1
|
Delvaux de Fenffe CM, Govers J, Mattiroli F. Always on the Move: Overview on Chromatin Dynamics within Nuclear Processes. Biochemistry 2025; 64:2138-2153. [PMID: 40312022 PMCID: PMC12096440 DOI: 10.1021/acs.biochem.5c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 05/03/2025]
Abstract
Our genome is organized into chromatin, a dynamic and modular structure made of nucleosomes. Chromatin organization controls access to the DNA sequence, playing a fundamental role in cell identity and function. How nucleosomes enable these processes is an active area of study. In this review, we provide an overview of chromatin dynamics, its properties, mechanisms, and functions. We highlight the diverse ways by which chromatin dynamics is controlled during transcription, DNA replication, and repair. Recent technological developments have promoted discoveries in this area, to which we provide an outlook on future research directions.
Collapse
Affiliation(s)
| | - Jolijn Govers
- Hubrecht Institute-KNAW & University
Medical Center Utrecht, Uppsalalaan 8, 3584 CTUtrecht, The Netherlands
| | - Francesca Mattiroli
- Hubrecht Institute-KNAW & University
Medical Center Utrecht, Uppsalalaan 8, 3584 CTUtrecht, The Netherlands
| |
Collapse
|
2
|
Hatazawa S, Horikoshi N, Kurumizaka H. Structural diversity of noncanonical nucleosomes: Functions in chromatin. Curr Opin Struct Biol 2025; 92:103054. [PMID: 40311546 DOI: 10.1016/j.sbi.2025.103054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 05/03/2025]
Abstract
In eukaryotes, genomic DNA is compacted into chromatin, with nucleosomes acting as its basic structural units. In addition to canonical nucleosomes, noncanonical nucleosomes, such as hexasomes, H3-H4 octasomes, and overlapping dinucleosomes, exhibit alternative histone compositions and play key roles in chromatin remodeling, transcription, and replication. Recent cryo-electron microscopy (cryo-EM) studies have elucidated the structural details of these noncanonical nucleosomes and their interactions with histone chaperones and chromatin remodelers. This review highlights recent advances in the structural and functional understanding of noncanonical nucleosomes and their roles in maintaining chromatin integrity and facilitating transcriptional dynamics.
Collapse
Affiliation(s)
- Suguru Hatazawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Naoki Horikoshi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
3
|
Shi X, Fedulova A, Kotova E, Maluchenko N, Armeev G, Chen Q, Prasanna C, Sivkina A, Feofanov A, Kirpichnikov M, Nordensköld L, Shaytan A, Studitsky V. Histone tetrasome dynamics affects chromatin transcription. Nucleic Acids Res 2025; 53:gkaf356. [PMID: 40304183 PMCID: PMC12041859 DOI: 10.1093/nar/gkaf356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 04/06/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025] Open
Abstract
During various DNA-centered processes in the cell nucleus, the minimal structural units of chromatin organization, nucleosomes, are often transiently converted to hexasomes and tetrasomes missing one or both H2A/H2B histone dimers, respectively. However, the structural and functional properties of the subnucleosomes and their impact on biological processes in the nuclei are poorly understood. Here, using biochemical approaches, molecular dynamics simulations, single-particle Förster resonance energy transfer microscopy, and nuclear magnetic resonance spectroscopy, we have shown that, surprisingly, removal of both dimers from a nucleosome results in much higher mobility of both histones and DNA in the tetrasome. Accordingly, DNase I footprinting shows that DNA-histone interactions in tetrasomes are greatly compromised, resulting in formation of a much lower barrier to transcribing RNA polymerase II than nucleosomes. The data suggest that tetrasomes are remarkably dynamic structures and their formation can strongly affect various biological processes.
Collapse
Affiliation(s)
- Xiangyan Shi
- Department of Biology, Shenzhen MSU–BIT University, No. 1, International University Park Road, Longgang District, Shenzhen, Guangdong Province 518172, China
| | | | - Elena Y Kotova
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, United States
| | | | - Grigoriy A Armeev
- School of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Qinming Chen
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Chinmayi Prasanna
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | - Alexey V Feofanov
- School of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, 117997 Moscow, Russia
| | - Mikhail P Kirpichnikov
- School of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, 117997 Moscow, Russia
| | - Lars Nordensköld
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Alexey K Shaytan
- School of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Department of Computer Science, HSE University, 109028 Moscow, Russia
| | - Vasily M Studitsky
- School of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, United States
| |
Collapse
|
4
|
Dutta S, Dutta S, Somanath PR, Narayanan SP, Wang X, Zhang D. Circulating Nucleosomes and Histones in the Development of Lung Injury and Sepsis. Curr Issues Mol Biol 2025; 47:133. [PMID: 39996854 PMCID: PMC11854804 DOI: 10.3390/cimb47020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 02/26/2025] Open
Abstract
Cellular nucleosomes-the structural and functional units of chromatin-are inherently present in cells. During cellular damage or cell death, nucleosomes are released into circulation, either actively or passively. Once released, nucleosomes can become immunogenic entities through various mechanisms. The nucleosomal proteins in nucleosomes, called histones, play a pivotal role in inducing immunogenicity. However, intact nucleosomes are more immunogenic than the histones alone, as nucleosomal double-stranded deoxyribonucleic acid (dsDNA) enhances its immunogenic potential. Our recent study has shown that circulating histones are predominantly nucleosomal histones rather than free histones. Consequently, circulating histones primarily function as integral parts of circulating nucleosomes rather than acting independently. Circulating nucleosomes and their associated histones are implicated in the pathogenesis of a wide array of diseases. Notably, they are critical in the pathogenesis of lung injury and sepsis. These diseases have high morbidity and mortality rates and lack early diagnostic biomarkers. Further investigation is required to fully elucidate the role of circulating nucleosomes and their associated histones in disease processes. This review aims to discuss the current understanding of circulating nucleosomes and histones in the pathogenesis of lung injury and sepsis, with a focus on the underlying mechanisms.
Collapse
Affiliation(s)
- Saugata Dutta
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Sauradeep Dutta
- Department of Computer Science & Engineering, Southern University Bangladesh, Chattogram 4210, Bangladesh
| | - Payaningal R. Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - S. Priya Narayanan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| |
Collapse
|
5
|
Nho S, Kim H. Dynamics of nucleosomes and chromatin fibers revealed by single-molecule measurements. BMB Rep 2025; 58:24-32. [PMID: 39757199 PMCID: PMC11788527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/07/2025] Open
Abstract
The nucleosome is the fundamental structural unit of chromosome fibers. DNA wraps around a histone octamer to form a nucleosome while neighboring nucleosomes interact to form higher-order structures and fit gigabase-long DNAs into a small volume of the nucleus. Nucleosomes interrupt the access of transcription factors to a genomic region and provide regulatory controls of gene expression. Biochemical and physical cues stimulate wrapping-unwrapping and condensation-decondensation dynamics of nucleosomes and nucleosome arrays. Nucleosome dynamics and chromatin fiber organization are influenced by changes in the ionic background within the nucleus, post-translational modifications of histone proteins, and DNA sequence characteristics, such as histone-binding motifs and nucleosome spacing. Biochemical and biophysical measurements, along with in silico simulations, have been extensively used to study the regulatory effects on chromatin dynamics. In particular, single-molecule measurements have revealed novel mechanistic details of nucleosome and chromatin dynamics. This minireview elucidates recent findings on chromatin dynamics from these approaches. [BMB Reports 2025; 58(1): 24-32].
Collapse
Affiliation(s)
- Sihyeong Nho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Hajin Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| |
Collapse
|
6
|
Zhou X, Zhang N, Gong J, Zhang K, Chen P, Cheng X, Ye BC, Zhao G, Jing X, Li X. In vivo assembly of complete eukaryotic nucleosomes and (H3-H4)-only non-canonical nucleosomal particles in the model bacterium Escherichia coli. Commun Biol 2024; 7:1510. [PMID: 39543208 PMCID: PMC11564532 DOI: 10.1038/s42003-024-07211-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
As a fundamental unit for packaging genomic DNA into chromatin, the eukaryotic nucleosome core comprises a canonical octamer with two copies for each histone, H2A, H2B, H3, and H4, wrapped around with 147 base pairs of DNA. While H3 and H4 share structure-fold with archaeal histone-like proteins, the eukaryotic nucleosome core and the complete nucleosome (the core plus H1 histone) are unique to eukaryotes. To explore whether the eukaryotic nucleosome can assemble in prokaryotes and to reconstruct the possible route for its emergence in eukaryogenesis, we developed an in vivo system for assembly of nucleosomes in the model bacterium, Escherichia coli, and successfully reconstituted the core nucleosome, the complete nucleosome, and unexpectedly the non-canonical (H3-H4)4 octasome. The core and complete nucleosomes assembled in E. coli exhibited footprints typical of eukaryotic hosts after in situ micrococcal nuclease digestion. Additionally, they caused condensation of E. coli nucleoid. We also demonstrated the stable formation of non-canonical (H3-H4)2 tetrasome and (H3-H4)4 octasomes in vivo, which are suggested to be 'fossil complex' that marks the intermediate in the progressive development of eukaryotic nucleosome. The study presents a unique platform in a bacterium for in vivo assembly and studying the properties of non-canonical variants of nucleosome.
Collapse
Affiliation(s)
- Xiaojuan Zhou
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, 100039, Beijing, China
| | - Niubing Zhang
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, 100039, Beijing, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jie Gong
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, 100039, Beijing, China
| | - Kaixiang Zhang
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, 100039, Beijing, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ping Chen
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiang Cheng
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, 100039, Beijing, China
| | - Bang-Ce Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Guoping Zhao
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China.
| | - Xinyun Jing
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Xuan Li
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
- University of Chinese Academy of Sciences, 100039, Beijing, China.
| |
Collapse
|
7
|
Shin Y. Histone Tail Cleavage as a Mechanism for Epigenetic Regulation. Int J Mol Sci 2024; 25:10789. [PMID: 39409117 PMCID: PMC11477362 DOI: 10.3390/ijms251910789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Histones are essential for DNA packaging and undergo post-translational modifications that significantly influence gene regulation. Among these modifications, histone tail cleavage has recently garnered attention despite being less explored. Cleavage by various proteases impacts processes such as stem cell differentiation, aging, infection, and inflammation, though the mechanisms remain unclear. This review delves into recent insights on histone proteolytic cleavage and its epigenetic significance, highlighting how chromatin, which serves as a dynamic scaffold, responds to signals through histone modification, replacement, and ATP-dependent remodeling. Specifically, histone tail cleavage is linked to critical cellular processes such as granulocyte differentiation, viral infection, aging, yeast sporulation, and cancer development. Although the exact mechanisms connecting histone cleavage to gene expression are still emerging, it is clear that this process represents a novel epigenetic transcriptional mechanism intertwined with chromatin dynamics. This review explores known histone tail cleavage events, the proteolytic enzymes involved, their impact on gene expression, and future research directions in this evolving field.
