1
|
Zhang L, Wu L, Guo Y, Wang E, Zhang J, You S, Su R, Qi W. Enhancing amplification efficiency and reducing molecular diagnostic reaction time through rational design of T4 gp32 Variants in recombinase polymerase amplification. Biochimie 2025; 234:1-9. [PMID: 40158835 DOI: 10.1016/j.biochi.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/10/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Recombinase polymerase amplification (RPA) is a prominent isothermal nucleic acid amplification method widely applied in molecular diagnostics. The stability and functionality of the single-stranded DNA-binding protein T4 gene 32 (gp32) crucial for pre-synaptic filament formation and D-loop stabilization, play a key role in determining RPA efficiency. In this study, V62C/T80C and Y186R mutants with improved performance were screened by rational disulfide bond construction and virtual saturation mutagenesis, respectively. The structural changes in V62C/T80C and the altered ssDNA-binding capacity in Y186R both contribute to RPA amplification by enhancing the formation of UvsX-ssDNA presynaptic filaments and stabilizing the D-loop structure during homologous recombination, respectively. The two mutants each demonstrated unique advantages in the RPA process. V62C/T80C significantly accelerates the amplification process, reducing the RPA reaction time by 47 %, while Y186R showed a 123 % increase in efficiency across the entire amplification cycle. Totally, this study applied a rational strategy on gp32 optimization, shortening RPA reaction times, enhancing the RPA reaction efficiency, and advancing its application in clinical and point-of-care diagnostics.
Collapse
Affiliation(s)
- Lin Zhang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China
| | - Lvping Wu
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China
| | - Yiwei Guo
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China
| | - Enjie Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China
| | - Jiaxing Zhang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China
| | - Shengping You
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China.
| | - Rongxin Su
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300350, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, PR China
| | - Wei Qi
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300350, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, PR China
| |
Collapse
|
2
|
Homchan A, Patchsung M, Chantanakool P, Wongsatit T, Onchan W, Muengsaen D, Thaweeskulchai T, Tandean M, Sakpetch T, Suraritdechachai S, Aphicho K, Panchai C, Taiwan S, Horthongkham N, Sudyoadsuk T, Reinhardt A, Uttamapinant C. Recombinase-Controlled Multiphase Condensates Accelerate Nucleic Acid Amplification and CRISPR-Based Diagnostics. J Am Chem Soc 2025; 147:10088-10103. [PMID: 39948709 PMCID: PMC11951158 DOI: 10.1021/jacs.4c11893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 03/27/2025]
Abstract
Isothermal techniques for amplifying nucleic acids have found extensive applications in genotyping and diagnostic tests. These methods can be integrated with sequence-specific detection strategies, such as CRISPR-based detection, for optimal diagnostic accuracy. In particular, recombinase-based amplification uses proteins from the Escherichia virus T4 recombination system and operates effectively at moderate temperatures in field and point-of-care settings. Here, we discover that recombinase polymerase amplification (RPA) is controlled by liquid-liquid phase separation, where the condensate formation enhances the nucleic acid amplification process. While two protein components of RPA could act as scaffold proteins for condensate formation, we identify T4 UvsX recombinase as the key regulator orchestrating distinct core-shell arrangements of proteins within multiphase condensates, with the intrinsically disordered C-terminus of UvsX being crucial for phase separation. We develop volumetric imaging assays to visualize RPA condensates and the reaction progression in whole volumes, and begin to dissect how macroscopic properties such as size distribution and droplet count could contribute to the overall reaction efficiency. Spatial organization of proteins in condensates may create optimal conditions for amplification, and disruption of such structures may diminish the amplification efficiency, as we demonstrate for the case of reverse transcription-RPA. The insight that RPA functions as a multiphase condensate leads us to identify the UvsXD274A mutant, which has a distinct phase-separation propensity compared to the wild-type enzyme and can enhance RNA detection via RPA-coupled CRISPR-based diagnostics.
