1
|
Waite JB, Boytz R, Traeger AR, Lind TM, Lumbao-Conradson K, Torigoe SE. A suboptimal OCT4-SOX2 binding site facilitates the naïve-state specific function of a Klf4 enhancer. PLoS One 2024; 19:e0311120. [PMID: 39348365 PMCID: PMC11441684 DOI: 10.1371/journal.pone.0311120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/12/2024] [Indexed: 10/02/2024] Open
Abstract
Enhancers have critical functions in the precise, spatiotemporal control of transcription during development. It is thought that enhancer grammar, or the characteristics and arrangements of transcription factor binding sites, underlie the specific functions of developmental enhancers. In this study, we sought to identify grammatical constraints that direct enhancer activity in the naïve state of pluripotency, focusing on the enhancers for the naïve-state specific gene, Klf4. Using a combination of biochemical tests, reporter assays, and endogenous mutations in mouse embryonic stem cells, we have studied the binding sites for the transcription factors OCT4 and SOX2. We have found that the three Klf4 enhancers contain suboptimal OCT4-SOX2 composite binding sites. Substitution with a high-affinity OCT4-SOX2 binding site in Klf4 enhancer E2 rescued enhancer function and Klf4 expression upon loss of the ESRRB and STAT3 binding sites. We also observed that the low-affinity of the OCT4-SOX2 binding site is crucial to drive the naïve-state specific activities of Klf4 enhancer E2. Altogether, our work suggests that the affinity of OCT4-SOX2 binding sites could facilitate enhancer functions in specific states of pluripotency.
Collapse
Affiliation(s)
- Jack B Waite
- Biochemistry & Molecular Biology Program, Lewis & Clark College, Portland, Oregon, United States of America
| | - RuthMabel Boytz
- Biology Department, Lewis & Clark College, Portland, Oregon, United States of America
| | - Alexis R Traeger
- Biochemistry & Molecular Biology Program, Lewis & Clark College, Portland, Oregon, United States of America
| | - Torrey M Lind
- Biochemistry & Molecular Biology Program, Lewis & Clark College, Portland, Oregon, United States of America
| | - Koya Lumbao-Conradson
- Biochemistry & Molecular Biology Program, Lewis & Clark College, Portland, Oregon, United States of America
| | - Sharon E Torigoe
- Biochemistry & Molecular Biology Program, Lewis & Clark College, Portland, Oregon, United States of America
- Biology Department, Lewis & Clark College, Portland, Oregon, United States of America
| |
Collapse
|
2
|
Dias MM, Vidigal J, Sequeira DP, Alves PM, Teixeira AP, Roldão A. Insect High FiveTM cell line development using site-specific flipase recombination technology. G3-GENES GENOMES GENETICS 2021; 11:6274903. [PMID: 33982066 PMCID: PMC8763235 DOI: 10.1093/g3journal/jkab166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/24/2021] [Indexed: 11/14/2022]
Abstract
Insect Trichoplusia ni High FiveTM (Hi5) cells have been widely explored for production of heterologous proteins, traditionally mostly using the lytic baculovirus expression vector system (BEVS), and more recently using virus-free transient gene expression systems. Stable expression in such host cells would circumvent the drawbacks associated with both systems when it comes to scale-up and implementation of more efficient high-cell density process modes for the manufacturing of biologics. In this work, we combined Flipase (Flp) recombinase-mediated cassette exchange (RMCE) with fluorescence-activated cell sorting (FACS) for generating a stable master clonal Hi5 cell line with the flexibility to express single or multiple proteins of interest from a tagged genomic locus. The 3-step protocol herein implemented consisted of (i) introducing the RMCE docking cassette into the cell genome by random integration followed by selection in Hygromycin B and FACS (Hi5-tagging population), (ii) eliminating cells tagged in loci with low recombination efficiency by transfecting the tagging population with an eGFP-containing target cassette followed by selection in G418 and FACS (Hi5-RMCE population), and (iii) isolation of pure eGFP-expressing cells by FACS and expansion to suspension cultures (Hi5-RMCE master clone). Exchangeability of the locus in the master clone was demonstrated in small-scale suspension cultures by replacing the target cassette by one containing a single protein (i.e. iCherry, as an intracellular protein model) or two proteins (i.e. influenza HA and M1 for virus-like particles production, as an extracellular protein model). Overall, the stable insect Hi5 cell platform herein assembled has the potential to assist and accelerate biologics development.
