1
|
Martínez V, Ruiz-Díaz E, Cardozo D, Cappo C, Schaerer CE, Cebrián J, Krimer DB, Fernández-Nestosa MJ. New Insights into the Geometry and Topology of DNA Replication Intermediates. BIOLOGY 2025; 14:478. [PMID: 40427666 PMCID: PMC12109278 DOI: 10.3390/biology14050478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 05/29/2025]
Abstract
The regulation of superhelical stress, mediated by the combined action of topoisomerases and fork rotation, is crucial for DNA replication. The conformational changes during DNA replication are still experimentally challenging, mainly due to the rapid kinetics of the replication process. Here, we present the first molecular dynamics simulations of partially replicated circular DNA molecules, with stalled replication forks at both early and late stages of DNA replication. These simulations allowed us to map the distribution of superhelical stress after deproteinization. We propose a five-component model that determines the linking number difference of replication intermediates. At a thermodynamic equilibrium, the contribution of these five components was correlated to the progress of the replication forks. Additionally, we identified four types of segment collision events in replication intermediates, characterized by their geometric properties, including chirality and topological sign. The distribution of these collision events between the early and late stages of DNA replication provides new insights into the coordinated function of topoisomerases, warranting further discussion.
Collapse
Affiliation(s)
- Victor Martínez
- Bioinformatic Laboratory, Polytechnic School, National University of Asuncion, San Lorenzo 2111, Paraguay
| | - Edith Ruiz-Díaz
- Bioinformatic Laboratory, Polytechnic School, National University of Asuncion, San Lorenzo 2111, Paraguay
| | - Delia Cardozo
- Bioinformatic Laboratory, Polytechnic School, National University of Asuncion, San Lorenzo 2111, Paraguay
| | - Cristian Cappo
- The Technological Research and Development Nucleus, Polytechnic School, National University of Asuncion, San Lorenzo 2111, Paraguay
| | - Christian E. Schaerer
- The Technological Research and Development Nucleus, Polytechnic School, National University of Asuncion, San Lorenzo 2111, Paraguay
| | - Jorge Cebrián
- Department of Biomedicine, Center for Biological Research Margarita Salas, Spanish National Research Council, 28040 Madrid, Spain
| | - Dora B. Krimer
- Department of Biomedicine, Center for Biological Research Margarita Salas, Spanish National Research Council, 28040 Madrid, Spain
| | | |
Collapse
|
2
|
DelloStritto M, Micheletti C, Klein ML. Molecular dynamics studies of knotted polymers. J Chem Phys 2024; 161:244904. [PMID: 39714010 DOI: 10.1063/5.0237773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024] Open
Abstract
Molecular dynamics calculations have been used to explore the influence of knots on the strength of a polymer strand. In particular, the mechanism of breaking 31, 41, 51, and 52 prime knots has been studied using two very different models to represent the polymer: (1) the generic coarse-grained (CG) bead model of polymer physics and (2) a state-of-the-art machine learned atomistic neural network (NN) potential for polyethylene derived from electronic structure calculations. While there is a broad overall agreement between the results on the influence of the pulling rate on chain rupture based on the CG and atomistic NN models, for the simple 31 and 41 knots, significant differences are found for the more complex 51 and 52 knots. Notably, in the latter case, the NN model more frequently predicts that these knots can break not only at the crossings at the entrance/exit but also at one of the central crossing points. The relative smoothness of the CG potential energy surface also leads to stabilization of tighter knots compared to the more realistic NN model.
Collapse
Affiliation(s)
- Mark DelloStritto
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | | - Michael L Klein
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
3
|
Cebrián J, Martínez V, Hernández P, Krimer DB, Martínez-Robles ML, Schvartzman JB, Fernández-Nestosa MJ. Electrophoretic Mobility Assay to Separate Supercoiled, Catenated, and Knotted DNA Molecules. Bio Protoc 2024; 14:e4983. [PMID: 38737504 PMCID: PMC11082789 DOI: 10.21769/bioprotoc.4983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024] Open
Abstract
Two-dimensional (2D) agarose gel electrophoresis is the method of choice to analyze DNA topology. The possibility to use E. coli strains with different genetic backgrounds in combination with nicking enzymes and different concentrations of norfloxacin improves the resolution of 2D gels to study the electrophoretic behavior of three different families of DNA topoisomers: supercoiled DNA molecules, post-replicative catenanes, and knotted DNA molecules. Here, we describe the materials and procedures required to optimize their separation by 2D gels. Understanding the differences in their electrophoretic behavior can help explain some important physical characteristics of these different types of DNA topoisomers. Key features • Preparative method to enrich DNA samples of supercoiled, catenated, and knotted families of topoisomers, later analyzed by 2D gels (or other techniques, e.g., microscopy). • 2D gels facilitate the separation of the topoisomers of any given circular DNA molecule. • Separation of DNA molecules with the same molecular masses but different shapes can be optimized by modifying the conditions of 2D gels. • Evaluating the roles of electric field and agarose concentration on the electrophoretic mobility of DNA topoisomers sheds light on their physical characteristics.
