed: 11/30/2022] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive failures in sows and respiratory diseases in growing pigs, resulting in huge economic loss for the pig production worldwide. The nonstructural protein 9 (nsp9) and nonstructural protein 2 (nsp2) of PRRSV are known to play important roles in viral replication. Cellular interleukin-2 enhancer binding factor 2 (ILF2) participates in many cellular pathways and involves in life cycle of some viruses. In the present study, we analyzed the interaction of cellular ILF2 with the nsp9 and nsp2 of PRRSV in vitro and explored the effect of ILF2 on viral replication. Methods The interaction of ILF2 with the nsp9 or nsp2 of PRRSV was analyzed in 293FT cells and MARC-145 cells by co-immunoprecipitation (Co-IP) and the co-localization of ILF2 with the nsp9 or nsp2 of PRRSV in MARC-145 cell and pulmonary alveolar macrophages (PAMs) was examined by confocal immunofluorescence assay. The effect of ILF2 knockdown and over-expression on PRRSV replication was explored in MARC-145 cells by small interfering RNA (siRNA) and lentivirus transduction, respectively. Results The interaction of ILF2 with nsp9 or nsp2 was first demonstrated in 293FT cells co-transfected with ILF2-expressing plasmid and nsp9-expressing plasmid or nsp2-expressing plasmid. The interaction of endogenous ILF2 with the nsp9 or nsp2 of PRRSV was further confirmed in MARC-145 cells transduced with GFP-nsp9-expressing lentiviruses or infected with PRRSV JXwn06. The RdRp domain of nsp9 was shown to be responsible for its interaction with ILF2, while three truncated nsp2 were shown to interact with ILF2. Moreover, we observed that ILF2 partly translocated from the nucleus to the cytoplasm and co-localized with nsp9 and nsp2 in PRRSV-infected MARC-145 cells and PAMs. Finally, our analysis indicated that knockdown of ILF2 favored the replication of PRRSV, while over-expression of ILF2 impaired the viral replication in MARC-145 cells. Conclusion Our findings are the first to confirm that the porcine ILF2 interacts with the nsp9 and nsp2 of PRRSV in vitro, and exerts negatively regulatory effect on the replication of PRRSV. Our present study provides more evidence for understanding the roles of the interactions between cellular proteins and viral proteins in the replication of PRRSV. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0794-5) contains supplementary material, which is available to authorized users.
Collapse
|
39
|
Li X, Liu CX, Xue W, Zhang Y, Jiang S, Yin QF, Wei J, Yao RW, Yang L, Chen LL. Coordinated circRNA Biogenesis and Function with NF90/NF110 in Viral Infection. Mol Cell 2017. [PMID: 28625552 DOI: 10.1016/j.molcel.2017.05.023] [Citation(s) in RCA: 459] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Circular RNAs (circRNAs) generated via back-splicing are enhanced by flanking complementary sequences. Expression levels of circRNAs vary under different conditions, suggesting participation of protein factors in their biogenesis. Using genome-wide siRNA screening that targets all human unique genes and an efficient circRNA expression reporter, we identify double-stranded RNA-binding domain containing immune factors NF90/NF110 as key regulators in circRNA biogenesis. NF90/NF110 promote circRNA production in the nucleus by associating with intronic RNA pairs juxtaposing the circRNA-forming exon(s); they also interact with mature circRNAs in the cytoplasm. Upon viral infection, circRNA expression is decreased, in part owing to the nuclear export of NF90/NF110 to the cytoplasm. Meanwhile, NF90/NF110 released from circRNP complexes bind to viral mRNAs as part of their functions in antiviral immune response. Our results therefore implicate a coordinated regulation of circRNA biogenesis and function by NF90/NF110 in viral infection.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Molecular Biology and Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Chu-Xiao Liu
- State Key Laboratory of Molecular Biology and Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Wei Xue
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yang Zhang
- State Key Laboratory of Molecular Biology and Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Shan Jiang
- State Key Laboratory of Molecular Biology and Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qing-Fei Yin
- State Key Laboratory of Molecular Biology and Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jia Wei
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Run-Wen Yao
- State Key Laboratory of Molecular Biology and Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Li Yang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China.