Collapse
Affiliation(s)
- Mafalda M Dias
- IBET, Instituto de Biologia Experimental e Tecnológica, 2780-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-901 Oeiras, Portugal
| | - João Vidigal
- IBET, Instituto de Biologia Experimental e Tecnológica, 2780-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-901 Oeiras, Portugal
| | - Daniela P Sequeira
- IBET, Instituto de Biologia Experimental e Tecnológica, 2780-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-901 Oeiras, Portugal.,Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Paula M Alves
- IBET, Instituto de Biologia Experimental e Tecnológica, 2780-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-901 Oeiras, Portugal
| | - Ana P Teixeira
- IBET, Instituto de Biologia Experimental e Tecnológica, 2780-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-901 Oeiras, Portugal.,ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 - Basel, Switzerland
| | - António Roldão
- IBET, Instituto de Biologia Experimental e Tecnológica, 2780-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-901 Oeiras, Portugal
| |
Collapse
|
3
|
Site-specific chromosomal gene insertion: Flp recombinase versus Cas9 nuclease. Sci Rep 2017; 7:17771. [PMID: 29259215 PMCID: PMC5736728 DOI: 10.1038/s41598-017-17651-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/24/2017] [Indexed: 12/16/2022] Open
Abstract
Site-specific recombination systems like those based on the Flp recombinase proved themselves as efficient tools for cell line engineering. The recent emergence of designer nucleases, especially RNA guided endonucleases like Cas9, has considerably broadened the available toolbox for applications like targeted transgene insertions. Here we established a recombinase-mediated cassette exchange (RMCE) protocol for the fast and effective, drug-free isolation of recombinant cells. Distinct fluorescent protein patterns identified the recombination status of individual cells. In derivatives of a CHO master cell line the expression of the introduced transgene of interest could be dramatically increased almost 20-fold by subsequent deletion of the fluorescent protein gene that provided the initial isolation principle. The same master cell line was employed in a comparative analysis using CRISPR/Cas9 for transgene integration in identical loci. Even though the overall targeting efficacy was comparable, multi-loci targeting was considerably more effective for Cas9-mediated transgene insertion when compared to RMCE. While Cas9 is inherently more flexible, our results also alert to the risk of aberrant recombination events around the cut site. Together, this study points at the individual strengths in performance of both systems and provides guidance for their appropriate use.
Collapse
|
4
|
Kaloff C, Anastassiadis K, Ayadi A, Baldock R, Beig J, Birling MC, Bradley A, Brown S, Bürger A, Bushell W, Chiani F, Collins FS, Doe B, Eppig JT, Finnel RH, Fletcher C, Flicek P, Fray M, Friedel RH, Gambadoro A, Gates H, Hansen J, Herault Y, Hicks GG, Hörlein A, Hrabé de Angelis M, Iyer V, de Jong PJ, Koscielny G, Kühn R, Liu P, Lloyd KC, Lopez RG, Marschall S, Martínez S, McKerlie C, Meehan T, von Melchner H, Moore M, Murray SA, Nagy A, Nutter L, Pavlovic G, Pombero A, Prosser H, Ramirez-Solis R, Ringwald M, Rosen B, Rosenthal N, Rossant J, Ruiz Noppinger P, Ryder E, Skarnes WC, Schick J, Schnütgen F, Schofield P, Seisenberger C, Selloum M, Smedley D, Simpson EM, Stewart AF, Teboul L, Tocchini Valentini GP, Valenzuela D, West A, Wurst W. Genome Wide Conditional Mouse Knockout Resources. DRUG DISCOVERY TODAY. DISEASE MODELS 2017; 20:3-12. [PMID: 39132094 PMCID: PMC11315453 DOI: 10.1016/j.ddmod.2017.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The International Knockout Mouse Consortium (IKMC) developed high throughput gene trapping and gene targeting pipelines that produced mostly conditional mutations of more than 18,500 genes in C57BL/6N mouse embryonic stem (ES) cells which have been archived and are freely available to the research community as a frozen resource. From this unprecedented resource more than 6,000 mutant mouse strains have been produced by the IKMC and mostly the International Mouse Phenotyping Consortium (IMPC). In addition, a cre-driver resource was established including 250 inducible cre-driver mouse strains in a C57BL/6 background. Complementing the cre-driver resource, a collection of comprising 27 cre-driver rAAVs has also been produced. The resources can be easily accessed at the IKMC/IMPC web portal (www.mousephenotype.org). The IKMC/IMPC resource is a standardized reference library of mouse models with defined genetic backgrounds that enables the analysis of gene-disease associations in mice of different genetic makeup and should therefore have a major impact on biomedical research.