Collapse
Affiliation(s)
- Jorge Cebrián
- Department of Cellular and Molecular Biology, Margarita Salas Center for Biological Research (CSIC), Madrid, Spain
| | - Victor Martínez
- Polytechnic School, National University of Asuncion, San Lorenzo, Paraguay
| | - Pablo Hernández
- Department of Cellular and Molecular Biology, Margarita Salas Center for Biological Research (CSIC), Madrid, Spain
| | - Dora B. Krimer
- Department of Cellular and Molecular Biology, Margarita Salas Center for Biological Research (CSIC), Madrid, Spain
| | - María-Luisa Martínez-Robles
- Department of Cellular and Molecular Biology, Margarita Salas Center for Biological Research (CSIC), Madrid, Spain
| | - Jorge B. Schvartzman
- Department of Cellular and Molecular Biology, Margarita Salas Center for Biological Research (CSIC), Madrid, Spain
| | | |
Collapse
|
4
|
Dorman CJ. Variable DNA topology is an epigenetic generator of physiological heterogeneity in bacterial populations. Mol Microbiol 2023; 119:19-28. [PMID: 36565252 PMCID: PMC10108321 DOI: 10.1111/mmi.15014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/25/2022]
Abstract
Transcription is a noisy and stochastic process that produces sibling-to-sibling variations in physiology across a population of genetically identical cells. This pattern of diversity reflects, in part, the burst-like nature of transcription. Transcription bursting has many causes and a failure to remove the supercoils that accumulate in DNA during transcription elongation is an important contributor. Positive supercoiling of the DNA ahead of the transcription elongation complex can result in RNA polymerase stalling if this DNA topological roadblock is not removed. The relaxation of these positive supercoils is performed by the ATP-dependent type II topoisomerases DNA gyrase and topoisomerase IV. Interference with the action of these topoisomerases involving, inter alia, topoisomerase poisons, fluctuations in the [ATP]/[ADP] ratio, and/or the intervention of nucleoid-associated proteins with GapR-like or YejK-like activities, may have consequences for the smooth operation of the transcriptional machinery. Antibiotic-tolerant (but not resistant) persister cells are among the phenotypic outliers that may emerge. However, interference with type II topoisomerase activity can have much broader consequences, making it an important epigenetic driver of physiological diversity in the bacterial population.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
5
|
Gaikwad M, Konkimalla VB, Salunke-Gawali S. Metal complexes as topoisomerase inhibitors. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Cebrián J, Martínez V, Hernández P, Krimer DB, Fernández-Nestosa MJ, Schvartzman JB. Two-Dimensional Gel Electrophoresis to Study the Activity of Type IIA Topoisomerases on Plasmid Replication Intermediates. BIOLOGY 2021; 10:biology10111195. [PMID: 34827187 PMCID: PMC8615216 DOI: 10.3390/biology10111195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 11/28/2022]
Abstract
Simple Summary During replication, DNA molecules undergo topological changes that affect supercoiling, catenation and knotting. To better understand this process and the role of topoisomerases, the enzymes that control DNA topology in in vivo, two-dimensional agarose gel electrophoresis were used to investigate the efficiency of three type II DNA topoisomerases, the prokaryotic DNA gyrase, topoisomerase IV and the human topoisomerase 2α, on partially replicated bacterial plasmids containing replication forks stalled at specific sites. The results obtained revealed that despite the fact these DNA topoisomerases may have evolved to accomplish specific tasks, they share abilities. To our knowledge, this is the first time two-dimensional agarose gel electrophoresis have been used to examine the ability of these topoisomerases to relax supercoiling in the un-replicated region and unlink pre-catenanes in the replicated one of partially replicated molecules in vitro. The methodology described here can be used to study the role of different topoisomerases in partially replicated molecules. Abstract DNA topoisomerases are the enzymes that regulate DNA topology in all living cells. Since the discovery and purification of ω (omega), when the first were topoisomerase identified, the function of many topoisomerases has been examined. However, their ability to relax supercoiling and unlink the pre-catenanes of partially replicated molecules has received little attention. Here, we used two-dimensional agarose gel electrophoresis to test the function of three type II DNA topoisomerases in vitro: the prokaryotic DNA gyrase, topoisomerase IV and the human topoisomerase 2α. We examined the proficiency of these topoisomerases on a partially replicated bacterial plasmid: pBR-TerE@AatII, with an unidirectional replicating fork, stalled when approximately half of the plasmid had been replicated in vivo. DNA was isolated from two strains of Escherichia coli: DH5αF’ and parE10. These experiments allowed us to assess, for the first time, the efficiency of the topoisomerases examined to resolve supercoiling and pre-catenanes in partially replicated molecules and fully replicated catenanes formed in vivo. The results obtained revealed the preferential functions and also some redundancy in the abilities of these DNA topoisomerases in vitro.
Collapse
Affiliation(s)
- Jorge Cebrián
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain; (J.C.); (P.H.); (D.B.K.); (J.B.S.)
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV, 28040 Madrid, Spain
| | - Victor Martínez
- Bioinformatics Laboratory, Polytechnic School, National University of Asunción, San Lorenzo P.O. Box 2111, Paraguay;
| | - Pablo Hernández
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain; (J.C.); (P.H.); (D.B.K.); (J.B.S.)
| | - Dora B. Krimer
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain; (J.C.); (P.H.); (D.B.K.); (J.B.S.)
| | - María-José Fernández-Nestosa
- Bioinformatics Laboratory, Polytechnic School, National University of Asunción, San Lorenzo P.O. Box 2111, Paraguay;
- Correspondence:
| | - Jorge B. Schvartzman
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain; (J.C.); (P.H.); (D.B.K.); (J.B.S.)
| |
Collapse
|
7
|
Main KHS, Provan JI, Haynes PJ, Wells G, Hartley JA, Pyne ALB. Atomic force microscopy-A tool for structural and translational DNA research. APL Bioeng 2021; 5:031504. [PMID: 34286171 PMCID: PMC8272649 DOI: 10.1063/5.0054294] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/07/2021] [Indexed: 12/26/2022] Open
Abstract
Atomic force microscopy (AFM) is a powerful imaging technique that allows for structural characterization of single biomolecules with nanoscale resolution. AFM has a unique capability to image biological molecules in their native states under physiological conditions without the need for labeling or averaging. DNA has been extensively imaged with AFM from early single-molecule studies of conformational diversity in plasmids, to recent examinations of intramolecular variation between groove depths within an individual DNA molecule. The ability to image dynamic biological interactions in situ has also allowed for the interaction of various proteins and therapeutic ligands with DNA to be evaluated-providing insights into structural assembly, flexibility, and movement. This review provides an overview of how innovation and optimization in AFM imaging have advanced our understanding of DNA structure, mechanics, and interactions. These include studies of the secondary and tertiary structure of DNA, including how these are affected by its interactions with proteins. The broader role of AFM as a tool in translational cancer research is also explored through its use in imaging DNA with key chemotherapeutic ligands, including those currently employed in clinical practice.
Collapse
Affiliation(s)
| | - James I. Provan
- Institute of Molecular, Cell, and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | - Geoffrey Wells
- UCL School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - John A. Hartley
- UCL Cancer Institute, University College London, London WC1E 6DD, United Kingdom
| | | |
Collapse
|
8
|
DNA-Topology Simplification by Topoisomerases. Molecules 2021; 26:molecules26113375. [PMID: 34204901 PMCID: PMC8199745 DOI: 10.3390/molecules26113375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
The topological properties of DNA molecules, supercoiling, knotting, and catenation, are intimately connected with essential biological processes, such as gene expression, replication, recombination, and chromosome segregation. Non-trivial DNA topologies present challenges to the molecular machines that process and maintain genomic information, for example, by creating unwanted DNA entanglements. At the same time, topological distortion can facilitate DNA-sequence recognition through localized duplex unwinding and longer-range loop-mediated interactions between the DNA sequences. Topoisomerases are a special class of essential enzymes that homeostatically manage DNA topology through the passage of DNA strands. The activities of these enzymes are generally investigated using circular DNA as a model system, in which case it is possible to directly assay the formation and relaxation of DNA supercoils and the formation/resolution of knots and catenanes. Some topoisomerases use ATP as an energy cofactor, whereas others act in an ATP-independent manner. The free energy of ATP hydrolysis can be used to drive negative and positive supercoiling or to specifically relax DNA topologies to levels below those that are expected at thermodynamic equilibrium. The latter activity, which is known as topology simplification, is thus far exclusively associated with type-II topoisomerases and it can be understood through insight into the detailed non-equilibrium behavior of type-II enzymes. We use a non-equilibrium topological-network approach, which stands in contrast to the equilibrium models that are conventionally used in the DNA-topology field, to gain insights into the rates that govern individual transitions between topological states. We anticipate that our quantitative approach will stimulate experimental work and the theoretical/computational modeling of topoisomerases and similar enzyme systems.