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology and Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China.
| |
Collapse
|
40
|
Song D, Huang H, Wang J, Zhao Y, Hu X, He F, Yu L, Wu J. NF90 regulates PARP1 mRNA stability in hepatocellular carcinoma. Biochem Biophys Res Commun 2017; 488:211-217. [PMID: 28487110 DOI: 10.1016/j.bbrc.2017.05.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/06/2017] [Indexed: 02/05/2023]
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) is an ADP- ribosylation enzyme and plays important roles in a variety of cellular processes, including DNA damage response and tumor development. However, the post-transcriptional regulation of PARP1 remains largely unknown. In this study, we identified that the mRNA of PARP1 is associated with nuclear factor 90 (NF90) by RNA immunoprecipitation plus sequencing (RIP-seq) assay. The mRNA and protein levels of PARP1 are dramatically decreased in NF90-depleted cells, and NF90 stabilizes PARP1's mRNA through its 3'UTR. Moreover, the expression levels of PARP1 and NF90 are positively correlated in hepatocellular carcinoma (HCC). Finally, we demonstrated that NF90-depleted cells are sensitive to PARP inhibitor Olaparib (AZD2281) and DNA damage agents. Taken together, these results suggest that NF90 regulates PARP1 mRNA stability in hepatocellular carcinoma cells, and NF90 is a potential target to inhibit PARP1 activity.
Collapse
Affiliation(s)
- Dan Song
- Zhongshan Hospital and School of Life Science, Fudan University, Shanghai, PR China
| | - Huixing Huang
- Zhongshan Hospital and School of Life Science, Fudan University, Shanghai, PR China
| | - Juanjuan Wang
- Zhongshan Hospital and School of Life Science, Fudan University, Shanghai, PR China
| | - Yahui Zhao
- Zhongshan Hospital and School of Life Science, Fudan University, Shanghai, PR China
| | - Xiaoding Hu
- Zhongshan Hospital and School of Life Science, Fudan University, Shanghai, PR China
| | - Funan He
- Zhongshan Hospital and School of Life Science, Fudan University, Shanghai, PR China
| | - Long Yu
- Zhongshan Hospital and School of Life Science, Fudan University, Shanghai, PR China
| | - Jiaxue Wu
- Zhongshan Hospital and School of Life Science, Fudan University, Shanghai, PR China.
| |
Collapse
|
41
|
Weidle UH, Birzele F, Kollmorgen G, Rüger R. Long Non-coding RNAs and their Role in Metastasis. Cancer Genomics Proteomics 2017; 14:143-160. [PMID: 28446530 PMCID: PMC5420816 DOI: 10.21873/cgp.20027] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 02/08/2023] Open
Abstract
The perception of long non-coding RNAs as chunk RNA and transcriptional noise has been steadily replaced by their role as validated targets for a diverse set of physiological processes in the past few years. However, for the vast majority of lncRNAs their precise mode of action and physiological function remain to be uncovered. A large body of evidence has revealed their essential role in all stages of cancirogenesis and metastasis. In this review we focus on the role of lncRNAs in metastasis. We grouped selected lncRNAs into three categories based on in vitro and in vivo mode of action-related studies and clinical relevance for metastasis. Grouped according to their mode of action, in category I we discuss lncRNAs such as CCAT2, DREH, LET, NKILA, treRNA, HOTAIR, H19, FENDRR, lincROR, MALAT, GClnc1, BCAR4, SCHLAP1 and lncRNA ATP, all lncRNAs with in vitro and in vivo metastasis-related data and clinical significance. In category II we discuss lncRNAs CCAT1, PCAT1, PTENgp1, GPLINC, MEG3, ZEB2-AS, LCT13, ANRIL, NBAT1 and lncTCF7 all characterized by their mode of action in vitro and clinical significance, but pending or preliminary in vivo data. Finally, under category III, we discuss lncRNAs BANCR, FRLnc1, SPRY4-IT1 and LIMT with partially or poorly-resolved mode of action and varying degree of validation in clinical metastasis. Finally we discuss metastasis-related translational aspects of lncRNAs.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Fabian Birzele