Collapse
Affiliation(s)
- C Kaloff
- Institute of Developmental Genetics, Helmholtz Zentrum Muenchen, D-85764 Neuherberg, Germany
| | - K Anastassiadis
- Biotechnology Center (BIOTEC) of the Technische Universität Dresden, 01307 Dresden, Germany
| | - A Ayadi
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), CNRS, INSERM, University of Strasbourg, 1 rue Laurent Fries, F-67404 Illkirch-Graffenstaden, France
| | - R Baldock
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, College of Medicine and Veterinary Medicine, Edinburgh, Scotland EH4 2XU, UK
| | - J Beig
- Institute of Developmental Genetics, Helmholtz Zentrum Muenchen, D-85764 Neuherberg, Germany
| | - M-C Birling
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), CNRS, INSERM, University of Strasbourg, 1 rue Laurent Fries, F-67404 Illkirch-Graffenstaden, France
| | - A Bradley
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB101HH, UK
| | - S Brown
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX110RD, UK
| | - A Bürger
- Institute of Developmental Genetics, Helmholtz Zentrum Muenchen, D-85764 Neuherberg, Germany
| | - W Bushell
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB101HH, UK
| | - F Chiani
- Istituto di Biologia Cellulare, Consiglio Nazionale delle Ricerche (CNR), Monterotondo-Scalo, I-00015 Rome, Italy
| | - F S Collins
- Office of the Director, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - B Doe
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB101HH, UK
| | - J T Eppig
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - R H Finnel
- The Texas A&M Institute for Genomic Medicine, College Station, Texas, 77843-4485 USA; University of Texas at Austin, Austin, Texas, 78712, USA
| | - C Fletcher
- National Institutes of Health, Bethesda, Maryland, 20205, USA
| | - P Flicek
- European Bioinformatics Institute (EBI), Hinxton, Cambridge, CB101ST, UK
| | - M Fray
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX110RD, UK
| | - R H Friedel
- Institute of Developmental Genetics, Helmholtz Zentrum Muenchen, D-85764 Neuherberg, Germany
| | - A Gambadoro
- Istituto di Biologia Cellulare, Consiglio Nazionale delle Ricerche (CNR), Monterotondo-Scalo, I-00015 Rome, Italy
| | - H Gates
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX110RD, UK
| | - J Hansen
- Institute of Developmental Genetics, Helmholtz Zentrum Muenchen, D-85764 Neuherberg, Germany
| | - Y Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - G G Hicks
- University of Manitoba, Manitoba Institute of Cell Biology, Winnipeg, MB, R3EOV9, Canada
| | - A Hörlein
- Institute of Developmental Genetics, Helmholtz Zentrum Muenchen, D-85764 Neuherberg, Germany
| | - M Hrabé de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum Muenchen, D-85764 Neuherberg, Germany
| | - V Iyer
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB101HH, UK
| | - P J de Jong
- Children's Hospital Oakland Research Institute, CHORI, Oakland, CA, 94609, USA
| | - G Koscielny
- European Bioinformatics Institute (EBI), Hinxton, Cambridge, CB101ST, UK
| | - R Kühn
- Institute of Developmental Genetics, Helmholtz Zentrum Muenchen, D-85764 Neuherberg, Germany
| | - P Liu
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB101HH, UK
| | - K C Lloyd
- Mouse Biology Program, School of Veterinary Medicine, University of California, Davis, California 95616, USA
| | - R G Lopez
- Instituto de Neurociencias (UMH-CSIC), San Juan de Alicante
| | - S Marschall
- Institute of Experimental Genetics, Helmholtz Zentrum Muenchen, D-85764 Neuherberg, Germany
| | - S Martínez
- Instituto de Neurociencias (UMH-CSIC), San Juan de Alicante
| | - C McKerlie
- The Centre for Phenogenomics and Translation Medicine, The Hospital for Sick Children, Toronto, CANADA
| | - T Meehan
- European Bioinformatics Institute (EBI), Hinxton, Cambridge, CB101ST, UK
| | - H von Melchner
- Department of Molecular Haematology, University of Frankfurt Medical School, 60590 Frankfurt am Main, Germany
| | - M Moore
- IMPC, San Anselmo, California, US
| | - S A Murray
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - A Nagy
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, Toronto, ON, M5G1X5, Canada
| | - Lmj Nutter
- The Centre for Phenogenomics and Translation Medicine, The Hospital for Sick Children, Toronto, CANADA
| | - G Pavlovic
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), CNRS, INSERM, University of Strasbourg, 1 rue Laurent Fries, F-67404 Illkirch-Graffenstaden, France
| | - A Pombero
- Instituto de Neurociencias (UMH-CSIC), San Juan de Alicante
| | - H Prosser
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB101HH, UK
| | - R Ramirez-Solis
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB101HH, UK
| | - M Ringwald
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - B Rosen
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB101HH, UK
| | - N Rosenthal
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - J Rossant
- Research Institute, The Hospital for Sick Children, SickKids Foundation, Toronto, ON, M5G2L3, Canada
| | - P Ruiz Noppinger
- Department of Vertebrate Genomics, Charité, 10115 Berlin, Germany
| | - E Ryder
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB101HH, UK
| | - W C Skarnes
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB101HH, UK
| | - J Schick
- Institute of Developmental Genetics, Helmholtz Zentrum Muenchen, D-85764 Neuherberg, Germany
| | - F Schnütgen
- Department of Molecular Haematology, University of Frankfurt Medical School, 60590 Frankfurt am Main, Germany
| | - P Schofield
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB23EG, UK
| | - C Seisenberger
- Institute of Developmental Genetics, Helmholtz Zentrum Muenchen, D-85764 Neuherberg, Germany
| | - M Selloum
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), CNRS, INSERM, University of Strasbourg, 1 rue Laurent Fries, F-67404 Illkirch-Graffenstaden, France
| | - D Smedley
- European Bioinformatics Institute (EBI), Hinxton, Cambridge, CB101ST, UK
- Clinical Pharmacology, Queen Mary, University of London, Gower Street, London WC1E 6BT, UK
| | - E M Simpson
- Centre for Molecular Medicine and Therapeutics at the BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - A F Stewart
- Biotechnology Center (BIOTEC) of the Technische Universität Dresden, 01307 Dresden, Germany
| | - L Teboul
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX110RD, UK
| | - G P Tocchini Valentini
- Istituto di Biologia Cellulare, Consiglio Nazionale delle Ricerche (CNR), Monterotondo-Scalo, I-00015 Rome, Italy
| | - D Valenzuela
- Velocigene Division, Regeneron Pharmaceuticals Inc., Tarrytown, New York, 10591, USA
| | - A West
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB101HH, UK
