1
|
Chen M, Han C, Zhou P, Shi R, Xing Z, Chen Q, Xie GA, Xie R, Tan W, Liang H. Rational metabolic engineering of Escherichia coli for the industrial-scale production of l-phenylalanine. BIORESOURCE TECHNOLOGY 2025; 426:132325. [PMID: 40032190 DOI: 10.1016/j.biortech.2025.132325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/10/2025] [Accepted: 02/27/2025] [Indexed: 03/05/2025]
Abstract
Rational metabolic engineering has numerous applications in the optimization of microorganisms for the production of valuable compounds at the laboratory-scale. However, the existing strategies and tools are far from sufficient for engineering of industrial strains due to their specificity. The aim of this project was to implement novel strategies to enhance industrial l-phenylalanine (l-PHE) production and yield, including the regulation of key gene expressions, modifications of global transcription factors, creation of NADPH-independent pentose phosphate pathway and pyruvate-oxaloacetate-phosphoenolpyruvate cycle. The project also involved the identification and engineering of novel byproduct pathways and the development of a tyrosine-nonauxotrophic strain. Through comprehensive rational engineering, an industrial l-PHE producer, designated PHE17, achieved the highest production (103.15 g/L) and yield (0.229 g/g) of l-PHE reported thus far. This study also represents the first report on the iterative engineering of industrial l-PHE producers, thereby offering great significance for the engineering of other aromatic animo acids-producing strains.
Collapse
Affiliation(s)
- Minliang Chen
- Henan Joincare Biopharma Research Institute Co. Ltd, Wanfang Industry Zone, Jiaozuo 454000, People's Republic of China; Guangdong Provincial Key Laboratory of Research and Development and Application of Fermentation and Semi-synthetic Drugs, Livzon New North River Pharmaceutical Co. Ltd, 1st Renmin Road, Qingyuan 511500, People's Republic of China.
| | - Chao Han
- Henan Joincare Biopharma Research Institute Co. Ltd, Wanfang Industry Zone, Jiaozuo 454000, People's Republic of China; Guangdong Provincial Key Laboratory of Research and Development and Application of Fermentation and Semi-synthetic Drugs, Livzon New North River Pharmaceutical Co. Ltd, 1st Renmin Road, Qingyuan 511500, People's Republic of China
| | - Peng Zhou
- Henan Joincare Biopharma Research Institute Co. Ltd, Wanfang Industry Zone, Jiaozuo 454000, People's Republic of China; Guangdong Provincial Key Laboratory of Research and Development and Application of Fermentation and Semi-synthetic Drugs, Livzon New North River Pharmaceutical Co. Ltd, 1st Renmin Road, Qingyuan 511500, People's Republic of China
| | - Run Shi
- Guangdong Provincial Key Laboratory of Research and Development and Application of Fermentation and Semi-synthetic Drugs, Livzon New North River Pharmaceutical Co. Ltd, 1st Renmin Road, Qingyuan 511500, People's Republic of China
| | - Zhiwei Xing
- Henan Joincare Biopharma Research Institute Co. Ltd, Wanfang Industry Zone, Jiaozuo 454000, People's Republic of China; Jiaozuo Joincare Biotechnology Co. Ltd, Wanfang Industry Zone, Jiaozuo 454000, People's Republic of China
| | - Qianqian Chen
- Guangdong Provincial Key Laboratory of Research and Development and Application of Fermentation and Semi-synthetic Drugs, Livzon New North River Pharmaceutical Co. Ltd, 1st Renmin Road, Qingyuan 511500, People's Republic of China
| | - Gou-An Xie
- Henan Joincare Biopharma Research Institute Co. Ltd, Wanfang Industry Zone, Jiaozuo 454000, People's Republic of China
| | - Rufei Xie
- Henan Joincare Biopharma Research Institute Co. Ltd, Wanfang Industry Zone, Jiaozuo 454000, People's Republic of China
| | - Wei Tan
- Henan Joincare Biopharma Research Institute Co. Ltd, Wanfang Industry Zone, Jiaozuo 454000, People's Republic of China
| | - Hengyu Liang
- Henan Joincare Biopharma Research Institute Co. Ltd, Wanfang Industry Zone, Jiaozuo 454000, People's Republic of China; Jiaozuo Joincare Biotechnology Co. Ltd, Wanfang Industry Zone, Jiaozuo 454000, People's Republic of China; Guangdong Provincial Key Laboratory of Research and Development and Application of Fermentation and Semi-synthetic Drugs, Livzon New North River Pharmaceutical Co. Ltd, 1st Renmin Road, Qingyuan 511500, People's Republic of China.