Collapse
Affiliation(s)
- Yonghwan Shin
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
8
|
Ji D, Xiao X, Luo A, Fan X, Ma J, Wang D, Xia M, Ma L, Wang PY, Li W, Chen P. FACT mediates the depletion of macroH2A1.2 to expedite gene transcription. Mol Cell 2024; 84:3011-3025.e7. [PMID: 39116874 DOI: 10.1016/j.molcel.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/07/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024]
Abstract
The histone variant macroH2A is generally linked to transcriptionally inactive chromatin, but how macroH2A regulates chromatin structure and functions in the transcriptional process remains elusive. This study reveals that while the integration of human macroH2A1.2 into nucleosomes does not affect their stability or folding dynamics, it notably hinders the maintenance of facilitates chromatin transcription's (FACT's) function. We show that FACT effectively diminishes the stability of macroH2A1.2-nucleosomes and expedites their depletion subsequent to the initial unfolding process. Furthermore, we identify the residue S139 in macroH2A1.2 as a critical switch to modulate FACT's function in nucleosome maintenance. Genome-wide analyses demonstrate that FACT-mediated depletion of macroH2A-nucleosomes allows the correct localization of macroH2A, while the S139 mutation reshapes macroH2A distribution and influences stimulation-induced transcription and cellular response in macrophages. Our findings provide mechanistic insights into the intricate interplay between macroH2A and FACT at the nucleosome level and elucidate their collective role in transcriptional regulation and immune response of macrophages.
Collapse
Affiliation(s)
- Dengyu Ji
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing 100069, China; Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xue Xiao
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Anfeng Luo
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing 100069, China
| | - Xiongxiong Fan
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing 100069, China
| | - Jingzhe Ma
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing 100069, China
| | - Dayi Wang
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing 100069, China
| | - Miaoran Xia
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing 100069, China
| | - Lu Ma
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Peng-Ye Wang
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Li
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ping Chen
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing 100069, China; Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
9
|
Shi X, Fedulova AS, Kotova EY, Maluchenko NV, Armeev GA, Chen Q, Prasanna C, Sivkina AL, Feofanov AV, Kirpichnikov MP, Nordensköld L, Shaytan AK, Studitsky VM. Histone Tetrasome Dynamics Affects Chromatin Transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.604164. [PMID: 39071396 PMCID: PMC11275759 DOI: 10.1101/2024.07.18.604164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
During various DNA-centered processes in the cell nucleus, the minimal structural units of chromatin organization, nucleosomes, are often transiently converted to hexasomes and tetrasomes missing one or both H2A/H2B histone dimers, respectively. However, the structural and functional properties of the subnucleosomes and their impact on biological processes in the nuclei are poorly understood. Here, using biochemical approaches, molecular dynamics simulations, single-particle Förster resonance energy transfer (spFRET) microscopy and NMR spectroscopy, we have shown that, surprisingly, removal of both dimers from a nucleosome results in much higher mobility of both histones and DNA in the tetrasome. Accordingly, DNase I footprinting shows that DNA-histone interactions in tetrasomes are greatly compromised, resulting in formation of a much lower barrier to transcribing RNA polymerase II than nucleosomes. The data suggest that tetrasomes are remarkably dynamic structures and their formation can strongly affect various biological processes.
Collapse
|
10
|
Wakim JG, Spakowitz AJ. Physical modeling of nucleosome clustering in euchromatin resulting from interactions between epigenetic reader proteins. Proc Natl Acad Sci U S A 2024; 121:e2317911121. [PMID: 38900792 PMCID: PMC11214050 DOI: 10.1073/pnas.2317911121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 04/15/2024] [Indexed: 06/22/2024] Open
Abstract
Euchromatin is an accessible phase of genetic material containing genes that encode proteins with increased expression levels. The structure of euchromatin in vitro has been described as a 30-nm fiber formed from ordered nucleosome arrays. However, recent advances in microscopy have revealed an in vivo euchromatin architecture that is much more disordered, characterized by variable-length linker DNA and sporadic nucleosome clusters. In this work, we develop a theoretical model to elucidate factors contributing to the disordered in vivo architecture of euchromatin. We begin by developing a 1D model of nucleosome positioning that captures the interactions between bound epigenetic reader proteins to predict the distribution of DNA linker lengths between adjacent nucleosomes. We then use the predicted linker lengths to construct 3D chromatin configurations consistent with the physical properties of DNA within the nucleosome array, and we evaluate the distribution of nucleosome cluster sizes in those configurations. Our model reproduces experimental cluster-size distributions, which are dramatically influenced by the local pattern of epigenetic marks and the concentration of reader proteins. Based on our model, we attribute the disordered arrangement of euchromatin to the heterogeneous binding of reader proteins and subsequent short-range interactions between bound reader proteins on adjacent nucleosomes. By replicating experimental results with our physics-based model, we propose a mechanism for euchromatin organization in the nucleus that impacts gene regulation and the maintenance of epigenetic marks.
Collapse
Affiliation(s)
- Joseph G. Wakim
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
| | - Andrew J. Spakowitz
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Materials Science and Engineering, Stanford University, Stanford, CA94305
- Biophysics Program, Stanford University, Stanford, CA94305
- Department of Applied Physics, Stanford University, Stanford, CA94305
| |
Collapse
|
11
|
Wang H, Wang Y, Zhang D, Li P. Circulating nucleosomes as potential biomarkers for cancer diagnosis and treatment monitoring. Int J Biol Macromol 2024; 262:130005. [PMID: 38331061 DOI: 10.1016/j.ijbiomac.2024.130005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/03/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
Nucleosomes play a crucial role in regulating gene expression through their composition and post-translational modifications. When cells die, intracellular endonucleases are activated and cleave chromatin into oligo- and mono-nucleosomes, which are then released into the body fluids. Studies have shown that the levels of nucleosomes are increased in serum and plasma in various cancer types, suggesting that analysis of circulating nucleosomes can provide an initial assessment of carcinogenesis. However, it should be noted that elevated serum nucleosome levels may not accurately diagnose certain tumor types, as increased cell death may occur in different pathological conditions. Nevertheless, detection of circulating nucleosomes and their histone modifications, along with specific tumor markers, can help diagnose certain types of cancer. Furthermore, monitoring changes in circulating nucleosome levels during chemotherapy or radiotherapy in patients with malignancies can provide valuable insights into clinical outcomes and therapeutic efficacy. The utilization of circulating nucleosomes as biomarkers is an exciting and emerging area of research, with the potential for early detection of various diseases and monitoring of treatment response. Integrating nucleosome-based biomarkers with existing ones may improve the specificity and sensitivity of current assays, offering the possibility of personalized precision medical treatment for patients.
Collapse
Affiliation(s)
- Huawei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China.
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China.
| | - Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China.
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China.
| |
Collapse
|
12
|
Chen B, MacAlpine HK, Hartemink AJ, MacAlpine DM. Spatiotemporal kinetics of CAF-1-dependent chromatin maturation ensures transcription fidelity during S-phase. Genome Res 2023; 33:2108-2118. [PMID: 38081658 PMCID: PMC10760526 DOI: 10.1101/gr.278273.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023]
Abstract
Proper maintenance of epigenetic information after replication is dependent on the rapid assembly and maturation of chromatin. Chromatin Assembly Complex 1 (CAF-1) is a conserved histone chaperone that deposits (H3-H4)2 tetramers as part of the replication-dependent chromatin assembly process. Loss of CAF-1 leads to a delay in chromatin maturation, albeit with minimal impact on steady-state chromatin structure. However, the mechanisms by which CAF-1 mediates the deposition of (H3-H4)2 tetramers and the phenotypic consequences of CAF-1-associated assembly defects are not well understood. We used nascent chromatin occupancy profiling to track the spatiotemporal kinetics of chromatin maturation in both wild-type (WT) and CAF-1 mutant yeast cells. Our results show that loss of CAF-1 leads to a heterogeneous rate of nucleosome assembly, with some nucleosomes maturing at near WT kinetics and others showing significantly slower maturation kinetics. The slow-to-mature nucleosomes are enriched in intergenic and poorly transcribed regions, suggesting that transcription-dependent assembly mechanisms can reset the slow-to-mature nucleosomes following replication. Nucleosomes with slow maturation kinetics are also associated with poly(dA:dT) sequences, which implies that CAF-1 deposits histones in a manner that counteracts resistance from the inflexible DNA sequence, promoting the formation of histone octamers as well as ordered nucleosome arrays. In addition, we show that the delay in chromatin maturation is accompanied by a transient and S-phase-specific loss of gene silencing and transcriptional regulation, revealing that the DNA replication program can directly shape the chromatin landscape and modulate gene expression through the process of chromatin maturation.