| | - W Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum Muenchen, D-85764 Neuherberg, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Standort München - Feodor-Lynen-Str. 17, 81377 München Germany
- Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 Munich, Germany
- Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
5
|
Li L, Liu P, Sun L, Bin Zhou, Fei J. PiggyBac transposon-based polyadenylation-signal trap for genome-wide mutagenesis in mice. Sci Rep 2016; 6:27788. [PMID: 27292714 PMCID: PMC4904408 DOI: 10.1038/srep27788] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 05/23/2016] [Indexed: 12/12/2022] Open
Abstract
We designed a new type of polyadenylation-signal (PAS) trap vector system in living mice, the piggyBac (PB) (PAS-trapping (EGFP)) gene trapping vector, which takes advantage of the efficient transposition ability of PB and efficient gene trap and insertional mutagenesis of PAS-trapping. The reporter gene of PB(PAS-trapping (EGFP)) is an EGFP gene with its own promoter, but lacking a poly(A) signal. Transgenic mouse lines carrying PB(PAS-trapping (EGFP)) and protamine 1 (Prm1) promoter-driven PB transposase transgenes (Prm1-PBase) were generated by microinjection. Male mice doubly positive for PB(PAS-trapping (EGFP)) and Prm1-PBase were crossed with WT females, generating offspring with various insertion mutations. We found that 44.8% (26/58) of pups were transposon-positive progenies. New transposon integrations comprised 26.9% (7/26) of the transposon-positive progenies. We found that 100% (5/5) of the EGFP fluorescence-positive mice had new trap insertions mediated by a PB transposon in transcriptional units. The direction of the EGFP gene in the vector was consistent with the direction of the endogenous gene reading frame. Furthermore, mice that were EGFP-PCR positive, but EGFP fluorescent negative, did not show successful gene trapping. Thus, the novel PB(PAS-trapping (EGFP)) system is an efficient genome-wide gene-trap mutagenesis in mice.
Collapse
Affiliation(s)
- Limei Li
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Department of vascular surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peng Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liangliang Sun
- Department of Endocrinology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, PR China
| | - Bin Zhou
- Department of vascular surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jian Fei
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Metastasis research institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Research Center for Model Organisms, Shanghai, 201203, China
| |
Collapse
|
6
|
Rosen B, Schick J, Wurst W. Beyond knockouts: the International Knockout Mouse Consortium delivers modular and evolving tools for investigating mammalian genes. Mamm Genome 2015; 26:456-66. [PMID: 26340938 DOI: 10.1007/s00335-015-9598-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/13/2015] [Indexed: 11/29/2022]
Abstract
The International Knockout Mouse Consortium (IKMC; http://www.mousephenotype.org ) has generated mutations in almost every protein-coding mouse gene and is completing the companion Cre driver resource to expand tissue-specific conditional mutagenesis. Accordingly, the IKMC has carried out high-throughput gene trapping and targeting producing conditional mutations in murine embryonic stem cells in more than 18,500 genes, from which at least 4900 mutant mouse lines have been established to date. This resource is currently being upgraded with more powerful tools, such as visualization and manipulation cassettes that can be easily introduced into IKMC alleles for multifaceted functional studies. In addition, we discuss how existing IKMC products can be used in combination with CRISPR technology to accelerate genome engineering projects. All information and materials from this extraordinary biological resource together with coordinated phenotyping efforts can be retrieved at www.mousephenotype.org . The comprehensive IKMC knockout resource in combination with an extensive set of modular gene cassettes will continue to enhance functional gene annotation in the future and solidify its impact on biomedical research.
Collapse
Affiliation(s)
- B Rosen
- Stem Cell Engineering, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - J Schick
- German Research Center for Environmental Health, Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - W Wurst
- German Research Center for Environmental Health, Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany. .,Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany. .,Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Standort München Feodor-Lynen Strasse 17, 81377, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Feodor-Lynen Strasse 17, 81377, Munich, Germany.
| |
Collapse
|
7
|
Smith BN, Ghazanfari AM, Bohm RA, Welch WP, Zhang B, Masly JP. A Flippase-Mediated GAL80/GAL4 Intersectional Resource for Dissecting Appendage Development in Drosophila. G3 (BETHESDA, MD.) 2015; 5:2105-12. [PMID: 26276385 PMCID: PMC4592993 DOI: 10.1534/g3.115.019810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/11/2015] [Indexed: 12/18/2022]
Abstract
Drosophila imaginal discs provide an ideal model to study processes important for cell signaling and cell specification, tissue differentiation, and cell competition during development. One challenge to understanding genetic control of cellular processes and cell interactions is the difficulty in effectively targeting a defined subset of cells in developing tissues in gene manipulation experiments. A recently developed Flippase-induced intersectional GAL80/GAL4 repression method incorporates several gene manipulation technologies in Drosophila to enable such fine-scale dissection in neural tissues. In particular, this approach brings together existing GAL4 transgenes, newly developed enhancer-trap flippase transgenes, and GAL80 transgenes flanked by Flippase recognition target sites. The combination of these tools enables gene activation/repression in particular subsets of cells within a GAL4 expression pattern. Here, we expand the utility of a large collection of these enhancer-trap flippase transgenic insertion lines by characterizing their expression patterns in third larval instar imaginal discs. We screened 521 different enhancer-trap flippase lines and identified 28 that are expressed in imaginal tissues, including two transgenes that show sex-specific expression patterns. Using a line that expresses Flippase in the wing imaginal disc, we demonstrate the utility of this intersectional approach for studying development by knocking down gene expression of a key member of the planar cell polarity pathway. The results of our experiments show that these enhancer-trap flippase lines enable fine-scale manipulation in imaginal discs.