- Roche Innovation Center Basel, F. Hofman La Roche, Basel, Switzerland
| | - Gwen Kollmorgen
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Rüdiger Rüger
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| |
Collapse
|
42
|
The properties of the RNA-binding protein NF90 are considerably modulated by complex formation with NF45. Biochem J 2016; 474:259-280. [PMID: 28062840 DOI: 10.1042/bcj20160790] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 12/31/2022]
Abstract
Nuclear factor 90 (NF90) is an RNA-binding protein (RBP) that regulates post-transcriptionally the expression of various mRNAs. NF90 was recently shown to be capable of discriminating between different RNA substrates. This is mediated by an adaptive and co-operative interplay between three RNA-binding motifs (RBMs) in the protein's C-terminus. In many cell types, NF90 exists predominantly in a complex with NF45. Here, we compared the RNA-binding properties of the purified NF90 monomer and the NF90-NF45 heterodimer by biophysical and biochemical means, and demonstrate that the interaction with NF45 considerably affects the characteristics of NF90. Along with a thermodynamic stabilization, complex formation substantially improves the RNA-binding capacity of NF90 by modulating its binding mode and by enhancing its affinity for single- and double-stranded RNA substrates. Our data suggest that features of both the N- and C-termini of NF90 participate in the heterodimerization with NF45 and that the formation of NF90-NF45 changes the conformation of NF90's RBMs to a status in which the co-operative interplay of the RBMs is optimal. NF45 is considered to act as a conformational scaffold for NF90's RBMs, which alters the RNA-binding specificity of NF90. Accordingly, the monomeric NF90 and the NF90-NF45 heterodimer may exert different functions in the cell.
Collapse
|
43
|
Lloberas J, Valverde-Estrella L, Tur J, Vico T, Celada A. Mitogen-Activated Protein Kinases and Mitogen Kinase Phosphatase 1: A Critical Interplay in Macrophage Biology. Front Mol Biosci 2016; 3:28. [PMID: 27446931 PMCID: PMC4923182 DOI: 10.3389/fmolb.2016.00028] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/13/2016] [Indexed: 12/21/2022] Open
Abstract
Macrophages are necessary in multiple processes during the immune response or inflammation. This review emphasizes the critical role of the mitogen-activated protein kinases (MAPKs) and mitogen kinase phosphatase-1 (MKP-1) in the functional activities of macrophages. While the phosphorylation of MAPKs is required for macrophage activation or proliferation, MKP-1 dephosphorylates these kinases, thus playing a balancing role in the control of macrophage behavior. MKP-1 is a nuclear-localized dual-specificity phosphatase whose expression is regulated at multiple levels, including at the transcriptional and post-transcriptional level. The regulatory role of MKP-1 in the interplay between MAPK phosphorylation/dephosphorylation makes this molecule a critical regulator of macrophage biology and inflammation.
