1
|
Li YG, Breidenstein A, Berntsson RPA, Christie PJ. Conjugative transfer of the IncN plasmid pKM101 is mediated by dynamic interactions between the TraK accessory factor and TraI relaxase. FEBS Lett 2024; 598:2717-2733. [PMID: 39245885 PMCID: PMC11560498 DOI: 10.1002/1873-3468.15011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024]
Abstract
Conjugative dissemination of mobile genetic elements (MGEs) among bacteria is initiated by assembly of the relaxosome at the MGE's origin-of-transfer (oriT) sequence. A critical but poorly defined step of relaxosome assembly involves recruitment of the catalytic relaxase to its DNA strand-specific nicking site within oriT. Here, we present evidence by AlphaFold modeling, affinity pulldowns, and in vivo site-directed photocrosslinking that the TraK Ribbon-Helix-Helix DNA-binding protein recruits TraI to oriT through a dynamic interaction in which TraI's C-terminal unstructured domain (TraICTD) wraps around TraK's C-proximal tetramerization domain. Upon relaxosome assembly, conformational changes disrupt this contact, and TraICTD instead self-associates as a prerequisite for relaxase catalytic functions or substrate engagement with the transfer channel. These findings delineate key early-stage processing reactions required for conjugative dissemination of a model MGE.
Collapse
Affiliation(s)
- Yang Grace Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, UTHealth at Houston, TX, United States
| | - Annika Breidenstein
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine & Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Ronnie P-A Berntsson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine & Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School, UTHealth at Houston, TX, United States
| |
Collapse
|
2
|
Costa TRD, Patkowski JB, Macé K, Christie PJ, Waksman G. Structural and functional diversity of type IV secretion systems. Nat Rev Microbiol 2024; 22:170-185. [PMID: 37814112 PMCID: PMC11290344 DOI: 10.1038/s41579-023-00974-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2023] [Indexed: 10/11/2023]
Abstract
Considerable progress has been made in recent years in the structural and molecular biology of type IV secretion systems in Gram-negative bacteria. The latest advances have substantially improved our understanding of the mechanisms underlying the recruitment and delivery of DNA and protein substrates to the extracellular environment or target cells. In this Review, we aim to summarize these exciting structural and molecular biology findings and to discuss their functional implications for substrate recognition, recruitment and translocation, as well as the biogenesis of extracellular pili. We also describe adaptations necessary for deploying a breadth of processes, such as bacterial survival, host-pathogen interactions and biotic and abiotic adhesion. We highlight the functional and structural diversity that allows this extremely versatile secretion superfamily to function under different environmental conditions and in different bacterial species. Additionally, we emphasize the importance of further understanding the mechanism of type IV secretion, which will support us in combating antimicrobial resistance and treating type IV secretion system-related infections.
Collapse
Affiliation(s)
- Tiago R D Costa
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College, London, UK.
| | - Jonasz B Patkowski
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College, London, UK
| | - Kévin Macé
- Institute of Structural and Molecular Biology, Birkbeck and UCL, London, UK
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes and CNRS, Rennes, France
| | - Peter J Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, TX, USA.
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, Birkbeck and UCL, London, UK.
| |
Collapse
|
3
|
Kishida K, Li YG, Ogawa-Kishida N, Khara P, Al Mamun AAM, Bosserman RE, Christie PJ. Chimeric systems composed of swapped Tra subunits between distantly-related F plasmids reveal striking plasticity among type IV secretion machines. PLoS Genet 2024; 20:e1011088. [PMID: 38437248 PMCID: PMC10939261 DOI: 10.1371/journal.pgen.1011088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/14/2024] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
Bacterial type IV secretion systems (T4SSs) are a versatile family of macromolecular translocators, collectively able to recruit diverse DNA and protein substrates and deliver them to a wide range of cell types. Presently, there is little understanding of how T4SSs recognize substrate repertoires and form productive contacts with specific target cells. Although T4SSs are composed of a number of conserved subunits and adopt certain conserved structural features, they also display considerable compositional and structural diversity. Here, we explored the structural bases underlying the functional versatility of T4SSs through systematic deletion and subunit swapping between two conjugation systems encoded by the distantly-related IncF plasmids, pED208 and F. We identified several regions of intrinsic flexibility among the encoded T4SSs, as evidenced by partial or complete functionality of chimeric machines. Swapping of VirD4-like TraD type IV coupling proteins (T4CPs) yielded functional chimeras, indicative of relaxed specificity at the substrate-TraD and TraD-T4SS interfaces. Through mutational analyses, we further delineated domains of the TraD T4CPs contributing to recruitment of cognate vs heterologous DNA substrates. Remarkably, swaps of components comprising the outer membrane core complexes, a few F-specific subunits, or the TraA pilins supported DNA transfer in the absence of detectable pilus production. Among sequenced enterobacterial species in the NCBI database, we identified many strains that harbor two or more F-like plasmids and many F plasmids lacking one or more T4SS components required for self-transfer. We confirmed that host cells carrying co-resident, non-selftransmissible variants of pED208 and F elaborate chimeric T4SSs, as evidenced by transmission of both plasmids. We propose that T4SS plasticity enables the facile assembly of functional chimeras, and this intrinsic flexibility at the structural level can account for functional diversification of this superfamily over evolutionary time and, on a more immediate time-scale, to proliferation of transfer-defective MGEs in nature.
Collapse
Affiliation(s)
- Kouhei Kishida
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, United States of America
| | - Yang Grace Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, United States of America
| | - Natsumi Ogawa-Kishida
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, United States of America
| | - Pratick Khara
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, United States of America
| | - Abu Amar M. Al Mamun
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, United States of America
| | - Rachel E. Bosserman
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, United States of America
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, United States of America
| |
Collapse
|
4
|
Kishida K, Li YG, Ogawa-Kishida N, Khara P, Al Mamun AAM, Bosserman RE, Christie PJ. Chimeric systems composed of swapped Tra subunits between distantly-related F plasmids reveal striking plasticity among type IV secretion machines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570194. [PMID: 38106057 PMCID: PMC10723329 DOI: 10.1101/2023.12.05.570194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Bacterial type IV secretion systems (T4SSs) are a versatile family of macromolecular translocators, collectively able to recruit diverse DNA and protein substrates and deliver them to a wide range of cell types. Presently, there is little understanding of how T4SSs recognize substrate repertoires and form productive contacts with specific target cells. Although T4SSs are composed of a number of conserved subunits and adopt certain conserved structural features, they also display considerable compositional and structural diversity. Here, we explored the structural bases underlying the functional versatility of T4SSs through systematic deletion and subunit swapping between two conjugation systems encoded by the distantly-related IncF plasmids, pED208 and F. We identified several regions of intrinsic flexibility among the encoded T4SSs, as evidenced by partial or complete functionality of chimeric machines. Swapping of VirD4-like TraD type IV coupling proteins (T4CPs) yielded functional chimeras, indicative of relaxed specificity at the substrate - TraD and TraD - T4SS interfaces. Through mutational analyses, we further delineated domains of the TraD T4CPs contributing to recruitment of cognate vs heterologous DNA substrates. Remarkably, swaps of components comprising the outer membrane core complexes, a few F-specific subunits, or the TraA pilins supported DNA transfer in the absence of detectable pilus production. Among sequenced enterobacterial species in the NCBI database, we identified many strains that harbor two or more F-like plasmids and many F plasmids lacking one or more T4SS components required for self-transfer. We confirmed that host cells carrying co-resident, non-selftransmissible variants of pED208 and F elaborate chimeric T4SSs, as evidenced by transmission of both plasmids. We propose that T4SS plasticity enables the facile assembly of functional chimeras, and this intrinsic flexibility at the structural level can account for functional diversification of this superfamily over evolutionary time and, on a more immediate time-scale, to proliferation of transfer-defective MGEs in nature.
Collapse
Affiliation(s)
- Kouhei Kishida
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, 6431 Fannin St, Houston, Texas 77030, United States of America
| | - Yang Grace Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, 6431 Fannin St, Houston, Texas 77030, United States of America
| | - Natsumi Ogawa-Kishida
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, 6431 Fannin St, Houston, Texas 77030, United States of America
| | - Pratick Khara
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, 6431 Fannin St, Houston, Texas 77030, United States of America
| | - Abu Amar M Al Mamun
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, 6431 Fannin St, Houston, Texas 77030, United States of America
| | - Rachel E. Bosserman
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, 6431 Fannin St, Houston, Texas 77030, United States of America
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, 6431 Fannin St, Houston, Texas 77030, United States of America
| |
Collapse
|
5
|
Meir A, Macé K, Vegunta Y, Williams SM, Waksman G. Substrate recruitment mechanism by gram-negative type III, IV, and VI bacterial injectisomes. Trends Microbiol 2023; 31:916-932. [PMID: 37085348 DOI: 10.1016/j.tim.2023.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 04/23/2023]
Abstract
Bacteria use a wide arsenal of macromolecular substrates (DNA and proteins) to interact with or infect prokaryotic and eukaryotic cells. To do so, they utilize substrate-injecting secretion systems or injectisomes. However, prior to secretion, substrates must be recruited to specialized recruitment platforms and then handed over to the secretion apparatus for secretion. In this review, we provide an update on recent advances in substrate recruitment and delivery by gram-negative bacterial recruitment platforms associated with Type III, IV, and VI secretion systems.