| |
Collapse
|
2
|
Gaydukova SA, Moldovan MA, Vallesi A, Heaphy SM, Atkins JF, Gelfand MS, Baranov PV. Nontriplet feature of genetic code in Euplotes ciliates is a result of neutral evolution. Proc Natl Acad Sci U S A 2023; 120:e2221683120. [PMID: 37216548 PMCID: PMC10235951 DOI: 10.1073/pnas.2221683120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
The triplet nature of the genetic code is considered a universal feature of known organisms. However, frequent stop codons at internal mRNA positions in Euplotes ciliates ultimately specify ribosomal frameshifting by one or two nucleotides depending on the context, thus posing a nontriplet feature of the genetic code of these organisms. Here, we sequenced transcriptomes of eight Euplotes species and assessed evolutionary patterns arising at frameshift sites. We show that frameshift sites are currently accumulating more rapidly by genetic drift than they are removed by weak selection. The time needed to reach the mutational equilibrium is several times longer than the age of Euplotes and is expected to occur after a several-fold increase in the frequency of frameshift sites. This suggests that Euplotes are at an early stage of the spread of frameshifting in expression of their genome. In addition, we find the net fitness burden of frameshift sites to be noncritical for the survival of Euplotes. Our results suggest that fundamental genome-wide changes such as a violation of the triplet character of genetic code can be introduced and maintained solely by neutral evolution.
Collapse
Affiliation(s)
- Sofya A. Gaydukova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow199911, Russia
| | - Mikhail A. Moldovan
- A. A. Kharkevich Institute for Information Transmission Problems RAS, Moscow127051, Russia
| | - Adriana Vallesi
- Laboratory of Eukaryotic Microbiology and Animal Biology, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino62032, Italy
| | - Stephen M. Heaphy
- School of Biochemistry and Cell Biology, University College Cork, CorkT12 XF62, Ireland
| | - John F. Atkins
- School of Biochemistry and Cell Biology, University College Cork, CorkT12 XF62, Ireland
- Department of Human Genetics, University of Utah, Salt Lake City, UT84112
| | - Mikhail S. Gelfand
- A. A. Kharkevich Institute for Information Transmission Problems RAS, Moscow127051, Russia
| | - Pavel V. Baranov
- School of Biochemistry and Cell Biology, University College Cork, CorkT12 XF62, Ireland
| |
Collapse
|
3
|
Baggett NE, Zhang Y, Gross CA. Global analysis of translation termination in E. coli. PLoS Genet 2017; 13:e1006676. [PMID: 28301469 PMCID: PMC5373646 DOI: 10.1371/journal.pgen.1006676] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/30/2017] [Accepted: 03/08/2017] [Indexed: 01/01/2023] Open
Abstract
Terminating protein translation accurately and efficiently is critical for both protein fidelity and ribosome recycling for continued translation. The three bacterial release factors (RFs) play key roles: RF1 and 2 recognize stop codons and terminate translation; and RF3 promotes disassociation of bound release factors. Probing release factors mutations with reporter constructs containing programmed frameshifting sequences or premature stop codons had revealed a propensity for readthrough or frameshifting at these specific sites, but their effects on translation genome-wide have not been examined. We performed ribosome profiling on a set of isogenic strains with well-characterized release factor mutations to determine how they alter translation globally. Consistent with their known defects, strains with increasingly severe release factor defects exhibit increasingly severe accumulation of ribosomes over stop codons, indicative of an increased duration of the termination/release phase of translation. Release factor mutant strains also exhibit increased occupancy in the region following the stop codon at a significant number of genes. Our global analysis revealed that, as expected, translation termination is generally efficient and accurate, but that at a significant number of genes (≥ 50) the ribosome signature after the stop codon is suggestive of translation past the stop codon. Even native E. coli K-12 exhibits the ribosome signature suggestive of protein extension, especially at UGA codons, which rely exclusively on the reduced function RF2 variant of the K-12 strain for termination. Deletion of RF3 increases the severity of the defect. We unambiguously demonstrate readthrough and frameshifting protein extensions and their further accumulation in mutant strains for a few select cases. In addition to enhancing recoding, ribosome accumulation over stop codons disrupts attenuation control of biosynthetic operons, and may alter expression of some overlapping genes. Together, these functional alterations may either augment the protein repertoire or produce deleterious proteins. Proteins are the cellular workhorses, performing essentially all of the functions required for cell and organismal survival. But, it takes a great deal of energy to make proteins, making it critical that proteins are made accurately and in the proper time frame. After a ribosome synthesizes a protein, release factors catalyze the accurate and timely release of the finished protein from the ribosome, a process called termination. Ribosomes are then recycled and start the next protein. We utilized ribosome profiling, a method that allows us to follow the position of every ribosome that is making a protein, to globally investigate and strengthen insights on termination fidelity for cells with and without mutant release factors. We find that as we decrease release factor function, the time to terminate/release a protein increases across the genome. We observe that the accuracy of terminating a protein at the correct place decreases on a global scale. Using this metric we identify genes with inherently low termination efficiency and confirm two novel events resulting in extended protein products. In addition we find that beyond disrupting accurate protein synthesis, release factor mutations can alter expression of genes involved in the production of key amino acids.
