1
|
Lino BR, Williams SJ, Castor ME, Van Deventer JA. Reaching New Heights in Genetic Code Manipulation with High Throughput Screening. Chem Rev 2024; 124:12145-12175. [PMID: 39418482 PMCID: PMC11879460 DOI: 10.1021/acs.chemrev.4c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The chemical and physical properties of proteins are limited by the 20 canonical amino acids. Genetic code manipulation allows for the incorporation of noncanonical amino acids (ncAAs) that enhance or alter protein functionality. This review explores advances in the three main strategies for introducing ncAAs into biosynthesized proteins, focusing on the role of high throughput screening in these advancements. The first section discusses engineering aminoacyl-tRNA synthetases (aaRSs) and tRNAs, emphasizing how novel selection methods improve characteristics including ncAA incorporation efficiency and selectivity. The second section examines high-throughput techniques for improving protein translation machinery, enabling accommodation of alternative genetic codes. This includes opportunities to enhance ncAA incorporation through engineering cellular components unrelated to translation. The final section highlights various discovery platforms for high-throughput screening of ncAA-containing proteins, showcasing innovative binding ligands and enzymes that are challenging to create with only canonical amino acids. These advances have led to promising drug leads and biocatalysts. Overall, the ability to discover unexpected functionalities through high-throughput methods significantly influences ncAA incorporation and its applications. Future innovations in experimental techniques, along with advancements in computational protein design and machine learning, are poised to further elevate this field.
Collapse
Affiliation(s)
- Briana R. Lino
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Sean J. Williams
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Michelle E. Castor
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - James A. Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
2
|
Zhao T, Chen YM, Li Y, Wang J, Chen S, Gao N, Qian W. Disome-seq reveals widespread ribosome collisions that promote cotranslational protein folding. Genome Biol 2021; 22:16. [PMID: 33402206 PMCID: PMC7784341 DOI: 10.1186/s13059-020-02256-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/20/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The folding of proteins is challenging in the highly crowded and sticky environment of a cell. Regulation of translation elongation may play a crucial role in ensuring the correct folding of proteins. Much of our knowledge regarding translation elongation comes from the sequencing of mRNA fragments protected by single ribosomes by ribo-seq. However, larger protected mRNA fragments have been observed, suggesting the existence of an alternative and previously hidden layer of regulation. RESULTS In this study, we performed disome-seq to sequence mRNA fragments protected by two stacked ribosomes, a product of translational pauses during which the 5'-elongating ribosome collides with the 3'-paused one. We detected widespread ribosome collisions that are related to slow ribosome release when stop codons are at the A-site, slow peptide bond formation from proline, glycine, asparagine, and cysteine when they are at the P-site, and slow leaving of polylysine from the exit tunnel of ribosomes. The structure of disomes obtained by cryo-electron microscopy suggests a different conformation from the substrate of the ribosome-associated protein quality control pathway. Collisions occurred more frequently in the gap regions between α-helices, where a translational pause can prevent the folding interference from the downstream peptides. Paused or collided ribosomes are associated with specific chaperones, which can aid in the cotranslational folding of the nascent peptides. CONCLUSIONS Therefore, cells use regulated ribosome collisions to ensure protein homeostasis.
Collapse
Affiliation(s)
- Taolan Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China. .,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yan-Ming Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Li
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Science, Tsinghua University, Beijing, 100084, China.,State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jia Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyu Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China.
| | - Wenfeng Qian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China. .,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Lashkevich KA, Shlyk VI, Kushchenko AS, Gladyshev VN, Alkalaeva EZ, Dmitriev SE. CTELS: A Cell-Free System for the Analysis of Translation Termination Rate. Biomolecules 2020; 10:E911. [PMID: 32560154 PMCID: PMC7356799 DOI: 10.3390/biom10060911] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/29/2020] [Accepted: 06/13/2020] [Indexed: 12/11/2022] Open
Abstract
Translation termination is the final step in protein biosynthesis when the synthesized polypeptide is released from the ribosome. Understanding this complex process is important for treatment of many human disorders caused by nonsense mutations in important genes. Here, we present a new method for the analysis of translation termination rate in cell-free systems, CTELS (for C-terminally extended luciferase-based system). This approach was based on a continuously measured luciferase activity during in vitro translation reaction of two reporter mRNA, one of which encodes a C-terminally extended luciferase. This extension occupies a ribosomal polypeptide tunnel and lets the completely synthesized enzyme be active before translation termination occurs, i.e., when it is still on the ribosome. In contrast, luciferase molecule without the extension emits light only after its release. Comparing the translation dynamics of these two reporters allows visualization of a delay corresponding to the translation termination event. We demonstrated applicability of this approach for investigating the effects of cis- and trans-acting components, including small molecule inhibitors and read-through inducing sequences, on the translation termination rate. With CTELS, we systematically assessed negative effects of decreased 3' UTR length, specifically on termination. We also showed that blasticidin S implements its inhibitory effect on eukaryotic translation system, mostly by affecting elongation, and that an excess of eRF1 termination factor (both the wild-type and a non-catalytic AGQ mutant) can interfere with elongation. Analysis of read-through mechanics with CTELS revealed a transient stalling event at a "leaky" stop codon context, which likely defines the basis of nonsense suppression.
Collapse
Affiliation(s)
- Kseniya A. Lashkevich
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (K.A.L.); (V.I.S.); (A.S.K.)
| | - Valeriya I. Shlyk
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (K.A.L.); (V.I.S.); (A.S.K.)
- Department of Molecular Biology, Biological Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Artem S. Kushchenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (K.A.L.); (V.I.S.); (A.S.K.)
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Elena Z. Alkalaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Sergey E. Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (K.A.L.); (V.I.S.); (A.S.K.)
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| |
Collapse
|
4
|
Poncová K, Wagner S, Jansen ME, Beznosková P, Gunišová S, Herrmannová A, Zeman J, Dong J, Valášek LS. uS3/Rps3 controls fidelity of translation termination and programmed stop codon readthrough in co-operation with eIF3. Nucleic Acids Res 2020; 47:11326-11343. [PMID: 31642471 PMCID: PMC6868437 DOI: 10.1093/nar/gkz929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/03/2019] [Accepted: 10/07/2019] [Indexed: 12/27/2022] Open
Abstract
Ribosome was long considered as a critical yet passive player in protein synthesis. Only recently the role of its basic components, ribosomal RNAs and proteins, in translational control has begun to emerge. Here we examined function of the small ribosomal protein uS3/Rps3, earlier shown to interact with eukaryotic translation initiation factor eIF3, in termination. We identified two residues in consecutive helices occurring in the mRNA entry pore, whose mutations to the opposite charge either reduced (K108E) or increased (R116D) stop codon readthrough. Whereas the latter increased overall levels of eIF3-containing terminating ribosomes in heavy polysomes in vivo indicating slower termination rates, the former specifically reduced eIF3 amounts in termination complexes. Combining these two mutations with the readthrough-reducing mutations at the extreme C-terminus of the a/Tif32 subunit of eIF3 either suppressed (R116D) or exacerbated (K108E) the readthrough phenotypes, and partially corrected or exacerbated the defects in the composition of termination complexes. In addition, we found that K108 affects efficiency of termination in the termination context-specific manner by promoting incorporation of readthrough-inducing tRNAs. Together with the multiple binding sites that we identified between these two proteins, we suggest that Rps3 and eIF3 closely co-operate to control translation termination and stop codon readthrough.