Collapse
Affiliation(s)
- Amit Meir
- Institute of Structural and Molecular Biology, Birkbeck and UCL, Malet Street, London WC1E 7HX, UK; Current address: MRC Centre for Virus Research, School of Infection and Immunity, University of Glasgow, Glasgow, UK.
| | - Kévin Macé
- Institute of Structural and Molecular Biology, Birkbeck and UCL, Malet Street, London WC1E 7HX, UK
| | - Yogesh Vegunta
- Institute of Structural and Molecular Biology, Birkbeck and UCL, Malet Street, London WC1E 7HX, UK
| | - Sunanda M Williams
- Institute of Structural and Molecular Biology, Birkbeck and UCL, Malet Street, London WC1E 7HX, UK
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, Birkbeck and UCL, Malet Street, London WC1E 7HX, UK; Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
6
|
Abstract
The versatile type IV secretion system (T4SS) nanomachine plays a pivotal role in bacterial pathogenesis and the propagation of antibiotic resistance determinants throughout microbial populations. In addition to paradigmatic DNA conjugation machineries, diverse T4SSs enable the delivery of multifarious effector proteins to target prokaryotic and eukaryotic cells, mediate DNA export and uptake from the extracellular milieu, and in rare examples, facilitate transkingdom DNA translocation. Recent advances have identified new mechanisms underlying unilateral nucleic acid transport through the T4SS apparatus, highlighting both functional plasticity and evolutionary adaptations that enable novel capabilities. In this review, we describe the molecular mechanisms underscoring DNA translocation through diverse T4SS machineries, emphasizing the architectural features that implement DNA exchange across the bacterial membrane and license transverse DNA release across kingdom boundaries. We further detail how recent studies have addressed outstanding questions surrounding the mechanisms by which nanomachine architectures and substrate recruitment strategies contribute to T4SS functional diversity.
Collapse
Affiliation(s)
- Mackenzie E. Ryan
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Prashant P. Damke
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, Kentucky, USA
| | - Carrie L. Shaffer
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, Kentucky, USA
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
7
|
Tian D, Liu X, Chen W, Zhou Y, Hu D, Wang W, Wu J, Mu Q, Jiang X. Prevalence of hypervirulent and carbapenem-resistant Klebsiella pneumoniae under divergent evolutionary patterns. Emerg Microbes Infect 2022; 11:1936-1949. [PMID: 35844192 PMCID: PMC9359173 DOI: 10.1080/22221751.2022.2103454] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
K1/K2 hvKP strains acquire carbapenem-resistance plasmids, known as CR-hvKp, and carbapenem-resistant Klebsiella pneumoniae (CRKP) strains obtain virulence plasmids, recognized as hv-CRKP. The two different evolution patterns of hypervirulent combined carbapenem-resistant Klebsiella pneumoniae may lead to their different prevalence in hospitals. Our study aimed to investigate the prevalence of hv-CRKP and CR-hvKp strains and to analyze factors influencing their evolution and prevalence. We collected 890 K. pneumoniae genomes from GenBank and 530 clinical K. pneumoniae isolates from nine hospitals. Our study found that hv-CRKP strains were more prevalent than CR-hvKp strains and both were dominated by blaKPC-2 gene. The blaKPC-2-carrying plasmids could mobilize non-conjugative virulence plasmids from hvKp strains to CRKP strains. The conserved oriT of virulence plasmids and the widespread of conjugative helper plasmids were potential factors for the mobilization of non-conjugative virulence plasmids. HvKp strains with KPC plasmid could hardly simultaneously exhibit hypervirulence and carbapenem resistance as CRKP strains with virulence plasmid, and we found that rfaH mutation reduced capsular synthesis and increased carbapenem resistance of the CR-hvKp strain. In summary, this study revealed that hv-CRKP strains were more suitable for survival in hospital settings than CR-hvKp strains and the widespread conjugative KPC-producing plasmids contributed to the emergence and prevalence of hv-CRKP strains.
Collapse
Affiliation(s)
- Dongxing Tian
- Department of Clinical Laboratory, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiao Liu
- School of Pharmacy, Fudan University, Shanghai, China
| | - Wenjie Chen
- Department of Infectious Disease, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Zhou
- Department of Clinical Laboratory, Huashan Hospital, Fudan University, Shanghai, China.,Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dakang Hu
- Department of Clinical Laboratory, Huashan Hospital, Fudan University, Shanghai, China
| | - Weiwen Wang
- Department of Clinical Laboratory, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinzuan Wu
- Department of Clinical Laboratory, Pingyang hospital of Wenzhou medical university, Wenzhou, China
| | - Qing Mu
- School of Pharmacy, Fudan University, Shanghai, China.,Department of Clinical Laboratory, Pingyang hospital of Wenzhou medical university, Wenzhou, China
| | - Xiaofei Jiang
- Department of Clinical Laboratory, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Shen Z, Tang CM, Liu GY. Towards a better understanding of antimicrobial resistance dissemination: what can be learnt from studying model conjugative plasmids? Mil Med Res 2022; 9:3. [PMID: 35012680 PMCID: PMC8744291 DOI: 10.1186/s40779-021-00362-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/26/2021] [Indexed: 12/12/2022] Open
Abstract
Bacteria can evolve rapidly by acquiring new traits such as virulence, metabolic properties, and most importantly, antimicrobial resistance, through horizontal gene transfer (HGT). Multidrug resistance in bacteria, especially in Gram-negative organisms, has become a global public health threat often through the spread of mobile genetic elements. Conjugation represents a major form of HGT and involves the transfer of DNA from a donor bacterium to a recipient by direct contact. Conjugative plasmids, a major vehicle for the dissemination of antimicrobial resistance, are selfish elements capable of mediating their own transmission through conjugation. To spread to and survive in a new bacterial host, conjugative plasmids have evolved mechanisms to circumvent both host defense systems and compete with co-resident plasmids. Such mechanisms have mostly been studied in model plasmids such as the F plasmid, rather than in conjugative plasmids that confer antimicrobial resistance (AMR) in important human pathogens. A better understanding of these mechanisms is crucial for predicting the flow of antimicrobial resistance-conferring conjugative plasmids among bacterial populations and guiding the rational design of strategies to halt the spread of antimicrobial resistance. Here, we review mechanisms employed by conjugative plasmids that promote their transmission and establishment in Gram-negative bacteria, by following the life cycle of conjugative plasmids.
Collapse
Affiliation(s)
- Zhen Shen
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.,Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Guang-Yu Liu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.
| |
Collapse
|
9
|
Crespo I, Bernardo N, Cuppari A, Malfois M, Boer DR. Structural and biochemical characterization of the relaxosome auxiliary proteins encoded on the Bacillus subtilis plasmid pLS20. Comput Struct Biotechnol J 2022; 20:757-765. [PMID: 35198129 PMCID: PMC8829557 DOI: 10.1016/j.csbj.2021.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 12/03/2022] Open
Abstract
Bacterial conjugation is an important route for horizontal gene transfer. The initial step in this process involves a macromolecular protein-DNA complex called the relaxosome, which in plasmids consists of the origin of transfer (oriT) and several proteins that prepare the transfer. The relaxosome protein named relaxase introduces a nick in one of the strands of the oriT to initiate the process. Additional relaxosome proteins can exist. Recently, several relaxosome proteins encoded on the Bacillus subtilis plasmid pLS20 were identified, including the relaxase, named RelpLS20, and two auxiliary DNA-binding factors, named Aux1pLS20 and Aux2pLS20. Here, we extend this characterization in order to define their function. We present the low-resolution SAXS envelope of the Aux1pLS20 and the atomic X-ray structure of the C-terminal domain of Aux2pLS20. We also study the interactions between the auxiliary proteins and the full-length RelpLS20, as well as its separate domains. The results show that the quaternary structure of the auxiliary protein Aux1pLS20 involves a tetramer, as previously determined. The crystal structure of the C-terminal domain of Aux2pLS20 shows that it forms a tetramer and suggests that it is an analog of TraMpF of plasmid F. This is the first evidence of the existence of a TraMpF analog in gram positive conjugative systems, although, unlike other TraMpF analogs, Aux2pLS20 does not interact with the relaxase. Aux1pLS20 interacts with the C-terminal domain, but not the N-terminal domain, of the relaxase RelpLS20. Thus, the pLS20 relaxosome exhibits some unique features despite the apparent similarity to some well-studied G- conjugation systems.