Collapse
Affiliation(s)
- Aimorn Homchan
- School
of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Maturada Patchsung
- School
of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Pheerawat Chantanakool
- School
of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Thanakrit Wongsatit
- School
of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Warunya Onchan
- School
of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Duangkamon Muengsaen
- School
of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Thana Thaweeskulchai
- School
of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Martin Tandean
- School
of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Theeradon Sakpetch
- School
of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Surased Suraritdechachai
- School
of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Kanokpol Aphicho
- School
of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Chuthamat Panchai
- School
of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Siraphob Taiwan
- School
of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Navin Horthongkham
- Department
of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Taweesak Sudyoadsuk
- Frontier
Research Center, Vidyasirimedhi Institute
of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Aleks Reinhardt
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Chayasith Uttamapinant
- School
of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| |
Collapse
|
3
|
Gerulskis R, Minteer SD. Terminator: A Software Package for Fast and Local Optimization of His-Tag Placement for Protein Affinity Purification. ACS BIO & MED CHEM AU 2025; 5:55-65. [PMID: 39990946 PMCID: PMC11843336 DOI: 10.1021/acsbiomedchemau.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 02/25/2025]
Abstract
Although the use of affinity tags can greatly improve purification of expressed enzymes, the placement of affinity tags can significantly impact the expression, solubility, and function of recombinant proteins. To facilitate the optimal design of 6xHis-tagged constructs for protein purification, we developed Terminator, a Python-based software package, which takes a UniProt ID or existing protein sequence as input, identifies related sequences, maps sequence conservation retrieved from ConSurf onto protein 3D structures retrieved from the PDB and SWISS-MODEL, and analyzes proximity to cavities and functional sites to recommend the N- or C-terminus for placement of 6xHis fusion tags <15 residues in length. The package also outputs a document with available purification and activity literature for the target and closely related proteins organized by year. Comparative analysis of Terminator predictions against published experimental tag behavior for 6xHis fusion tags <15 residues in length demonstrates an 86-100% accuracy in predicting the relative risk of ill effects between termini and a 92-93% accuracy in predicting the absolute risk of modifying individual termini. This reliability of Terminator's analysis suggests that proximity to surface cavities, not burial of wild-type termini, is the most reliable predictor of ill effects arising from short 6xHis fusion tags. This tool aims to expedite construct design and enhance the successful production of well-behaved proteins for studies in enzymology and biocatalysis with minimal need for computational resources, programming knowledge, or familiarity with protein-tag interference mechanisms.
Collapse
Affiliation(s)
- Rokas Gerulskis
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Kummer
Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
4
|
Wang M, Liu H, Ren J, Huang Y, Deng Y, Liu Y, Chen Z, Chow FWN, Leung PHM, Li S. Enzyme-Assisted Nucleic Acid Amplification in Molecular Diagnosis: A Review. BIOSENSORS 2023; 13:bios13020160. [PMID: 36831926 PMCID: PMC9953907 DOI: 10.3390/bios13020160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 06/12/2023]
Abstract
Infectious diseases and tumors have become the biggest medical challenges in the 21st century. They are driven by multiple factors such as population growth, aging, climate change, genetic predispositions and more. Nucleic acid amplification technologies (NAATs) are used for rapid and accurate diagnostic testing, providing critical information in order to facilitate better follow-up treatment and prognosis. NAATs are widely used due their high sensitivity, specificity, rapid amplification and detection. It should be noted that different NAATs can be selected according to different environments and research fields; for example, isothermal amplification with a simple operation can be preferred in developing countries or resource-poor areas. In the field of translational medicine, CRISPR has shown great prospects. The core component of NAAT lies in the activity of different enzymes. As the most critical material of nucleic acid amplification, the key role of the enzyme is self-evident, playing the upmost important role in molecular diagnosis. In this review, several common enzymes used in NAATs are compared and described in detail. Furthermore, we summarize both the advances and common issues of NAATs in clinical application.