Collapse
Affiliation(s)
- Brittany N Smith
- Department of Biology, University of Oklahoma, Norman, Oklahoma 73019
| | | | - Rudolf A Bohm
- Department of Biology, University of Oklahoma, Norman, Oklahoma 73019 Department of Biological and Health Sciences, Texas A&M University, Kingsville, Texas 78363
| | - William P Welch
- Department of Biology, University of Oklahoma, Norman, Oklahoma 73019
| | - Bing Zhang
- Department of Biology, University of Oklahoma, Norman, Oklahoma 73019 Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
| | - John P Masly
- Department of Biology, University of Oklahoma, Norman, Oklahoma 73019
| |
Collapse
|
8
|
Lee JH, Jang EJ, Seo HL, Ku SK, Lee JR, Shin SS, Park SD, Kim SC, Kim YW. Sauchinone attenuates liver fibrosis and hepatic stellate cell activation through TGF-β/Smad signaling pathway. Chem Biol Interact 2014; 224:58-67. [PMID: 25451574 DOI: 10.1016/j.cbi.2014.10.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/11/2014] [Accepted: 10/06/2014] [Indexed: 12/28/2022]
Abstract
Hepatic stellate cells (HSCs) are key mediators of fibrogenesis, and the regulation of their activation is now viewed as an attractive target for the treatment of liver fibrosis. Here, the authors investigated the ability of sauchinone, an active lignan found in Saururus chinensis, to regulate the activation of HSCs, to prevent liver fibrosis, and to inhibit oxidative stress in vivo and in vitro. Blood biochemistry and histopathology were assessed in CCl4-induced mouse model of liver fibrosis to investigate the effects of sauchinone. In addition, transforming growth factor-β1 (TGF-β1)-activated LX-2 cells (a human HSC line) were used to investigate the in vitro effects of sauchinone. Sauchinone significantly inhibited liver fibrosis, as indicated by decreases in regions of hepatic degeneration, inflammatory cell infiltration, and the intensity of α-smooth muscle actin staining in mice. Sauchinone blocked the TGF-β1-induced phosphorylation of Smad 2/3 and the transcript levels of plasminogen activator inhibitor-1 and matrix metalloproteinase-2 as well as autophagy in HSCs. Furthermore, sauchinone inhibited oxidative stress, as assessed by stainings of 4-hydroxynonenal and nitrotyrosine: these events may have a role in its inhibitory effects on HSCs activation. Sauchinone attenuated CCl4-induced liver fibrosis and TGF-β1-induced HSCs activation, which might be, at least in part, mediated by suppressing autophagy and oxidative stress in HSCs.
Collapse
Affiliation(s)
- Ju-Hee Lee
- College of Oriental Medicine, Daegu Haany University, Daegu 706-828, Republic of Korea
| | - Eun Jeong Jang
- College of Oriental Medicine, Daegu Haany University, Daegu 706-828, Republic of Korea
| | - Hye Lim Seo
- College of Oriental Medicine, Daegu Haany University, Daegu 706-828, Republic of Korea
| | - Sae Kwang Ku
- College of Oriental Medicine, Daegu Haany University, Daegu 706-828, Republic of Korea
| | - Jong Rok Lee
- College of Oriental Medicine, Daegu Haany University, Daegu 706-828, Republic of Korea
| | - Soon Shik Shin
- College of Oriental Medicine, Dongeui University, Busan 614-851, Republic of Korea
| | - Sun-Dong Park
- College of Oriental Medicine, Dongguk University, Gyeongju, Gyeongbuk 780-714, Republic of Korea
| | - Sang Chan Kim
- College of Oriental Medicine, Daegu Haany University, Daegu 706-828, Republic of Korea
| | - Young Woo Kim
- College of Oriental Medicine, Daegu Haany University, Daegu 706-828, Republic of Korea.