Collapse
|
9
|
Schvartzman JB, Martínez V, Hernández P, Krimer DB, Fernández-Nestosa MJ. Changes in the topology of DNA replication intermediates: Important discrepancies between in vitro and in vivo. Bioessays 2021; 43:e2000309. [PMID: 33629756 DOI: 10.1002/bies.202000309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/08/2022]
Abstract
The topology of DNA duplexes changes during replication and also after deproteinization in vitro. Here we describe these changes and then discuss for the first time how the distribution of superhelical stress affects the DNA topology of replication intermediates, taking into account the progression of replication forks. The high processivity of Topo IV to relax the left-handed (+) supercoiling that transiently accumulates ahead of the forks is not essential, since DNA gyrase and swiveling of the forks cooperate with Topo IV to accomplish this task in vivo. We conclude that despite Topo IV has a lower processivity to unlink the right-handed (+) crossings of pre-catenanes and fully replicated catenanes, this is indeed its main role in vivo. This would explain why in the absence of Topo IV replication goes-on, but fully replicated sister duplexes remain heavily catenated.
Collapse
Affiliation(s)
- Jorge B Schvartzman
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Víctor Martínez
- Directorate of Research and Postgraduate Studies, Polytechnic School, National University of Asunción, P, San Lorenzo, Paraguay
| | - Pablo Hernández
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Dora B Krimer
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - María-José Fernández-Nestosa
- Directorate of Research and Postgraduate Studies, Polytechnic School, National University of Asunción, P, San Lorenzo, Paraguay
| |
Collapse
|
10
|
Jaswal S, Nehra B, Kumar S, Monga V. Recent advancements in the medicinal chemistry of bacterial type II topoisomerase inhibitors. Bioorg Chem 2020; 104:104266. [PMID: 33142421 DOI: 10.1016/j.bioorg.2020.104266] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/14/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
Replication proteins are sought as a potential targets for antimicrobial agents. Despite their promising target characteristics, only topoisomerase II inhibitors targeting DNA gyrase and/or topoisomerase IV have reached clinical use. Topoisomerases are the enzymes that are essential for cellular functions and various biological activities. A wide range of natural and synthetic compounds have been identified as potential topoisomerase inhibitors but the resistance is most commonly found in these drugs. The emergence of FQ resistance has increased the need for the development of novel topoisomerase inhibitors with efficacy and high potency against FQ-resistant strains. Besides structural modifications of existing FQ scaffolds, novel non-quinolone topoisomerase II inhibitors, known as novel bacterial topoisomerase inhibitors, have been developed which showed remarkable inhibitory activity against DNA gyrase/topoisomerase IV or both with an improved spectrum of antibacterial potency including drug-resistant strains. This review aims to summarize various recent advancements in the medicinal chemistry of topoisomerase inhibitors with the following objectives: (1) To represent inclusive data on types of topoisomerases and various marketed topoisomerase inhibitors as drugs; (2) To discuss the recent advances in the medicinal chemistry of various topoisomerase inhibitors (DNA gyrase and topo IV) belonging to different structural classes as potential antibacterial agents; (3) To summarizes the structure activity relationship (SAR) including in silico and mechanistic studies to afford ideas and to provide focused direction for the development of new chemical entities which are effective against drug-resistant bacterial pathogens and biofilms.
Collapse
Affiliation(s)
- Shalini Jaswal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Bhupender Nehra
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Shubham Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India.
| |
Collapse
|
11
|
Schvartzman JB, Hernández P, Krimer DB. Replication Fork Barriers and Topological Barriers: Progression of DNA Replication Relies on DNA Topology Ahead of Forks. Bioessays 2020; 42:e1900204. [PMID: 32115727 DOI: 10.1002/bies.201900204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/05/2020] [Indexed: 11/09/2022]
Abstract
During replication, the topology of DNA changes continuously in response to well-known activities of DNA helicases, polymerases, and topoisomerases. However, replisomes do not always progress at a constant speed and can slow-down and even stall at precise sites. The way these changes in the rate of replisome progression affect DNA topology is not yet well understood. The interplay of DNA topology and replication in several cases where progression of replication forks reacts differently to changes in DNA topology ahead is discussed here. It is proposed, there are at least two types of replication fork barriers: those that behave also as topological barriers and those that do not. Two-Dimensional (2D) agarose gel electrophoresis is the method of choice to distinguish between these two different types of replication fork barriers.
Collapse
Affiliation(s)
- Jorge B Schvartzman
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Pablo Hernández
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Dora B Krimer
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain
| |
Collapse
|
12
|
Schvartzman JB, Hernández P, Krimer DB, Dorier J, Stasiak A. Closing the DNA replication cycle: from simple circular molecules to supercoiled and knotted DNA catenanes. Nucleic Acids Res 2019; 47:7182-7198. [PMID: 31276584 PMCID: PMC6698734 DOI: 10.1093/nar/gkz586] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/20/2019] [Accepted: 07/02/2019] [Indexed: 01/28/2023] Open
Abstract
Due to helical structure of DNA, massive amounts of positive supercoils are constantly introduced ahead of each replication fork. Positive supercoiling inhibits progression of replication forks but various mechanisms evolved that permit very efficient relaxation of that positive supercoiling. Some of these mechanisms lead to interesting topological situations where DNA supercoiling, catenation and knotting coexist and influence each other in DNA molecules being replicated. Here, we first review fundamental aspects of DNA supercoiling, catenation and knotting when these qualitatively different topological states do not coexist in the same circular DNA but also when they are present at the same time in replicating DNA molecules. We also review differences between eukaryotic and prokaryotic cellular strategies that permit relaxation of positive supercoiling arising ahead of the replication forks. We end our review by discussing very recent studies giving a long-sought answer to the question of how slow DNA topoisomerases capable of relaxing just a few positive supercoils per second can counteract the introduction of hundreds of positive supercoils per second ahead of advancing replication forks.