Collapse
Affiliation(s)
- Meiling Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Hongna Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Jie Ren
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Yunqi Huang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Yuan Liu
- Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Franklin Wang-Ngai Chow
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Polly Hang-Mei Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
5
|
Abstract
INTRODUCTION Recombinase polymerase amplification (RPA) is a promising and emerging technology for rapidly amplifying target nucleic acid from minimally processed samples and through small portable instruments. RPA is suitable for point-of-care testing (POCT) and on-site field testing, and it is compatible with microfluidic devices. Several detection assays have been developed, but limited research has dug deeper into the chemistry of RPA to understand its kinetics and fix its shortcomings. AREAS COVERED This review provides a detailed introduction of RPA molecular mechanism, kits formats, optimization, application, pros, and cons. Moreover, this critical review discusses the nonspecificity issue of RPA, highlights its consequences, and emphasizes the need for more research to resolve it. This review discusses the reaction kinetics of RPA in relation to target length, product quantity, and sensitivity. This critical review also questions the novelty of recombinase-aided amplification (RAA). In short, this review discusses many aspects of RPA technology that have not been discussed previously and provides a deeper insight and new perspectives of the technology. EXPERT OPINION RPA is an excellent choice for pathogen detection, especially in low-resource settings. It has a potential to replace PCR for all purposes, provided its shortcomings are fixed and its reagent accessibility is improved.
Collapse
Affiliation(s)
- Mustafa Ahmad Munawar
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
6
|
Wu X, Zhu J, Tao P, Rao VB. Bacteriophage T4 Escapes CRISPR Attack by Minihomology Recombination and Repair. mBio 2021; 12:e0136121. [PMID: 34154416 PMCID: PMC8262927 DOI: 10.1128/mbio.01361-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 01/05/2023] Open
Abstract
Bacteria and bacteriophages (phages) have evolved potent defense and counterdefense mechanisms that allowed their survival and greatest abundance on Earth. CRISPR (clustered regularly interspaced short palindromic repeat)-Cas (CRISPR-associated) is a bacterial defense system that inactivates the invading phage genome by introducing double-strand breaks at targeted sequences. While the mechanisms of CRISPR defense have been extensively investigated, the counterdefense mechanisms employed by phages are poorly understood. Here, we report a novel counterdefense mechanism by which phage T4 restores the genomes broken by CRISPR cleavages. Catalyzed by the phage-encoded recombinase UvsX, this mechanism pairs very short stretches of sequence identity (minihomology sites), as few as 3 or 4 nucleotides in the flanking regions of the cleaved site, allowing replication, repair, and stitching of genomic fragments. Consequently, a series of deletions are created at the targeted site, making the progeny genomes completely resistant to CRISPR attack. Our results demonstrate that this is a general mechanism operating against both type II (Cas9) and type V (Cas12a) CRISPR-Cas systems. These studies uncovered a new type of counterdefense mechanism evolved by T4 phage where subtle functional tuning of preexisting DNA metabolism leads to profound impact on phage survival. IMPORTANCE Bacteriophages (phages) are viruses that infect bacteria and use them as replication factories to assemble progeny phages. Bacteria have evolved powerful defense mechanisms to destroy the invading phages by severing their genomes soon after entry into cells. We discovered a counterdefense mechanism evolved by phage T4 to stitch back the broken genomes and restore viral infection. In this process, a small amount of genetic material is deleted or another mutation is introduced, making the phage resistant to future bacterial attack. The mutant virus might also gain survival advantages against other restriction conditions or DNA damaging events. Thus, bacterial attack not only triggers counterdefenses but also provides opportunities to generate more fit phages. Such defense and counterdefense mechanisms over the millennia led to the extraordinary diversity and the greatest abundance of bacteriophages on Earth. Understanding these mechanisms will open new avenues for engineering recombinant phages for biomedical applications.