Collapse
Affiliation(s)
- Natalie E. Baggett
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Yan Zhang
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Carol A. Gross
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
- California Institute of Quantitative Biology, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
4
|
Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res 2016; 44:7007-78. [PMID: 27436286 PMCID: PMC5009743 DOI: 10.1093/nar/gkw530] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
Genetic decoding is not ‘frozen’ as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational ‘correction’ of problem or ‘savior’ indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5′ or 3′ of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3′ from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression.
Collapse
Affiliation(s)
- John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland School of Microbiology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pramod R Bhatt
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
5
|
Baranov PV, Atkins JF, Yordanova MM. Augmented genetic decoding: global, local and temporal alterations of decoding processes and codon meaning. Nat Rev Genet 2015; 16:517-29. [PMID: 26260261 DOI: 10.1038/nrg3963] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The non-universality of the genetic code is now widely appreciated. Codes differ between organisms, and certain genes are known to alter the decoding rules in a site-specific manner. Recently discovered examples of decoding plasticity are particularly spectacular. These examples include organisms and organelles with disruptions of triplet continuity during the translation of many genes, viruses that alter the entire genetic code of their hosts and organisms that adjust their genetic code in response to changing environments. In this Review, we outline various modes of alternative genetic decoding and expand existing terminology to accommodate recently discovered manifestations of this seemingly sophisticated phenomenon.
Collapse
Affiliation(s)
- Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Ireland
| | - John F Atkins
- 1] School of Biochemistry and Cell Biology, University College Cork, Ireland. [2] Department of Human Genetics, University of Utah, 15 N 2030 E Rm. 7410, Salt Lake City, Utah 84112-5330, USA
| | | |
Collapse
|
6
|
Yordanova MM, Wu C, Andreev DE, Sachs MS, Atkins JF. A Nascent Peptide Signal Responsive to Endogenous Levels of Polyamines Acts to Stimulate Regulatory Frameshifting on Antizyme mRNA. J Biol Chem 2015; 290:17863-17878. [PMID: 25998126 PMCID: PMC4505036 DOI: 10.1074/jbc.m115.647065] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Indexed: 01/06/2023] Open
Abstract
The protein antizyme is a negative regulator of cellular polyamine concentrations from yeast to mammals. Synthesis of functional antizyme requires programmed +1 ribosomal frameshifting at the 3′ end of the first of two partially overlapping ORFs. The frameshift is the sensor and effector in an autoregulatory circuit. Except for Saccharomyces cerevisiae antizyme mRNA, the frameshift site alone only supports low levels of frameshifting. The high levels usually observed depend on the presence of cis-acting stimulatory elements located 5′ and 3′ of the frameshift site. Antizyme genes from different evolutionary branches have evolved different stimulatory elements. Prior and new multiple alignments of fungal antizyme mRNA sequences from the Agaricomycetes class of Basidiomycota show a distinct pattern of conservation 5′ of the frameshift site consistent with a function at the amino acid level. As shown here when tested in Schizosaccharomyces pombe and mammalian HEK293T cells, the 5′ part of this conserved sequence acts at the nascent peptide level to stimulate the frameshifting, without involving stalling detectable by toe-printing. However, the peptide is only part of the signal. The 3′ part of the stimulator functions largely independently and acts at least mostly at the nucleotide level. When polyamine levels were varied, the stimulatory effect was seen to be especially responsive in the endogenous polyamine concentration range, and this effect may be more general. A conserved RNA secondary structure 3′ of the frameshift site has weaker stimulatory and polyamine sensitizing effects on frameshifting.