Collapse
Affiliation(s)
- Kristýna Poncová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, the Czech Republic.,Charles University, Faculty of Science, Prague, the Czech Republic
| | - Susan Wagner
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, the Czech Republic
| | - Myrte Esmeralda Jansen
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, the Czech Republic
| | - Petra Beznosková
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, the Czech Republic
| | - Stanislava Gunišová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, the Czech Republic
| | - Anna Herrmannová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, the Czech Republic
| | - Jakub Zeman
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, the Czech Republic
| | - Jinsheng Dong
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, the Czech Republic
| |
Collapse
|
5
|
Beznosková P, Pavlíková Z, Zeman J, Echeverría Aitken C, Valášek LS. Yeast applied readthrough inducing system (YARIS): an invivo assay for the comprehensive study of translational readthrough. Nucleic Acids Res 2020; 47:6339-6350. [PMID: 31069379 PMCID: PMC6614816 DOI: 10.1093/nar/gkz346] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/17/2019] [Accepted: 04/25/2019] [Indexed: 01/24/2023] Open
Abstract
Stop codon readthrough—the decoding of a stop codon by a near-cognate tRNA—is employed by viruses to balance levels of enzymatic and structural proteins and by eukaryotic cells to enable isoform-specific protein synthesis in response to external stimuli. Owing to the prevalence of premature termination codons in human disease, readthrough has emerged as an attractive therapeutic target. A growing list of various features, for example the +4 nucleotide immediately following the stop codon, modulate readthrough levels, underscoring the need for systematic investigation of readthrough. Here, we identified and described a complete group of yeast tRNAs that induce readthrough in the stop-codon tetranucleotide manner when overexpressed, designated readthrough-inducing tRNAs (rti-tRNAs). These rti-tRNAs are the keystones of YARIS (yeast applied readthrough inducing system), a reporter-based assay enabling simultaneous detection of readthrough levels at all twelve stop-codon tetranucleotides and as a function of the complete set of rti-tRNAs. We demonstrate the utility of YARIS for systematic study of translation readthrough by employing it to interrogate the effects of natural rti-tRNA modifications, as well as various readthrough-inducing drugs (RTIDs). This analysis identified a variety of genetic interactions demonstrating the power of YARIS to characterize existing and identify novel RTIDs.
Collapse
Affiliation(s)
- Petra Beznosková
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, 142 20 Prague, the Czech Republic
| | - Zuzana Pavlíková
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, 142 20 Prague, the Czech Republic
| | - Jakub Zeman
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, 142 20 Prague, the Czech Republic
| | - Colin Echeverría Aitken
- Biology Department and Biochemistry Program, Vassar College, 124 Raymond Avenue, Poughkeepsie 12601, NY, USA
| | - Leoš S Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, 142 20 Prague, the Czech Republic
| |
Collapse
|
6
|
Fleming I, Cavalcanti ARO. Selection for tandem stop codons in ciliate species with reassigned stop codons. PLoS One 2019; 14:e0225804. [PMID: 31770405 PMCID: PMC6879139 DOI: 10.1371/journal.pone.0225804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
The failure of mRNA translation machinery to recognize a stop codon as a termination signal and subsequent translation of the 3' untranslated region (UTR) is referred to as stop codon readthrough, the frequency of which is related to the length, composition, and structure of mRNA sequences downstream of end-of-gene stop codons. Secondary in-frame stop codons within a few positions downstream of the primary stop codons, so-called tandem stop codons (TSCs), serve as backup termination signals, which limit the effects of readthrough: polypeptide product degradation, mislocalization, and aggregation. In this study, ciliate species with UAA and UAG stop codons reassigned to code for glutamine are found to possess statistical excesses of TSCs at the beginning of their 3' UTRs. The overrepresentation of TSCs in these species is greater than that observed in standard code organisms. Though the overall numbers of TSCs are lower in most species with alternative stop codons because they use fewer than three unique stop codons, the relatively great overrepresentation of TSCs in alternative-code ciliate species suggests that there exist stronger selective pressures to maintain TSCs in these organisms compared to standard code organisms.
Collapse
Affiliation(s)
- Ira Fleming
- Department of Molecular Biology, Pomona College, Claremont, CA, United States of America
| | - Andre R. O. Cavalcanti
- Department of Molecular Biology, Pomona College, Claremont, CA, United States of America
- * E-mail:
| |
Collapse
|
7
|
Firczuk H, Teahan J, Mendes P, McCarthy JEG. Multisite rate control analysis identifies ribosomal scanning as the sole high-capacity/low-flux-control step in mRNA translation. FEBS J 2019; 287:925-940. [PMID: 31520451 PMCID: PMC7054134 DOI: 10.1111/febs.15059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/26/2019] [Accepted: 09/09/2019] [Indexed: 11/30/2022]
Abstract
Control of complex intracellular pathways such as protein synthesis is critical to organism survival, but is poorly understood. Translation of a reading frame in eukaryotic mRNA is preceded by a scanning process in which a subset of translation factors helps guide ribosomes to the start codon. Here, we perform comparative analysis of the control status of this scanning step that sits between recruitment of the small ribosomal subunit to the m7GpppG‐capped 5′end of mRNA and of the control exerted by downstream phases of polypeptide initiation, elongation and termination. We have utilized a detailed predictive model as guidance for designing quantitative experimental interrogation of control in the yeast translation initiation pathway. We have built a synthetic orthogonal copper‐responsive regulatory promoter (PCuR3) that is used here together with the tet07 regulatory system in a novel dual‐site in vivo rate control analysis strategy. Combining this two‐site strategy with calibrated mass spectrometry to determine translation factor abundance values, we have tested model‐based predictions of rate control properties of the in vivo system. We conclude from the results that the components of the translation machinery that promote scanning collectively function as a low‐flux‐control system with a capacity to transfer ribosomes into the core process of polypeptide production that exceeds the respective capacities of the steps of polypeptide initiation, elongation and termination. In contrast, the step immediately prior to scanning, that is, ribosome recruitment via the mRNA 5′ cap‐binding complex, is a high‐flux‐control step.