Collapse
Affiliation(s)
- Xiaorong Wu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Jingen Zhu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Pan Tao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Venigalla B. Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA
| |
Collapse
|
7
|
Shinn MK, Kozlov AG, Lohman TM. Allosteric effects of SSB C-terminal tail on assembly of E. coli RecOR proteins. Nucleic Acids Res 2021; 49:1987-2004. [PMID: 33450019 PMCID: PMC7913777 DOI: 10.1093/nar/gkaa1291] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 01/21/2023] Open
Abstract
Escherichia coli RecO is a recombination mediator protein that functions in the RecF pathway of homologous recombination, in concert with RecR, and interacts with E. coli single stranded (ss) DNA binding (SSB) protein via the last 9 amino acids of the C-terminal tails (SSB-Ct). Structures of the E. coli RecR and RecOR complexes are unavailable; however, crystal structures from other organisms show differences in RecR oligomeric state and RecO stoichiometry. We report analytical ultracentrifugation studies of E. coli RecR assembly and its interaction with RecO for a range of solution conditions using both sedimentation velocity and equilibrium approaches. We find that RecR exists in a pH-dependent dimer-tetramer equilibrium that explains the different assembly states reported in previous studies. RecO binds with positive cooperativity to a RecR tetramer, forming both RecR4O and RecR4O2 complexes. We find no evidence of a stable RecO complex with RecR dimers. However, binding of RecO to SSB-Ct peptides elicits an allosteric effect, eliminating the positive cooperativity and shifting the equilibrium to favor a RecR4O complex. These studies suggest a mechanism for how SSB binding to RecO influences the distribution of RecOR complexes to facilitate loading of RecA onto SSB coated ssDNA to initiate homologous recombination.
Collapse
Affiliation(s)
- Min Kyung Shinn
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA.,Department of Physics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Alexander G Kozlov
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
8
|
Barry J, Wong ML, Alberts B. In vitro reconstitution of DNA replication initiated by genetic recombination: a T4 bacteriophage model for a type of DNA synthesis important for all cells. Mol Biol Cell 2018; 30:146-159. [PMID: 30403545 PMCID: PMC6337909 DOI: 10.1091/mbc.e18-06-0386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Using a mixture of 10 purified DNA replication and DNA recombination proteins encoded by the bacteriophage T4 genome, plus two homologous DNA molecules, we have reconstituted the genetic recombination–initiated pathway that initiates DNA replication forks at late times of T4 bacteriophage infection. Inside the cell, this recombination-dependent replication (RDR) is needed to produce the long concatemeric T4 DNA molecules that serve as substrates for packaging the shorter, genome-sized viral DNA into phage heads. The five T4 proteins that catalyze DNA synthesis on the leading strand, plus the proteins required for lagging-strand DNA synthesis, are essential for the reaction, as are a special mediator protein (gp59) and a Rad51/RecA analogue (the T4 UvsX strand-exchange protein). Related forms of RDR are widespread in living organisms—for example, they play critical roles in the homologous recombination events that can restore broken ends of the DNA double helix, restart broken DNA replication forks, and cross over chromatids during meiosis in eukaryotes. Those processes are considerably more complex, and the results presented here should be informative for dissecting their detailed mechanisms.
Collapse
Affiliation(s)
- Jack Barry
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158-2517
| | - Mei Lie Wong
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158-2517
| | - Bruce Alberts
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158-2517
| |
Collapse
|
9
|
Korolev S. Advances in structural studies of recombination mediator proteins. Biophys Chem 2017; 225:27-37. [PMID: 27974172 DOI: 10.1016/j.bpc.2016.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/01/2016] [Accepted: 12/01/2016] [Indexed: 12/25/2022]
Abstract
Recombination mediator proteins (RMPs) are critical for genome integrity in all organisms. They include phage UvsY, prokaryotic RecF, -O, -R (RecFOR) and eukaryotic Rad52, Breast Cancer susceptibility 2 (BRCA2) and Partner and localizer of BRCA2 (PALB2) proteins. BRCA2 and PALB2 are tumor suppressors implicated in cancer. RMPs regulate binding of RecA-like recombinases to sites of DNA damage to initiate the most efficient non-mutagenic repair of broken chromosome and other deleterious DNA lesions. Mechanistically, RMPs stimulate a single-stranded DNA (ssDNA) hand-off from ssDNA binding proteins (ssbs) such as gp32, SSB and RPA, to recombinases, activating DNA repair only at the time and site of the damage event. This review summarizes structural studies of RMPs and their implications for understanding mechanism and function. Comparative analysis of RMPs is complicated due to their convergent evolution. In contrast to the evolutionary conserved ssbs and recombinases, RMPs are extremely diverse in sequence and structure. Structural studies are particularly important in such cases to reveal common features of the entire family and specific features of regulatory mechanisms for each member. All RMPs are characterized by specific DNA-binding domains and include variable protein interaction motifs. The complexity of such RMPs corresponds to the ever-growing number of DNA metabolism events they participate in under normal and pathological conditions and requires additional comprehensive structure-functional studies.