Collapse
Affiliation(s)
- Jorge B Schvartzman
- Department of Cell and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Pablo Hernández
- Department of Cell and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Dora B Krimer
- Department of Cell and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Julien Dorier
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Andrzej Stasiak
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.,Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Valdés A, Martínez-García B, Segura J, Dyson S, Díaz-Ingelmo O, Roca J. Quantitative disclosure of DNA knot chirality by high-resolution 2D-gel electrophoresis. Nucleic Acids Res 2019; 47:e29. [PMID: 30649468 PMCID: PMC6412111 DOI: 10.1093/nar/gkz015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/24/2018] [Accepted: 01/07/2019] [Indexed: 11/13/2022] Open
Abstract
The characterization of knots formed in duplex DNA has proved useful to infer biophysical properties and the spatial trajectory of DNA, both in free solution and across its macromolecular interactions. Since knotting, like supercoiling, makes DNA molecules more compact, DNA knot probability and knot complexity can be assessed by the electrophoretic velocity of nicked DNA circles. However, the chirality of the DNA knots has to be determined by visualizing the sign of their DNA crossings by means of electron microscopy. This procedure, which requires purifying the knotted DNA molecules and coating them with protein, is semi-quantitative and it is impracticable in biological samples that contain little amount of knotted DNA forms. Here, we took advantage of an earlier observation that the two chiral forms of a trefoil knot acquire slightly different electrophoretic velocity when the DNA is supercoiled. We introduced a second gel dimension to reveal these chiral forms in DNA mixtures that are largely unknotted. The result is a high-resolution 2D-gel electrophoresis procedure that quantitatively discerns the fractions of positive- and negative-noded trefoil knots formed in vitro and in vivo systems. This development in DNA knot analysis may uncover valuable information toward disclosing the architecture of DNA ensembles.
Collapse
Affiliation(s)
- Antonio Valdés
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona 08028, Spain
| | - Belén Martínez-García
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona 08028, Spain
| | - Joana Segura
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona 08028, Spain
| | - Sílvia Dyson
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona 08028, Spain
| | - Ofelia Díaz-Ingelmo
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona 08028, Spain
| | - Joaquim Roca
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona 08028, Spain
| |
Collapse
|
14
|
Dorman CJ, Ní Bhriain N. CRISPR-Cas, DNA Supercoiling, and Nucleoid-Associated Proteins. Trends Microbiol 2019; 28:19-27. [PMID: 31519332 DOI: 10.1016/j.tim.2019.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/02/2019] [Accepted: 08/08/2019] [Indexed: 12/11/2022]
Abstract
In this opinion article we highlight links between the H-NS nucleoid-associated protein, variable DNA topology, the regulation of CRISPR-cas locus expression, CRISPR-Cas activity, and the recruitment of novel genetic information by the CRISPR array. We propose that the requirement that the invading mobile genetic element be negatively supercoiled limits effective CRISPR action to a window in the bacterial growth cycle when DNA topology is optimal, and that this same window is used for the efficient integration of new spacer sequences at the CRISPR array. H-NS silences CRISPR promoters, and we propose that antagonists of H-NS, such as the LeuO transcription factor, provide a basis for a stochastic genetic switch that acts at random in each cell in the bacterial population. In addition, we wish to propose a mechanism by which mobile genetic elements can suppress CRISPR-cas transcription using H-NS homologues. Although the individual components of this network are known, we propose a new model in which they are integrated and linked to the physiological state of the bacterium. The model provides a basis for cell-to-cell variation in the expression and performance of CRISPR systems in bacterial populations.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Trinity College Dublin, Dublin 2, Ireland.
| | - Niamh Ní Bhriain
- Department of Microbiology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
15
|
O'Donnol D, Stasiak A, Buck D. Two convergent pathways of DNA knotting in replicating DNA molecules as revealed by θ-curve analysis. Nucleic Acids Res 2019; 46:9181-9188. [PMID: 29982678 PMCID: PMC6158496 DOI: 10.1093/nar/gky559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/13/2018] [Indexed: 11/12/2022] Open
Abstract
During DNA replication in living cells some DNA knots are inadvertently produced by DNA topoisomerases facilitating progression of replication forks. The types of DNA knots formed are conditioned by the 3D organization of replicating DNA molecules. Therefore, by characterizing formed DNA knots it is possible to infer the 3D arrangement of replicating DNA molecules. This topological inference method is highly developed for knotted DNA circles. However, partially replicated DNA molecules have the form of θ-curves. In this article, we use mathematical formalism of θ-curves to characterize the full possibilities of how knotting can occur during replication of DNA molecules in vivo. To do this, we reanalyze earlier experimental studies of knotted, partially replicated DNA molecules and the previously proposed pathway of their formation. We propose a general model of knotting in replication intermediates, and demonstrate that there is an additional, equally important, parallel knotting pathway that also explains how DNA topoisomerases can produce experimentally observed knotted θ-curves. Interestingly, both pathways require intertwining of freshly replicated sister duplexes (precatenanes).
Collapse
Affiliation(s)
- Danielle O'Donnol
- Department of Mathematics, Indiana University Bloomington, 831 E. Third Street, Bloomington, IN 47405, USA
| | - Andrzej Stasiak
- Center for Integrative Genomics, University of Lausanne,1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Dorothy Buck
- Centre for Mathematical Biology, and Department of Mathematical Sciences, University of Bath, North Rd, Bath BA2 7AY, England
| |
Collapse
|
16
|
Valdés A, Segura J, Dyson S, Martínez-García B, Roca J. DNA knots occur in intracellular chromatin. Nucleic Acids Res 2019; 46:650-660. [PMID: 29149297 PMCID: PMC5778459 DOI: 10.1093/nar/gkx1137] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/28/2017] [Indexed: 01/12/2023] Open
Abstract
In vivo DNA molecules are narrowly folded within chromatin fibers and self-interacting chromatin domains. Therefore, intra-molecular DNA entanglements (knots) might occur via DNA strand passage activity of topoisomerase II. Here, we assessed the presence of such DNA knots in a variety of yeast circular minichromosomes. We found that small steady state fractions of DNA knots are common in intracellular chromatin. These knots occur irrespective of DNA replication and cell proliferation, though their abundance is reduced during DNA transcription. We found also that in vivo DNA knotting probability does not scale proportionately with chromatin length: it reaches a value of ∼0.025 in domains of ∼20 nucleosomes but tends to level off in longer chromatin fibers. These figures suggest that, while high flexibility of nucleosomal fibers and clustering of nearby nucleosomes facilitate DNA knotting locally, some mechanism minimizes the scaling of DNA knot formation throughout intracellular chromatin. We postulate that regulation of topoisomerase II activity and the fractal architecture of chromatin might be crucial to prevent a potentially massive and harmful self-entanglement of DNA molecules in vivo.