| |
Collapse
|
9
|
Turan S, Qiao J, Madden S, Benham C, Kotz M, Schambach A, Bode J. Expanding Flp-RMCE options: the potential of Recombinase Mediated Twin-Site Targeting (RMTT). Gene 2014; 546:135-44. [DOI: 10.1016/j.gene.2014.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 06/02/2014] [Indexed: 01/02/2023]
|
10
|
Hematopoietic overexpression of FOG1 does not affect B-cells but reduces the number of circulating eosinophils. PLoS One 2014; 9:e92836. [PMID: 24747299 PMCID: PMC3991581 DOI: 10.1371/journal.pone.0092836] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 02/26/2014] [Indexed: 12/31/2022] Open
Abstract
We have identified expression of the gene encoding the transcriptional coactivator FOG-1 (Friend of GATA-1; Zfpm1, Zinc finger protein multitype 1) in B lymphocytes. We found that FOG-1 expression is directly or indirectly dependent on the B cell-specific coactivator OBF-1 and that it is modulated during B cell development: expression is observed in early but not in late stages of B cell development. To directly test in vivo the role of FOG-1 in B lymphocytes, we developed a novel embryonic stem cell recombination system. For this, we combined homologous recombination with the FLP recombinase activity to rapidly generate embryonic stem cell lines carrying a Cre-inducible transgene at the Rosa26 locus. Using this system, we successfully generated transgenic mice where FOG-1 is conditionally overexpressed in mature B-cells or in the entire hematopoietic system. While overexpression of FOG-1 in B cells did not significantly affect B cell development or function, we found that enforced expression of FOG-1 throughout all hematopoietic lineages led to a reduction in the number of circulating eosinophils, confirming and extending to mammals the known function of FOG-1 in this lineage.
Collapse
|
11
|
Stribl C, Samara A, Trümbach D, Peis R, Neumann M, Fuchs H, Gailus-Durner V, Hrabě de Angelis M, Rathkolb B, Wolf E, Beckers J, Horsch M, Neff F, Kremmer E, Koob S, Reichert AS, Hans W, Rozman J, Klingenspor M, Aichler M, Walch AK, Becker L, Klopstock T, Glasl L, Hölter SM, Wurst W, Floss T. Mitochondrial dysfunction and decrease in body weight of a transgenic knock-in mouse model for TDP-43. J Biol Chem 2014; 289:10769-10784. [PMID: 24515116 DOI: 10.1074/jbc.m113.515940] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The majority of amyotrophic lateral sclerosis (ALS) cases as well as many patients suffering from frontotemporal lobar dementia (FTLD) with ubiquitinated inclusion bodies show TDP-43 pathology, the protein encoded by the TAR DNA-binding protein (Tardbp) gene. We used recombinase-mediated cassette exchange to introduce an ALS patient cDNA into the mouse Tdp-43 locus. Expression levels of human A315T TDP-43 protein were 300% elevated in heterozygotes, whereas the endogenous mouse Tdp-43 was decreased to 20% of wild type levels as a result of disturbed feedback regulation. Heterozygous TDP-43(A315TKi) mutants lost 10% of their body weight and developed insoluble TDP-43 protein starting as early as 3 months after birth, a pathology that was exacerbated with age. We analyzed the splicing patterns of known Tdp-43 target genes as well as genome-wide gene expression levels in different tissues that indicated mitochondrial dysfunction. In heterozygous mutant animals, we observed a relative decrease in expression of Parkin (Park2) and the fatty acid transporter CD36 along with an increase in fatty acids, HDL cholesterol, and glucose in the blood. As seen in transmission electron microscopy, neuronal cells in motor cortices of TDP-43(A315TKi) animals had abnormal neuronal mitochondrial cristae formation. Motor neurons were reduced to 90%, but only slight motoric impairment was detected. The observed phenotype was interpreted as a predisease model, which might be valuable for the identification of further environmental or genetic triggers of neurodegeneration.
Collapse
Affiliation(s)
- Carola Stribl
- Helmholtz Zentrum München, Institute of Developmental Genetics, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Aladin Samara
- Helmholtz Zentrum München, Institute of Developmental Genetics, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Dietrich Trümbach
- Helmholtz Zentrum München, Institute of Developmental Genetics, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Regina Peis
- Helmholtz Zentrum München, Institute of Developmental Genetics, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Manuela Neumann
- Institute of Neuropathology, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; Technische Universität München, c/o Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-Universität, Ziemssenstrasse 1a, 80336 Munich, Germany
| | - Birgit Rathkolb
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; Gene Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Eckhard Wolf
- Gene Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; Technische Universität München, c/o Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Marion Horsch
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Frauke Neff
- Institute of Pathology, German Mouse Clinic, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Elisabeth Kremmer
- Helmholtz Institut für Molekulare Immunologie (IMI), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Sebastian Koob
- Buchmann Institute for Molecular Life Sciences, Mitochondrial Biology, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany; Mitochondriale Biologie, Zentrum für Molekulare Medizin, Goethe Universität Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Andreas S Reichert
- Buchmann Institute for Molecular Life Sciences, Mitochondrial Biology, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany; Mitochondriale Biologie, Zentrum für Molekulare Medizin, Goethe Universität Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Mitochondriale Biologie, Zentrum für Molekulare Medizin, Goethe Universität Frankfurt am Main, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
| | - Wolfgang Hans
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; Molecular Nutritional Medicine, Else Kröner Fresenius Center and ZIEL Research Center for Nutrition and Food Science, Technische Universität München, Gregor-Mendel-Strasse 2, 85350 Freising-Weihenstephan, Germany
| | - Jan Rozman
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; Molecular Nutritional Medicine, Else Kröner Fresenius Center and ZIEL Research Center for Nutrition and Food Science, Technische Universität München, Gregor-Mendel-Strasse 2, 85350 Freising-Weihenstephan, Germany
| | - Martin Klingenspor
- Molecular Nutritional Medicine, Else Kröner Fresenius Center and ZIEL Research Center for Nutrition and Food Science, Technische Universität München, Gregor-Mendel-Strasse 2, 85350 Freising-Weihenstephan, Germany
| | - Michaela Aichler
- Research Unit Analytical Pathology, Institute of Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Axel Karl Walch
- Research Unit Analytical Pathology, Institute of Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Lore Becker
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-Universität, Ziemssenstrasse 1a, 80336 Munich, Germany
| | - Thomas Klopstock
- Research Unit Analytical Pathology, Institute of Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-Universität, Ziemssenstrasse 1a, 80336 Munich, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Site Munich, Schillerstrasse 44, D-80336 Munich, Germany
| | - Lisa Glasl
- Helmholtz Zentrum München, Institute of Developmental Genetics, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Sabine M Hölter
- Helmholtz Zentrum München, Institute of Developmental Genetics, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Technische Universität München, c/o Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Wolfgang Wurst
- Helmholtz Zentrum München, Institute of Developmental Genetics, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Technische Universität München, c/o Helmholtz Zentrum München, 85764 Neuherberg, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Site Munich, Schillerstrasse 44, D-80336 Munich, Germany; Max-Planck-Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 München, Germany
| | - Thomas Floss
- Helmholtz Zentrum München, Institute of Developmental Genetics, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Technische Universität München, c/o Helmholtz Zentrum München, 85764 Neuherberg, Germany.