Collapse
Affiliation(s)
- S Korolev
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 S Grand Blvd., St. Louis, MO 63104, USA.
| |
Collapse
|
10
|
Structure and mechanism of the phage T4 recombination mediator protein UvsY. Proc Natl Acad Sci U S A 2016; 113:3275-80. [PMID: 26951671 DOI: 10.1073/pnas.1519154113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The UvsY recombination mediator protein is critical for efficient homologous recombination in bacteriophage T4 and is the functional analog of the eukaryotic Rad52 protein. During T4 homologous recombination, the UvsX recombinase has to compete with the prebound gp32 single-stranded binding protein for DNA-binding sites and UvsY stimulates this filament nucleation event. We report here the crystal structure of UvsY in four similar open-barrel heptameric assemblies and provide structural and biophysical insights into its function. The UvsY heptamer was confirmed in solution by centrifugation and light scattering, and thermodynamic analyses revealed that the UvsY-ssDNA interaction occurs within the assembly via two distinct binding modes. Using surface plasmon resonance, we also examined the binding of UvsY to both ssDNA and the ssDNA-gp32 complex. These analyses confirmed that ssDNA can bind UvsY and gp32 independently and also as a ternary complex. They also showed that residues located on the rim of the heptamer are required for optimal binding to ssDNA, thus identifying the putative ssDNA-binding surface. We propose a model in which UvsY promotes a helical ssDNA conformation that disfavors the binding of gp32 and initiates the assembly of the ssDNA-UvsX filament.
Collapse
|
11
|
James A, Macdonald J. Recombinase polymerase amplification: Emergence as a critical molecular technology for rapid, low-resource diagnostics. Expert Rev Mol Diagn 2015; 15:1475-89. [PMID: 26517245 DOI: 10.1586/14737159.2015.1090877] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Isothermal molecular diagnostics are bridging the technology gap between traditional diagnostics and polymerase chain reaction-based methods. These new techniques enable timely and accurate testing, especially in settings where there is a lack of infrastructure to support polymerase chain reaction facilities. Despite this, there is a significant lack of uptake of these technologies in developing countries where they are highly needed. Among these novel isothermal technologies, recombinase polymerase amplification (RPA) holds particular potential for use in developing countries. This rapid nucleic acid amplification approach is fast, highly sensitive and specific, and amenable to countries with a high burden of infectious diseases. Implementation of RPA technology in developing countries is critically required to assess limitations and potentials of the diagnosis of infectious disease, and may help identify impediments that prevent adoption of new molecular technologies in low resource- and low skill settings. This review focuses on approaching diagnosis of infectious disease with RPA.
Collapse
Affiliation(s)
- Ameh James
- a 1 Genecology Research Centre, Inflammation and Healing Research Cluster, School of Science and Engineering, University of the Sunshine Coast , Queensland, Australia.,b 2 Keystone Laboratories International, Kuje, FCT , Abuja, Nigeria
| | - Joanne Macdonald
- a 1 Genecology Research Centre, Inflammation and Healing Research Cluster, School of Science and Engineering, University of the Sunshine Coast , Queensland, Australia.,c 3 Division of Experimental Therapeutics, Department of Medicine, Columbia University , NY, USA
| |
Collapse
|
12
|
Morrical SW. DNA-pairing and annealing processes in homologous recombination and homology-directed repair. Cold Spring Harb Perspect Biol 2015; 7:a016444. [PMID: 25646379 DOI: 10.1101/cshperspect.a016444] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The formation of heteroduplex DNA is a central step in the exchange of DNA sequences via homologous recombination, and in the accurate repair of broken chromosomes via homology-directed repair pathways. In cells, heteroduplex DNA largely arises through the activities of recombination proteins that promote DNA-pairing and annealing reactions. Classes of proteins involved in pairing and annealing include RecA-family DNA-pairing proteins, single-stranded DNA (ssDNA)-binding proteins, recombination mediator proteins, annealing proteins, and nucleases. This review explores the properties of these pairing and annealing proteins, and highlights their roles in complex recombination processes including the double Holliday junction (DhJ) formation, synthesis-dependent strand annealing, and single-strand annealing pathways--DNA transactions that are critical both for genome stability in individual organisms and for the evolution of species.