Collapse
|
10
|
Protein Transfer through an F Plasmid-Encoded Type IV Secretion System Suppresses the Mating-Induced SOS Response. mBio 2021; 12:e0162921. [PMID: 34253063 PMCID: PMC8406263 DOI: 10.1128/mbio.01629-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bacterial type IV secretion systems (T4SSs) mediate the conjugative transfer of mobile genetic elements (MGEs) and their cargoes of antibiotic resistance and virulence genes. Here, we report that the pED208-encoded T4SS (TrapED208) translocates not only this F plasmid but several plasmid-encoded proteins, including ParA, ParB1, single-stranded DNA-binding protein SSB, ParB2, PsiB, and PsiA, to recipient cells. Conjugative protein translocation through the TrapED208 T4SS required engagement of the pED208 relaxosome with the TraD substrate receptor or coupling protein. T4SSs translocate MGEs as single-stranded DNA intermediates (T-strands), which triggers the SOS response in recipient cells. Transfer of pED208 deleted of psiB or ssb, which, respectively, encode the SOS inhibitor protein PsiB and single-stranded DNA-binding protein SSB, elicited a significantly stronger SOS response than pED208 or mutant plasmids deleted of psiA, parA, parB1, or parB2. Conversely, translocation of PsiB or SSB, but not PsiA, through the TrapED208 T4SS suppressed the mating-induced SOS response. Our findings expand the repertoire of known substrates of conjugation systems to include proteins with functions associated with plasmid maintenance. Furthermore, for this and other F-encoded Tra systems, docking of the DNA substrate with the TraD receptor appears to serve as a critical activating signal for protein translocation. Finally, the observed effects of PsiB and SSB on suppression of the mating-induced SOS response establishes a novel biological function for conjugative protein translocation and suggests the potential for interbacterial protein translocation to manifest in diverse outcomes influencing bacterial communication, physiology, and evolution.
Collapse
|
11
|
Yui Eto K, Kwong SM, LaBreck PT, Crow JE, Traore DAK, Parahitiyawa N, Fairhurst HM, Merrell DS, Firth N, Bond CS, Ramsay JP. Evolving origin-of-transfer sequences on staphylococcal conjugative and mobilizable plasmids-who's mimicking whom? Nucleic Acids Res 2021; 49:5177-5188. [PMID: 33939800 PMCID: PMC8136818 DOI: 10.1093/nar/gkab303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 11/22/2022] Open
Abstract
In Staphylococcus aureus, most multiresistance plasmids lack conjugation or mobilization genes for horizontal transfer. However, most are mobilizable due to carriage of origin-of-transfer (oriT) sequences mimicking those of conjugative plasmids related to pWBG749. pWBG749-family plasmids have diverged to carry five distinct oriT subtypes and non-conjugative plasmids have been identified that contain mimics of each. The relaxasome accessory factor SmpO, encoded by each conjugative plasmid, determines specificity for its cognate oriT. Here we characterized the binding of SmpO proteins to each oriT. SmpO proteins predominantly formed tetramers in solution and bound 5′-GNNNNC-3′ sites within each oriT. Four of the five SmpO proteins specifically bound their cognate oriT. An F7K substitution in pWBG749 SmpO switched oriT-binding specificity in vitro. In vivo, the F7K substitution reduced but did not abolish self-transfer of pWBG749. Notably, the substitution broadened the oriT subtypes that were mobilized. Thus, this substitution represents a potential evolutionary intermediate with promiscuous DNA-binding specificity that could facilitate a switch between oriT specificities. Phylogenetic analysis suggests pWBG749-family plasmids have switched oriT specificity more than once during evolution. We hypothesize the convergent evolution of oriT specificity in distinct branches of the pWBG749-family phylogeny reflects indirect selection pressure to mobilize plasmids carrying non-cognate oriT-mimics.
Collapse
Affiliation(s)
- Karina Yui Eto
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia.,Curtin Medical School, Curtin University, Perth, WA 6102, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Stephen M Kwong
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Patrick T LaBreck
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, MD 20814, USA
| | - Jade E Crow
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Daouda A K Traore
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.,Faculty of Natural Sciences, School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK.,Life Sciences Group, Institut Laue Langevin, Grenoble 38000, France.,Faculté des Sciences et Techniques, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako BP E423, Mali
| | | | | | - D Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, MD 20814, USA
| | - Neville Firth
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Charles S Bond
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Joshua P Ramsay
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.,Curtin Medical School, Curtin University, Perth, WA 6102, Australia.,School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
12
|
Costa TRD, Harb L, Khara P, Zeng L, Hu B, Christie PJ. Type IV secretion systems: Advances in structure, function, and activation. Mol Microbiol 2021; 115:436-452. [PMID: 33326642 DOI: 10.1111/mmi.14670] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 12/14/2022]
Abstract
Bacterial type IV secretion systems (T4SSs) are a functionally diverse translocation superfamily. They consist mainly of two large subfamilies: (i) conjugation systems that mediate interbacterial DNA transfer and (ii) effector translocators that deliver effector macromolecules into prokaryotic or eukaryotic cells. A few other T4SSs export DNA or proteins to the milieu, or import exogenous DNA. The T4SSs are defined by 6 or 12 conserved "core" subunits that respectively elaborate "minimized" systems in Gram-positive or -negative bacteria. However, many "expanded" T4SSs are built from "core" subunits plus numerous others that are system-specific, which presumptively broadens functional capabilities. Recently, there has been exciting progress in defining T4SS assembly pathways and architectures using a combination of fluorescence and cryoelectron microscopy. This review will highlight advances in our knowledge of structure-function relationships for model Gram-negative bacterial T4SSs, including "minimized" systems resembling the Agrobacterium tumefaciens VirB/VirD4 T4SS and "expanded" systems represented by the Helicobacter pylori Cag, Legionella pneumophila Dot/Icm, and F plasmid-encoded Tra T4SSs. Detailed studies of these model systems are generating new insights, some at atomic resolution, to long-standing questions concerning mechanisms of substrate recruitment, T4SS channel architecture, conjugative pilus assembly, and machine adaptations contributing to T4SS functional versatility.
Collapse
Affiliation(s)
- Tiago R D Costa
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - Laith Harb
- Department of Biochemistry and Biophysics and Center for Phage Technology, Texas A&M University, College Station, TX, USA
| | - Pratick Khara
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Lanying Zeng
- Department of Biochemistry and Biophysics and Center for Phage Technology, Texas A&M University, College Station, TX, USA
| | - Bo Hu
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Peter J Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, TX, USA
| |
Collapse
|
13
|
Protein Dynamics in F-like Bacterial Conjugation. Biomedicines 2020; 8:biomedicines8090362. [PMID: 32961700 PMCID: PMC7555446 DOI: 10.3390/biomedicines8090362] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 01/21/2023] Open
Abstract
Efficient in silico development of novel antibiotics requires high-resolution, dynamic models of drug targets. As conjugation is considered the prominent contributor to the spread of antibiotic resistance genes, targeted drug design to disrupt vital components of conjugative systems has been proposed to lessen the proliferation of bacterial antibiotic resistance. Advancements in structural imaging techniques of large macromolecular complexes has accelerated the discovery of novel protein-protein interactions in bacterial type IV secretion systems (T4SS). The known structural information regarding the F-like T4SS components and complexes has been summarized in the following review, revealing a complex network of protein-protein interactions involving domains with varying degrees of disorder. Structural predictions were performed to provide insight on the dynamicity of proteins within the F plasmid conjugative system that lack structural information.
Collapse
|
14
|
Li YG, Christie PJ. The TraK accessory factor activates substrate transfer through the pKM101 type IV secretion system independently of its role in relaxosome assembly. Mol Microbiol 2020; 114:214-229. [PMID: 32239779 DOI: 10.1111/mmi.14507] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/24/2020] [Indexed: 12/12/2022]
Abstract
A large subfamily of the type IV secretion systems (T4SSs), termed the conjugation systems, transmit mobile genetic elements (MGEs) among many bacterial species. In the initiating steps of conjugative transfer, DNA transfer and replication (Dtr) proteins assemble at the origin-of-transfer (oriT) sequence as the relaxosome, which nicks the DNA strand destined for transfer and couples the nicked substrate with the VirD4-like substrate receptor. Here, we defined contributions of the Dtr protein TraK, a predicted member of the Ribbon-Helix-Helix (RHH) family of DNA-binding proteins, to transfer of DNA and protein substrates through the pKM101-encoded T4SS. Using a combination of cross-linking/affinity pull-downs and two-hybrid assays, we determined that TraK self-associates as a probable tetramer and also forms heteromeric contacts with pKM101-encoded TraI relaxase, VirD4-like TraJ receptor, and VirB11-like and VirB4-like ATPases, TraG and TraB, respectively. TraK also promotes stable TraJ-TraB complex formation and stimulates binding of TraI with TraB. Finally, TraK is required for or strongly stimulates the transfer of cognate (pKM101, TraI relaxase) and noncognate (RSF1010, MobA relaxase) substrates. We propose that TraK functions not only to nucleate pKM101 relaxosome assembly, but also to activate the TrapKM101 T4SS via interactions with the ATPase energy center positioned at the channel entrance.