Collapse
Affiliation(s)
- Antonio Valdés
- Molecular Biology Institute of Barcelona (IBMB); Spanish National Research Council (CSIC); Barcelona 08028; Spain
| | - Joana Segura
- Molecular Biology Institute of Barcelona (IBMB); Spanish National Research Council (CSIC); Barcelona 08028; Spain
| | - Sílvia Dyson
- Molecular Biology Institute of Barcelona (IBMB); Spanish National Research Council (CSIC); Barcelona 08028; Spain
| | - Belén Martínez-García
- Molecular Biology Institute of Barcelona (IBMB); Spanish National Research Council (CSIC); Barcelona 08028; Spain
| | - Joaquim Roca
- Molecular Biology Institute of Barcelona (IBMB); Spanish National Research Council (CSIC); Barcelona 08028; Spain
| |
Collapse
|
17
|
Dorman CJ. DNA supercoiling and transcription in bacteria: a two-way street. BMC Mol Cell Biol 2019; 20:26. [PMID: 31319794 PMCID: PMC6639932 DOI: 10.1186/s12860-019-0211-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/09/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The processes of DNA supercoiling and transcription are interdependent because the movement of a transcription elongation complex simultaneously induces under- and overwinding of the DNA duplex and because the initiation, elongation and termination steps of transcription are all sensitive to the topological state of the DNA. RESULTS Policing of the local and global supercoiling of DNA by topoisomerases helps to sustain the major DNA-based transactions by eliminating barriers to the movement of transcription complexes and replisomes. Recent data from whole-genome and single-molecule studies have provided new insights into how interactions between transcription and the supercoiling of DNA influence the architecture of the chromosome and how they create cell-to-cell diversity at the level of gene expression through transcription bursting. CONCLUSIONS These insights into fundamental molecular processes reveal mechanisms by which bacteria can prevail in unpredictable and often hostile environments by becoming unpredictable themselves.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
18
|
Dabrowski-Tumanski P, Sulkowska JI. The APS-bracket – A topological tool to classify lasso proteins, RNAs and other tadpole-like structures. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Coronel L, Suma A, Micheletti C. Dynamics of supercoiled DNA with complex knots: large-scale rearrangements and persistent multi-strand interlocking. Nucleic Acids Res 2018; 46:7533-7541. [PMID: 29931074 PMCID: PMC6125635 DOI: 10.1093/nar/gky523] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 02/04/2023] Open
Abstract
Knots and supercoiling are both introduced in bacterial plasmids by catalytic processes involving DNA strand passages. While the effects on plasmid organization has been extensively studied for knotting and supercoiling taken separately, much less is known about their concurrent action. Here, we use molecular dynamics simulations and oxDNA, an accurate mesoscopic DNA model, to study the kinetic and metric changes introduced by complex (five-crossing) knots and supercoiling in 2 kbp-long DNA rings. We find several unexpected results. First, the conformational ensemble is dominated by two distinct states, differing in branchedness and knot size. Secondly, fluctuations between these states are as fast as the metric relaxation of unknotted rings. In spite of this, certain boundaries of knotted and plectonemically-wound regions can persist over much longer timescales. These pinned regions involve multiple strands that are interlocked by the cooperative action of topological and supercoiling constraints. Their long-lived character may be relevant for the simplifying action of topoisomerases.
Collapse
Affiliation(s)
- Lucia Coronel
- SISSA - Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
| | - Antonio Suma
- SISSA - Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
- Institute for Computational Molecular Science, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Cristian Micheletti
- SISSA - Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
20
|
Klotz AR, Soh BW, Doyle PS. Motion of Knots in DNA Stretched by Elongational Fields. PHYSICAL REVIEW LETTERS 2018; 120:188003. [PMID: 29775326 DOI: 10.1103/physrevlett.120.188003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/07/2018] [Indexed: 06/08/2023]
Abstract
Knots in DNA occur in biological systems, serve as a model system for polymer entanglement, and affect the efficacy of modern genomics technologies. We study the motion of complex knots in DNA by stretching molecules with a divergent electric field that provides an elongational force. We demonstrate that the motion of knots is nonisotropic and driven towards the closest end of the molecule. We show for the first time experimentally that knots can go from a mobile to a jammed state by varying an applied strain rate, and that this jamming is reversible. We measure the mobility of knots as a function of strain rate, demonstrating the conditions under which knots can be driven towards the ends of the molecule and untied.
Collapse
Affiliation(s)
- Alexander R Klotz
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02142, USA
| | - Beatrice W Soh
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02142, USA
| | - Patrick S Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
21
|
Seol Y, Neuman KC. The dynamic interplay between DNA topoisomerases and DNA topology. Biophys Rev 2016; 8:101-111. [PMID: 28510219 DOI: 10.1007/s12551-016-0240-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/07/2016] [Indexed: 01/03/2023] Open
Abstract
Topological properties of DNA influence its structure and biochemical interactions. Within the cell, DNA topology is constantly in flux. Transcription and other essential processes, including DNA replication and repair, not only alter the topology of the genome but also introduce additional complications associated with DNA knotting and catenation. These topological perturbations are counteracted by the action of topoisomerases, a specialized class of highly conserved and essential enzymes that actively regulate the topological state of the genome. This dynamic interplay among DNA topology, DNA processing enzymes, and DNA topoisomerases is a pervasive factor that influences DNA metabolism in vivo. Building on the extensive structural and biochemical characterization over the past four decades that has established the fundamental mechanistic basis of topoisomerase activity, scientists have begun to explore the unique roles played by DNA topology in modulating and influencing the activity of topoisomerases. In this review we survey established and emerging DNA topology-dependent protein-DNA interactions with a focus on in vitro measurements of the dynamic interplay between DNA topology and topoisomerase activity.
Collapse
Affiliation(s)
- Yeonee Seol
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, 50 South Dr., Room 3517, Bethesda, MD, 20892, USA
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, 50 South Dr., Room 3517, Bethesda, MD, 20892, USA.
| |
Collapse
|
22
|
Abstract
Topological properties of DNA influence its structure and biochemical interactions. Within the cell DNA topology is constantly in flux. Transcription and other essential processes including DNA replication and repair, alter the topology of the genome, while introducing additional complications associated with DNA knotting and catenation. These topological perturbations are counteracted by the action of topoisomerases, a specialized class of highly conserved and essential enzymes that actively regulate the topological state of the genome. This dynamic interplay among DNA topology, DNA processing enzymes, and DNA topoisomerases, is a pervasive factor that influences DNA metabolism in vivo. Building on the extensive structural and biochemical characterization over the past four decades that established the fundamental mechanistic basis of topoisomerase activity, the unique roles played by DNA topology in modulating and influencing the activity of topoisomerases have begun to be explored. In this review we survey established and emerging DNA topology dependent protein-DNA interactions with a focus on in vitro measurements of the dynamic interplay between DNA topology and topoisomerase activity.