Collapse
Affiliation(s)
- Scott W Morrical
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont 05405
| |
Collapse
|
13
|
Abstract
Homologous DNA pairing and strand exchange are at the core of homologous recombination. These reactions are promoted by a DNA-strand-exchange protein assembled into a nucleoprotein filament comprising the DNA-pairing protein, ATP, and single-stranded DNA. The catalytic activity of this molecular machine depends on control of its dynamic instability by accessory factors. Here we discuss proteins known as recombination mediators that facilitate formation and functional activation of the DNA-strand-exchange protein filament. Although the basics of homologous pairing and DNA-strand exchange are highly conserved in evolution, differences in mediator function are required to cope with differences in how single-stranded DNA is packaged by the single-stranded DNA-binding protein in different species, and the biochemical details of how the different DNA-strand-exchange proteins nucleate and extend into a nucleoprotein filament. The set of (potential) mediator proteins has apparently expanded greatly in evolution, raising interesting questions about the need for additional control and coordination of homologous recombination in more complex organisms.
Collapse
Affiliation(s)
- Alex Zelensky
- Department of Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Cancer Institute, 3000 CA, Rotterdam, The Netherlands
| | - Roland Kanaar
- Department of Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Cancer Institute, 3000 CA, Rotterdam, The Netherlands Department of Radiation Oncology, Erasmus Medical Center Cancer Institute, 3000 CA, Rotterdam, The Netherlands
| | - Claire Wyman
- Department of Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Cancer Institute, 3000 CA, Rotterdam, The Netherlands Department of Radiation Oncology, Erasmus Medical Center Cancer Institute, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Coordinated Binding of Single-Stranded and Double-Stranded DNA by UvsX Recombinase. PLoS One 2013; 8:e66654. [PMID: 23824136 PMCID: PMC3688935 DOI: 10.1371/journal.pone.0066654] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 05/11/2013] [Indexed: 11/19/2022] Open
Abstract
Homologous recombination is important for the error-free repair of DNA double-strand breaks and for replication fork restart. Recombinases of the RecA/Rad51 family perform the central catalytic role in this process. UvsX recombinase is the RecA/Rad51 ortholog of bacteriophage T4. UvsX and other recombinases form presynaptic filaments on ssDNA that are activated to search for homology in dsDNA and to perform DNA strand exchange. To effectively initiate recombination, UvsX must find and bind to ssDNA within an excess of dsDNA. Here we examine the binding of UvsX to ssDNA and dsDNA in the presence and absence of nucleotide cofactor, ATP. We also examine how the binding of one DNA substrate is affected by simultaneous binding of the other to determine how UvsX might selectively assemble on ssDNA. We show that the two DNA binding sites of UvsX are regulated by the nucleotide cofactor ATP and are coordinated with each other such that in the presence of ssDNA, dsDNA binding is significantly reduced and correlated with its homology to the ssDNA bound to the enzyme. UvsX has high affinity for dsDNA in the absence of ssDNA, which may allow for sequestration of the enzyme in an inactive form prior to ssDNA generation.