Collapse
Affiliation(s)
- Martina M Yordanova
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Cheng Wu
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| | - Dmitry E Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| | - John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland; Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112-5330.
| |
Collapse
|
7
|
Gupta P, Kannan K, Mankin AS, Vázquez-Laslop N. Regulation of gene expression by macrolide-induced ribosomal frameshifting. Mol Cell 2013; 52:629-42. [PMID: 24239289 DOI: 10.1016/j.molcel.2013.10.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/11/2013] [Accepted: 10/09/2013] [Indexed: 11/29/2022]
Abstract
The expression of many genes is controlled by upstream ORFs (uORFs). Typically, the progression of the ribosome through a regulatory uORF, which depends on the physiological state of the cell, influences the expression of the downstream gene. In the classic mechanism of induction of macrolide resistance genes, antibiotics promote translation arrest within the uORF, and the static ribosome induces a conformational change in mRNA, resulting in the activation of translation of the resistance cistron. We show that ketolide antibiotics, which do not induce ribosome stalling at the uORF of the ermC resistance gene, trigger its expression via a unique mechanism. Ketolides promote frameshifting at the uORF, allowing the translating ribosome to invade the intergenic spacer. The dynamic unfolding of the mRNA structure leads to the activation of resistance. Conceptually similar mechanisms may control other cellular genes. The identified property of ketolides to reduce the fidelity of reading frame maintenance may have medical implications.
Collapse
Affiliation(s)
- Pulkit Gupta
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607, USA
| | - Krishna Kannan
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607, USA
| | - Alexander S Mankin
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607, USA.
| | - Nora Vázquez-Laslop
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607, USA.
| |
Collapse
|
8
|
Antonov I, Coakley A, Atkins JF, Baranov PV, Borodovsky M. Identification of the nature of reading frame transitions observed in prokaryotic genomes. Nucleic Acids Res 2013; 41:6514-30. [PMID: 23649834 PMCID: PMC3711429 DOI: 10.1093/nar/gkt274] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Our goal was to identify evolutionary conserved frame transitions in protein coding regions and to uncover an underlying functional role of these structural aberrations. We used the ab initio frameshift prediction program, GeneTack, to detect reading frame transitions in 206 991 genes (fs-genes) from 1106 complete prokaryotic genomes. We grouped 102 731 fs-genes into 19 430 clusters based on sequence similarity between protein products (fs-proteins) as well as conservation of predicted position of the frameshift and its direction. We identified 4010 pseudogene clusters and 146 clusters of fs-genes apparently using recoding (local deviation from using standard genetic code) due to possessing specific sequence motifs near frameshift positions. Particularly interesting was finding of a novel type of organization of the dnaX gene, where recoding is required for synthesis of the longer subunit, τ. We selected 20 clusters of predicted recoding candidates and designed a series of genetic constructs with a reporter gene or affinity tag whose expression would require a frameshift event. Expression of the constructs in Escherichia coli demonstrated enrichment of the set of candidates with sequences that trigger genuine programmed ribosomal frameshifting; we have experimentally confirmed four new families of programmed frameshifts.
Collapse
Affiliation(s)
- Ivan Antonov
- School of Computational Science and Engineering at Georgia Tech, Atlanta, GA 30332, USA
| | | | | | | | | |
Collapse
|
9
|
Seidman JS, Janssen BD, Hayes CS. Alternative fates of paused ribosomes during translation termination. J Biol Chem 2011; 286:31105-12. [PMID: 21757758 DOI: 10.1074/jbc.m111.268201] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial tmRNA·SmpB system facilitates recycling of stalled translational complexes in a process termed "ribosome rescue." During ribosome rescue, the nascent chain is tagged with the tmRNA-encoded ssrA peptide, which targets the tagged polypeptide for degradation. Translational pausing also induces a variety of recoding events such as frameshifts, ribosome hops, and stop codon readthrough. To examine the interplay between recoding and ribosome rescue, we determined the various fates of ribosomes that pause during translation termination. We expressed a model protein containing the C-terminal Asp-Pro nascent peptide motif (which interferes with translation termination) and quantified the protein chains produced by recoding and ssrA-peptide tagging. The nature and extent of translational recoding depended upon the codon for the C-terminal Pro residue, with CCU and CCC promoting efficient +1 frameshifting. In contrast, ssrA-peptide tagging was unaffected by C-terminal Pro coding. Moreover, +1 frameshifting was not suppressed by tmRNA·SmpB activity, suggesting that recoding and ribosome rescue are not competing events. However, cells lacking ribosomal protein L9 (ΔL9) exhibited a significant increase in recoding and a concomitant decrease in ssrA-peptide tagging. Pulse-chase analysis revealed that pre-termination ribosomes turn over more rapidly in ΔL9 cells, suggesting that increased recoding alleviates the translational arrest. Together, these results indicate that tmRNA·SmpB does not suppress transient ribosome pauses, but responds to prolonged translational arrest.
Collapse
Affiliation(s)
- Jason S Seidman
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106-9625, USA
| | | | | |
Collapse
|