Collapse
Affiliation(s)
- Yeonee Seol
- Laboratory of Single Molecule Biophysics, NHLBI, National Institutes of Health, Bethesda, MD, 20892, U.S.A
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, NHLBI, National Institutes of Health, Bethesda, MD, 20892, U.S.A
| |
Collapse
|
23
|
Orlandini E, Baiesi M, Zonta F. How Local Flexibility Affects Knot Positioning in Ring Polymers. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00712] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Enzo Orlandini
- Department
of Physics and Astronomy, University of Padova, Via Marzolo 8, Padova, Italy
- INFN, Sezione
di Padova, Via Marzolo 8, Padova, Italy
| | - Marco Baiesi
- Department
of Physics and Astronomy, University of Padova, Via Marzolo 8, Padova, Italy
- INFN, Sezione
di Padova, Via Marzolo 8, Padova, Italy
| | - Francesco Zonta
- Shangai
Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, No. 99 Haike Road, Pudong, Shanghai 201210, China
| |
Collapse
|
24
|
Rawdon EJ, Dorier J, Racko D, Millett KC, Stasiak A. How topoisomerase IV can efficiently unknot and decatenate negatively supercoiled DNA molecules without causing their torsional relaxation. Nucleic Acids Res 2016; 44:4528-38. [PMID: 27106058 PMCID: PMC4889953 DOI: 10.1093/nar/gkw311] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/12/2016] [Indexed: 12/13/2022] Open
Abstract
Freshly replicated DNA molecules initially form multiply interlinked right-handed catenanes. In bacteria, these catenated molecules become supercoiled by DNA gyrase before they undergo a complete decatenation by topoisomerase IV (Topo IV). Topo IV is also involved in the unknotting of supercoiled DNA molecules. Using Metropolis Monte Carlo simulations, we investigate the shapes of supercoiled DNA molecules that are either knotted or catenated. We are especially interested in understanding how Topo IV can unknot right-handed knots and decatenate right-handed catenanes without acting on right-handed plectonemes in negatively supercoiled DNA molecules. To this end, we investigate how the topological consequences of intersegmental passages depend on the geometry of the DNA-DNA juxtapositions at which these passages occur. We observe that there are interesting differences between the geometries of DNA-DNA juxtapositions in the interwound portions and in the knotted or catenated portions of the studied molecules. In particular, in negatively supercoiled, multiply interlinked, right-handed catenanes, we detect specific regions where DNA segments belonging to two freshly replicated sister DNA molecules form left-handed crossings. We propose that, due to its geometrical preference to act on left-handed crossings, Topo IV can specifically unknot supercoiled DNA, as well as decatenate postreplicative catenanes, without causing their torsional relaxation.
Collapse
Affiliation(s)
- Eric J Rawdon
- Department of Mathematics, University of St. Thomas, Saint Paul, MN 55105, USA
| | - Julien Dorier
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland Vital-IT, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Dusan Racko
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland Polymer Institute of the Slovak Academy of Sciences, 842 36 Bratislava, Slovakia
| | - Kenneth C Millett
- Department of Mathematics, University of California, Santa Barbara, CA 93106, USA
| | - Andrzej Stasiak
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
25
|
DNA Gyrase of Deinococcus radiodurans is characterized as Type II bacterial topoisomerase and its activity is differentially regulated by PprA in vitro. Extremophiles 2016; 20:195-205. [DOI: 10.1007/s00792-016-0814-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/20/2016] [Indexed: 11/26/2022]
|
26
|
Lim NCH, Jackson SE. Molecular knots in biology and chemistry. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:354101. [PMID: 26291690 DOI: 10.1088/0953-8984/27/35/354101] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Knots and entanglements are ubiquitous. Beyond their aesthetic appeal, these fascinating topological entities can be either useful or cumbersome. In recent decades, the importance and prevalence of molecular knots have been increasingly recognised by scientists from different disciplines. In this review, we provide an overview on the various molecular knots found in naturally occurring biological systems (DNA, RNA and proteins), and those created by synthetic chemists. We discuss the current knowledge in these fields, including recent developments in experimental and, in some cases, computational studies which are beginning to shed light into the complex interplay between the structure, formation and properties of these topologically intricate molecules.
Collapse
Affiliation(s)
- Nicole C H Lim
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. Faculty of Sciences, Universiti Brunei Darussalam, Gadong BE 1410, Brunei Darussalam
| | | |
Collapse
|
27
|
Cebrián J, Castán A, Martínez V, Kadomatsu-Hermosa MJ, Parra C, Fernández-Nestosa MJ, Schaerer C, Hernández P, Krimer DB, Schvartzman JB. Direct Evidence for the Formation of Precatenanes during DNA Replication. J Biol Chem 2015; 290:13725-35. [PMID: 25829493 PMCID: PMC4447951 DOI: 10.1074/jbc.m115.642272] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/30/2015] [Indexed: 11/06/2022] Open
Abstract
The dynamics of DNA topology during replication are still poorly understood. Bacterial plasmids are negatively supercoiled. This underwinding facilitates strand separation of the DNA duplex during replication. Leading the replisome, a DNA helicase separates the parental strands that are to be used as templates. This strand separation causes overwinding of the duplex ahead. If this overwinding persists, it would eventually impede fork progression. In bacteria, DNA gyrase and topoisomerase IV act ahead of the fork to keep DNA underwound. However, the processivity of the DNA helicase might overcome DNA gyrase and topoisomerase IV. It was proposed that the overwinding that builds up ahead of the fork could force it to swivel and diffuse this positive supercoiling behind the fork where topoisomerase IV would also act to maintain replicating the DNA underwound. Putative intertwining of sister duplexes in the replicated region are called precatenanes. Fork swiveling and the formation of precatenanes, however, are still questioned. Here, we used classical genetics and high resolution two-dimensional agarose gel electrophoresis to examine the torsional tension of replication intermediates of three bacterial plasmids with the fork stalled at different sites before termination. The results obtained indicated that precatenanes do form as replication progresses before termination.
Collapse
Affiliation(s)
- Jorge Cebrián
- From the Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Ramiro de Maeztu 9, 28040, Madrid, Spain and
| | - Alicia Castán
- From the Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Ramiro de Maeztu 9, 28040, Madrid, Spain and
| | - Víctor Martínez
- the Scientific and Applied Computing Laboratory, Polytechnic School, National University of Asunción. P.O. Box 2111 SL. San Lorenzo, Paraguay
| | - Maridian J Kadomatsu-Hermosa
- the Scientific and Applied Computing Laboratory, Polytechnic School, National University of Asunción. P.O. Box 2111 SL. San Lorenzo, Paraguay
| | - Cristina Parra
- the Scientific and Applied Computing Laboratory, Polytechnic School, National University of Asunción. P.O. Box 2111 SL. San Lorenzo, Paraguay
| | - María José Fernández-Nestosa
- the Scientific and Applied Computing Laboratory, Polytechnic School, National University of Asunción. P.O. Box 2111 SL. San Lorenzo, Paraguay
| | - Christian Schaerer
- the Scientific and Applied Computing Laboratory, Polytechnic School, National University of Asunción. P.O. Box 2111 SL. San Lorenzo, Paraguay
| | - Pablo Hernández
- From the Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Ramiro de Maeztu 9, 28040, Madrid, Spain and
| | - Dora B Krimer
- From the Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Ramiro de Maeztu 9, 28040, Madrid, Spain and
| | - Jorge B Schvartzman
- From the Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Ramiro de Maeztu 9, 28040, Madrid, Spain and
| |
Collapse
|
28
|
Abstract
DNA topoisomerases are enzymes that control the topology of DNA in all cells. There are two types, I and II, classified according to whether they make transient single- or double-stranded breaks in DNA. Their reactions generally involve the passage of a single- or double-strand segment of DNA through this transient break, stabilized by DNA-protein covalent bonds. All topoisomerases can relax DNA, but DNA gyrase, present in all bacteria, can also introduce supercoils into DNA. Because of their essentiality in all cells and the fact that their reactions proceed via DNA breaks, topoisomerases have become important drug targets; the bacterial enzymes are key targets for antibacterial agents. This article discusses the structure and mechanism of topoisomerases and their roles in the bacterial cell. Targeting of the bacterial topoisomerases by inhibitors, including antibiotics in clinical use, is also discussed.