Collapse
Affiliation(s)
- Boning Chen
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Heather K MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | - David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| |
Collapse
|
13
|
Li X, Chou T. Stochastic nucleosome disassembly mediated by remodelers and histone fragmentation. J Chem Phys 2023; 159:204107. [PMID: 38010331 PMCID: PMC10684310 DOI: 10.1063/5.0165136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/14/2023] [Indexed: 11/29/2023] Open
Abstract
We construct and analyze monomeric and multimeric models of the stochastic disassembly of a single nucleosome. Our monomeric model predicts the time needed for a number of histone-DNA contacts to spontaneously break, leading to dissociation of a non-fragmented histone from DNA. The dissociation process can be facilitated by DNA binding proteins or processing molecular motors that compete with histones for histone-DNA contact sites. Eigenvalue analysis of the corresponding master equation allows us to evaluate histone detachment times under both spontaneous detachment and protein-facilitated processes. We find that competitive DNA binding of remodeling proteins can significantly reduce the typical detachment time but only if these remodelers have DNA-binding affinities comparable to those of histone-DNA contact sites. In the presence of processive motors, the histone detachment rate is shown to be proportional to the product of the histone single-bond dissociation constant and the speed of motor protein procession. Our simple intact-histone model is then extended to allow for multimeric nucleosome kinetics that reveal additional pathways of disassembly. In addition to a dependence of complete disassembly times on subunit-DNA contact energies, we show how histone subunit concentrations in bulk solutions can mediate the disassembly process by rescuing partially disassembled nucleosomes. Moreover, our kinetic model predicts that remodeler binding can also bias certain pathways of nucleosome disassembly, with higher remodeler binding rates favoring intact-histone detachment.
Collapse
Affiliation(s)
- Xiangting Li
- Department of Computational Medicine, University of California, Los Angeles, California 90095-1766, USA
| | - Tom Chou
- Author to whom correspondence should be addressed:
| |
Collapse
|
14
|
Zhao H, Shao X, Guo M, Xing Y, Wang J, Luo L, Cai L. Competitive Chemical Reaction Kinetic Model of Nucleosome Assembly Using the Histone Variant H2A.Z and H2A In Vitro. Int J Mol Sci 2023; 24:15846. [PMID: 37958827 PMCID: PMC10647764 DOI: 10.3390/ijms242115846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Nucleosomes not only serve as the basic building blocks for eukaryotic chromatin but also regulate many biological processes, such as DNA replication, repair, and recombination. To modulate gene expression in vivo, the histone variant H2A.Z can be dynamically incorporated into the nucleosome. However, the assembly dynamics of H2A.Z-containing nucleosomes remain elusive. Here, we demonstrate that our previous chemical kinetic model for nucleosome assembly can be extended to H2A.Z-containing nucleosome assembly processes. The efficiency of H2A.Z-containing nucleosome assembly, like that of canonical nucleosome assembly, was also positively correlated with the total histone octamer concentration, reaction rate constant, and reaction time. We expanded the kinetic model to represent the competitive dynamics of H2A and H2A.Z in nucleosome assembly, thus providing a novel method through which to assess the competitive ability of histones to assemble nucleosomes. Based on this model, we confirmed that histone H2A has a higher competitive ability to assemble nucleosomes in vitro than histone H2A.Z. Our competitive kinetic model and experimental results also confirmed that in vitro H2A.Z-containing nucleosome assembly is governed by chemical kinetic principles.
Collapse
Affiliation(s)
- Hongyu Zhao
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China; (H.Z.); (X.S.); (M.G.); (Y.X.); (J.W.); (L.L.)
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Xueqin Shao
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China; (H.Z.); (X.S.); (M.G.); (Y.X.); (J.W.); (L.L.)
| | - Mingxin Guo
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China; (H.Z.); (X.S.); (M.G.); (Y.X.); (J.W.); (L.L.)
| | - Yongqiang Xing
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China; (H.Z.); (X.S.); (M.G.); (Y.X.); (J.W.); (L.L.)
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Jingyan Wang
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China; (H.Z.); (X.S.); (M.G.); (Y.X.); (J.W.); (L.L.)
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Liaofu Luo
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China; (H.Z.); (X.S.); (M.G.); (Y.X.); (J.W.); (L.L.)
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Lu Cai
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China; (H.Z.); (X.S.); (M.G.); (Y.X.); (J.W.); (L.L.)
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou 014010, China
| |
Collapse
|
15
|
Li X, Chou T. Stochastic nucleosome disassembly mediated by remodelers and histone fragmentation. ARXIV 2023:arXiv:2309.02736v1. [PMID: 37731652 PMCID: PMC10508821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
We construct and analyze monomeric and multimeric models of the stochastic disassembly of a single nucleosome. Our monomeric model predicts the time needed for a number of histone-DNA contacts to spontaneously break, leading to dissociation of a non-fragmented histone from DNA. The dissociation process can be facilitated by DNA binding proteins or processing molecular motors that compete with histones for histone-DNA contact sites. Eigenvalue analysis of the corresponding master equation allows us to evaluate histone detachment times under both spontaneous detachment and protein-facilitated processes. We find that competitive DNA binding of remodeling proteins can significantly reduce the typical detachment time but only if these remodelers have DNA-binding affinities comparable to those of histone-DNA contact sites. In the presence of processive motors, the histone detachment rate is shown to be proportional to the product of the histone single-bond dissociation constant and the speed of motor protein procession. Our simple intact-histone model is then extended to allow for multimeric nucleosome kinetics that reveal additional pathways of disassembly. In addition to a dependence of complete disassembly times on subunit-DNA contact energies, we show how histone subunit concentrations in bulk solution can mediate the disassembly process by rescuing partially disassembled nucleosomes. Moreover, our kinetic model predicts that remodeler binding can also bias certain pathways of nucleosome disassembly, with higher remodeler binding rates favoring intact-histone detachment.
Collapse
Affiliation(s)
- Xiangting Li
- Department of Computational Medicine, University of California, Los Angeles, CA 90095-1766 USA
| | - Tom Chou
- Department of Computational Medicine, University of California, Los Angeles, CA 90095-1766 USA
- Department of Mathematics, University of California, Los Angeles, CA 90095-1555 USA
| |
Collapse
|
16
|
Deák G, Wapenaar H, Sandoval G, Chen R, Taylor MRD, Burdett H, Watson J, Tuijtel M, Webb S, Wilson M. Histone divergence in trypanosomes results in unique alterations to nucleosome structure. Nucleic Acids Res 2023; 51:7882-7899. [PMID: 37427792 PMCID: PMC10450195 DOI: 10.1093/nar/gkad577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023] Open
Abstract
Eukaryotes have a multitude of diverse mechanisms for organising and using their genomes, but the histones that make up chromatin are highly conserved. Unusually, histones from kinetoplastids are highly divergent. The structural and functional consequences of this variation are unknown. Here, we have biochemically and structurally characterised nucleosome core particles (NCPs) from the kinetoplastid parasite Trypanosoma brucei. A structure of the T. brucei NCP reveals that global histone architecture is conserved, but specific sequence alterations lead to distinct DNA and protein interaction interfaces. The T. brucei NCP is unstable and has weakened overall DNA binding. However, dramatic changes at the H2A-H2B interface introduce local reinforcement of DNA contacts. The T. brucei acidic patch has altered topology and is refractory to known binders, indicating that the nature of chromatin interactions in T. brucei may be unique. Overall, our results provide a detailed molecular basis for understanding evolutionary divergence in chromatin structure.
Collapse
Affiliation(s)
- Gauri Deák
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Hannah Wapenaar
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Gorka Sandoval
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Ruofan Chen
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Mark R D Taylor
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Hayden Burdett
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - James A Watson
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Maarten W Tuijtel
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Shaun Webb
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Marcus D Wilson
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| |
Collapse
|
17
|
Abstract
Nearly three-fourths of all eukaryotic DNA is occupied by nucleosomes, protein-DNA complexes comprising octameric histone core proteins and ∼150 base pairs of DNA. In addition to acting as a DNA compaction vehicle, the dynamics of nucleosomes regulate the DNA site accessibility for the nonhistone proteins, thereby controlling regulatory processes involved in determining the cell identity and cell fate. Here, we propose an analytical framework to analyze the role of nucleosome dynamics on the target search process of transcription factors through a simple discrete-state stochastic description of the search process. By considering the experimentally determined kinetic rates associated with protein and nucleosome dynamics as the only inputs, we estimate the target search time of a protein via first-passage probability calculations separately during nucleosome breathing and sliding dynamics. Although both the nucleosome dynamics permit transient access to the DNA sites that are otherwise occluded by the histone proteins, our result suggests substantial differences between the protein search mechanism on a nucleosome performing breathing and sliding dynamics. Furthermore, we identify the molecular factors that influence the search efficiency and demonstrate how these factors together portray a highly dynamic landscape of gene regulation. Our analytical results are validated using extensive Monte Carlo simulations.
Collapse
Affiliation(s)
- Sujeet Kumar Mishra
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Arnab Bhattacherjee
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
18
|
Chen B, MacAlpine HK, Hartemink AJ, MacAlpine DM. Spatiotemporal kinetics of CAF-1-dependent chromatin maturation ensures transcription fidelity during S-phase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.541209. [PMID: 37292814 PMCID: PMC10245875 DOI: 10.1101/2023.05.25.541209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Proper maintenance of epigenetic information after replication is dependent on the rapid assembly and maturation of chromatin. Chromatin Assembly Complex 1 (CAF-1) is a conserved histone chaperone that deposits (H3-H4)2 tetramers as part of the replication-dependent chromatin assembly process. Loss of CAF-1 leads to a delay in chromatin maturation, albeit with minimal impact on steady-state chromatin structure. However, the mechanisms by which CAF-1 mediates the deposition of (H3-H4)2 tetramers and the phenotypic consequences of CAF-1-associated assembly defects are not well understood. We used nascent chromatin occupancy profiling to track the spatiotemporal kinetics of chromatin maturation in both wild-type (WT) and CAF-1 mutant yeast cells. Our results show that loss of CAF-1 leads to a heterogeneous rate of nucleosome assembly, with some nucleosomes maturing at near WT kinetics and others exhibiting significantly slower maturation kinetics. The slow-to-mature nucleosomes are enriched in intergenic and poorly transcribed regions, suggesting that transcription-dependent assembly mechanisms can reset the slow-to-mature nucleosomes following replication. Nucleosomes with slow maturation kinetics are also associated with poly(dA:dT) sequences, which implies that CAF-1 deposits histones in a manner that counteracts resistance from the inflexible DNA sequence, promoting the formation of histone octamers as well as ordered nucleosome arrays. In addition, we demonstrate that the delay in chromatin maturation is accompanied by a transient and S-phase specific loss of gene silencing and transcriptional regulation, revealing that the DNA replication program can directly shape the chromatin landscape and modulate gene expression through the process of chromatin maturation.