Collapse
Affiliation(s)
- Yang Grace Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, USA
| | - Peter J Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, USA
| |
Collapse
|
15
|
Rehman S, Li YG, Schmitt A, Lassinantti L, Christie PJ, Berntsson RPA. Enterococcal PcfF Is a Ribbon-Helix-Helix Protein That Recruits the Relaxase PcfG Through Binding and Bending of the oriT Sequence. Front Microbiol 2019; 10:958. [PMID: 31134011 PMCID: PMC6514445 DOI: 10.3389/fmicb.2019.00958] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/16/2019] [Indexed: 11/13/2022] Open
Abstract
The conjugative plasmid pCF10 from Enterococcus faecalis encodes a Type 4 Secretion System required for plasmid transfer. The accessory factor PcfF and relaxase PcfG initiate pCF10 transfer by forming the catalytically active relaxosome at the plasmid’s origin-of-transfer (oriT) sequence. Here, we report the crystal structure of the homo-dimeric PcfF, composed of an N-terminal DNA binding Ribbon-Helix-Helix (RHH) domain and a C-terminal stalk domain. We identified key residues in the RHH domain that are responsible for binding pCF10’s oriT sequence in vitro, and further showed that PcfF bends the DNA upon oriT binding. By mutational analysis and pull-down experiments, we identified residues in the stalk domain that contribute to interaction with PcfG. PcfF variant proteins defective in oriT or PcfG binding attenuated plasmid transfer in vivo, but also suggested that intrinsic or extrinsic factors might modulate relaxosome assembly. We propose that PcfF initiates relaxosome assembly by binding oriT and inducing DNA bending, which serves to recruit PcfG as well as extrinsic factors necessary for optimal plasmid processing and engagement with the pCF10 transfer machine.
Collapse
Affiliation(s)
- Saima Rehman
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Yang Grace Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, United States
| | - Andreas Schmitt
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Lena Lassinantti
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Peter J Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, United States
| | - Ronnie P-A Berntsson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
16
|
Waksman G. From conjugation to T4S systems in Gram-negative bacteria: a mechanistic biology perspective. EMBO Rep 2019; 20:embr.201847012. [PMID: 30602585 PMCID: PMC6362355 DOI: 10.15252/embr.201847012] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/31/2018] [Accepted: 11/27/2018] [Indexed: 12/19/2022] Open
Abstract
Conjugation is the process by which bacteria exchange genetic materials in a unidirectional manner from a donor cell to a recipient cell. The discovery of conjugation signalled the dawn of genetics and molecular biology. In Gram-negative bacteria, the process of conjugation is mediated by a large membrane-embedded machinery termed "conjugative type IV secretion (T4S) system", a large injection nanomachine, which together with a DNA-processing machinery termed "the relaxosome" and a large extracellular tube termed "pilus" orchestrates directional DNA transfer. Here, the focus is on past and latest research in the field of conjugation and T4S systems in Gram-negative bacteria, with an emphasis on the various questions and debates that permeate the field from a mechanistic perspective.
Collapse
Affiliation(s)
- Gabriel Waksman
- Institute of Structural and Molecular Biology, UCL and Birkbeck, London, UK
| |
Collapse
|
17
|
Cooperative Function of TraJ and ArcA in Regulating the F Plasmid tra Operon. J Bacteriol 2018; 201:JB.00448-18. [PMID: 30322855 DOI: 10.1128/jb.00448-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/03/2018] [Indexed: 11/20/2022] Open
Abstract
The F plasmid tra operon encodes most of the proteins required for bacterial conjugation. TraJ and ArcA are known activators of the tra operon promoter PY, which is subject to H-NS-mediated silencing. Donor ability and promoter activity assays indicated that PY is inactivated by silencers and requires both TraJ and ArcA for activation to support efficient F conjugation. The observed low-level, ArcA-independent F conjugation is caused by tra expression from upstream alternative promoters. Electrophoretic mobility shift assays showed that TraJ alone weakly binds to PY regulatory DNA; however, TraJ binding is significantly enhanced by ArcA binding to the same DNA, indicating cooperativity of the two proteins. Analysis of binding affinities between ArcA and various DNA fragments in the PY regulatory region defined a 22-bp tandem repeat sequence (from -76 to -55 of PY) sufficient for optimal ArcA binding, which is immediately upstream of the predicted TraJ-binding site (from -54 to -34). Deletion analysis of the PY promoter in strains deficient in TraJ, ArcA, and/or H-NS determined that sequences upstream of -103 are required by silencers including H-NS for PY silencing, whereas sequences downstream of -77 are targeted by TraJ and ArcA for activation. TraJ and ArcA appear not only to counteract PY silencers but also to directly activate PY in a cooperative manner. Our data reveal the cooperativity of TraJ and ArcA during PY activation and provide insights into the regulatory circuit controlling F-family plasmid-mediated bacterial conjugation.IMPORTANCE Conjugation is a major mechanism for dissemination of antibiotic resistance and virulence among bacterial populations. The tra operon in the F family of conjugative plasmids encodes most of the proteins involved in bacterial conjugation. This work reveals that activation of tra operon transcription requires two proteins, TraJ and ArcA, to bind cooperatively to adjacent sites immediately upstream of the major tra promoter PY The interaction of TraJ and ArcA with the tra operon not only relieves PY from silencers but also directly activates it. These findings provide insights into the regulatory circuit of the F-family plasmid-mediated bacterial conjugation.
Collapse
|
18
|
Koraimann G. Spread and Persistence of Virulence and Antibiotic Resistance Genes: A Ride on the F Plasmid Conjugation Module. EcoSal Plus 2018; 8. [PMID: 30022749 PMCID: PMC11575672 DOI: 10.1128/ecosalplus.esp-0003-2018] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 02/06/2023]
Abstract
The F plasmid or F-factor is a large, 100-kbp, circular conjugative plasmid of Escherichia coli and was originally described as a vector for horizontal gene transfer and gene recombination in the late 1940s. Since then, F and related F-like plasmids have served as role models for bacterial conjugation. At present, more than 200 different F-like plasmids with highly related DNA transfer genes, including those for the assembly of a type IV secretion apparatus, are completely sequenced. They belong to the phylogenetically related MOBF12A group. F-like plasmids are present in enterobacterial hosts isolated from clinical as well as environmental samples all over the world. As conjugative plasmids, F-like plasmids carry genetic modules enabling plasmid replication, stable maintenance, and DNA transfer. In this plasmid backbone of approximately 60 kbp, the DNA transfer genes occupy the largest and mostly conserved part. Subgroups of MOBF12A plasmids can be defined based on the similarity of TraJ, a protein required for DNA transfer gene expression. In addition, F-like plasmids harbor accessory cargo genes, frequently embedded within transposons and/or integrons, which harness their host bacteria with antibiotic resistance and virulence genes, causing increasingly severe problems for the treatment of infectious diseases. Here, I focus on key genetic elements and their encoded proteins present on the F-factor and other typical F-like plasmids belonging to the MOBF12A group of conjugative plasmids.
Collapse
Affiliation(s)
- Günther Koraimann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| |
Collapse
|
19
|
Miguel-Arribas A, Hao JA, Luque-Ortega JR, Ramachandran G, Val-Calvo J, Gago-Córdoba C, González-Álvarez D, Abia D, Alfonso C, Wu LJ, Meijer WJJ. The Bacillus subtilis Conjugative Plasmid pLS20 Encodes Two Ribbon-Helix-Helix Type Auxiliary Relaxosome Proteins That Are Essential for Conjugation. Front Microbiol 2017; 8:2138. [PMID: 29163424 PMCID: PMC5675868 DOI: 10.3389/fmicb.2017.02138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/19/2017] [Indexed: 12/15/2022] Open
Abstract
Bacterial conjugation is the process by which a conjugative element (CE) is transferred horizontally from a donor to a recipient cell via a connecting pore. One of the first steps in the conjugation process is the formation of a nucleoprotein complex at the origin of transfer (oriT), where one of the components of the nucleoprotein complex, the relaxase, introduces a site- and strand specific nick to initiate the transfer of a single DNA strand into the recipient cell. In most cases, the nucleoprotein complex involves, besides the relaxase, one or more additional proteins, named auxiliary proteins, which are encoded by the CE and/or the host. The conjugative plasmid pLS20 replicates in the Gram-positive Firmicute bacterium Bacillus subtilis. We have recently identified the relaxase gene and the oriT of pLS20, which are separated by a region of almost 1 kb. Here we show that this region contains two auxiliary genes that we name aux1LS20 and aux2LS20 , and which we show are essential for conjugation. Both Aux1LS20 and Aux2LS20 are predicted to contain a Ribbon-Helix-Helix DNA binding motif near their N-terminus. Analyses of the purified proteins show that Aux1LS20 and Aux2LS20 form tetramers and hexamers in solution, respectively, and that they both bind preferentially to oriTLS20 , although with different characteristics and specificities. In silico analyses revealed that genes encoding homologs of Aux1LS20 and/or Aux2LS20 are located upstream of almost 400 relaxase genes of the RelLS20 family (MOBL) of relaxases. Thus, Aux1LS20 and Aux2LS20 of pLS20 constitute the founding member of the first two families of auxiliary proteins described for CEs of Gram-positive origin.