Collapse
Affiliation(s)
- Helena Firczuk
- Warwick Integrative Synthetic Biology Centre [WISB] and School of Life Sciences, University of Warwick, Coventry, UK
| | - James Teahan
- Warwick Integrative Synthetic Biology Centre [WISB] and School of Life Sciences, University of Warwick, Coventry, UK
| | - Pedro Mendes
- Center for Quantitative Medicine, UConn Health, Farmington, CT, USA
| | - John E G McCarthy
- Warwick Integrative Synthetic Biology Centre [WISB] and School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
8
|
'Stop' in protein synthesis is modulated with exquisite subtlety by an extended RNA translation signal. Biochem Soc Trans 2018; 46:1615-1625. [PMID: 30420414 DOI: 10.1042/bst20180190] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/30/2018] [Accepted: 10/04/2018] [Indexed: 02/08/2023]
Abstract
Translational stop codons, UAA, UAG, and UGA, form an integral part of the universal genetic code. They are of significant interest today for their underlying fundamental role in terminating protein synthesis, but also for their potential utilisation for programmed alternative translation events. In diverse organisms, UAA has wide usage, but it is puzzling that the high fidelity UAG is selected against and yet UGA, vulnerable to suppression, is widely used, particularly in those archaeal and bacterial genomes with a high GC content. In canonical protein synthesis, stop codons are interpreted by protein release factors that structurally and functionally mimic decoding tRNAs and occupy the decoding site on the ribosome. The release factors make close contact with the decoding complex through multiple interactions. Correct interactions cause conformational changes resulting in new and enhanced contacts with the ribosome, particularly between specific bases in the mRNA and rRNA. The base following the stop codon (fourth or +4 base) may strongly influence decoding efficiency, facilitating alternative non-canonical events like frameshifting or selenocysteine incorporation. The fourth base is drawn into the decoding site with a compacted stop codon in the eukaryotic termination complex. Surprisingly, mRNA sequences upstream and downstream of this core tetranucleotide signal have a significant influence on the strength of the signal. Since nine bases downstream of the stop codon are within the mRNA channel, their interactions with rRNA, and r-proteins may affect efficiency. With this understanding, it is now possible to design stop signals of desired strength for specific applied purposes.
Collapse
|
9
|
Jester BW, Tinberg CE, Rich MS, Baker D, Fields S. Engineered Biosensors from Dimeric Ligand-Binding Domains. ACS Synth Biol 2018; 7:2457-2467. [PMID: 30204430 DOI: 10.1021/acssynbio.8b00242] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biosensors are important components of many synthetic biology and metabolic engineering applications. Here, we report a second generation of Saccharomyces cerevisiae digoxigenin and progesterone biosensors based on destabilized dimeric ligand-binding domains that undergo ligand-induced stabilization. The biosensors, comprising one ligand-binding domain monomer fused to a DNA-binding domain and another fused to a transcriptional activation domain, activate reporter gene expression in response to steroid binding and receptor dimerization. The introduction of a destabilizing mutation to the dimer interface increased biosensor dynamic range by an order of magnitude. Computational redesign of the dimer interface and functional selections were used to create heterodimeric pairs with further improved dynamic range. A heterodimeric biosensor built from the digoxigenin and progesterone ligand-binding domains functioned as a synthetic "AND"-gate, with 20-fold stronger response to the two ligands in combination than to either one alone. We also identified mutations that increase the sensitivity or selectivity of the biosensors to chemically similar ligands. These dimerizing biosensors provide additional flexibility for the construction of logic gates and other applications.
Collapse
Affiliation(s)
- Benjamin W. Jester
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, United States
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Christine E. Tinberg
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Matthew S. Rich
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - David Baker
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, United States
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Stanley Fields
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, United States
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
- Department of Medicine, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
10
|
Gunišová S, Beznosková P, Mohammad MP, Vlčková V, Valášek LS. In-depth analysis of cis-determinants that either promote or inhibit reinitiation on GCN4 mRNA after translation of its four short uORFs. RNA (NEW YORK, N.Y.) 2016; 22:542-558. [PMID: 26822200 PMCID: PMC4793210 DOI: 10.1261/rna.055046.115] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/18/2015] [Indexed: 05/29/2023]
Abstract
Translational control in eukaryotes is exerted by many means, one of which involves a ribosome translating multiple cistrons per mRNA as in bacteria. It is called reinitiation (REI) and occurs on mRNAs where the main ORF is preceded by a short upstream uORF(s). Some uORFs support efficient REI on downstream cistrons, whereas some others do not. The mRNA of yeast transcriptional activator GCN4 contains four uORFs of both types that together compose an intriguing regulatory mechanism of its expression responding to nutrients' availability and various stresses. Here we subjected all GCN4 uORFs to a comprehensive analysis to identify all REI-promoting and inhibiting cis-determinants that contribute either autonomously or in synergy to the overall efficiency of REI on GCN4. We found that the 3' sequences of uORFs 1-3 contain a conserved AU1-2A/UUAU2 motif that promotes REI in position-specific, autonomous fashion such as the REI-promoting elements occurring in 5' sequences of uORF1 and uORF2. We also identified autonomous and transferable REI-inhibiting elements in the 3' sequences of uORF2 and uORF3, immediately following their AU-rich motif. Furthermore, we analyzed contributions of coding triplets and terminating stop codon tetranucleotides of GCN4 uORFs showing a negative correlation between the efficiency of reinitiation and efficiency of translation termination. Together we provide a complex overview of all cis-determinants of REI with their effects set in the context of the overall GCN4 translational control.