Collapse
Affiliation(s)
- Boning Chen
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Heather K. MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | | | - David M. MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
19
|
Fan H. Single‐molecule tethered particle motion to study
protein‐DNA
interaction. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202300051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
20
|
Luo A, Kong J, Chen J, Xiao X, Lan J, Li X, Liu C, Wang PY, Li G, Li W, Chen P. H2B ubiquitination recruits FACT to maintain a stable altered nucleosome state for transcriptional activation. Nat Commun 2023; 14:741. [PMID: 36765085 PMCID: PMC9918737 DOI: 10.1038/s41467-023-36467-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Histone H2B mono-ubiquitination at lysine 120 (ubH2B) has been found to regulate transcriptional elongation by collaborating with the histone chaperone FACT (Facilitates Chromatin Transcription) and plays essential roles in chromatin-based transcriptional processes. However, the mechanism of how ubH2B directly collaborates with FACT at the nucleosome level still remains elusive. In this study, we demonstrate that ubH2B impairs the mechanical stability of the nucleosome and helps to recruit FACT by enhancing the binding of FACT on the nucleosome. FACT prefers to bind and deposit H2A-ubH2B dimers to form an intact nucleosome. Strikingly, the preferable binding of FACT on ubH2B-nucleosome greatly enhances nucleosome stability and maintains its integrity. The stable altered nucleosome state obtained by ubH2B and FACT provides a key platform for gene transcription, as revealed by genome-wide and time-course ChIP-qPCR analyses. Our findings provide mechanistic insights of how ubH2B directly collaborates with FACT to regulate nucleosome dynamics for gene transcription.
Collapse
Affiliation(s)
- Anfeng Luo
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing, 100069, China
| | - Jingwei Kong
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Chen
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing, 100069, China
| | - Xue Xiao
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Lan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaorong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cuifang Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Peng-Ye Wang
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Guohong Li
- University of Chinese Academy of Sciences, Beijing, 100049, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Li
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China. .,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China.
| | - Ping Chen
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing, 100069, China. .,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
21
|
Contribution of smFRET to Chromatin Research. BIOPHYSICA 2023. [DOI: 10.3390/biophysica3010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Chromatins are structural components of chromosomes and consist of DNA and histone proteins. The structure, dynamics, and function of chromatins are important in regulating genetic processes. Several different experimental and theoretical tools have been employed to understand chromatins better. In this review, we will focus on the literatures engrossed in understanding of chromatins using single-molecule Förster resonance energy transfer (smFRET). smFRET is a single-molecule fluorescence microscopic technique that can furnish information regarding the distance between two points in space. This has been utilized to efficiently unveil the structural details of chromatins.
Collapse
|
22
|
Vital T, Wali A, Butler KV, Xiong Y, Foster JP, Marcel SS, McFadden AW, Nguyen VU, Bailey BM, Lamb KN, James LI, Frye SV, Mosely AL, Jin J, Pattenden SG, Davis IJ. MS0621, a novel small-molecule modulator of Ewing sarcoma chromatin accessibility, interacts with an RNA-associated macromolecular complex and influences RNA splicing. Front Oncol 2023; 13:1099550. [PMID: 36793594 PMCID: PMC9924231 DOI: 10.3389/fonc.2023.1099550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/11/2023] [Indexed: 01/31/2023] Open
Abstract
Ewing sarcoma is a cancer of children and young adults characterized by the critical translocation-associated fusion oncoprotein EWSR1::FLI1. EWSR1::FLI1 targets characteristic genetic loci where it mediates aberrant chromatin and the establishment of de novo enhancers. Ewing sarcoma thus provides a model to interrogate mechanisms underlying chromatin dysregulation in tumorigenesis. Previously, we developed a high-throughput chromatin-based screening platform based on the de novo enhancers and demonstrated its utility in identifying small molecules capable of altering chromatin accessibility. Here, we report the identification of MS0621, a molecule with previously uncharacterized mechanism of action, as a small molecule modulator of chromatin state at sites of aberrant chromatin accessibility at EWSR1::FLI1-bound loci. MS0621 suppresses cellular proliferation of Ewing sarcoma cell lines by cell cycle arrest. Proteomic studies demonstrate that MS0621 associates with EWSR1::FLI1, RNA binding and splicing proteins, as well as chromatin regulatory proteins. Surprisingly, interactions with chromatin and many RNA-binding proteins, including EWSR1::FLI1 and its known interactors, were RNA-independent. Our findings suggest that MS0621 affects EWSR1::FLI1-mediated chromatin activity by interacting with and altering the activity of RNA splicing machinery and chromatin modulating factors. Genetic modulation of these proteins similarly inhibits proliferation and alters chromatin in Ewing sarcoma cells. The use of an oncogene-associated chromatin signature as a target allows for a direct approach to screen for unrecognized modulators of epigenetic machinery and provides a framework for using chromatin-based assays for future therapeutic discovery efforts.
Collapse
Affiliation(s)
- Tamara Vital
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Aminah Wali
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kyle V. Butler
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Therapeutics Discovery, Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Therapeutics Discovery, Department of Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Therapeutics Discovery, Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Therapeutics Discovery, Department of Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Joseph P. Foster
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Shelsa S. Marcel
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Andrew W. McFadden
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Valerie U. Nguyen
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Benton M. Bailey
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kelsey N. Lamb
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lindsey I. James
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephen V. Frye
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Amber L. Mosely
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Therapeutics Discovery, Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Therapeutics Discovery, Department of Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Samantha G. Pattenden
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ian J. Davis
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
23
|
Abstract
In anaphase, any unresolved DNA entanglements between the segregating sister chromatids can give rise to chromatin bridges. To prevent genome instability, chromatin bridges must be resolved prior to cytokinesis. The SNF2 protein PICH has been proposed to play a direct role in this process through the remodeling of nucleosomes. However, direct evidence of nucleosome remodeling by PICH has remained elusive. Here, we present an in vitro single-molecule assay that mimics chromatin under tension, as is found in anaphase chromatin bridges. Applying a combination of dual-trap optical tweezers and fluorescence imaging of PICH and histones bound to a nucleosome-array construct, we show that PICH is a tension- and ATP-dependent nucleosome remodeler that facilitates nucleosome unwrapping and then subsequently slides remaining histones along the DNA. This work elucidates the role of PICH in chromatin-bridge dissolution, and might provide molecular insights into the mechanisms of related SNF2 proteins.
Collapse
|
24
|
Nozawa K, Takizawa Y, Pierrakeas L, Sogawa-Fujiwara C, Saikusa K, Akashi S, Luk E, Kurumizaka H. Cryo-electron microscopy structure of the H3-H4 octasome: A nucleosome-like particle without histones H2A and H2B. Proc Natl Acad Sci U S A 2022; 119:e2206542119. [PMID: 36322721 PMCID: PMC9659345 DOI: 10.1073/pnas.2206542119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 09/26/2022] [Indexed: 03/16/2023] Open
Abstract
The canonical nucleosome, which represents the major packaging unit of eukaryotic chromatin, has an octameric core composed of two histone H2A-H2B and H3-H4 dimers with ∼147 base pairs (bp) of DNA wrapped around it. Non-nucleosomal particles with alternative histone stoichiometries and DNA wrapping configurations have been found, and they could profoundly influence genome architecture and function. Using cryo-electron microscopy, we solved the structure of the H3-H4 octasome, a nucleosome-like particle with a di-tetrameric core consisting exclusively of the H3 and H4 histones. The core is wrapped by ∼120 bp of DNA in 1.5 negative superhelical turns, forming two stacked disks that are connected by a H4-H4' four-helix bundle. Three conformations corresponding to alternative interdisk angles were observed, indicating the flexibility of the H3-H4 octasome structure. In vivo crosslinking experiments detected histone-histone interactions consistent with the H3-H4 octasome model, suggesting that H3-H4 octasomes or related structural features exist in cells.
Collapse
Affiliation(s)
- Kayo Nozawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Leonidas Pierrakeas
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794
| | - Chizuru Sogawa-Fujiwara
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Kazumi Saikusa
- National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8563, Japan
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Satoko Akashi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Ed Luk
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| |
Collapse
|
25
|
Liu S, Lin X, Zhang B. Chromatin fiber breaks into clutches under tension and crowding. Nucleic Acids Res 2022; 50:9738-9747. [PMID: 36029149 PMCID: PMC9508854 DOI: 10.1093/nar/gkac725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/08/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
The arrangement of nucleosomes inside chromatin is of extensive interest. While in vitro experiments have revealed the formation of 30 nm fibers, most in vivo studies have failed to confirm their presence in cell nuclei. To reconcile the diverging experimental findings, we characterized chromatin organization using a residue-level coarse-grained model. The computed force–extension curve matches well with measurements from single-molecule experiments. Notably, we found that a dodeca-nucleosome in the two-helix zigzag conformation breaks into structures with nucleosome clutches and a mix of trimers and tetramers under tension. Such unfolded configurations can also be stabilized through trans interactions with other chromatin chains. Our study suggests that unfolding from chromatin fibers could contribute to the irregularity of in vivo chromatin configurations. We further revealed that chromatin segments with fibril or clutch structures engaged in distinct binding modes and discussed the implications of these inter-chain interactions for a potential sol–gel phase transition.