Collapse
|
29
|
Cebrián J, Kadomatsu-Hermosa MJ, Castán A, Martínez V, Parra C, Fernández-Nestosa MJ, Schaerer C, Martínez-Robles ML, Hernández P, Krimer DB, Stasiak A, Schvartzman JB. Electrophoretic mobility of supercoiled, catenated and knotted DNA molecules. Nucleic Acids Res 2014; 43:e24. [PMID: 25414338 PMCID: PMC4344484 DOI: 10.1093/nar/gku1255] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We systematically varied conditions of two-dimensional (2D) agarose gel electrophoresis to optimize separation of DNA topoisomers that differ either by the extent of knotting, the extent of catenation or the extent of supercoiling. To this aim we compared electrophoretic behavior of three different families of DNA topoisomers: (i) supercoiled DNA molecules, where supercoiling covered the range extending from covalently closed relaxed up to naturally supercoiled DNA molecules; (ii) postreplicative catenanes with catenation number increasing from 1 to ∼15, where both catenated rings were nicked; (iii) knotted but nicked DNA molecules with a naturally arising spectrum of knots. For better comparison, we studied topoisomer families where each member had the same total molecular mass. For knotted and supercoiled molecules, we analyzed dimeric plasmids whereas catenanes were composed of monomeric forms of the same plasmid. We observed that catenated, knotted and supercoiled families of topoisomers showed different reactions to changes of agarose concentration and voltage during electrophoresis. These differences permitted us to optimize conditions for their separation and shed light on physical characteristics of these different types of DNA topoisomers during electrophoresis.
Collapse
Affiliation(s)
- Jorge Cebrián
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Maridian J Kadomatsu-Hermosa
- Scientific and Applied Computing Laboratory, Polytechnic School, National University of Asunción, P.O. Box 2111, SL. San Lorenzo, Paraguay
| | - Alicia Castán
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Víctor Martínez
- Scientific and Applied Computing Laboratory, Polytechnic School, National University of Asunción, P.O. Box 2111, SL. San Lorenzo, Paraguay
| | - Cristina Parra
- Scientific and Applied Computing Laboratory, Polytechnic School, National University of Asunción, P.O. Box 2111, SL. San Lorenzo, Paraguay
| | - María José Fernández-Nestosa
- Scientific and Applied Computing Laboratory, Polytechnic School, National University of Asunción, P.O. Box 2111, SL. San Lorenzo, Paraguay
| | - Christian Schaerer
- Scientific and Applied Computing Laboratory, Polytechnic School, National University of Asunción, P.O. Box 2111, SL. San Lorenzo, Paraguay
| | - María-Luisa Martínez-Robles
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Pablo Hernández
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Dora B Krimer
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Andrzej Stasiak
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Jorge B Schvartzman
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
30
|
Mashaghi A, van Wijk R, Tans S. Circuit Topology of Proteins and Nucleic Acids. Structure 2014; 22:1227-1237. [DOI: 10.1016/j.str.2014.06.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 05/10/2014] [Accepted: 06/17/2014] [Indexed: 01/19/2023]
|
31
|
The SMC complex MukBEF recruits topoisomerase IV to the origin of replication region in live Escherichia coli. mBio 2014; 5:e01001-13. [PMID: 24520061 PMCID: PMC3950513 DOI: 10.1128/mbio.01001-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The Escherichia coli structural maintenance of chromosome (SMC) complex, MukBEF, and topoisomerase IV (TopoIV) interact in vitro through a direct contact between the MukB dimerization hinge and the C-terminal domain of ParC, the catalytic subunit of TopoIV. The interaction stimulates catalysis by TopoIV in vitro. Using live-cell quantitative imaging, we show that MukBEF directs TopoIV to ori, with fluorescent fusions of ParC and ParE both forming cellular foci that colocalize with those formed by MukBEF throughout the cell cycle and in cells unable to initiate DNA replication. Removal of MukBEF leads to loss of fluorescent ParC/ParE foci. In the absence of functional TopoIV, MukBEF forms multiple foci that are distributed uniformly throughout the nucleoid, whereas multiple catenated oris cluster at midcell. Once functional TopoIV is restored, the decatenated oris segregate to positions that are largely coincident with the MukBEF foci, thereby providing support for a mechanism by which MukBEF acts in chromosome segregation by positioning newly replicated and decatenated oris. Additional evidence for such a mechanism comes from the observation that in TopoIV-positive (TopoIV(+)) cells, newly replicated oris segregate rapidly to the positions of MukBEF foci. Taken together, the data implicate MukBEF as a key component of the DNA segregation process by acting in concert with TopoIV to promote decatenation and positioning of newly replicated oris. IMPORTANCE Mechanistic understanding of how newly replicated bacterial chromosomes are segregated prior to cell division is incomplete. In this work, we provide in vivo experimental support for the view that topoisomerase IV (TopoIV), which decatenates newly replicated sister duplexes as a prelude to successful segregation, is directed to the replication origin region of the Escherichia coli chromosome by the SMC (structural maintenance of chromosome) complex, MukBEF. We provide in vivo data that support the demonstration in vitro that the MukB interaction with TopoIV stimulates catalysis by TopoIV. Finally, we show that MukBEF directs the normal positioning of sister origins after their replication and during their segregation. Overall, the data support models in which the coordinate and sequential action of TopoIV and MukBEF plays an important role during bacterial chromosome segregation.
Collapse
|
32
|
Francis AR. An algebraic view of bacterial genome evolution. J Math Biol 2013; 69:1693-718. [DOI: 10.1007/s00285-013-0747-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/23/2013] [Indexed: 10/25/2022]
|
33
|
Abstract
DNA topology changes dynamically during DNA replication. Supercoiling, precatenation, catenation and knotting interplay throughout the process that is finely regulated by DNA topoisomerases. In the present article, we provide an overview of theoretical and experimental approaches to understand the interplay between various manifestations of topological constraints acting on replicating DNA molecules. Data discussed reveal that DNA entanglements (supercoils and catenanes) play an active role in preventing the formation of deleterious knots.