| |
Collapse
|
12
|
Abstract
Much of what is known about mammalian cell regulation has been achieved with the aid of transiently transfected cells. However, overexpression can violate balanced gene dosage, affecting protein folding, complex assembly and downstream regulation. To avoid these problems, genome engineering technologies now enable the generation of stable cell lines expressing modified proteins at (almost) native levels.
Collapse
Affiliation(s)
- Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | | | | |
Collapse
|
13
|
Weber T, Köster R. Genetic tools for multicolor imaging in zebrafish larvae. Methods 2013; 62:279-91. [DOI: 10.1016/j.ymeth.2013.07.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 07/08/2013] [Accepted: 07/16/2013] [Indexed: 02/06/2023] Open
|
14
|
Efficient ROSA26-Based Conditional and/or Inducible Transgenesis Using RMCE-Compatible F1 Hybrid Mouse Embryonic Stem Cells. Stem Cell Rev Rep 2013; 9:774-85. [DOI: 10.1007/s12015-013-9458-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Hocking JC, Distel M, Köster RW. Studying cellular and subcellular dynamics in the developing zebrafish nervous system. Exp Neurol 2013; 242:1-10. [DOI: 10.1016/j.expneurol.2012.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 11/22/2011] [Accepted: 03/15/2012] [Indexed: 12/23/2022]
|
16
|
Generation of minipigs with targeted transgene insertion by recombinase-mediated cassette exchange (RMCE) and somatic cell nuclear transfer (SCNT). Transgenic Res 2012; 22:709-23. [PMID: 23111619 PMCID: PMC3712138 DOI: 10.1007/s11248-012-9671-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 10/22/2012] [Indexed: 11/23/2022]
Abstract
Targeted transgenesis using site-specific recombinases is an attractive method to create genetically modified animals as it allows for integration of the transgene in a pre-selected transcriptionally active genomic site. Here we describe the application of recombinase-mediated cassette exchange (RMCE) in cells from a Göttingen minipig with four RMCE acceptor loci, each containing a green fluorescence protein (GFP) marker gene driven by a human UbiC promoter. The four RMCE acceptor loci segregated independent of each other, and expression profiles could be determined in various tissues. Using minicircles in RMCE in fibroblasts with all four acceptor loci and followed by SCNT, we produced piglets with a single copy of a transgene incorporated into one of the transcriptionally active acceptor loci. The transgene, consisting of a cDNA of the Alzheimer’s disease-causing gene PSEN1M146I driven by an enhanced human UbiC promoter, had an expression profile in various tissues similar to that of the GFP marker gene. The results show that RMCE can be done in a pre-selected transcriptionally active acceptor locus for targeted transgenesis in pigs.
Collapse
|
17
|
Schofield PN, Hoehndorf R, Gkoutos GV. Mouse genetic and phenotypic resources for human genetics. Hum Mutat 2012; 33:826-36. [PMID: 22422677 DOI: 10.1002/humu.22077] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The use of model organisms to provide information on gene function has proved to be a powerful approach to our understanding of both human disease and fundamental mammalian biology. Large-scale community projects using mice, based on forward and reverse genetics, and now the pan-genomic phenotyping efforts of the International Mouse Phenotyping Consortium, are generating resources on an unprecedented scale, which will be extremely valuable to human genetics and medicine. We discuss the nature and availability of data, mice and embryonic stem cells from these large-scale programmes, the use of these resources to help prioritize and validate candidate genes in human genetic association studies, and how they can improve our understanding of the underlying pathobiology of human disease.