Collapse
Affiliation(s)
- Jorge Lloberas
- Departament of Cell Biology, Physiology and Immunology, Universitat de Barcelona Barcelona, Spain
| | - Lorena Valverde-Estrella
- Departament of Cell Biology, Physiology and Immunology, Universitat de Barcelona Barcelona, Spain
| | - Juan Tur
- Departament of Cell Biology, Physiology and Immunology, Universitat de Barcelona Barcelona, Spain
| | - Tania Vico
- Departament of Cell Biology, Physiology and Immunology, Universitat de Barcelona Barcelona, Spain
| | - Antonio Celada
- Departament of Cell Biology, Physiology and Immunology, Universitat de Barcelona Barcelona, Spain
| |
Collapse
|
44
|
Murphy J, Hall WW, Ratner L, Sheehy N. Novel interactions between the HTLV antisense proteins HBZ and APH-2 and the NFAR protein family: Implications for the HTLV lifecycles. Virology 2016; 494:129-42. [PMID: 27110706 DOI: 10.1016/j.virol.2016.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 01/17/2023]
Abstract
The human T-cell leukaemia virus type 1 and type 2 (HTLV-1/HTLV-2) antisense proteins HBZ and APH-2 play key roles in the HTLV lifecycles and persistence in the host. Nuclear Factors Associated with double-stranded RNA (NFAR) proteins NF90/110 function in the lifecycles of several viruses and participate in host innate immunity against infection and oncogenesis. Using GST pulldown and co-immunoprecipitation assays we demonstrate specific novel interactions between HBZ/APH-2 and NF90/110 and characterised the protein domains involved. Moreover we show that NF90/110 significantly enhance Tax mediated LTR activation, an effect that was abolished by HBZ but enhanced by APH-2. Additionally we found that HBZ and APH-2 modulate the promoter activity of survivin and are capable of antagonising NF110-mediated survivin activation. Thus interactions between HTLV antisense proteins and the NFAR protein family have an overall positive impact on HTLV infection. Hence NFARs may represent potential therapeutic targets in HTLV infected cells.
Collapse
Affiliation(s)
- Jane Murphy
- Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - William W Hall
- Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lee Ratner
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Noreen Sheehy
- Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
45
|
Li Y, Belshan M. NF45 and NF90 Bind HIV-1 RNA and Modulate HIV Gene Expression. Viruses 2016; 8:v8020047. [PMID: 26891316 PMCID: PMC4776202 DOI: 10.3390/v8020047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/27/2016] [Accepted: 02/04/2016] [Indexed: 01/03/2023] Open
Abstract
A previous proteomic screen in our laboratory identified nuclear factor 45 (NF45) and nuclear factor 90 (NF90) as potential cellular factors involved in human immunodeficiency virus type 1 (HIV-1) replication. Both are RNA binding proteins that regulate gene expression; and NF90 has been shown to regulate the expression of cyclin T1 which is required for Tat-dependent trans-activation of viral gene expression. In this study the roles of NF45 and NF90 in HIV replication were investigated through overexpression studies. Ectopic expression of either factor potentiated HIV infection, gene expression, and virus production. Deletion of the RNA binding domains of NF45 and NF90 diminished the enhancement of HIV infection and gene expression. Both proteins were found to interact with the HIV RNA. RNA decay assays demonstrated that NF90, but not NF45, increased the half-life of the HIV RNA. Overall, these studies indicate that both NF45 and NF90 potentiate HIV infection through their RNA binding domains.
Collapse
Affiliation(s)
- Yan Li
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178, USA.
| | - Michael Belshan
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178, USA.
- The Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583, USA.
| |
Collapse
|
46
|
Schmidt T, Knick P, Lilie H, Friedrich S, Golbik RP, Behrens SE. Coordinated Action of Two Double-Stranded RNA Binding Motifs and an RGG Motif Enables Nuclear Factor 90 To Flexibly Target Different RNA Substrates. Biochemistry 2016; 55:948-59. [PMID: 26795062 DOI: 10.1021/acs.biochem.5b01072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanisms of how RNA binding proteins (RBP) bind to and distinguish different RNA molecules are yet uncertain. Here, we performed a comprehensive analysis of the RNA binding properties of multidomain RBP nuclear factor 90 (NF90) by investigating specifically the functional activities of two double-stranded RNA binding motifs (dsRBM) and an RGG motif in the protein's unstructured C-terminus. By comparison of the RNA binding affinities of several NF90 variants and their modes of binding to a set of defined RNA molecules, the activities of the motifs turned out to be very different. While dsRBM1 contributes little to RNA binding, dsRBM2 is essential for effective binding of double-stranded RNA. The protein's immediate C-terminus, including the RGG motif, is indispensable for interactions of the protein with single-stranded RNA, and the RGG motif decisively contributes to NF90's overall RNA binding properties. Conformational studies, which compared wild-type NF90 with a variant that contains a pseudophosphorylated residue in the RGG motif, suggest that the NF90 C-terminus is involved in conformational changes in the protein after RNA binding, with the RGG motif acting as a central regulatory element. In summary, our data propose a concerted action of all RNA binding motifs within the frame of the full-length protein, which may be controlled by regulation of the activity of the RGG motif, e.g., by phosphorylation. This multidomain interplay enables the RBP NF90 to discriminate RNA features by dynamic and adaptable interactions.