Collapse
Affiliation(s)
- Stanislava Gunišová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology AS CR, Prague 142 20, Czech Republic
| | - Petra Beznosková
- Laboratory of Regulation of Gene Expression, Institute of Microbiology AS CR, Prague 142 20, Czech Republic
| | - Mahabub Pasha Mohammad
- Laboratory of Regulation of Gene Expression, Institute of Microbiology AS CR, Prague 142 20, Czech Republic
| | - Vladislava Vlčková
- Laboratory of Regulation of Gene Expression, Institute of Microbiology AS CR, Prague 142 20, Czech Republic
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology AS CR, Prague 142 20, Czech Republic
| |
Collapse
|
11
|
Beznosková P, Gunišová S, Valášek LS. Rules of UGA-N decoding by near-cognate tRNAs and analysis of readthrough on short uORFs in yeast. RNA (NEW YORK, N.Y.) 2016; 22:456-66. [PMID: 26759455 PMCID: PMC4748822 DOI: 10.1261/rna.054452.115] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/10/2015] [Indexed: 05/13/2023]
Abstract
The molecular mechanism of stop codon recognition by the release factor eRF1 in complex with eRF3 has been described in great detail; however, our understanding of what determines the difference in termination efficiencies among various stop codon tetranucleotides and how near-cognate (nc) tRNAs recode stop codons during programmed readthrough in Saccharomyces cerevisiae is still poor. Here, we show that UGA-C as the only tetranucleotide of all four possible combinations dramatically exacerbated the readthrough phenotype of the stop codon recognition-deficient mutants in eRF1. Since the same is true also for UAA-C and UAG-C, we propose that the exceptionally high readthrough levels that all three stop codons display when followed by cytosine are partially caused by the compromised sampling ability of eRF1, which specifically senses cytosine at the +4 position. The difference in termination efficiencies among the remaining three UGA-N tetranucleotides is then given by their varying preferences for nc-tRNAs. In particular, UGA-A allows increased incorporation of Trp-tRNA whereas UGA-G and UGA-C favor Cys-tRNA. Our findings thus expand the repertoire of general decoding rules by showing that the +4 base determines the preferred selection of nc-tRNAs and, in the case of cytosine, it also genetically interacts with eRF1. Finally, using an example of the GCN4 translational control governed by four short uORFs, we also show how the evolution of this mechanism dealt with undesirable readthrough on those uORFs that serve as the key translation reinitiation promoting features of the GCN4 regulation, as both of these otherwise counteracting activities, readthrough versus reinitiation, are mediated by eIF3.
Collapse
Affiliation(s)
- Petra Beznosková
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, 142 20 Prague, Czech Republic Faculty of Science, Charles University in Prague, 128 43 Prague, Czech Republic
| | - Stanislava Gunišová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, 142 20 Prague, Czech Republic
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, 142 20 Prague, Czech Republic
| |
Collapse
|
12
|
Petrova A, Kiktev D, Askinazi O, Chabelskaya S, Moskalenko S, Zemlyanko O, Zhouravleva G. The translation termination factor eRF1 (Sup45p) of Saccharomyces cerevisiae is required for pseudohyphal growth and invasion. FEMS Yeast Res 2015; 15:fov033. [PMID: 26054854 DOI: 10.1093/femsyr/fov033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2015] [Indexed: 01/16/2023] Open
Abstract
Mutations in the essential genes SUP45 and SUP35, encoding yeast translation termination factors eRF1 and eRF3, respectively, lead to a wide range of phenotypes and affect various cell processes. In this work, we show that nonsense and missense mutations in the SUP45, but not the SUP35, gene abolish diploid pseudohyphal and haploid invasive growth. Missense mutations that change phosphorylation sites of Sup45 protein do not affect the ability of yeast strains to form pseudohyphae. Deletion of the C-terminal part of eRF1 did not lead to impairment of filamentation. We show a correlation between the filamentation defect and the budding pattern in sup45 strains. Inhibition of translation with specific antibiotics causes a significant reduction in pseudohyphal growth in the wild-type strain, suggesting a strong correlation between translation and the ability for filamentous growth. Partial restoration of pseudohyphal growth by addition of exogenous cAMP assumes that sup45 mutants are defective in the cAMP-dependent pathway that control filament formation.
Collapse
Affiliation(s)
- Alexandra Petrova
- Department of Genetics and Biotechnology, St Petersburg State University and St Petersburg Branch Vavilov Institute of General Genetics, Russian Academy of Science, Universitetskaya emb. 7/9, 199034, St Petersburg, Russia
| | - Denis Kiktev
- Department of Genetics and Biotechnology, St Petersburg State University and St Petersburg Branch Vavilov Institute of General Genetics, Russian Academy of Science, Universitetskaya emb. 7/9, 199034, St Petersburg, Russia
| | - Olga Askinazi
- Department of Genetics and Biotechnology, St Petersburg State University and St Petersburg Branch Vavilov Institute of General Genetics, Russian Academy of Science, Universitetskaya emb. 7/9, 199034, St Petersburg, Russia
| | - Svetlana Chabelskaya
- Department of Genetics and Biotechnology, St Petersburg State University and St Petersburg Branch Vavilov Institute of General Genetics, Russian Academy of Science, Universitetskaya emb. 7/9, 199034, St Petersburg, Russia
| | - Svetlana Moskalenko
- Department of Genetics and Biotechnology, St Petersburg State University and St Petersburg Branch Vavilov Institute of General Genetics, Russian Academy of Science, Universitetskaya emb. 7/9, 199034, St Petersburg, Russia
| | - Olga Zemlyanko
- Department of Genetics and Biotechnology, St Petersburg State University and St Petersburg Branch Vavilov Institute of General Genetics, Russian Academy of Science, Universitetskaya emb. 7/9, 199034, St Petersburg, Russia
| | - Galina Zhouravleva
- Department of Genetics and Biotechnology, St Petersburg State University and St Petersburg Branch Vavilov Institute of General Genetics, Russian Academy of Science, Universitetskaya emb. 7/9, 199034, St Petersburg, Russia
| |
Collapse
|
13
|
Beznosková P, Wagner S, Jansen ME, von der Haar T, Valášek LS. Translation initiation factor eIF3 promotes programmed stop codon readthrough. Nucleic Acids Res 2015; 43:5099-111. [PMID: 25925566 PMCID: PMC4446449 DOI: 10.1093/nar/gkv421] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/18/2015] [Indexed: 12/21/2022] Open
Abstract
Programmed stop codon readthrough is a post-transcription regulatory mechanism specifically increasing proteome diversity by creating a pool of C-terminally extended proteins. During this process, the stop codon is decoded as a sense codon by a near-cognate tRNA, which programs the ribosome to continue elongation. The efficiency of competition for the stop codon between release factors (eRFs) and near-cognate tRNAs is largely dependent on its nucleotide context; however, the molecular mechanism underlying this process is unknown. Here, we show that it is the translation initiation (not termination) factor, namely eIF3, which critically promotes programmed readthrough on all three stop codons. In order to do so, eIF3 must associate with pre-termination complexes where it interferes with the eRF1 decoding of the third/wobble position of the stop codon set in the unfavorable termination context, thus allowing incorporation of near-cognate tRNAs with a mismatch at the same position. We clearly demonstrate that efficient readthrough is enabled by near-cognate tRNAs with a mismatch only at the third/wobble position. Importantly, the eIF3 role in programmed readthrough is conserved between yeast and humans.