Collapse
Affiliation(s)
- Andrés Miguel-Arribas
- Department of Virology and Microbiology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Autonomous University of Madrid, Madrid, Spain
| | - Jian-An Hao
- Department of Virology and Microbiology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Autonomous University of Madrid, Madrid, Spain
- The Institute of Seawater Desalination and Multipurpose Utilization (SOA), Tianjin, China
| | | | - Gayetri Ramachandran
- Department of Virology and Microbiology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Autonomous University of Madrid, Madrid, Spain
| | - Jorge Val-Calvo
- Department of Virology and Microbiology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Autonomous University of Madrid, Madrid, Spain
| | - César Gago-Córdoba
- Department of Virology and Microbiology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Autonomous University of Madrid, Madrid, Spain
| | - Daniel González-Álvarez
- Department of Virology and Microbiology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Autonomous University of Madrid, Madrid, Spain
| | - David Abia
- Department of Virology and Microbiology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Autonomous University of Madrid, Madrid, Spain
| | - Carlos Alfonso
- Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Ling J. Wu
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Wilfried J. J. Meijer
- Department of Virology and Microbiology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Autonomous University of Madrid, Madrid, Spain
| |
Collapse
|
20
|
Abstract
All plasmids that spread by conjugative transfer encode a relaxase. That includes plasmids that encode the type IV secretion machinery necessary to mediate cell to cell transfer, as well as mobilizable plasmids that exploit the existence of other plasmids' type IV secretion machinery to enable their own lateral spread. Relaxases perform key functions in plasmid transfer by first binding to their cognate plasmid as part of a multiprotein complex called the relaxosome, which is then specifically recognized by a receptor protein at the opening of the secretion channel. Relaxases catalyze a site- and DNA-strand-specific cleavage reaction on the plasmid then pilot the single strand of plasmid DNA through the membrane-spanning type IV secretion channel as a nucleoprotein complex. In the recipient cell, relaxases help terminate the transfer process efficiently and stabilize the incoming plasmid DNA. Here, we review the well-studied MOBF family of relaxases to describe the biochemistry of these versatile enzymes and integrate current knowledge into a mechanistic model of plasmid transfer in Gram-negative bacteria.
Collapse
|
21
|
Structure to function of an α-glucan metabolic pathway that promotes Listeria monocytogenes pathogenesis. Nat Microbiol 2016; 2:16202. [PMID: 27819654 DOI: 10.1038/nmicrobiol.2016.202] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 09/12/2016] [Indexed: 11/08/2022]
Abstract
Here we employ a 'systems structural biology' approach to functionally characterize an unconventional α-glucan metabolic pathway from the food-borne pathogen Listeria monocytogenes (Lm). Crystal structure determination coupled with basic biochemical and biophysical assays allowed for the identification of anabolic, transport, catabolic and regulatory portions of the cycloalternan pathway. These findings provide numerous insights into cycloalternan pathway function and reveal the mechanism of repressor, open reading frame, kinase (ROK) transcription regulators. Moreover, by developing a structural overview we were able to anticipate the cycloalternan pathway's role in the metabolism of partially hydrolysed starch derivatives and demonstrate its involvement in Lm pathogenesis. These findings suggest that the cycloalternan pathway plays a role in interspecies resource competition-potentially within the host gastrointestinal tract-and establish the methodological framework for characterizing bacterial systems of unknown function.
Collapse
|
22
|
Wang D, Miyazono KI, Tanokura M. Tetrameric structure of the restriction DNA glycosylase R.PabI in complex with nonspecific double-stranded DNA. Sci Rep 2016; 6:35197. [PMID: 27731370 PMCID: PMC5059719 DOI: 10.1038/srep35197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/26/2016] [Indexed: 02/06/2023] Open
Abstract
R.PabI is a type II restriction enzyme that recognizes the 5′-GTAC-3′ sequence and belongs to the HALFPIPE superfamily. Although most restriction enzymes cleave phosphodiester bonds at specific sites by hydrolysis, R.PabI flips the guanine and adenine bases of the recognition sequence out of the DNA helix and hydrolyzes the N-glycosidic bond of the flipped adenine in a similar manner to DNA glycosylases. In this study, we determined the structure of R.PabI in complex with double-stranded DNA without the R.PabI recognition sequence by X-ray crystallography. The 1.9 Å resolution structure of the complex showed that R.PabI forms a tetrameric structure to sandwich the double-stranded DNA and the tetrameric structure is stabilized by four salt bridges. DNA binding and DNA glycosylase assays of the R.PabI mutants showed that the residues that form the salt bridges (R70 and D71) are essential for R.PabI to find the recognition sequence from the sea of nonspecific sequences. R.PabI is predicted to utilize the tetrameric structure to bind nonspecific double-stranded DNA weakly and slide along it to find the recognition sequence.
Collapse
Affiliation(s)
- Delong Wang
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ken-Ichi Miyazono
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
23
|
Gruber CJ, Lang S, Rajendra VKH, Nuk M, Raffl S, Schildbach JF, Zechner EL. Conjugative DNA Transfer Is Enhanced by Plasmid R1 Partitioning Proteins. Front Mol Biosci 2016; 3:32. [PMID: 27486582 PMCID: PMC4949242 DOI: 10.3389/fmolb.2016.00032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/01/2016] [Indexed: 11/22/2022] Open
Abstract
Bacterial conjugation is a form of type IV secretion used to transport protein and DNA directly to recipient bacteria. The process is cell contact-dependent, yet the mechanisms enabling extracellular events to trigger plasmid transfer to begin inside the cell remain obscure. In this study of plasmid R1 we investigated the role of plasmid proteins in the initiation of gene transfer. We find that TraI, the central regulator of conjugative DNA processing, interacts physically, and functionally with the plasmid partitioning proteins ParM and ParR. These interactions stimulate TraI catalyzed relaxation of plasmid DNA in vivo and in vitro and increase ParM ATPase activity. ParM also binds the coupling protein TraD and VirB4-like channel ATPase TraC. Together, these protein-protein interactions probably act to co-localize the transfer components intracellularly and promote assembly of the conjugation machinery. Importantly these data also indicate that the continued association of ParM and ParR at the conjugative pore is necessary for plasmid transfer to start efficiently. Moreover, the conjugative pilus and underlying secretion machinery assembled in the absence of Par proteins mediate poor biofilm formation and are completely dysfunctional for pilus specific R17 bacteriophage uptake. Thus, functional integration of Par components at the interface of relaxosome, coupling protein, and channel ATPases appears important for an optimal conformation and effective activation of the transfer machinery. We conclude that low copy plasmid R1 has evolved an active segregation system that optimizes both its vertical and lateral modes of dissemination.
Collapse
Affiliation(s)
- Christian J Gruber
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz Graz, Austria
| | - Silvia Lang
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz Graz, Austria
| | - Vinod K H Rajendra
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz Graz, Austria
| | - Monika Nuk
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz Graz, Austria
| | - Sandra Raffl
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz Graz, Austria
| | | | - Ellen L Zechner
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz Graz, Austria
| |
Collapse
|
24
|
Fernández-González E, Bakioui S, Gomes MC, O'Callaghan D, Vergunst AC, Sangari FJ, Llosa M. A Functional oriT in the Ptw Plasmid of Burkholderia cenocepacia Can Be Recognized by the R388 Relaxase TrwC. Front Mol Biosci 2016; 3:16. [PMID: 27200362 PMCID: PMC4853378 DOI: 10.3389/fmolb.2016.00016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 04/14/2016] [Indexed: 12/14/2022] Open
Abstract
Burkholderia cenocepacia is both a plant pathogen and the cause of serious opportunistic infections, particularly in cystic fibrosis patients. B. cenocepacia K56-2 harbors a native plasmid named Ptw for its involvement in the Plant Tissue Watersoaking phenotype. Ptw has also been reported to be important for survival in human cells. Interestingly, the presence of PtwC, a homolog of the conjugative relaxase TrwC of plasmid R388, suggests a possible function for Ptw in conjugative DNA transfer. The ptw region includes Type IV Secretion System genes related to those of the F plasmid. However, genes in the adjacent region shared stronger homology with the R388 genes involved in conjugative DNA metabolism. This region included the putative relaxase ptwC, a putative coupling protein and accessory nicking protein, and a DNA segment with high number of inverted repeats and elevated AT content, suggesting a possible oriT. Although we were unable to detect conjugative transfer of the Ptw resident plasmid, we detected conjugal mobilization of a co-resident plasmid containing the ptw region homologous to R388, demonstrating the cloned ptw region contains an oriT. A similar plasmid lacking ptwC could not be mobilized, suggesting that the putative relaxase PtwC must act in cis on its oriT. Remarkably, we also detected mobilization of a plasmid containing the Ptw oriT by the R388 relaxase TrwC, yet we could not detect PtwC-mediated mobilization of an R388 oriT-containing plasmid. Our data unambiguously show that the Ptw plasmid harbors DNA transfer functions, and suggests the Ptw plasmid may play a dual role in horizontal DNA transfer and eukaryotic infection.