Collapse
|
15
|
AFM volumetric methods for the characterization of proteins and nucleic acids. Methods 2013; 60:113-21. [DOI: 10.1016/j.ymeth.2013.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/28/2013] [Accepted: 02/14/2013] [Indexed: 11/19/2022] Open
|
16
|
Szczepankowska AK, Prestel E, Mariadassou M, Bardowski JK, Bidnenko E. Phylogenetic and complementation analysis of a single-stranded DNA binding protein family from lactococcal phages indicates a non-bacterial origin. PLoS One 2011; 6:e26942. [PMID: 22073223 PMCID: PMC3208561 DOI: 10.1371/journal.pone.0026942] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 10/06/2011] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The single-stranded-nucleic acid binding (SSB) protein superfamily includes proteins encoded by different organisms from Bacteria and their phages to Eukaryotes. SSB proteins share common structural characteristics and have been suggested to descend from an ancestor polypeptide. However, as other proteins involved in DNA replication, bacterial SSB proteins are clearly different from those found in Archaea and Eukaryotes. It was proposed that the corresponding genes in the phage genomes were transferred from the bacterial hosts. Recently new SSB proteins encoded by the virulent lactococcal bacteriophages (Orf14(bIL67)-like proteins) have been identified and characterized structurally and biochemically. METHODOLOGY/PRINCIPAL FINDINGS This study focused on the determination of phylogenetic relationships between Orf14(bIL67)-like proteins and other SSBs. We have performed a large scale phylogenetic analysis and pairwise sequence comparisons of SSB proteins from different phyla. The results show that, in remarkable contrast to other phage SSBs, the Orf14(bIL67)-like proteins form a distinct, self-contained and well supported phylogenetic group connected to the archaeal SSBs. Functional studies demonstrated that, despite the structural and amino acid sequence differences from bacterial SSBs, Orf14(bIL67) protein complements the conditional lethal ssb-1 mutation of Escherichia coli. CONCLUSIONS/SIGNIFICANCE Here we identified for the first time a group of phages encoded SSBs which are clearly distinct from their bacterial counterparts. All methods supported the recognition of these phage proteins as a new family within the SSB superfamily. Our findings suggest that unlike other phages, the virulent lactococcal phages carry ssb genes that were not acquired from their hosts, but transferred from an archaeal genome. This represents a unique example of a horizontal gene transfer between Archaea and bacterial phages.
Collapse
Affiliation(s)
- Agnieszka K. Szczepankowska
- Institut Micalis, UMR1319, INRA, Jouy-en-Josas, France
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics PAS, Warsaw, Poland
| | - Eric Prestel
- Institut Micalis, UMR1319, INRA, Jouy-en-Josas, France
| | | | - Jacek K. Bardowski
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics PAS, Warsaw, Poland
| | | |
Collapse
|
17
|
Maher RL, Branagan AM, Morrical SW. Coordination of DNA replication and recombination activities in the maintenance of genome stability. J Cell Biochem 2011; 112:2672-82. [PMID: 21647941 PMCID: PMC3178728 DOI: 10.1002/jcb.23211] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Across the evolutionary spectrum, living organisms depend on high-fidelity DNA replication and recombination mechanisms to maintain genome stability and thus to avoid mutation and disease. The repair of severe lesions in the DNA such as double-strand breaks or stalled replication forks requires the coordinated activities of both the homologous recombination (HR) and DNA replication machineries. Growing evidence indicates that so-called "accessory proteins" in both systems are essential for the effective coupling of recombination to replication which is necessary to restore genome integrity following severe DNA damage. In this article we review the major processes of homology-directed DNA repair (HDR), including the double Holliday Junction (dHJ), synthesis-dependent strand annealing (SDSA), break-induced replication (BIR), and error-free lesion bypass pathways. Each of these pathways involves the coupling of a HR event to DNA synthesis. We highlight two major classes of accessory proteins in recombination and replication that facilitate HDR: Recombination mediator proteins exemplified by T4 UvsY, Saccharomyces cerevisiae Rad52, and human BRCA2; and DNA helicases/translocases exemplified by T4 Gp41/Gp59, E. coli DnaB and PriA, and eukaryotic Mcm2-7, Rad54, and Mph1. We illustrate how these factors help to direct the flow of DNA and protein-DNA intermediates on the pathway from a double-strand break or stalled replication fork to a high-fidelity recombination-dependent replication apparatus that can accurately repair the damage.