Collapse
Affiliation(s)
- Petra Beznosková
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic Faculty of Science, Charles University, Vinicna 5, Prague 128 44, the Czech Republic
| | - Susan Wagner
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| | - Myrte Esmeralda Jansen
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| | | | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| |
Collapse
|
14
|
Saito K, Ito K. Genetic analysis of L123 of the tRNA-mimicking eukaryote release factor eRF1, an amino acid residue critical for discrimination of stop codons. Nucleic Acids Res 2015; 43:4591-601. [PMID: 25897120 PMCID: PMC4482090 DOI: 10.1093/nar/gkv376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/09/2015] [Indexed: 11/18/2022] Open
Abstract
In eukaryotes, the tRNA-mimicking polypeptide-chain release factor, eRF1, decodes stop codons on the ribosome in a complex with eRF3; this complex exhibits striking structural similarity to the tRNA–eEF1A–GTP complex. Although amino acid residues or motifs of eRF1 that are critical for stop codon discrimination have been identified, the details of the molecular mechanisms involved in the function of the ribosomal decoding site remain obscure. Here, we report analyses of the position-123 amino acid of eRF1 (L123 in Saccharomyces cerevisiae eRF1), a residue that is phylogenetically conserved among species with canonical and variant genetic codes. In vivo readthrough efficiency analysis and genetic growth complementation analysis of the residue-123 systematic mutants suggested that this amino acid functions in stop codon discrimination in a manner coupled with eRF3 binding, and distinctive from previously reported adjacent residues. Furthermore, aminoglycoside antibiotic sensitivity analysis and ribosomal docking modeling of eRF1 in a quasi-A/T state suggested a functional interaction between the side chain of L123 and ribosomal residues critical for codon recognition in the decoding site, as a molecular explanation for coupling with eRF3. Our results provide insights into the molecular mechanisms underlying stop codon discrimination by a tRNA-mimicking protein on the ribosome.
Collapse
Affiliation(s)
- Kazuki Saito
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba 277-8562, Japan
| | - Koichi Ito
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba 277-8562, Japan
| |
Collapse
|
15
|
Blanchet S, Rowe M, Von der Haar T, Fabret C, Demais S, Howard MJ, Namy O. New insights into stop codon recognition by eRF1. Nucleic Acids Res 2015; 43:3298-308. [PMID: 25735746 PMCID: PMC4381064 DOI: 10.1093/nar/gkv154] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/17/2015] [Indexed: 11/25/2022] Open
Abstract
In eukaryotes, translation termination is performed by eRF1, which recognizes stop codons via its N-terminal domain. Many previous studies based on point mutagenesis, cross-linking experiments or eRF1 chimeras have investigated the mechanism by which the stop signal is decoded by eRF1. Conserved motifs, such as GTS and YxCxxxF, were found to be important for termination efficiency, but the recognition mechanism remains unclear. We characterized a region of the eRF1 N-terminal domain, the P1 pocket, that we had previously shown to be involved in termination efficiency. We performed alanine scanning mutagenesis of this region, and we quantified in vivo readthrough efficiency for each alanine mutant. We identified two residues, arginine 65 and lysine 109, as critical for recognition of the three stop codons. We also demonstrated a role for the serine 33 and serine 70 residues in UGA decoding in vivo. NMR analysis of the alanine mutants revealed that the correct conformation of this region was controlled by the YxCxxxF motif. By combining our genetic data with a structural analysis of eRF1 mutants, we were able to formulate a new model in which the stop codon interacts with eRF1 through the P1 pocket.
Collapse
Affiliation(s)
- Sandra Blanchet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Batiment 400, 91400 Orsay, France
| | - Michelle Rowe
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | | | - Céline Fabret
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Batiment 400, 91400 Orsay, France
| | - Stéphane Demais
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Batiment 400, 91400 Orsay, France
| | - Mark J Howard
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Olivier Namy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Batiment 400, 91400 Orsay, France
| |
Collapse
|
16
|
Karijolich J, Yu YT. Therapeutic suppression of premature termination codons: mechanisms and clinical considerations (review). Int J Mol Med 2014; 34:355-62. [PMID: 24939317 PMCID: PMC4094583 DOI: 10.3892/ijmm.2014.1809] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/06/2014] [Indexed: 12/22/2022] Open
Abstract
An estimated one-third of genetic disorders are the result of mutations that generate premature termination codons (PTCs) within protein coding genes. These disorders are phenotypically diverse and consist of diseases that affect both young and old individuals. Various small molecules have been identified that are capable of modulating the efficiency of translation termination, including select antibiotics of the aminoglycoside family and multiple novel synthetic molecules, including PTC124. Several of these agents have proved their effectiveness at promoting nonsense suppression in preclinical animal models, as well as in clinical trials. In addition, it has recently been shown that box H/ACA RNA-guided peudouridylation, when directed to modify PTCs, can also promote nonsense suppression. In this review, we summarize our current understanding of eukaryotic translation termination and discuss various methods for promoting the read-through of disease-causing PTCs, as well as the current obstacles that stand in the way of using the discussed agents broadly in clinical practice.
Collapse
Affiliation(s)
- John Karijolich
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
17
|
Liu W, Mellado L, Espeso EA, Sealy-Lewis HM. In Aspergillus nidulans the suppressors suaA and suaC code for release factors eRF1 and eRF3 and suaD codes for a glutamine tRNA. G3 (BETHESDA, MD.) 2014; 4:1047-57. [PMID: 24727290 PMCID: PMC4065248 DOI: 10.1534/g3.114.010702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/25/2014] [Indexed: 11/24/2022]
Abstract
In Aspergillus nidulans, after extensive mutagenesis, a collection of mutants was obtained and four suppressor loci were identified genetically that could suppress mutations in putative chain termination mutations in different genes. Suppressor mutations in suaB and suaD have a similar restricted spectrum of suppression and suaB111 was previously shown to be an alteration in the anticodon of a gln tRNA. We have shown that like suaB, a suaD suppressor has a mutation in the anticodon of another gln tRNA allowing suppression of UAG mutations. Mutations in suaA and suaC had a broad spectrum of suppression. Four suaA mutations result in alterations in the coding region of the eukaryotic release factor, eRF1, and another suaA mutation has a mutation in the upstream region of eRF1 that prevents splicing of the first intron within the 5'UTR. Epitope tagging of eRF1 in this mutant results in 20% of the level of eRF1 compared to the wild-type. Two mutations in suaC result in alterations in the eukaryotic release factor, eRF3. This is the first description in Aspergillus nidulans of an alteration in eRF3 leading to suppression of chain termination mutations.