Collapse
Affiliation(s)
- Tobias Schmidt
- Institute of Biochemistry and Biotechnology (NFI), Section of Microbial Biotechnology, and ‡Section of Protein Biochemistry, Martin Luther University Halle-Wittenberg , Kurt-Mothes-Strasse 3, D-06120 Halle/Saale, Germany
| | - Paul Knick
- Institute of Biochemistry and Biotechnology (NFI), Section of Microbial Biotechnology, and ‡Section of Protein Biochemistry, Martin Luther University Halle-Wittenberg , Kurt-Mothes-Strasse 3, D-06120 Halle/Saale, Germany
| | - Hauke Lilie
- Institute of Biochemistry and Biotechnology (NFI), Section of Microbial Biotechnology, and ‡Section of Protein Biochemistry, Martin Luther University Halle-Wittenberg , Kurt-Mothes-Strasse 3, D-06120 Halle/Saale, Germany
| | - Susann Friedrich
- Institute of Biochemistry and Biotechnology (NFI), Section of Microbial Biotechnology, and ‡Section of Protein Biochemistry, Martin Luther University Halle-Wittenberg , Kurt-Mothes-Strasse 3, D-06120 Halle/Saale, Germany
| | - Ralph Peter Golbik
- Institute of Biochemistry and Biotechnology (NFI), Section of Microbial Biotechnology, and ‡Section of Protein Biochemistry, Martin Luther University Halle-Wittenberg , Kurt-Mothes-Strasse 3, D-06120 Halle/Saale, Germany
| | - Sven-Erik Behrens
- Institute of Biochemistry and Biotechnology (NFI), Section of Microbial Biotechnology, and ‡Section of Protein Biochemistry, Martin Luther University Halle-Wittenberg , Kurt-Mothes-Strasse 3, D-06120 Halle/Saale, Germany
| |
Collapse
|
47
|
Panda AC, Abdelmohsen K, Martindale JL, Di Germanio C, Yang X, Grammatikakis I, Noh JH, Zhang Y, Lehrmann E, Dudekula DB, De S, Becker KG, White EJ, Wilson GM, de Cabo R, Gorospe M. Novel RNA-binding activity of MYF5 enhances Ccnd1/Cyclin D1 mRNA translation during myogenesis. Nucleic Acids Res 2016; 44:2393-408. [PMID: 26819411 PMCID: PMC4797292 DOI: 10.1093/nar/gkw023] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/08/2016] [Indexed: 01/07/2023] Open
Abstract
Skeletal muscle contains long multinucleated and contractile structures known as muscle fibers, which arise from the fusion of myoblasts into multinucleated myotubes during myogenesis. The myogenic regulatory factor (MRF) MYF5 is the earliest to be expressed during myogenesis and functions as a transcription factor in muscle progenitor cells (satellite cells) and myocytes. In mouse C2C12 myocytes, MYF5 is implicated in the initial steps of myoblast differentiation into myotubes. Here, using ribonucleoprotein immunoprecipitation (RIP) analysis, we discovered a novel function for MYF5 as an RNA-binding protein which associated with a subset of myoblast mRNAs. One prominent MYF5 target was Ccnd1 mRNA, which encodes the key cell cycle regulator CCND1 (Cyclin D1). Biotin-RNA pulldown, UV-crosslinking and gel shift experiments indicated that MYF5 was capable of binding the 3' untranslated region (UTR) and the coding region (CR) of Ccnd1 mRNA. Silencing MYF5 expression in proliferating myoblasts revealed that MYF5 promoted CCND1 translation and modestly increased transcription of Ccnd1 mRNA. Accordingly, overexpressing MYF5 in C2C12 cells upregulated CCND1 expression while silencing MYF5 reduced myoblast proliferation as well as differentiation of myoblasts into myotubes. Moreover, MYF5 silencing reduced myogenesis, while ectopically restoring CCND1 abundance partially rescued the decrease in myogenesis seen after MYF5 silencing. We propose that MYF5 enhances early myogenesis in part by coordinately elevating Ccnd1 transcription and Ccnd1 mRNA translation.