Collapse
|
34
|
Huang TW, Hsu CC, Yang HY, Chen CW. Topoisomerase IV is required for partitioning of circular chromosomes but not linear chromosomes in Streptomyces. Nucleic Acids Res 2013; 41:10403-13. [PMID: 23999094 PMCID: PMC3905888 DOI: 10.1093/nar/gkt757] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Filamentous bacteria of the genus Streptomyces possess linear chromosomes and linear plasmids. Theoretically, linear replicons may not need a decatenase for post-replicational separation of daughter molecules. Yet, Streptomyces contain parC and parE that encode the subunits for the decatenase topoisomerase IV. The linear replicons of Streptomyces adopt a circular configuration in vivo through telomere–telomere interaction, which would require decatenation, if the circular configuration persists through replication. We investigated whether topoisomerase IV is required for separation of the linear replicons in Streptomyces. Deletion of parE from the Streptomyces coelicolor chromosome was achieved, when parE was provided on a plasmid. Subsequently, the plasmid was eliminated at high temperature, and ΔparE mutants were obtained. These results indicated that topoisomerase IV was not essential for Streptomyces. Presumably, the telomere–telomere association may be resolved during or after replication to separate the daughter chromosomes. Nevertheless, the mutants exhibited retarded growth, defective sporulation and temperature sensitivity. In the mutants, circular plasmids could not replicate, and spontaneous circularization of the chromosome was not observed, indicating that topoisomerase IV was required for decatenation of circular replicons. Moreover, site-specific integration of a plasmid is impaired in the mutants, suggesting the formation of DNA knots during integration, which must be resolved by topoisomerase IV.
Collapse
Affiliation(s)
| | | | | | - Carton W. Chen
- *To whom correspondence should be addressed. Tel: +886 2 28267040;
| |
Collapse
|
35
|
Regulation of sister chromosome cohesion by the replication fork tracking protein SeqA. PLoS Genet 2013; 9:e1003673. [PMID: 23990792 PMCID: PMC3749930 DOI: 10.1371/journal.pgen.1003673] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 06/12/2013] [Indexed: 01/12/2023] Open
Abstract
Analogously to chromosome cohesion in eukaryotes, newly replicated DNA in E. coli is held together by inter-sister linkages before partitioning into daughter nucleoids. In both cases, initial joining is apparently mediated by DNA catenation, in which replication-induced positive supercoils diffuse behind the fork, causing newly replicated duplexes to twist around each other. Type-II topoisomerase-catalyzed sister separation is delayed by the well-characterized cohesin complex in eukaryotes, but cohesion control in E. coli is not currently understood. We report that the abundant fork tracking protein SeqA is a strong positive regulator of cohesion, and is responsible for markedly prolonged cohesion observed at “snap” loci. Epistasis analysis suggests that SeqA stabilizes cohesion by antagonizing Topo IV-mediated sister resolution, and possibly also by a direct bridging mechanism. We show that variable cohesion observed along the E. coli chromosome is caused by differential SeqA binding, with oriC and snap loci binding disproportionally more SeqA. We propose that SeqA binding results in loose inter-duplex junctions that are resistant to Topo IV cleavage. Lastly, reducing cohesion by genetic manipulation of Topo IV or SeqA resulted in dramatically slowed sister locus separation and poor nucleoid partitioning, indicating that cohesion has a prominent role in chromosome segregation. Sister chromosome cohesion in eukaryotes maintains genome stability by mediating chromosome segregation and homologous recombination-dependent DNA repair. Here we have investigated the mechanism of cohesion regulation in E. coli by measuring cohesion timing in a broad set of candidate mutant strains. Using a sensitive DNA replication and segregation assay, we show that cohesion is controlled by the conserved DNA decatenation enzyme Topo IV and the abundant DNA binding protein SeqA. Results suggest that cohesion occurs in E. coli by twisting of replicated duplexes around each other behind the replication fork, and immediate resolution of cohered regions is blocked by SeqA. SeqA binds to a sliding 300–400 kb window of hemimethylated DNA behind the fork, and regions binding more SeqA experience longer cohesion periods. An analogous decatenation inhibition function is carried out by the cohesin complex in eukaryotes, indicating that cells mediate pairing and separation of replicated DNA by a conserved mechanism. In both cases, mismanaged cohesion results in failed or inefficient chromosome segregation.
Collapse
|
36
|
Schvartzman JB, Martínez-Robles ML, Hernández P, Krimer DB. Plasmid DNA topology assayed by two-dimensional agarose gel electrophoresis. Methods Mol Biol 2013; 1054:121-132. [PMID: 23913288 DOI: 10.1007/978-1-62703-565-1_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Two-dimensional (2D) agarose gel electrophoresis is nowadays one of the best methods available to analyze DNA molecules with different masses and shapes. The possibility to use nicking enzymes and intercalating agents to change the twist of DNA during only one or in both runs, improves the capacity of 2D gels to discern molecules that apparently may look alike. Here we present protocols where 2D gels are used to understand the structure of DNA molecules and its dynamics in living cells. This knowledge is essential to comprehend how DNA topology affects and is affected by all the essential functions that DNA is involved in: replication, transcription, repair and recombination.
Collapse
Affiliation(s)
- Jorge B Schvartzman
- Department of Cell and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | | | | | | |
Collapse
|
37
|
Piili J, Marenduzzo D, Kaski K, Linna RP. Sedimentation of knotted polymers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:012728. [PMID: 23410380 DOI: 10.1103/physreve.87.012728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/20/2012] [Indexed: 06/01/2023]
Abstract
We investigate the sedimentation of knotted polymers by means of stochastic rotation dynamics, a molecular dynamics algorithm that takes hydrodynamics fully into account. We show that the sedimentation coefficient s, related to the terminal velocity of the knotted polymers, increases linearly with the average crossing number n(c) of the corresponding ideal knot. This provides direct computational confirmation of this relation, postulated on the basis of sedimentation experiments by Rybenkov et al. [J. Mol. Biol. 267, 299 (1997)]. Such a relation was previously shown to hold with simulations for knot electrophoresis. We also show that there is an accurate linear dependence of s on the inverse of the radius of gyration R(g)(-1), more specifically with the inverse of the R(g) component that is perpendicular to the direction along which the polymer sediments. When the polymer sediments in a slab, the walls affect the results appreciably. However, R(g)(-1) remains to a good precision linearly dependent on n(c). Therefore, R(g)(-1) is a good measure of a knot's complexity.
Collapse
Affiliation(s)
- J Piili
- Department of Biomedical Engineering and Computational Science, Aalto University, P.O. Box 12200, FI-00076 Aalto, Finland
| | | | | | | |
Collapse
|