Collapse
Affiliation(s)
- Esther Fernández-González
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria, UC-SODERCAN-Consejo Superior de Investigaciones Científicas Santander, Spain
| | - Sawsane Bakioui
- Institut National de la Santé et de la Recherche Médicale, U1047Nimes, France; UFR de Médecine Site de Nimes, U1047, Université de MontpellierFrance
| | - Margarida C Gomes
- Institut National de la Santé et de la Recherche Médicale, U1047Nimes, France; UFR de Médecine Site de Nimes, U1047, Université de MontpellierFrance
| | - David O'Callaghan
- Institut National de la Santé et de la Recherche Médicale, U1047Nimes, France; UFR de Médecine Site de Nimes, U1047, Université de MontpellierFrance
| | - Annette C Vergunst
- Institut National de la Santé et de la Recherche Médicale, U1047Nimes, France; UFR de Médecine Site de Nimes, U1047, Université de MontpellierFrance
| | - Félix J Sangari
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria, UC-SODERCAN-Consejo Superior de Investigaciones Científicas Santander, Spain
| | - Matxalen Llosa
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria, UC-SODERCAN-Consejo Superior de Investigaciones Científicas Santander, Spain
| |
Collapse
|
25
|
The All-Alpha Domains of Coupling Proteins from the Agrobacterium tumefaciens VirB/VirD4 and Enterococcus faecalis pCF10-Encoded Type IV Secretion Systems Confer Specificity to Binding of Cognate DNA Substrates. J Bacteriol 2015; 197:2335-49. [PMID: 25939830 DOI: 10.1128/jb.00189-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Bacterial type IV coupling proteins (T4CPs) bind and mediate the delivery of DNA substrates through associated type IV secretion systems (T4SSs). T4CPs consist of a transmembrane domain, a conserved nucleotide-binding domain (NBD), and a sequence-variable helical bundle called the all-alpha domain (AAD). In the T4CP structural prototype, plasmid R388-encoded TrwB, the NBD assembles as a homohexamer resembling RecA and DNA ring helicases, and the AAD, which sits at the channel entrance of the homohexamer, is structurally similar to N-terminal domain 1 of recombinase XerD. Here, we defined the contributions of AADs from the Agrobacterium tumefaciens VirD4 and Enterococcus faecalis PcfC T4CPs to DNA substrate binding. AAD deletions abolished DNA transfer, whereas production of the AAD in otherwise wild-type donor strains diminished the transfer of cognate but not heterologous substrates. Reciprocal swaps of AADs between PcfC and VirD4 abolished the transfer of cognate DNA substrates, although strikingly, the VirD4-AADPcfC chimera (VirD4 with the PcfC AAD) supported the transfer of a mobilizable plasmid. Purified AADs from both T4CPs bound DNA substrates without sequence preference but specifically bound cognate processing proteins required for cleavage at origin-of-transfer sequences. The soluble domains of VirD4 and PcfC lacking their AADs neither exerted negative dominance in vivo nor specifically bound cognate processing proteins in vitro. Our findings support a model in which the T4CP AADs contribute to DNA substrate selection through binding of associated processing proteins. Furthermore, MOBQ plasmids have evolved a docking mechanism that bypasses the AAD substrate discrimination checkpoint, which might account for their capacity to promiscuously transfer through many different T4SSs. IMPORTANCE For conjugative transfer of mobile DNA elements, members of the VirD4/TraG/TrwB receptor superfamily bind cognate DNA substrates through mechanisms that are largely undefined. Here, we supply genetic and biochemical evidence that a helical bundle, designated the all-alpha domain (AAD), of T4SS receptors functions as a substrate specificity determinant. We show that AADs from two substrate receptors, Agrobacterium tumefaciens VirD4 and Enterococcus faecalis PcfC, bind DNA without sequence or strand preference but specifically bind the cognate relaxases responsible for nicking and piloting the transferred strand through the T4SS. We propose that interactions of receptor AADs with DNA-processing factors constitute a basis for selective coupling of mobile DNA elements with type IV secretion channels.
Collapse
|
26
|
Structural biology of the Gram-negative bacterial conjugation systems. Trends Microbiol 2015; 23:301-10. [PMID: 25825348 DOI: 10.1016/j.tim.2015.02.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/23/2015] [Accepted: 02/25/2015] [Indexed: 11/21/2022]
Abstract
Conjugation, the process by which plasmid DNA is transferred from one bacterium to another, is mediated by type IV secretion systems (T4SSs). T4SSs are versatile systems that can transport not only DNA, but also toxins and effector proteins. Conjugative T4SSs comprise 12 proteins named VirB1-11 and VirD4 that assemble into a large membrane-spanning exporting machine. Before being transported, the DNA substrate is first processed on the cytoplasmic side by a complex called the relaxosome. The substrate is then targeted to the T4SS for export into a recipient cell. In this review, we describe the recent progress made in the structural biology of both the relaxosome and the T4SS.
Collapse
|
27
|
Gillespie JJ, Kaur SJ, Rahman MS, Rennoll-Bankert K, Sears KT, Beier-Sexton M, Azad AF. Secretome of obligate intracellular Rickettsia. FEMS Microbiol Rev 2014; 39:47-80. [PMID: 25168200 DOI: 10.1111/1574-6976.12084] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The genus Rickettsia (Alphaproteobacteria, Rickettsiales, Rickettsiaceae) is comprised of obligate intracellular parasites, with virulent species of interest both as causes of emerging infectious diseases and for their potential deployment as bioterrorism agents. Currently, there are no effective commercially available vaccines, with treatment limited primarily to tetracycline antibiotics, although others (e.g. josamycin, ciprofloxacin, chloramphenicol, and azithromycin) are also effective. Much of the recent research geared toward understanding mechanisms underlying rickettsial pathogenicity has centered on characterization of secreted proteins that directly engage eukaryotic cells. Herein, we review all aspects of the Rickettsia secretome, including six secretion systems, 19 characterized secretory proteins, and potential moonlighting proteins identified on surfaces of multiple Rickettsia species. Employing bioinformatics and phylogenomics, we present novel structural and functional insight on each secretion system. Unexpectedly, our investigation revealed that the majority of characterized secretory proteins have not been assigned to their cognate secretion pathways. Furthermore, for most secretion pathways, the requisite signal sequences mediating translocation are poorly understood. As a blueprint for all known routes of protein translocation into host cells, this resource will assist research aimed at uniting characterized secreted proteins with their apposite secretion pathways. Furthermore, our work will help in the identification of novel secreted proteins involved in rickettsial 'life on the inside'.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Simran J Kaur
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - M Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristen Rennoll-Bankert
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Khandra T Sears
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Magda Beier-Sexton
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Abdu F Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
28
|
Gilston BA, Wang S, Marcus MD, Canalizo-Hernández MA, Swindell EP, Xue Y, Mondragón A, O'Halloran TV. Structural and mechanistic basis of zinc regulation across the E. coli Zur regulon. PLoS Biol 2014; 12:e1001987. [PMID: 25369000 PMCID: PMC4219657 DOI: 10.1371/journal.pbio.1001987] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/22/2014] [Indexed: 11/18/2022] Open
Abstract
Structural, thermodynamic, and gene expression studies provide a comprehensive picture of how the bacterial metalloregulatory transcriptional repressor Zur achieves its exquisite sensitivity to zinc concentrations. Commensal microbes, whether they are beneficial or pathogenic, are sensitive to host processes that starve or swamp the prokaryote with large fluctuations in local zinc concentration. To understand how microorganisms coordinate a dynamic response to changes in zinc availability at the molecular level, we evaluated the molecular mechanism of the zinc-sensing zinc uptake regulator (Zur) protein at each of the known Zur-regulated genes in Escherichia coli. We solved the structure of zinc-loaded Zur bound to the PznuABC promoter and show that this metalloregulatory protein represses gene expression by a highly cooperative binding of two adjacent dimers to essentially encircle the core element of each of the Zur-regulated promoters. Cooperativity in these protein-DNA interactions requires a pair of asymmetric salt bridges between Arg52 and Asp49′ that connect otherwise independent dimers. Analysis of the protein-DNA interface led to the discovery of a new member of the Zur-regulon: pliG. We demonstrate this gene is directly regulated by Zur in a zinc responsive manner. The pliG promoter forms stable complexes with either one or two Zur dimers with significantly less protein-DNA cooperativity than observed at other Zur regulon promoters. Comparison of the in vitro Zur-DNA binding affinity at each of four Zur-regulon promoters reveals ca. 10,000-fold variation Zur-DNA binding constants. The degree of Zur repression observed in vivo by comparison of transcript copy number in wild-type and Δzur strains parallels this trend spanning a 100-fold difference. We conclude that the number of ferric uptake regulator (Fur)-family dimers that bind within any given promoter varies significantly and that the thermodynamic profile of the Zur-DNA interactions directly correlates with the physiological response at different promoters. Zinc is an essential nutrient for most organisms, with the Zn2+ ion performing numerous structural, regulatory, and catalytic roles in a range of proteins. However, this nutrient can neither be synthesized nor degraded and individual cells need to be able to maintain steady levels of zinc in the face of near-zero or excessively high environmental concentrations. Here we look at how the bacterium E. coli does this, by examining the structure and function of Zur, a transcriptional repressor that is exquisitely sensitive to Zn2+ concentration. Although the structures of related Zur proteins on their own are known, here we show how E. coli protein binds to DNA and explain its extreme sensitivity and specificity (it responds to Zn2+ concentrations in the femtomolar range). Our results reveal how the Zur protein switches on and off a bank of bacterial genes that control zinc physiology. Extensive analysis of protein-DNA interactions revealed both a surprising degree of cooperativity and an extremely large range of Zur-DNA binding affinities across the set of genes known as the Zur regulon. The results provide strong support for a controversial idea that the thermodynamics of an ensemble of protein-DNA interactions play a dominant role in the physiological control of gene regulation networks. In addition, we have used our structural and thermodynamic analysis to identify a novel gene target of Zur regulation.