Collapse
Affiliation(s)
- Wen Liu
- Department of Biological, Biomedical and Environmental Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| | - Laura Mellado
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Eduardo A Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Heather M Sealy-Lewis
- Department of Biological, Biomedical and Environmental Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| |
Collapse
|
18
|
Chu D, Kazana E, Bellanger N, Singh T, Tuite MF, von der Haar T. Translation elongation can control translation initiation on eukaryotic mRNAs. EMBO J 2013; 33:21-34. [PMID: 24357599 DOI: 10.1002/embj.201385651] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Synonymous codons encode the same amino acid, but differ in other biophysical properties. The evolutionary selection of codons whose properties are optimal for a cell generates the phenomenon of codon bias. Although recent studies have shown strong effects of codon usage changes on protein expression levels and cellular physiology, no translational control mechanism is known that links codon usage to protein expression levels. Here, we demonstrate a novel translational control mechanism that responds to the speed of ribosome movement immediately after the start codon. High initiation rates are only possible if start codons are liberated sufficiently fast, thus accounting for the observation that fast codons are overrepresented in highly expressed proteins. In contrast, slow codons lead to slow liberation of the start codon by initiating ribosomes, thereby interfering with efficient translation initiation. Codon usage thus evolved as a means to optimise translation on individual mRNAs, as well as global optimisation of ribosome availability.
Collapse
Affiliation(s)
- Dominique Chu
- School of Computing, University of Kent, Canterbury, UK
| | | | | | | | | | | |
Collapse
|
19
|
des Georges A, Hashem Y, Unbehaun A, Grassucci RA, Taylor D, Hellen CUT, Pestova TV, Frank J. Structure of the mammalian ribosomal pre-termination complex associated with eRF1.eRF3.GDPNP. Nucleic Acids Res 2013; 42:3409-18. [PMID: 24335085 PMCID: PMC3950680 DOI: 10.1093/nar/gkt1279] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Eukaryotic translation termination results from the complex functional interplay between two release factors, eRF1 and eRF3, in which GTP hydrolysis by eRF3 couples codon recognition with peptidyl-tRNA hydrolysis by eRF1. Here, we present a cryo-electron microscopy structure of pre-termination complexes associated with eRF1•eRF3•GDPNP at 9.7 -Å resolution, which corresponds to the initial pre-GTP hydrolysis stage of factor attachment and stop codon recognition. It reveals the ribosomal positions of eRFs and provides insights into the mechanisms of stop codon recognition and triggering of eRF3's GTPase activity.
Collapse
Affiliation(s)
- Amédée des Georges
- Howard Hughes Medical Institute, Chevy Chase, MD, USA, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA, Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA, Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA and Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Beznosková P, Cuchalová L, Wagner S, Shoemaker CJ, Gunišová S, von der Haar T, Valášek LS. Translation initiation factors eIF3 and HCR1 control translation termination and stop codon read-through in yeast cells. PLoS Genet 2013; 9:e1003962. [PMID: 24278036 PMCID: PMC3836723 DOI: 10.1371/journal.pgen.1003962] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/01/2013] [Indexed: 11/19/2022] Open
Abstract
Translation is divided into initiation, elongation, termination and ribosome recycling. Earlier work implicated several eukaryotic initiation factors (eIFs) in ribosomal recycling in vitro. Here, we uncover roles for HCR1 and eIF3 in translation termination in vivo. A substantial proportion of eIF3, HCR1 and eukaryotic release factor 3 (eRF3) but not eIF5 (a well-defined "initiation-specific" binding partner of eIF3) specifically co-sediments with 80S couples isolated from RNase-treated heavy polysomes in an eRF1-dependent manner, indicating the presence of eIF3 and HCR1 on terminating ribosomes. eIF3 and HCR1 also occur in ribosome- and RNA-free complexes with both eRFs and the recycling factor ABCE1/RLI1. Several eIF3 mutations reduce rates of stop codon read-through and genetically interact with mutant eRFs. In contrast, a slow growing deletion of hcr1 increases read-through and accumulates eRF3 in heavy polysomes in a manner suppressible by overexpressed ABCE1/RLI1. Based on these and other findings we propose that upon stop codon recognition, HCR1 promotes eRF3·GDP ejection from the post-termination complexes to allow binding of its interacting partner ABCE1/RLI1. Furthermore, the fact that high dosage of ABCE1/RLI1 fully suppresses the slow growth phenotype of hcr1Δ as well as its termination but not initiation defects implies that the termination function of HCR1 is more critical for optimal proliferation than its function in translation initiation. Based on these and other observations we suggest that the assignment of HCR1 as a bona fide eIF3 subunit should be reconsidered. Together our work characterizes novel roles of eIF3 and HCR1 in stop codon recognition, defining a communication bridge between the initiation and termination/recycling phases of translation.
Collapse
Affiliation(s)
- Petra Beznosková
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska, Prague, the Czech Republic
| | - Lucie Cuchalová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska, Prague, the Czech Republic
| | - Susan Wagner
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska, Prague, the Czech Republic
| | - Christopher J. Shoemaker
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Stanislava Gunišová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska, Prague, the Czech Republic
| | | | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska, Prague, the Czech Republic
- * E-mail:
| |
Collapse
|
21
|
Firczuk H, Kannambath S, Pahle J, Claydon A, Beynon R, Duncan J, Westerhoff H, Mendes P, McCarthy JE. An in vivo control map for the eukaryotic mRNA translation machinery. Mol Syst Biol 2013; 9:635. [PMID: 23340841 PMCID: PMC3564266 DOI: 10.1038/msb.2012.73] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/16/2012] [Indexed: 01/16/2023] Open
Abstract
A new quantitative strategy has generated a comprehensive rate control map for protein synthesis in exponentially growing yeast cells. This analysis reveals the modularity of the system as well as highly non-stoichiometric relationships between components. ![]()
A ‘genetic titration' method has generated a map of the in vivo rate control properties of components of the protein synthesis machinery in Saccharomyces cerevisiae and has been used to parameterize a new comprehensive model of the translation pathway. The translation machinery is found to be a highly modular system in functional terms yet the intracellular concentrations of its components range from a few thousand to one million molecules per cell. This approach identifies non-intuitive features of the system such as the strongest rate control being exercised by high abundance elongation factors. The rate control analysis allows us to identify a surprising fine-control function for duplicated translation factor genes.
Rate control analysis defines the in vivo control map governing yeast protein synthesis and generates an extensively parameterized digital model of the translation pathway. Among other non-intuitive outcomes, translation demonstrates a high degree of functional modularity and comprises a non-stoichiometric combination of proteins manifesting functional convergence on a shared maximal translation rate. In exponentially growing cells, polypeptide elongation (eEF1A, eEF2, and eEF3) exerts the strongest control. The two other strong control points are recruitment of mRNA and tRNAi to the 40S ribosomal subunit (eIF4F and eIF2) and termination (eRF1; Dbp5). In contrast, factors that are found to promote mRNA scanning efficiency on a longer than-average 5′untranslated region (eIF1, eIF1A, Ded1, eIF2B, eIF3, and eIF5) exceed the levels required for maximal control. This is expected to allow the cell to minimize scanning transition times, particularly for longer 5′UTRs. The analysis reveals these and other collective adaptations of control shared across the factors, as well as features that reflect functional modularity and system robustness. Remarkably, gene duplication is implicated in the fine control of cellular protein synthesis.