Collapse
Affiliation(s)
- Shuming Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xingcheng Lin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
26
|
Assignment of structural transitions during mechanical unwrapping of nucleosomes and their disassembly products. Proc Natl Acad Sci U S A 2022; 119:e2206513119. [PMID: 35939666 PMCID: PMC9388122 DOI: 10.1073/pnas.2206513119] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Nucleosomes, the fundamental structural unit of chromatin, consists of ∼147 DNA base pairs wrapped around a histone protein octamer. To characterize the strength of the nucleosomal barrier and its contribution as a mechanism of control of gene expression, it is essential to determine the forces required to unwrap the DNA from the core particle and the stepwise transitions involved. In this study, we performed combined optical tweezers and single-molecule fluorescence measurements to identify the specific DNA segments unwrapped during the force transitions observed in mechanical stretching of nucleosomes. Furthermore, we characterize the mechanical signatures of subnucleosomal hexasomes and tetrasomes. The characterization performed in this work is essential for the interpretation of ongoing studies of chromatin remodelers, polymerases, and histone chaperones. Nucleosome DNA unwrapping and its disassembly into hexasomes and tetrasomes is necessary for genomic access and plays an important role in transcription regulation. Previous single-molecule mechanical nucleosome unwrapping revealed a low- and a high-force transitions, and force-FRET pulling experiments showed that DNA unwrapping is asymmetric, occurring always first from one side before the other. However, the assignment of DNA segments involved in these transitions remains controversial. Here, using high-resolution optical tweezers with simultaneous single-molecule FRET detection, we show that the low-force transition corresponds to the undoing of the outer wrap of one side of the nucleosome (∼27 bp), a process that can occur either cooperatively or noncooperatively, whereas the high-force transition corresponds to the simultaneous unwrapping of ∼76 bp from both sides. This process may give rise stochastically to the disassembly of nucleosomes into hexasomes and tetrasomes whose unwrapping/rewrapping trajectories we establish. In contrast, nucleosome rewrapping does not exhibit asymmetry. To rationalize all previous nucleosome unwrapping experiments, it is necessary to invoke that mechanical unwrapping involves two nucleosome reorientations: one that contributes to the change in extension at the low-force transition and another that coincides but does not contribute to the high-force transition.
Collapse
|
27
|
Sehrawat P, Shobhawat R, Kumar A. Catching Nucleosome by Its Decorated Tails Determines Its Functional States. Front Genet 2022; 13:903923. [PMID: 35910215 PMCID: PMC9329655 DOI: 10.3389/fgene.2022.903923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
The fundamental packaging unit of chromatin, i.e., nucleosome, consists of ∼147 bp of DNA wrapped around a histone octamer composed of the core histones, H2A, H2B, H3, and H4, in two copies each. DNA packaged in nucleosomes must be accessible to various machineries, including replication, transcription, and DNA damage repair, implicating the dynamic nature of chromatin even in its compact state. As the tails protrude out of the nucleosome, they are easily accessible to various chromatin-modifying machineries and undergo post-translational modifications (PTMs), thus playing a critical role in epigenetic regulation. PTMs can regulate chromatin states via charge modulation on histones, affecting interaction with various chromatin-associated proteins (CAPs) and DNA. With technological advancement, the list of PTMs is ever-growing along with their writers, readers, and erasers, expanding the complexity of an already intricate epigenetic field. In this review, we discuss how some of the specific PTMs on flexible histone tails affect the nucleosomal structure and regulate the accessibility of chromatin from a mechanistic standpoint and provide structural insights into some newly identified PTM–reader interaction.
Collapse
|
28
|
Nucleosome assembly and disassembly pathways in vitro. PLoS One 2022; 17:e0267382. [PMID: 35830437 PMCID: PMC9278766 DOI: 10.1371/journal.pone.0267382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/08/2022] [Indexed: 11/29/2022] Open
Abstract
Structural fluctuations of nucleosomes modulate the access to internal DNA in eukaryotic cells; clearly characterisation of this fundamental process is crucial to understanding gene regulation. Here we apply PhAST (Photochemical Analysis of Structural Transitions) to monitor at a base pair level, structural alterations induced all along the DNA upon histone binding or release. By offering the first reliable, detailed comparison of nucleosome assembly and disassembly in vitro, we reveal similarities and differences between the two processes. We identify multiple, sequential intermediate states characterised by specific PhAST signals whose localisation and amplitude reflect asymmetries of DNA/histone interactions with respect to the nucleosome pseudo dyad. These asymmetries involve not only the DNA extremities but also regions close to the pseudo dyad. Localisations of asymmetries develop in a consistent manner during both assembly and disassembly processes; they primarily reflect the DNA sequence effect on the efficiency of DNA-histone binding. More unexpectedly, the amplitude component of PhAST signals not only evolves as a function of intermediate states but does so differently between assembly and disassembly pathways. Our observation of differences between assembly and disassembly opens up new avenues to define the role of the DNA sequence in processes underlying the regulation of gene expression. Overall, we provide new insights into how the intrinsic properties of DNA are integrated into a holistic mechanism that controls chromatin structure.
Collapse
|
29
|
Ishida H, Kono H. Free Energy Landscape of H2A-H2B Displacement From Nucleosome. J Mol Biol 2022; 434:167707. [PMID: 35777463 DOI: 10.1016/j.jmb.2022.167707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/11/2022] [Accepted: 06/23/2022] [Indexed: 12/14/2022]
Abstract
Nucleosome reconstitution plays an important role in many cellular functions. As an initial step, H2A-H2B dimer displacement, which is accompanied by disruption of many of the interactions within the nucleosome, should occur. To understand how H2A-H2B dimer displacement occurs, an adaptively biased molecular dynamics (ABMD) simulation was carried out to generate a variety of displacements of the H2A-H2B dimer from the fully wrapped to partially unwrapped nucleosome structures. With regards to these structures, the free energy landscape of the dimer displacement was investigated using umbrella sampling simulations. We found that the main contributors to the free energy were the docking domain of H2A and the C-terminal of H4. There were various paths for the dimer displacement which were dependent on the extent of nucleosomal DNA wrapping, suggesting that modulation of the intra-nucleosomal interaction by external factors such as histone chaperons could control the path for the H2A-H2B dimer displacement. Key residues which contributed to the free energy have also been reported to be involved in the mutations and posttranslational modifications (PTMs) which are important for assembling and/or reassembling the nucleosome at the molecular level and are found in cancer cells at the phenotypic level. Our results give insight into how the H2A-H2B dimer displacement proceeds along various paths according to different interactions within the nucleosome.
Collapse
Affiliation(s)
- Hisashi Ishida
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 619-0215 Kizugawa, Kyoto, Japan.
| | - Hidetoshi Kono
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 619-0215 Kizugawa, Kyoto, Japan
| |
Collapse
|
30
|
Jing Y, Li X, Liu Z, Li XD. Roles of Negatively Charged Histone Lysine Acylations in Regulating Nucleosome Structure and Dynamics. Front Mol Biosci 2022; 9:899013. [PMID: 35547393 PMCID: PMC9081332 DOI: 10.3389/fmolb.2022.899013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/06/2022] [Indexed: 01/08/2023] Open
Abstract
The nucleosome, the basic repeating unit of chromatin, is a dynamic structure that consists of DNA and histones. Insights derived from biochemical and biophysical approaches have revealed that histones posttranslational modifications (PTMs) are key regulators of nucleosome structure and dynamics. Mounting evidence suggests that the newly identified negatively charged histone lysine acylations play significant roles in altering nucleosome and chromatin dynamics, subsequently affecting downstream DNA-templated processes including gene transcription and DNA damage repair. Here, we present an overview of the dynamic changes of nucleosome and chromatin structures in response to negatively charged histone lysine acylations, including lysine malonylation, lysine succinylation, and lysine glutarylation.
Collapse
Affiliation(s)
- Yihang Jing
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory (SZBL), Shenzhen, China
- *Correspondence: Xiang David Li, ; Yihang Jing,
| | - Xin Li
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory (SZBL), Shenzhen, China
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Zheng Liu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Xiang David Li
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory (SZBL), Shenzhen, China
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- *Correspondence: Xiang David Li, ; Yihang Jing,
| |
Collapse
|
31
|
Musselman CA, Kutateladze TG. Visualizing Conformational Ensembles of the Nucleosome by NMR. ACS Chem Biol 2022; 17:495-502. [PMID: 35196453 DOI: 10.1021/acschembio.1c00954] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The formation of chromatin not only compacts the eukaryotic genome into the nucleus but also provides a mechanism for the regulation of all DNA templated processes. Spatial and temporal modulation of the chromatin structure is critical in such regulation and involves fine-tuned functioning of the basic subunit of chromatin, the nucleosome. It has become apparent that the nucleosome is an inherently dynamic system, but characterization of these dynamics at the atomic level has remained challenging. NMR spectroscopy is a powerful tool for investigating the conformational ensemble and dynamics of proteins and protein complexes, and recent advances have made the study of large systems possible. Here, we review recent studies which utilize NMR spectroscopy to uncover the atomic level conformation and dynamics of the nucleosome and provide a better understanding of the importance of these dynamics in key regulatory events.
Collapse
Affiliation(s)
- Catherine A. Musselman
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Tatiana G. Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| |
Collapse
|
32
|
Andreeva TV, Maluchenko NV, Sivkina AL, Chertkov OV, Valieva ME, Kotova EY, Kirpichnikov MP, Studitsky VM, Feofanov AV. Na + and K + Ions Differently Affect Nucleosome Structure, Stability, and Interactions with Proteins. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:243-253. [PMID: 35177143 PMCID: PMC8867921 DOI: 10.1017/s1431927621013751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Inorganic ions are essential factors stabilizing nucleosome structure; however, many aspects of their effects on DNA transactions in chromatin remain unknown. Here, differential effects of K+ and Na+ on the nucleosome structure, stability, and interactions with protein complex FACT (FAcilitates Chromatin Transcription), poly(ADP-ribose) polymerase 1, and RNA polymerase II were studied using primarily single-particle Förster resonance energy transfer microscopy. The maximal stabilizing effect of K+ on a nucleosome structure was observed at ca. 80–150 mM, and it decreased slightly at 40 mM and considerably at >300 mM. The stabilizing effect of Na+ is noticeably lower than that of K+ and progressively decreases at ion concentrations higher than 40 mM. At 150 mM, Na+ ions support more efficient reorganization of nucleosome structure by poly(ADP-ribose) polymerase 1 and ATP-independent uncoiling of nucleosomal DNA by FACT as compared with K+ ions. In contrast, transcription through a nucleosome is nearly insensitive to K+ or Na+ environment. Taken together, the data indicate that K+ environment is more preserving for chromatin structure during various nucleosome transactions than Na+ environment.