Collapse
Affiliation(s)
- Paul N Schofield
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.
| | | | | |
Collapse
|
18
|
Fernandes F, Vidigal J, Dias MM, Prather KL, Coroadinha AS, Teixeira AP, Alves PM. Flipase-mediated cassette exchange inSf9insect cells for stable gene expression. Biotechnol Bioeng 2012; 109:2836-44. [DOI: 10.1002/bit.24542] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/21/2012] [Accepted: 04/24/2012] [Indexed: 02/02/2023]
|
19
|
Anderson RP, Voziyanova E, Voziyanov Y. Flp and Cre expressed from Flp-2A-Cre and Flp-IRES-Cre transcription units mediate the highest level of dual recombinase-mediated cassette exchange. Nucleic Acids Res 2012; 40:e62. [PMID: 22270085 PMCID: PMC3333864 DOI: 10.1093/nar/gks027] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Recombinase-mediated cassette exchange (RMCE) is a powerful tool for unidirectional integration of DNA fragments of interest into a pre-determined genome locale. In this report, we examined how the efficiency of dual RMCE catalyzed by Flp and Cre depends on the nature of transcription units that express the recombinases. The following recombinase transcription units were analyzed: (i) Flp and Cre genes expressed as individual transcription units located on different vectors, (ii) Flp and Cre genes expressed as individual transcription units located on the same vector, (iii) Flp and Cre genes expressed from a single promoter and separated by internal ribosome entry sequence and (iv) Flp and Cre coding sequences separated by the 2A peptide and expressed as a single gene. We found that the highest level of dual RMCE (35-45% of the transfected cells) can be achieved when Flp and Cre recombinases are expressed as Flp-2A-Cre and Flp-IRES-Cre transcription units. In contrast, the lowest level of dual RMCE (∼1% of the transfected cells) is achieved when Flp and Cre are expressed as individual transcription units. The analysis shows that it is the relative Flp-to-Cre ratio that critically affects the efficiency of dual RMCE. Our results will be helpful for maximizing the efficiency of dual RMCE aimed to engineer and re-engineer genomes.
Collapse
Affiliation(s)
- Rachelle P Anderson
- School of Biosciences, Louisiana Tech University, 1 Adams Blvd., Ruston, LA 71272, USA
| | | | | |
Collapse
|
20
|
Abstract
Producing recombinant mammalian proteins in native or near-native conformation is fundamental to many aspects of biology. Unfortunately, it is also a task whose outcome is extremely unpredictable. A protein that has been shaped over millions of generations of evolution for expression at a level appropriate to a specific cell type or in a particular developmental stage, may be toxic to a new host cell, or become insoluble (among many possible obstacles) when overexpressed in vitro. The object of this volume, "Protein Expression in Mammalian Cells," is to offer guidance for those who wish (or who have been forced by circumstance) to overexpress a mammalian protein in mammalian cells.
Collapse
Affiliation(s)
- James L Hartley
- Protein Expression Laboratory, SAIC-Frederick, Inc., National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
21
|
Turan S, Bode J. Site‐specific recombinases: from tag‐and‐target‐ to tag‐and‐exchange‐based genomic modifications. FASEB J 2011; 25:4088-107. [DOI: 10.1096/fj.11-186940] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Soeren Turan
- Institute for Experimental Hematology, Hannover Medical School Hannover Germany
| | - Juergen Bode
- Institute for Experimental Hematology, Hannover Medical School Hannover Germany
| |
Collapse
|
22
|
Site-specific recombinases as tools for heterologous gene integration. Appl Microbiol Biotechnol 2011; 92:227-39. [DOI: 10.1007/s00253-011-3519-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/19/2011] [Accepted: 07/25/2011] [Indexed: 10/17/2022]
|
23
|
Schnütgen F, Ehrmann F, Poser I, Hubner NC, Hansen J, Floss T, deVries I, Wurst W, Hyman A, Mann M, von Melchner H. Resources for proteomics in mouse embryonic stem cells. Nat Methods 2011; 8:103-4. [PMID: 21278719 DOI: 10.1038/nmeth0211-103] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Hubner NC, Mann M. Extracting gene function from protein-protein interactions using Quantitative BAC InteraCtomics (QUBIC). Methods 2010; 53:453-9. [PMID: 21184827 DOI: 10.1016/j.ymeth.2010.12.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 11/30/2010] [Accepted: 12/17/2010] [Indexed: 11/29/2022] Open
Abstract
Large-scale proteomic screens are increasingly employed for placing genes into specific pathways. Therefore generic methods providing a physiological context for protein-protein interaction studies are of great interest. In recent years many protein-protein interactions have been determined by affinity purification followed by mass spectrometry (AP-MS). Among many different AP-MS approaches, the recently developed Quantitative BAC InteraCtomics (QUBIC) approach is particularly attractive as it uses tagged, full-length baits that are expressed under endogenous control. For QUBIC large cell line collections expressing tagged proteins from BAC transgenes or gene trap loci have been developed and are freely available. Here we describe detailed workflows on how to obtain specific protein binding partners with high confidence under physiological conditions. The methods are based on fast, streamlined and generic purification procedures followed by single run liquid chromatography-mass spectrometric analysis. Quantification is achieved either by the stable isotope labeling of amino acids in cell culture (SILAC) method or by a 'label-free' procedure. In either case data analysis is performed by using the freely available MaxQuant environment. The QUBIC approach enables biologists with access to high resolution mass spectrometry to perform small and large-scale protein interactome mappings.
Collapse
Affiliation(s)
- Nina C Hubner
- Department of Proteomics and Signal Transduction, Max-Planck-Institute for Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | |
Collapse
|