Collapse
Affiliation(s)
- Benjamin A. Gilston
- Department of Chemistry and The Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
| | - Suning Wang
- Department of Chemistry and The Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
| | - Mason D. Marcus
- Department of Chemistry and The Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
| | - Mónica A. Canalizo-Hernández
- Department of Chemistry and The Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
| | - Elden P. Swindell
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Yi Xue
- Department of Chemistry and The Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
| | - Alfonso Mondragón
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- * E-mail: (AM); (TVO)
| | - Thomas V. O'Halloran
- Department of Chemistry and The Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- * E-mail: (AM); (TVO)
| |
Collapse
|
29
|
Peng Y, Lu J, Wong JJW, Edwards RA, Frost LS, Mark Glover JN. Mechanistic basis of plasmid-specific DNA binding of the F plasmid regulatory protein, TraM. J Mol Biol 2014; 426:3783-3795. [PMID: 25284757 DOI: 10.1016/j.jmb.2014.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/04/2014] [Accepted: 09/11/2014] [Indexed: 11/18/2022]
Abstract
The conjugative transfer of bacterial F plasmids relies on TraM, a plasmid-encoded protein that recognizes multiple DNA sites to recruit the plasmid to the conjugative pore. In spite of the high degree of amino acid sequence conservation between TraM proteins, many of these proteins have markedly different DNA binding specificities that ensure the selective recruitment of a plasmid to its cognate pore. Here we present the structure of F TraM RHH (ribbon-helix-helix) domain bound to its sbmA site. The structure indicates that a pair of TraM tetramers cooperatively binds an underwound sbmA site containing 12 base pairs per turn. The sbmA is composed of 4 copies of a 5-base-pair motif, each of which is recognized by an RHH domain. The structure reveals that a single conservative amino acid difference in the RHH β-ribbon between F and pED208 TraM changes its specificity for its cognate 5-base-pair sequence motif. Specificity is also dictated by the positioning of 2-base-pair spacer elements within sbmA; in F sbmA, the spacers are positioned between motifs 1 and 2 and between motifs 3 and 4, whereas in pED208 sbmA, there is a single spacer between motifs 2 and 3. We also demonstrate that a pair of F TraM tetramers can cooperatively bind its sbmC site with an affinity similar to that of sbmA in spite of a lack of sequence similarity between these DNA elements. These results provide a basis for the prediction of the DNA binding properties of the family of TraM proteins.
Collapse
Affiliation(s)
- Yun Peng
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Jun Lu
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Joyce J W Wong
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ross A Edwards
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Laura S Frost
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| |
Collapse
|
30
|
Goessweiner-Mohr N, Eder M, Hofer G, Fercher C, Arends K, Birner-Gruenberger R, Grohmann E, Keller W. Structure of the double-stranded DNA-binding type IV secretion protein TraN from Enterococcus. ACTA ACUST UNITED AC 2014; 70:2376-89. [PMID: 25195751 DOI: 10.1107/s1399004714014187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/17/2014] [Indexed: 11/10/2022]
Abstract
Conjugative transfer through type IV secretion multiprotein complexes is the most important means of spreading antimicrobial resistance. Plasmid pIP501, frequently found in clinical Enterococcus faecalis and Enterococcus faecium isolates, is the first Gram-positive (G+) conjugative plasmid for which self-transfer to Gram-negative (G-) bacteria has been demonstrated. The pIP501-encoded type IV secretion system (T4SS) protein TraN localizes to the cytoplasm and shows specific DNA binding. The specific DNA-binding site upstream of the pIP501 origin of transfer (oriT) was identified by a novel footprinting technique based on exonuclease digestion and sequencing, suggesting TraN to be an accessory protein of the pIP501 relaxase TraA. The structure of TraN was determined to 1.35 Å resolution. It revealed an internal dimer fold with antiparallel β-sheets in the centre and a helix-turn-helix (HTH) motif at both ends. Surprisingly, structurally related proteins (excisionases from T4SSs of G+ conjugative transposons and transcriptional regulators of the MerR family) resembling only one half of TraN were found. Thus, TraN may be involved in the early steps of pIP501 transfer, possibly triggering pIP501 TraA relaxase activity by recruiting the relaxosome to the assembled mating pore.
Collapse
Affiliation(s)
| | - Markus Eder
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/III, 8010 Graz, Austria
| | - Gerhard Hofer
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/III, 8010 Graz, Austria
| | - Christian Fercher
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/III, 8010 Graz, Austria
| | - Karsten Arends
- Robert Koch Institute Berlin, Nordufer 20, 13353 Berlin, Germany
| | - Ruth Birner-Gruenberger
- Institute for Pathology and Omics Center Graz, Medical University Graz, Stiftingtalstrasse 24, 8010 Graz, Austria
| | - Elisabeth Grohmann
- Division of Infectious Diseases, University Medical Center Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Walter Keller
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/III, 8010 Graz, Austria
| |
Collapse
|
31
|
Common requirement for the relaxosome of plasmid R1 in multiple activities of the conjugative type IV secretion system. J Bacteriol 2014; 196:2108-21. [PMID: 24682328 DOI: 10.1128/jb.00045-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Macromolecular transport by bacterial type IV secretion systems involves regulated uptake of (nucleo)protein complexes by the cell envelope-spanning transport channel. A coupling protein receptor is believed to recognize the specific proteins destined for transfer, but the steps initiating their translocation remain unknown. Here, we investigate the contribution of a complex of transfer initiation proteins, the relaxosome, of plasmid R1 to translocation of competing transferable substrates from mobilizable plasmids ColE1 and CloDF13 or the bacteriophage R17. We found that not only does the R1 translocation machinery engage the R1 relaxosome during conjugative self-transfer and during infection by R17 phage but it is also activated by its cognate relaxosome to mediate the export of an alternative plasmid. Transporter activity was optimized by the R1 relaxosome even when this complex itself could not be transferred, i.e., when the N-terminal activation domain (amino acids 1 to 992 [N1-992]) of TraI was present without the C-terminal conjugative helicase domain. We propose that the functional dependence of the transfer machinery on the R1 relaxosome for initiating translocation ensures that dissemination of heterologous plasmids does not occur at the expense of self-transfer.
Collapse
|
32
|
Redzej A, Ilangovan A, Lang S, Gruber CJ, Topf M, Zangger K, Zechner EL, Waksman G. Structure of a translocation signal domain mediating conjugative transfer by type IV secretion systems. Mol Microbiol 2013; 89:324-33. [PMID: 23710762 PMCID: PMC3912908 DOI: 10.1111/mmi.12275] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2013] [Indexed: 01/26/2023]
Abstract
Relaxases are proteins responsible for the transfer of plasmid and chromosomal DNA from one bacterium to another during conjugation. They covalently react with a specific phosphodiester bond within DNA origin of transfer sequences, forming a nucleo-protein complex which is subsequently recruited for transport by a plasmid-encoded type IV secretion system. In previous work we identified the targeting translocation signals presented by the conjugative relaxase TraI of plasmid R1. Here we report the structure of TraI translocation signal TSA. In contrast to known translocation signals we show that TSA is an independent folding unit and thus forms a bona fide structural domain. This domain can be further divided into three subdomains with striking structural homology with helicase subdomains of the SF1B family. We also show that TSA is part of a larger vestigial helicase domain which has lost its helicase activity but not its single-stranded DNA binding capability. Finally, we further delineate the binding site responsible for translocation activity of TSA by targeting single residues for mutations. Overall, this study provides the first evidence that translocation signals can be part of larger structural scaffolds, overlapping with translocation-independent activities.