Collapse
Affiliation(s)
| | | | | | - Oleg V. Chertkov
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Maria E. Valieva
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia
| | | | - Mikhail P. Kirpichnikov
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997 Moscow, Russia
| | - Vasily M. Studitsky
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia
- Fox Chase Cancer Center, Philadelphia, PA 19111-2497, USA
| | - Alexey V. Feofanov
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
33
|
Jing Y, Liu Z, Li XD. Preparation of Site-Specific Succinylated Histone Mimics to Investigate Its Impact on Nucleosome Dynamics. Methods Mol Biol 2022; 2530:141-157. [PMID: 35761047 DOI: 10.1007/978-1-0716-2489-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Posttranslational modifications (PTMs) of histones have been demonstrated to be the key regulating mechanism of nucleosome dynamics and chromatin structure. Lysine succinylation is a recently discovered PTM that plays critical roles in metabolism, epigenetic signaling, and is correlated with several diseases. One significant challenge in studying the effects of this modification on nucleosome dynamics is to obtain site-specifically modified histones. Here, we report the rapid site-specific incorporation of a succinylation mimic into histones, which facilitates the characterization of its impact on nucleosome dynamics with a Förster resonance energy transfer (FRET) approach.
Collapse
Affiliation(s)
- Yihang Jing
- Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Zheng Liu
- Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China.
| |
Collapse
|
34
|
Wang YZ, Liu C, Zhao J, Yu J, Luo A, Xiao X, Dou SX, Ma L, Wang PY, Li M, Li G, Yan J, Chen P, Li W. H2A mono-ubiquitination differentiates FACT's functions in nucleosome assembly and disassembly. Nucleic Acids Res 2021; 50:833-846. [PMID: 34951461 PMCID: PMC8789066 DOI: 10.1093/nar/gkab1271] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 11/26/2022] Open
Abstract
The histone chaperone FACT (FAcilitates Chromatin Transcription) plays an essential role in transcription and DNA replication by its dual functions on nucleosome assembly to maintain chromatin integrity and nucleosome disassembly to destabilize nucleosome and facilitate its accessibility simultaneously. Mono-ubiquitination at Lysine 119 of H2A (ubH2A) has been suggested to repress transcription by preventing the recruitment of FACT at early elongation process. However, up to date, how ubH2A directly affects FACT on nucleosome assembly and disassembly remains elusive. In this study, we demonstrated that the dual functions of FACT are differently regulated by ubH2A. The H2A ubiquitination does not affect FACT’s chaperone function in nucleosome assembly and FACT can deposit ubH2A–H2B dimer on tetrasome to form intact nucleosome. However, ubH2A greatly restricts FACT binding on nucleosome and inhibits its activity of nucleosome disassembly. Interestingly, deubiquitination of ubH2A rescues the nucleosome disassembly function of FACT to activate gene transcription. Our findings provide mechanistic insights of how H2A ubiquitination affects FACT in breaking nucleosome and maintaining its integrity, which sheds light on the biological function of ubH2A and various FACT’s activity under different chromatin states.
Collapse
Affiliation(s)
- Yi-Zhou Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Cuifang Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jicheng Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Juan Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Anfeng Luo
- Department of Immunology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Xue Xiao
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuo-Xing Dou
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Ma
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Peng-Ye Wang
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Ming Li
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Ping Chen
- Department of Immunology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Li
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
35
|
Okimune K, Hataya S, Matsumoto K, Ushirogata K, Banko P, Takeda S, Takasuka TE. Histone chaperone-mediated co-expression assembly of tetrasomes and nucleosomes. FEBS Open Bio 2021; 11:2912-2920. [PMID: 34614293 PMCID: PMC8564334 DOI: 10.1002/2211-5463.13311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/16/2021] [Accepted: 10/05/2021] [Indexed: 11/07/2022] Open
Abstract
The nucleosome, a basic unit of chromatin found in all eukaryotes, is thought to be assembled through the orchestrated activity of several histone chaperones and chromatin assembly factors in a stepwise manner, proceeding from tetrasome assembly, to H2A/H2B deposition, and finally to formation of the mature nucleosome. In this study, we demonstrate chaperone-mediated assembly of both tetrasomes and nucleosomes on the well-defined Widom 601 positioning sequence using a co-expression/reconstitution wheat germ cell-free system. The purified tetrasomes and nucleosomes were positioned around the center of a given sequence. The heights and diameters were measured by atomic force microscopy. Together with the reported unmodified native histones produced by the wheat germ cell-free platform, our method is expected to be useful for downstream applications in the field of chromatin research.
Collapse
Affiliation(s)
- Kei‐ichi Okimune
- Research Faculty of AgricultureHokkaido UniversitySapporoJapan
- Graduate School of Global Food ResourcesHokkaido UniversitySapporoJapan
| | - Shogo Hataya
- Research Faculty of AgricultureHokkaido UniversitySapporoJapan
- Graduate School of Global Food ResourcesHokkaido UniversitySapporoJapan
| | - Kazuki Matsumoto
- Research Faculty of AgricultureHokkaido UniversitySapporoJapan
- Graduate School of Global Food ResourcesHokkaido UniversitySapporoJapan
| | - Kanako Ushirogata
- Graduate School of Global Food ResourcesHokkaido UniversitySapporoJapan
| | - Petra Banko
- Research Faculty of AgricultureHokkaido UniversitySapporoJapan
| | - Seiji Takeda
- Faculty of Pharmaceutical SciencesHokkaido University of ScienceSapporoJapan
| | - Taichi E. Takasuka
- Research Faculty of AgricultureHokkaido UniversitySapporoJapan
- Graduate School of Global Food ResourcesHokkaido UniversitySapporoJapan
- Global Institute for Collaborative Research and EducationHokkaido UniversitySapporoJapan
| |
Collapse
|
36
|
Zhao H, Guo M, Zhang F, Shao X, Liu G, Xing Y, Zhao X, Luo L, Cai L. Nucleosome Assembly and Disassembly in vitro Are Governed by Chemical Kinetic Principles. Front Cell Dev Biol 2021; 9:762571. [PMID: 34692710 PMCID: PMC8529108 DOI: 10.3389/fcell.2021.762571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 09/17/2021] [Indexed: 12/05/2022] Open
Abstract
As the elementary unit of eukaryotic chromatin, nucleosomes in vivo are highly dynamic in many biological processes, such as DNA replication, repair, recombination, or transcription, to allow the necessary factors to gain access to their substrate. The dynamic mechanism of nucleosome assembly and disassembly has not been well described thus far. We proposed a chemical kinetic model of nucleosome assembly and disassembly in vitro. In the model, the efficiency of nucleosome assembly was positively correlated with the total concentration of histone octamer, reaction rate constant and reaction time. All the corollaries of the model were well verified for the Widom 601 sequence and the six artificially synthesized DNA sequences, named CS1–CS6, by using the salt dialysis method in vitro. The reaction rate constant in the model may be used as a new parameter to evaluate the nucleosome reconstitution ability with DNAs. Nucleosome disassembly experiments for the Widom 601 sequence detected by Förster resonance energy transfer (FRET) and fluorescence thermal shift (FTS) assays demonstrated that nucleosome disassembly is the inverse process of assembly and can be described as three distinct stages: opening phase of the (H2A–H2B) dimer/(H3–H4)2 tetramer interface, release phase of the H2A–H2B dimers from (H3–H4)2 tetramer/DNA and removal phase of the (H3–H4)2 tetramer from DNA. Our kinetic model of nucleosome assembly and disassembly allows to confirm that nucleosome assembly and disassembly in vitro are governed by chemical kinetic principles.
Collapse
Affiliation(s)
- Hongyu Zhao
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China.,Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, China
| | - Mingxin Guo
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China.,Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, China
| | - Fenghui Zhang
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China.,Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, China
| | - Xueqin Shao
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China.,Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, China
| | - Guoqing Liu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China.,Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, China
| | - Yongqiang Xing
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China.,Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, China
| | - Xiujuan Zhao
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China.,Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, China
| | - Liaofu Luo
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China.,Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, China
| | - Lu Cai
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China.,Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, China
| |
Collapse
|
37
|
Bates DA, Bates CE, Earl AS, Skousen C, Fetbrandt AN, Ritchie J, Bodily PM, Johnson SM. Proximal-end bias from in-vitro reconstituted nucleosomes and the result on downstream data analysis. PLoS One 2021; 16:e0258737. [PMID: 34673804 PMCID: PMC8530345 DOI: 10.1371/journal.pone.0258737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/05/2021] [Indexed: 11/18/2022] Open
Abstract
The most basic level of eukaryotic gene regulation is the presence or absence of nucleosomes on DNA regulatory elements. In an effort to elucidate in vivo nucleosome patterns, in vitro studies are frequently used. In vitro, short DNA fragments are more favorable for nucleosome formation, increasing the likelihood of nucleosome occupancy. This may in part result from the fact that nucleosomes prefer to form on the terminal ends of linear DNA. This phenomenon has the potential to bias in vitro reconstituted nucleosomes and skew results. If the ends of DNA fragments are known, the reads falling close to the ends are typically discarded. In this study we confirm the phenomenon of end bias of in vitro nucleosomes. We describe a method in which nearly identical libraries, with different known ends, are used to recover nucleosomes which form towards the terminal ends of fragmented DNA. Finally, we illustrate that although nucleosomes prefer to form on DNA ends, it does not appear to skew results or the interpretation thereof.