Collapse
Affiliation(s)
- Robyn L. Maher
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405
| | - Amy M. Branagan
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405
| | - Scott W. Morrical
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405
- Department of Microbiology & Molecular Genetics, University of Vermont College of Medicine, Burlington, VT 05405
| |
Collapse
|
18
|
Liu J, Ehmsen KT, Heyer WD, Morrical SW. Presynaptic filament dynamics in homologous recombination and DNA repair. Crit Rev Biochem Mol Biol 2011; 46:240-70. [PMID: 21599536 DOI: 10.3109/10409238.2011.576007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Homologous recombination (HR) is an essential genome stability mechanism used for high-fidelity repair of DNA double-strand breaks and for the recovery of stalled or collapsed DNA replication forks. The crucial homology search and DNA strand exchange steps of HR are catalyzed by presynaptic filaments-helical filaments of a recombinase enzyme bound to single-stranded DNA (ssDNA). Presynaptic filaments are fundamentally dynamic structures, the assembly, catalytic turnover, and disassembly of which must be closely coordinated with other elements of the DNA recombination, repair, and replication machinery in order for genome maintenance functions to be effective. Here, we reviewed the major dynamic elements controlling the assembly, activity, and disassembly of presynaptic filaments; some intrinsic such as recombinase ATP-binding and hydrolytic activities, others extrinsic such as ssDNA-binding proteins, mediator proteins, and DNA motor proteins. We examined dynamic behavior on multiple levels, including atomic- and filament-level structural changes associated with ATP binding and hydrolysis as evidenced in crystal structures, as well as subunit binding and dissociation events driven by intrinsic and extrinsic factors. We examined the biochemical properties of recombination proteins from four model systems (T4 phage, Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens), demonstrating how their properties are tailored for the context-specific requirements in these diverse species. We proposed that the presynaptic filament has evolved to rely on multiple external factors for increased multilevel regulation of HR processes in genomes with greater structural and sequence complexity.
Collapse
Affiliation(s)
- Jie Liu
- Departments of Microbiology and of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | | | | | | |
Collapse
|
19
|
Recombination-dependent concatemeric viral DNA replication. Virus Res 2011; 160:1-14. [PMID: 21708194 DOI: 10.1016/j.virusres.2011.06.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/07/2011] [Accepted: 06/10/2011] [Indexed: 11/24/2022]
Abstract
The initiation of viral double stranded (ds) DNA replication involves proteins that recruit and load the replisome at the replication origin (ori). Any block in replication fork progression or a programmed barrier may act as a factor for ori-independent remodelling and assembly of a new replisome at the stalled fork. Then replication initiation becomes dependent on recombination proteins, a process called recombination-dependent replication (RDR). RDR, which is recognized as being important for replication restart and stability in all living organisms, plays an essential role in the replication cycle of many dsDNA viruses. The SPP1 virus, which infects Bacillus subtilis cells, serves as a paradigm to understand the links between replication and recombination in circular dsDNA viruses. SPP1-encoded initiator and replisome assembly proteins control the onset of viral replication and direct the recruitment of host-encoded replisomal components at viral oriL. SPP1 uses replication fork reactivation to switch from ori-dependent θ-type (circle-to-circle) replication to σ-type RDR. Replication fork arrest leads to a double strand break that is processed by viral-encoded factors to generate a D-loop into which a new replisome is assembled, leading to σ-type viral replication. SPP1 RDR proteins are compared with similar proteins encoded by other viruses and their possible in vivo roles are discussed.
Collapse
|
20
|
Liu J, Morrical SW. Assembly and dynamics of the bacteriophage T4 homologous recombination machinery. Virol J 2010; 7:357. [PMID: 21129202 PMCID: PMC3016280 DOI: 10.1186/1743-422x-7-357] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 12/03/2010] [Indexed: 12/21/2022] Open
Abstract
Homologous recombination (HR), a process involving the physical exchange of strands between homologous or nearly homologous DNA molecules, is critical for maintaining the genetic diversity and genome stability of species. Bacteriophage T4 is one of the classic systems for studies of homologous recombination. T4 uses HR for high-frequency genetic exchanges, for homology-directed DNA repair (HDR) processes including DNA double-strand break repair, and for the initiation of DNA replication (RDR). T4 recombination proteins are expressed at high levels during T4 infection in E. coli, and share strong sequence, structural, and/or functional conservation with their counterparts in cellular organisms. Biochemical studies of T4 recombination have provided key insights on DNA strand exchange mechanisms, on the structure and function of recombination proteins, and on the coordination of recombination and DNA synthesis activities during RDR and HDR. Recent years have seen the development of detailed biochemical models for the assembly and dynamics of presynaptic filaments in the T4 recombination system, for the atomic structure of T4 UvsX recombinase, and for the roles of DNA helicases in T4 recombination. The goal of this chapter is to review these recent advances and their implications for HR and HDR mechanisms in all organisms.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | |
Collapse
|