Collapse
Affiliation(s)
- Adam Redzej
- Institute of Structural and Molecular Biology, UCL and BirkbeckMalet Street, London, WC1E 7HX, UK
| | - Aravindan Ilangovan
- Institute of Structural and Molecular Biology, UCL and BirkbeckMalet Street, London, WC1E 7HX, UK
| | - Silvia Lang
- University of Graz, Institute of Molecular BiosciencesHumboldtstrasse 50, 8010, Graz, Austria
| | - Christian J Gruber
- University of Graz, Institute of Molecular BiosciencesHumboldtstrasse 50, 8010, Graz, Austria
| | - Maya Topf
- Institute of Structural and Molecular Biology, UCL and BirkbeckMalet Street, London, WC1E 7HX, UK
| | - Klaus Zangger
- University of Graz, Institute of ChemistryHeinrichstrasse 28, 8010, Graz, Austria
| | - Ellen L Zechner
- University of Graz, Institute of Molecular BiosciencesHumboldtstrasse 50, 8010, Graz, Austria
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, UCL and BirkbeckMalet Street, London, WC1E 7HX, UK
| |
Collapse
|
33
|
Structure and function of AvtR, a novel transcriptional regulator from a hyperthermophilic archaeal lipothrixvirus. J Virol 2012; 87:124-36. [PMID: 23055559 DOI: 10.1128/jvi.01306-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structural and functional analysis of the protein AvtR encoded by Acidianus filamentous virus 6 (AFV6), which infects the archaeal genus Acidianus, revealed its unusual structure and involvement in transcriptional regulation of several viral genes. The crystal structure of AvtR (100 amino acids) at 2.6-Å resolution shows that it is constituted of a repeated ribbon-helix-helix (RHH) motif, which is found in a large family of bacterial transcriptional regulators. The known RHH proteins form dimers that interact with DNA using their ribbon to create a central β-sheet. The repeated RHH motifs of AvtR superpose well on such dimers, but its central sheet contains an extra strand, suggesting either conformational changes or a different mode of DNA binding. Systematic evolution of ligands by exponential enrichment (SELEX) experiments combined with systematic mutational and computational analysis of the predicted site revealed 8 potential AvtR targets in the AFV6 genome. Two of these targets were studied in detail, and the complex role of AvtR in the transcriptional regulation of viral genes was established. Repressing transcription from its own gene, gp29, AvtR can also act as an activator of another gene, gp30. Its binding sites are distant from both genes' TATA boxes, and the mechanism of AvtR-dependent regulation appears to include protein oligomerization starting from the protein's initial binding sites. Many RHH transcriptional regulators of archaeal viruses could share this regulatory mechanism.
Collapse
|
34
|
Wong JJW, Lu J, Glover JNM. Relaxosome function and conjugation regulation in F-like plasmids - a structural biology perspective. Mol Microbiol 2012; 85:602-17. [PMID: 22788760 DOI: 10.1111/j.1365-2958.2012.08131.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The tra operon of the prototypical F plasmid and its relatives enables transfer of a copy of the plasmid to other bacterial cells via the process of conjugation. Tra proteins assemble to form the transferosome, the transmembrane pore through which the DNA is transferred, and the relaxosome, a complex of DNA-binding proteins at the origin of DNA transfer. F-like plasmid conjugation is characterized by a high degree of plasmid specificity in the interactions of tra components, and is tightly regulated at the transcriptional, translational and post-translational levels. Over the past decade, X-ray crystallography of conjugative components has yielded insights into both specificity and regulatory mechanisms. Conjugation is repressed by FinO, an RNA chaperone which increases the lifetime of the small RNA, FinP. Recent work has resulted in a detailed model of FinO/FinP interactions and the discovery of a family of FinO-like RNA chaperones. Relaxosome components include TraI, a relaxase/helicase, and TraM, which mediates signalling between the transferosome and relaxosome for transfer initiation. The structures of TraI and TraM bound to oriT DNA reveal the basis of specific recognition of DNA for their cognate plasmid. Specificity also exists in TraI and TraM interactions with the transferosome protein TraD.
Collapse
Affiliation(s)
- Joyce J W Wong
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | | | | |
Collapse
|
35
|
Meysman P, Marchal K, Engelen K. DNA structural properties in the classification of genomic transcription regulation elements. Bioinform Biol Insights 2012; 6:155-68. [PMID: 22837642 PMCID: PMC3399529 DOI: 10.4137/bbi.s9426] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
It has been long known that DNA molecules encode information at various levels. The most basic level comprises the base sequence itself and is primarily important for the encoding of proteins and direct base recognition by DNA-binding proteins. A more elusive level consists of the local structural properties of the DNA molecule wherein the DNA sequence only plays an indirect supportive role. These properties are nevertheless an important factor in a large number of biomolecular processes and can be considered as informative signals for the presence of a variety of genomic features. Several recent studies have unequivocally shown the benefit of relying on such DNA properties for modeling and predicting genomic features as diverse as transcription start sites, transcription factor binding sites, or nucleosome occupancy. This review is meant to provide an overview of the key aspects of these DNA conformational and physicochemical properties. To illustrate their potential added value compared to relying solely on the nucleotide sequence in genomics studies, we discuss their application in research on transcription regulation mechanisms as representative cases.
Collapse
Affiliation(s)
- Pieter Meysman
- Department of Molecular and Microbial Systems, KULeuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | | | | |
Collapse
|
36
|
Zechner EL, Lang S, Schildbach JF. Assembly and mechanisms of bacterial type IV secretion machines. Philos Trans R Soc Lond B Biol Sci 2012; 367:1073-87. [PMID: 22411979 PMCID: PMC3297438 DOI: 10.1098/rstb.2011.0207] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Type IV secretion occurs across a wide range of prokaryotic cell envelopes: Gram-negative, Gram-positive, cell wall-less bacteria and some archaea. This diversity is reflected in the heterogeneity of components that constitute the secretion machines. Macromolecules are secreted in an ATP-dependent process using an envelope-spanning multi-protein channel. Similar to the type III systems, this apparatus extends beyond the cell surface as a pilus structure important for direct contact and penetration of the recipient cell surface. Type IV systems are remarkably versatile in that they mobilize a broad range of substrates, including single proteins, protein complexes, DNA and nucleoprotein complexes, across the cell envelope. These machines have broad clinical significance not only for delivering bacterial toxins or effector proteins directly into targeted host cells, but also for direct involvement in phenomena such as biofilm formation and the rapid horizontal spread of antibiotic resistance genes among the microbial community.
Collapse
Affiliation(s)
- Ellen L Zechner
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/I, Graz 8010, Austria.
| | | | | |
Collapse
|
37
|
Varsaki A, Lamb HK, Eleftheriadou O, Vandera E, Thompson P, Moncalián G, de la Cruz F, Hawkins AR, Drainas C. Interaction between relaxase MbeA and accessory protein MbeC of the conjugally mobilizable plasmid ColE1. FEBS Lett 2012; 586:675-9. [DOI: 10.1016/j.febslet.2012.01.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/24/2012] [Accepted: 01/27/2012] [Indexed: 02/01/2023]
|
38
|
Lang S, Zechner EL. General requirements for protein secretion by the F-like conjugation system R1. Plasmid 2012; 67:128-38. [PMID: 22248924 PMCID: PMC3338209 DOI: 10.1016/j.plasmid.2011.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 12/28/2011] [Accepted: 12/29/2011] [Indexed: 11/27/2022]
Abstract
Bacterial conjugation disseminates genes among bacteria via a process requiring direct cell contact. The cell envelope spanning secretion apparatus involved belongs to the type IV family of bacterial secretion systems, which transport protein as well as nucleoprotein substrates. This study aims to understand mechanisms leading to the initiation of type IV secretion using conjugative plasmid paradigm R1. We analyze the general requirements for plasmid encoded conjugation proteins and DNA sequence within the origin of transfer (oriT) for protein secretion activity using a Cre recombinase reporter system. We find that similar to conjugative plasmid DNA strand transfer, activation of the R1 system for protein secretion depends on binding interactions between the multimeric, ATP-binding coupling protein and the R1 relaxosome including an intact oriT. Evidence for DNA independent protein secretion was not found.
Collapse
Affiliation(s)
- Silvia Lang
- University of Graz, Institute of Molecular Biosciences, Humboldtstrasse 50/I, 8010 Graz, Austria
| | | |
Collapse
|
39
|
Lang S, Kirchberger PC, Gruber CJ, Redzej A, Raffl S, Zellnig G, Zangger K, Zechner EL. An activation domain of plasmid R1 TraI protein delineates stages of gene transfer initiation. Mol Microbiol 2011; 82:1071-85. [PMID: 22066957 PMCID: PMC3245843 DOI: 10.1111/j.1365-2958.2011.07872.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacterial conjugation is a form of type IV secretion that transports protein and DNA to recipient cells. Specific bacteriophage exploit the conjugative pili and cell envelope spanning protein machinery of these systems to invade bacterial cells. Infection by phage R17 requires F-like pili and coupling protein TraD, which gates the cytoplasmic entrance of the secretion channel. Here we investigate the role of TraD in R17 nucleoprotein uptake and find parallels to secretion mechanisms. The relaxosome of IncFII plasmid R1 is required. A ternary complex of plasmid oriT, TraD and a novel activation domain within the N-terminal 992 residues of TraI contributes a key mechanism involving relaxase-associated properties of TraI, protein interaction and the TraD ATPase. Helicase-associated activities of TraI are dispensable. These findings distinguish for the first time specific protein domains and complexes that process extracellular signals into distinct activation stages in the type IV initiation pathway. The study also provided insights into the evolutionary interplay of phage and the plasmids they exploit. Related plasmid F adapted to R17 independently of TraI. It follows that selection for phage resistance drives not only variation in TraA pilins but diversifies TraD and its binding partners in a plasmid-specific manner.
Collapse
Affiliation(s)
- Silvia Lang
- University of Graz, Institute of Molecular Biosciences, Humboldtstrasse 50, 8010 Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|