Collapse
Affiliation(s)
- Helena Firczuk
- School of Life Sciences, University of Warwick, Coventry, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Xu L, Hao Y, Li C, Shen Q, Chai B, Wang W, Liang A. Identification of amino acids responsible for stop codon recognition for polypeptide chain release factor. Biochem Cell Biol 2013; 91:155-64. [PMID: 23668788 DOI: 10.1139/bcb-2012-0091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One factor involved in eukaryotic translation termination is class 1 release factor in eukaryotes (eRF1), which functions to decode stop codons. Variant code species, such as ciliates, frequently exhibit altered stop codon recognition. Studies revealed that some class-specific residues in the eRF1 N-terminal domain are responsible for stop codon reassignment in ciliates. Here, we investigated the effects on stop codon recognition of chimeric eRF1s containing the N-terminal domain of Euplotes octocarinatus and Blepharisma japonicum eRF1 fused to Saccharomyces cerevisiae M and C domains using dual luciferase read-through assays. Mutation of class-specific residues in different eRF1 classes was also studied to identify key residues and motifs involved in stop codon decoding. As expected, our results demonstrate that 3 pockets within the eRF1 N-terminal domain were involved in decoding stop codon nucleotides. However, allocation of residues to each pocket was revalued. Our data suggest that hydrophobic and class-specific surface residues participate in different functions: modulation of pocket conformation and interaction with stop codon nucleotides, respectively. Residues conserved across all eRF1s determine the relative orientation of the 3 pockets according to stop codon nucleotides. However, quantitative analysis of variant ciliate and yeast eRF1 point mutants did not reveal any correlation between evolutionary conservation of class-specific residues and termination-related functional specificity and was limited in elucidating a detailed mechanism for ciliate stop codon reassignment. Thus, based on isolation of suppressor tRNAs from Euplotes and Tetrahymena, we propose that stop codon reassignment in ciliates may be controlled by cooperation between eRF1 and suppressor tRNAs.
Collapse
Affiliation(s)
- Lijun Xu
- a Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, China; and Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Bidou L, Allamand V, Rousset JP, Namy O. Sense from nonsense: therapies for premature stop codon diseases. Trends Mol Med 2012; 18:679-88. [PMID: 23083810 DOI: 10.1016/j.molmed.2012.09.008] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 02/04/2023]
Abstract
Ten percent of inherited diseases are caused by premature termination codon (PTC) mutations that lead to degradation of the mRNA template and to the production of a non-functional, truncated polypeptide. In addition, many acquired mutations in cancer introduce similar PTCs. In 1999, proof-of-concept for treating these disorders was obtained in a mouse model of muscular dystrophy, when administration of aminoglycosides restored protein translation by inducing the ribosome to bypass a PTC. Since, many studies have validated this approach, but despite the promise of PTC readthrough therapies, the mechanisms of translation termination remain to be precisely elucidated before even more progress can be made. Here, we review the molecular basis for PTC readthrough in eukaryotes and describe currently available compounds with significant therapeutic potential for treating genetic disorders and cancer.
Collapse
|
24
|
Jackson RJ, Hellen CUT, Pestova TV. Termination and post-termination events in eukaryotic translation. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 86:45-93. [PMID: 22243581 DOI: 10.1016/b978-0-12-386497-0.00002-5] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Translation termination in eukaryotes occurs in response to a stop codon in the ribosomal A-site and requires two release factors (RFs), eRF1 and eRF3, which bind to the A-site as an eRF1/eRF3/GTP complex with eRF1 responsible for codon recognition. After GTP hydrolysis by eRF3, eRF1 triggers hydrolysis of the polypeptidyl-tRNA, releasing the completed protein product. This leaves an 80S ribosome still bound to the mRNA, with deacylated tRNA in its P-site and at least eRF1 in its A-site, which needs to be disassembled and released from the mRNA to allow further rounds of translation. The first step in recycling is dissociation of the 60S ribosomal subunit, leaving a 40S/deacylated tRNA complex bound to the mRNA. This is mediated by ABCE1, which is a somewhat unusual member of the ATP-binding cassette family of proteins with no membrane-spanning domain but two essential iron-sulfur clusters. Two distinct pathways have been identified for subsequent ejection of the deacylated tRNA followed by dissociation of the 40S subunit from the mRNA, one executed by a subset of the canonical initiation factors (which therefore starts the process of preparing the 40S subunit for the next round of translation) and the other by Ligatin or homologous proteins. However, although this is the normal sequence of events, there are exceptions where the termination reaction is followed by reinitiation on the same mRNA (usually) at a site downstream of the stop codon. The overwhelming majority of such reinitiation events occur when the 5'-proximal open reading frame (ORF) is short and can result in significant regulation of translation of the protein-coding ORF, but there are also rare examples, mainly bicistronic viral RNAs, of reinitiation after a long ORF. Here, we review our current understanding of the mechanisms of termination, ribosome recycling, and reinitiation after translation of short and long ORFs.
Collapse
Affiliation(s)
- Richard J Jackson
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
25
|
Conard SE, Buckley J, Dang M, Bedwell GJ, Carter RL, Khass M, Bedwell DM. Identification of eRF1 residues that play critical and complementary roles in stop codon recognition. RNA (NEW YORK, N.Y.) 2012; 18:1210-21. [PMID: 22543865 PMCID: PMC3358643 DOI: 10.1261/rna.031997.111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/15/2012] [Indexed: 05/31/2023]
Abstract
The initiation and elongation stages of translation are directed by codon-anticodon interactions. In contrast, a release factor protein mediates stop codon recognition prior to polypeptide chain release. Previous studies have identified specific regions of eukaryotic release factor one (eRF1) that are important for decoding each stop codon. The cavity model for eukaryotic stop codon recognition suggests that three binding pockets/cavities located on the surface of eRF1's domain one are key elements in stop codon recognition. Thus, the model predicts that amino acid changes in or near these cavities should influence termination in a stop codon-dependent manner. Previous studies have suggested that the TASNIKS and YCF motifs within eRF1 domain one play important roles in stop codon recognition. These motifs are highly conserved in standard code organisms that use UAA, UAG, and UGA as stop codons, but are more divergent in variant code organisms that have reassigned a subset of stop codons to sense codons. In the current study, we separately introduced TASNIKS and YCF motifs from six variant code organisms into eRF1 of Saccharomyces cerevisiae to determine their effect on stop codon recognition in vivo. We also examined the consequences of additional changes at residues located between the TASNIKS and YCF motifs. Overall, our results indicate that changes near cavities two and three frequently mediated significant effects on stop codon selectivity. In particular, changes in the YCF motif, rather than the TASNIKS motif, correlated most consistently with variant code stop codon selectivity.