Collapse
Affiliation(s)
- David A. Bates
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Charles E. Bates
- Qubit Software LLC, Spanish Fork, Utah, United States of America
| | - Andrew S. Earl
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Colin Skousen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Ashley N. Fetbrandt
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Jordon Ritchie
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Paul M. Bodily
- Computer Science Department, Idaho State University, Pocatello, Idaho, United States of America
| | - Steven M. Johnson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| |
Collapse
|
38
|
Jing Y, Liu Z, Li XD. Protocol for the preparation of site-specific succinylated histone mimics to investigate the impact on nucleosome dynamics. STAR Protoc 2021; 2:100604. [PMID: 34189470 PMCID: PMC8215284 DOI: 10.1016/j.xpro.2021.100604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Lysine succinylation is a recently discovered posttranslational modification that plays critical roles in metabolism, epigenetic signaling, and human diseases. To investigate the effects of site-specific histone lysine succinylation on nucleosome dynamics requires the generation of homogeneously modified histones, which is a significant challenge. Here, we report a protocol for the rapid site-specific installation of a succinyl lysine analog onto histone. We then use a Förster resonance energy transfer approach to characterize the impact on nucleosome dynamics. For complete details on the use and execution of this protocol, please refer to Jing et al. (2018). Strategy for site-specific installation of a succinyl-lysine analog into histones Strategy is generally applicable to all histones and other acid-resistant proteins A FRET-based biophysical assay reveals that H2BK34succ destabilizes nucleosomes
Collapse
Affiliation(s)
- Yihang Jing
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zheng Liu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
39
|
Jing Y, Tian G, Qin X, Liu Z, Li XD. Lysine succinylation on non-histone chromosomal protein HMG-17 (HMGN2) regulates nucleosomal DNA accessibility by disrupting the HMGN2-nucleosome association. RSC Chem Biol 2021; 2:1257-1262. [PMID: 34458839 PMCID: PMC8341127 DOI: 10.1039/d1cb00070e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/25/2021] [Indexed: 02/01/2023] Open
Abstract
Lysine succinylation (Ksucc) is a novel posttranslational modification that frequently occurs on chromatin proteins including histones and non-histone proteins. Histone Ksucc affects nucleosome dynamics by increasing the DNA unwrapping rate and accessibility. However, very little is known about the regulation and functions of Ksucc located on non-histone chromosomal proteins. Here, we site-specifically installed a succinyl lysine analogue (Kcsucc) onto the non-histone chromosomal protein HMG-17 (HMGN2) to mimic the natural succinylated protein. We found that the incorporation of Kcsucc into HMGN2 at the K30 site (HMGN2Kc30succ), which is located within the nucleosome-binding domain (NBD), leads to significantly decreased HMGN2 binding to the mononucleosome. HMGN2Kc30succ also increased the nucleosomal DNA accessibility by promoting nucleosomal DNA unwrapping in the entry/exit region. This study reveals a novel mechanism of non-histone protein succinylation on altering chromatin recruitment, which can further affect nucleosome and chromatin dynamics. Succinylated HMGN2, prepared by a ‘thiol–ene reaction’, disrupted the association of HMGN2 with the nucleosome and increased nucleosomal DNA accessibility.![]()
Collapse
Affiliation(s)
- Yihang Jing
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Gaofei Tian
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Xiaoyu Qin
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Zheng Liu
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| |
Collapse
|
40
|
Gamarra N, Narlikar GJ. Collaboration through chromatin: motors of transcription and chromatin structure. J Mol Biol 2021; 433:166876. [PMID: 33556407 PMCID: PMC8989640 DOI: 10.1016/j.jmb.2021.166876] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 01/09/2023]
Abstract
Packaging of the eukaryotic genome into chromatin places fundamental physical constraints on transcription. Clarifying how transcription operates within these constraints is essential to understand how eukaryotic gene expression programs are established and maintained. Here we review what is known about the mechanisms of transcription on chromatin templates. Current models indicate that transcription through chromatin is accomplished by the combination of an inherent nucleosome disrupting activity of RNA polymerase and the action of ATP-dependent chromatin remodeling motors. Collaboration between these two types of molecular motors is proposed to occur at all stages of transcription through diverse mechanisms. Further investigation of how these two motors combine their basic activities is essential to clarify the interdependent relationship between genome structure and transcription.
Collapse
Affiliation(s)
- Nathan Gamarra
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States; TETRAD Graduate Program, University of California, San Francisco, San Francisco, United States
| | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.
| |
Collapse
|
41
|
Abstract
The field of epigenetics has exploded over the last two decades, revealing an astonishing level of complexity in the way genetic information is stored and accessed in eukaryotes. This expansion of knowledge, which is very much ongoing, has been made possible by the availability of evermore sensitive and precise molecular tools. This review focuses on the increasingly important role that chemistry plays in this burgeoning field. In an effort to make these contributions more accessible to the nonspecialist, we group available chemical approaches into those that allow the covalent structure of the protein and DNA components of chromatin to be manipulated, those that allow the activity of myriad factors that act on chromatin to be controlled, and those that allow the covalent structure and folding of chromatin to be characterized. The application of these tools is illustrated through a series of case studies that highlight how the molecular precision afforded by chemistry is being used to establish causal biochemical relationships at the heart of epigenetic regulation.
Collapse
Affiliation(s)
- John D Bagert
- Frick Chemistry Laboratory, Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA; ,
| | - Tom W Muir
- Frick Chemistry Laboratory, Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA; ,
| |
Collapse
|
42
|
Ding X, Lin X, Zhang B. Stability and folding pathways of tetra-nucleosome from six-dimensional free energy surface. Nat Commun 2021; 12:1091. [PMID: 33597548 PMCID: PMC7889939 DOI: 10.1038/s41467-021-21377-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 01/22/2021] [Indexed: 01/01/2023] Open
Abstract
The three-dimensional organization of chromatin is expected to play critical roles in regulating genome functions. High-resolution characterization of its structure and dynamics could improve our understanding of gene regulation mechanisms but has remained challenging. Using a near-atomistic model that preserves the chemical specificity of protein-DNA interactions at residue and base-pair resolution, we studied the stability and folding pathways of a tetra-nucleosome. Dynamical simulations performed with an advanced sampling technique uncovered multiple pathways that connect open chromatin configurations with the zigzag crystal structure. Intermediate states along the simulated folding pathways resemble chromatin configurations reported from in situ experiments. We further determined a six-dimensional free energy surface as a function of the inter-nucleosome distances via a deep learning approach. The zigzag structure can indeed be seen as the global minimum of the surface. However, it is not favored by a significant amount relative to the partially unfolded, in situ configurations. Chemical perturbations such as histone H4 tail acetylation and thermal fluctuations can further tilt the energetic balance to stabilize intermediate states. Our study provides insight into the connection between various reported chromatin configurations and has implications on the in situ relevance of the 30 nm fiber. The three-dimensional organization of chromatin plays critical roles in regulating genome function. Here the authors apply a near atomistic model to study the structure and dynamics of the chromatin folding unit - the tetra-nucleosome - to provide insight into how chromatin folds.
Collapse
Affiliation(s)
- Xinqiang Ding
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Xingcheng Lin
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
43
|
Marr LT, Ocampo J, Clark DJ, Hayes JJ. Global histone protein surface accessibility in yeast indicates a uniformly loosely packed genome with canonical nucleosomes. Epigenetics Chromatin 2021; 14:5. [PMID: 33430969 PMCID: PMC7802155 DOI: 10.1186/s13072-020-00381-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/28/2020] [Indexed: 01/09/2023] Open
Abstract
Background The vast majority of methods available to characterize genome-wide chromatin structure exploit differences in DNA accessibility to nucleases or chemical crosslinking. We developed a novel method to gauge genome-wide accessibility of histone protein surfaces within nucleosomes by assessing reactivity of engineered cysteine residues with a thiol-specific reagent, biotin-maleimide (BM). Results Yeast nuclei were obtained from cells expressing the histone mutant H2B S116C, in which a cysteine resides near the center of the external flat protein surface of the nucleosome. BM modification revealed that nucleosomes are generally equivalently accessible throughout the S. cerevisiae genome, including heterochromatic regions, suggesting limited, higher-order chromatin structures in which this surface is obstructed by tight nucleosome packing. However, we find that nucleosomes within 500 bp of transcription start sites exhibit the greatest range of accessibility, which correlates with the density of chromatin remodelers. Interestingly, accessibility is not well correlated with RNA polymerase density and thus the level of gene expression. We also investigated the accessibility of cysteine mutations designed to detect exposure of histone surfaces internal to the nucleosome thought to be accessible in actively transcribed genes: H3 102, is at the H2A–H2B dimer/H3–H4 tetramer interface, and H3 A110C, resides at the H3–H3 interface. However, in contrast to the external surface site, we find that neither of these internal sites were found to be appreciably exposed. Conclusions Overall, our finding that nucleosomes surfaces within S. cerevisiae chromatin are equivalently accessible genome-wide is consistent with a globally uncompacted chromatin structure lacking substantial higher-order organization. However, we find modest differences in accessibility that correlate with chromatin remodelers but not transcription, suggesting chromatin poised for transcription is more accessible than actively transcribed or intergenic regions. In contrast, we find that two internal sites remain inaccessible, suggesting that such non-canonical nucleosome species generated during transcription are rapidly and efficiently converted to canonical nucleosome structure and thus not widely present in native chromatin.
Collapse
Affiliation(s)
- Luke T Marr
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Josefina Ocampo
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), C1428ADN, Buenos Aires, Argentina
| | - David J Clark
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Jeffrey J Hayes
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
44
|
Edwards GB, Muthurajan UM, Bowerman S, Luger K. Analytical Ultracentrifugation (AUC): An Overview of the Application of Fluorescence and Absorbance AUC to the Study of Biological Macromolecules. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2020; 133:e131. [PMID: 33351266 PMCID: PMC7781197 DOI: 10.1002/cpmb.131] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The biochemical and biophysical investigation of proteins, nucleic acids, and the assemblies that they form yields essential information to understand complex systems. Analytical ultracentrifugation (AUC) represents a broadly applicable and information-rich method for investigating macromolecular characteristics such as size, shape, stoichiometry, and binding properties, all in the true solution-state environment that is lacking in most orthogonal methods. Despite this, AUC remains underutilized relative to its capabilities and potential in the fields of biochemistry and molecular biology. Although there has been a rapid development of computing power and AUC analysis tools in this millennium, fewer advancements have occurred in development of new applications of the technique, leaving these powerful instruments underappreciated and underused in many research institutes. With AUC previously limited to absorbance and Rayleigh interference optics, the addition of fluorescence detection systems has greatly enhanced the applicability of AUC to macromolecular systems that are traditionally difficult to characterize. This overview provides a resource for novices, highlighting the potential of AUC and encouraging its use in their research, as well as for current users, who may benefit from our experience. We discuss the strengths of fluorescence-detected AUC and demonstrate the power of even simple AUC experiments to answer practical and fundamental questions about biophysical properties of macromolecular assemblies. We address the development and utility of AUC, explore experimental design considerations, present case studies investigating properties of biological macromolecules that are of common interest to researchers, and review popular analysis approaches. © 2020 The Authors.