Collapse
Affiliation(s)
- Amaresh C Panda
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD21224, USA
| | | | - Clara Di Germanio
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Xiaoling Yang
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD21224, USA
| | | | - Ji Heon Noh
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD21224, USA
| | - Yongqing Zhang
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD21224, USA
| | - Elin Lehrmann
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD21224, USA
| | - Dawood B Dudekula
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD21224, USA
| | - Supriyo De
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD21224, USA
| | - Kevin G Becker
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD21224, USA
| | - Elizabeth J White
- Department of Biochemistry and Molecular Biology and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Gerald M Wilson
- Department of Biochemistry and Molecular Biology and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD21224, USA
| |
Collapse
|
48
|
Abstract
All living organisms sense and respond to harmful changes in their intracellular and extracellular environment through complex signaling pathways that lead to changes in gene expression and cellular function in order to maintain homeostasis. Long non-coding RNAs (lncRNAs), a large and heterogeneous group of functional RNAs, play important roles in cellular response to stressful conditions. lncRNAs constitute a significant fraction of the genes differentially expressed in response to diverse stressful stimuli and, once induced, contribute to the regulation of downstream cellular processes, including feedback regulation of key stress response proteins. While many lncRNAs seem to be induced in response to a specific stress, there is significant overlap between lncRNAs induced in response to different stressful stimuli. In addition to stress-induced RNAs, several constitutively expressed lncRNAs also exert a strong regulatory impact on the stress response. Although our understanding of the contribution of lncRNAs to the cellular stress response is still highly rudimentary, the existing data point to the presence of a complex network of lncRNAs, miRNAs, and proteins in regulation of the cellular response to stress.
Collapse
Affiliation(s)
- Saba Valadkhan
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Alberto Valencia-Hipólito
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| |
Collapse
|
49
|
Hypoxia-regulated lncRNAs in cancer. Gene 2016; 575:1-8. [DOI: 10.1016/j.gene.2015.08.049] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/23/2015] [Accepted: 08/24/2015] [Indexed: 12/13/2022]
|
50
|
Jayachandran U, Grey H, Cook AG. Nuclear factor 90 uses an ADAR2-like binding mode to recognize specific bases in dsRNA. Nucleic Acids Res 2015; 44:1924-36. [PMID: 26712564 PMCID: PMC4770229 DOI: 10.1093/nar/gkv1508] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/10/2015] [Indexed: 02/06/2023] Open
Abstract
Nuclear factors 90 and 45 (NF90 and NF45) form a protein complex involved in the post-transcriptional control of many genes in vertebrates. NF90 is a member of the dsRNA binding domain (dsRBD) family of proteins. RNA binding partners identified so far include elements in 3′ untranslated regions of specific mRNAs and several non-coding RNAs. In NF90, a tandem pair of dsRBDs separated by a natively unstructured segment confers dsRNA binding activity. We determined a crystal structure of the tandem dsRBDs of NF90 in complex with a synthetic dsRNA. This complex shows surprising similarity to the tandem dsRBDs from an adenosine-to-inosine editing enzyme, ADAR2 in complex with a substrate RNA. Residues involved in unusual base-specific recognition in the minor groove of dsRNA are conserved between NF90 and ADAR2. These data suggest that, like ADAR2, underlying sequences in dsRNA may influence how NF90 recognizes its target RNAs.
Collapse
Affiliation(s)
- Uma Jayachandran
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Heather Grey
- Institute of Molecular Plant Sciences, University of Edinburgh, Daniel Rutherford Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Atlanta G Cook
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| |
Collapse
|