Collapse
Affiliation(s)
- Sara E. Conard
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Jessica Buckley
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Mai Dang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Gregory J. Bedwell
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Richard L. Carter
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Mohamed Khass
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - David M. Bedwell
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| |
Collapse
|
26
|
|
27
|
Graille M, Figaro S, Kervestin S, Buckingham RH, Liger D, Heurgué-Hamard V. Methylation of class I translation termination factors: structural and functional aspects. Biochimie 2012; 94:1533-43. [PMID: 22266024 DOI: 10.1016/j.biochi.2012.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 01/07/2012] [Indexed: 12/23/2022]
Abstract
During protein synthesis, release of polypeptide from the ribosome occurs when an in frame termination codon is encountered. Contrary to sense codons, which are decoded by tRNAs, stop codons present in the A-site are recognized by proteins named class I release factors, leading to the release of newly synthesized proteins. Structures of these factors bound to termination ribosomal complexes have recently been obtained, and lead to a better understanding of stop codon recognition and its coordination with peptidyl-tRNA hydrolysis in bacteria. Release factors contain a universally conserved GGQ motif which interacts with the peptidyl-transferase centre to allow peptide release. The Gln side chain from this motif is methylated, a feature conserved from bacteria to man, suggesting an important biological role. However, methylation is catalysed by completely unrelated enzymes. The function of this motif and its post-translational modification will be discussed in the context of recent structural and functional studies.
Collapse
Affiliation(s)
- Marc Graille
- IBBMC, Université Paris-Sud 11, CNRS UMR8619, Orsay Cedex, F-91405, France.
| | | | | | | | | | | |
Collapse
|
28
|
Kochneva-Pervukhova NV, Alexandrov AI, Ter-Avanesyan MD. Amyloid-mediated sequestration of essential proteins contributes to mutant huntingtin toxicity in yeast. PLoS One 2012; 7:e29832. [PMID: 22253794 PMCID: PMC3256205 DOI: 10.1371/journal.pone.0029832] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 12/06/2011] [Indexed: 11/19/2022] Open
Abstract
Background Polyglutamine expansion is responsible for several neurodegenerative disorders, among which Huntington disease is the most well-known. Studies in the yeast model demonstrated that both aggregation and toxicity of a huntingtin (htt) protein with an expanded polyglutamine region strictly depend on the presence of the prion form of Rnq1 protein ([PIN+]), which has a glutamine/asparagine-rich domain. Principal Findings Here, we showed that aggregation and toxicity of mutant htt depended on [PIN+] only quantitatively: the presence of [PIN+] elevated the toxicity and the levels of htt detergent-insoluble polymers. In cells lacking [PIN+], toxicity of mutant htt was due to the polymerization and inactivation of the essential glutamine/asparagine-rich Sup35 protein and related inactivation of another essential protein, Sup45, most probably via its sequestration into Sup35 aggregates. However, inhibition of growth of [PIN+] cells depended on Sup35/Sup45 depletion only partially, suggesting that there are other sources of mutant htt toxicity in yeast. Conclusions The obtained data suggest that induced polymerization of essential glutamine/asparagine-rich proteins and related sequestration of other proteins which interact with these polymers represent an essential source of htt toxicity.
Collapse
|
29
|
Chu D, Barnes DJ, von der Haar T. The role of tRNA and ribosome competition in coupling the expression of different mRNAs in Saccharomyces cerevisiae. Nucleic Acids Res 2011; 39:6705-14. [PMID: 21558172 PMCID: PMC3159466 DOI: 10.1093/nar/gkr300] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Protein synthesis translates information from messenger RNAs into functional proteomes. Because of the finite nature of the resources required by the translational machinery, both the overall protein synthesis activity of a cell and activity on individual mRNAs are controlled by the allocation of limiting resources. Upon introduction of heterologous sequences into an organism—for example for the purposes of bioprocessing or synthetic biology—limiting resources may also become overstretched, thus negatively affecting both endogenous and heterologous gene expression. In this study, we present a mean-field model of translation in Saccharomyces cerevisiae for the investigation of two particular translational resources, namely ribosomes and aminoacylated tRNAs. We firstly use comparisons of experiments with heterologous sequences and simulations of the same conditions to calibrate our model, and then analyse the behaviour of the translational system in yeast upon introduction of different types of heterologous sequences. Our main findings are that: competition for ribosomes, rather than tRNAs, limits global translation in this organism; that tRNA aminoacylation levels exert, at most, weak control over translational activity; and that decoding speeds and codon adaptation exert strong control over local (mRNA specific) translation rates.
Collapse
Affiliation(s)
- Dominique Chu
- School of Computing, University of Kent, CT2 7NF, UK.
| | | | | |
Collapse
|
30
|
Liger D, Mora L, Lazar N, Figaro S, Henri J, Scrima N, Buckingham RH, van Tilbeurgh H, Heurgué-Hamard V, Graille M. Mechanism of activation of methyltransferases involved in translation by the Trm112 'hub' protein. Nucleic Acids Res 2011; 39:6249-59. [PMID: 21478168 PMCID: PMC3152332 DOI: 10.1093/nar/gkr176] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Methylation is a common modification encountered in DNA, RNA and proteins. It plays a central role in gene expression, protein function and mRNA translation. Prokaryotic and eukaryotic class I translation termination factors are methylated on the glutamine of the essential and universally conserved GGQ motif, in line with an important cellular role. In eukaryotes, this modification is performed by the Mtq2-Trm112 holoenzyme. Trm112 activates not only the Mtq2 catalytic subunit but also two other tRNA methyltransferases (Trm9 and Trm11). To understand the molecular mechanisms underlying methyltransferase activation by Trm112, we have determined the 3D structure of the Mtq2-Trm112 complex and mapped its active site. Using site-directed mutagenesis and in vivo functional experiments, we show that this structure can also serve as a model for the Trm9-Trm112 complex, supporting our hypothesis that Trm112 uses a common strategy to activate these three methyltransferases.
Collapse
Affiliation(s)
- Dominique Liger
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université Paris-Sud, IFR115, CNRS UMR 8619, Orsay Cedex F-91405, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|