Collapse
Affiliation(s)
| | - Uma M. Muthurajan
- Department of BiochemistryUniversity of Colorado BoulderBoulderColorado
| | - Samuel Bowerman
- Department of BiochemistryUniversity of Colorado BoulderBoulderColorado
- Howard Hughes Medical InstituteUniversity of Colorado BoulderBoulderColorado
| | - Karolin Luger
- Department of BiochemistryUniversity of Colorado BoulderBoulderColorado
- Howard Hughes Medical InstituteUniversity of Colorado BoulderBoulderColorado
| |
Collapse
|
45
|
Jing Y, Ding D, Tian G, Kwan KCJ, Liu Z, Ishibashi T, Li XD. Semisynthesis of site-specifically succinylated histone reveals that succinylation regulates nucleosome unwrapping rate and DNA accessibility. Nucleic Acids Res 2020; 48:9538-9549. [PMID: 32766790 PMCID: PMC7515725 DOI: 10.1093/nar/gkaa663] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 01/06/2023] Open
Abstract
Posttranslational modifications (PTMs) of histones represent a crucial regulatory mechanism of nucleosome and chromatin dynamics in various of DNA-based cellular processes, such as replication, transcription and DNA damage repair. Lysine succinylation (Ksucc) is a newly identified histone PTM, but its regulation and function in chromatin remain poorly understood. Here, we utilized an expressed protein ligation (EPL) strategy to synthesize histone H4 with site-specific succinylation at K77 residue (H4K77succ), an evolutionarily conserved succinylation site at the nucleosomal DNA-histone interface. We then assembled mononucleosomes with the semisynthetic H4K77succ in vitro. We demonstrated that this succinylation impacts nucleosome dynamics and promotes DNA unwrapping from the histone surface, which allows proteins such as transcription factors to rapidly access buried regions of the nucleosomal DNA. In budding yeast, a lysine-to-glutamic acid mutation, which mimics Ksucc, at the H4K77 site reduced nucleosome stability and led to defects in DNA damage repair and telomere silencing in vivo. Our findings revealed this uncharacterized histone modification has important roles in nucleosome and chromatin dynamics.
Collapse
Affiliation(s)
- Yihang Jing
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Dongbo Ding
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Gaofei Tian
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Ka Chun Jonathan Kwan
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zheng Liu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Toyotaka Ishibashi
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
46
|
Spakman D, King GA, Peterman EJG, Wuite GJL. Constructing arrays of nucleosome positioning sequences using Gibson Assembly for single-molecule studies. Sci Rep 2020; 10:9903. [PMID: 32555215 PMCID: PMC7303147 DOI: 10.1038/s41598-020-66259-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/24/2020] [Indexed: 01/08/2023] Open
Abstract
As the basic building blocks of chromatin, nucleosomes play a key role in dictating the accessibility of the eukaryotic genome. Consequently, nucleosomes are involved in essential genomic transactions such as DNA transcription, replication and repair. In order to unravel the mechanisms by which nucleosomes can influence, or be altered by, DNA-binding proteins, single-molecule techniques are increasingly employed. To this end, DNA molecules containing a defined series of nucleosome positioning sequences are often used to reconstitute arrays of nucleosomes in vitro. Here, we describe a novel method to prepare DNA molecules containing defined arrays of the ‘601’ nucleosome positioning sequence by exploiting Gibson Assembly cloning. The approaches presented here provide a more accessible and efficient means to generate arrays of nucleosome positioning motifs, and facilitate a high degree of control over the linker sequences between these motifs. Nucleosomes reconstituted on such arrays are ideal for interrogation with single-molecule techniques. To demonstrate this, we use dual-trap optical tweezers, in combination with fluorescence microscopy, to monitor nucleosome unwrapping and histone localisation as a function of tension. We reveal that, although nucleosomes unwrap at ~20 pN, histones (at least histone H3) remain bound to the DNA, even at tensions beyond 60 pN.
Collapse
Affiliation(s)
- Dian Spakman
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Graeme A King
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands. .,Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Erwin J G Peterman
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
| | - Gijs J L Wuite
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
47
|
Lehmann K, Felekyan S, Kühnemuth R, Dimura M, Tóth K, Seidel CAM, Langowski J. Dynamics of the nucleosomal histone H3 N-terminal tail revealed by high precision single-molecule FRET. Nucleic Acids Res 2020; 48:1551-1571. [PMID: 31956896 PMCID: PMC7026643 DOI: 10.1093/nar/gkz1186] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/29/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023] Open
Abstract
Chromatin compaction and gene accessibility are orchestrated by assembly and disassembly of nucleosomes. Although the disassembly process was widely studied, little is known about the structure and dynamics of the disordered histone tails, which play a pivotal role for nucleosome integrity. This is a gap filling experimental FRET study from the perspective of the histone H3 N-terminal tail (H3NtT) of reconstituted mononucleosomes. By systematic variation of the labeling positions we monitored the motions of the H3NtT relative to the dyad axis and linker DNA. Single-molecule FRET unveiled that H3NtTs do not diffuse freely but follow the DNA motions with multiple interaction modes with certain permitted dynamic transitions in the μs to ms time range. We also demonstrate that the H3NtT can allosterically sense charge-modifying mutations within the histone core (helix α3 of histone H2A (R81E/R88E)) resulting in increased dynamic transitions and lower rate constants. Those results complement our earlier model on the NaCl induced nucleosome disassembly as changes in H3NtT configurations coincide with two major steps: unwrapping of one linker DNA and weakening of the internal DNA - histone interactions on the other side. This emphasizes the contribution of the H3NtT to the fine-tuned equilibrium between overall nucleosome stability and DNA accessibility.
Collapse
Affiliation(s)
- Kathrin Lehmann
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg D-69120, Germany.,Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, Düsseldorf D-40225, Germany
| | - Suren Felekyan
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, Düsseldorf D-40225, Germany
| | - Ralf Kühnemuth
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, Düsseldorf D-40225, Germany
| | - Mykola Dimura
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, Düsseldorf D-40225, Germany
| | - Katalin Tóth
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg D-69120, Germany
| | - Claus A M Seidel
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, Düsseldorf D-40225, Germany
| | - Jörg Langowski
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg D-69120, Germany
| |
Collapse
|
48
|
Machnik M, Oleksiewicz U. Dynamic Signatures of the Epigenome: Friend or Foe? Cells 2020; 9:cells9030653. [PMID: 32156057 PMCID: PMC7140607 DOI: 10.3390/cells9030653] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 12/12/2022] Open
Abstract
Highly dynamic epigenetic signaling is influenced mainly by (micro)environmental stimuli and genetic factors. The exact mechanisms affecting particular epigenomic patterns differ dependently on the context. In the current review, we focus on the causes and effects of the dynamic signatures of the human epigenome as evaluated with the high-throughput profiling data and single-gene approaches. We will discuss three different aspects of phenotypic outcomes occurring as a consequence of epigenetics interplaying with genotype and environment. The first issue is related to the cases of environmental impacts on epigenetic profile, and its adverse and advantageous effects related to human health and evolutionary adaptation. The next topic will present a model of the interwoven co-evolution of genetic and epigenetic patterns exemplified with transposable elements (TEs) and their epigenetic repressors Krüppel-associated box zinc finger proteins (KRAB–ZNFs). The third aspect concentrates on the mitosis-based microevolution that takes place during carcinogenesis, leading to clonal diversity and expansion of tumor cells. The whole picture of epigenome plasticity and its role in distinct biological processes is still incomplete. However, accumulating data define epigenomic dynamics as an essential co-factor driving adaptation at the cellular and inter-species levels with a benefit or disadvantage to the host.
Collapse
Affiliation(s)
- Marta Machnik
- Department of Cancer Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland;
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Urszula Oleksiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland;
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
- Correspondence:
| |
Collapse
|
49
|
Takada S, Brandani GB, Tan C. Nucleosomes as allosteric scaffolds for genetic regulation. Curr Opin Struct Biol 2020; 62:93-101. [PMID: 31901887 DOI: 10.1016/j.sbi.2019.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022]
Abstract
Nucleosomes are stable yet highly dynamic complexes exhibiting diverse types of motions, such as sliding, DNA unwrapping, and disassembly, encoding a landscape with a large number of metastable states. In this review, describing recent studies on these nucleosome structure changes, we propose that the nucleosome can be viewed as an ideal allosteric scaffold: regulated by effector molecules such as transcription factors and chromatin remodelers, the nucleosome controls the downstream gene activity. Binding of transcription factors to the nucleosome can enhance DNA unwrapping or slide the DNA, altering either the binding or the unbinding of other transcription factors to nearby sites. ATP-dependent chromatin remodelers induce a series of DNA deformations, which allosterically propagate throughout the nucleosome to induce DNA sliding or histone exchange.
Collapse
Affiliation(s)
- Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo Kyoto, 606-8502, Japan.
| | - Giovanni B Brandani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo Kyoto, 606-8502, Japan
| | - Cheng Tan
- RIKEN Center for Computational Science, 7-1-26 Minatojima-minamimachi, Chuo, Kobe, 650-0047 Japan
| |
Collapse
|
50
|
Ensembles of Breathing Nucleosomes: A Computational Study. Biophys J 2019; 118:2297-2308. [PMID: 31882248 DOI: 10.1016/j.bpj.2019.11.3395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
About three-fourths of the human DNA molecules are wrapped into nucleosomes, protein spools with DNA. Nucleosomes are highly dynamic, transiently exposing their DNA through spontaneous unspooling. Recent experiments allowed to observe the DNA of an ensemble of such breathing nucleosomes through x-ray diffraction with contrast matching between the solvent and the protein core. In this study, we calculate such an ensemble through a Monte Carlo simulation of a coarse-grained nucleosome model with sequence-dependent DNA mechanics. Our analysis gives detailed insights into the sequence dependence of nucleosome breathing observed in the experiment and allows us to determine the adsorption energy of the DNA bound to the protein core as a function of the ionic strength. Moreover, we predict the breathing behavior of other potentially interesting sequences and compare the findings to earlier related experiments.
Collapse
|