1
|
Viswanathan G, Hughes EJ, Gan M, Xet-Mull AM, Alexander G, Swain-Lenz D, Liu Q, Tobin DM. Granuloma Dual RNA-Seq Reveals Composite Transcriptional Programs Driven by Neutrophils and Necrosis within Tuberculous Granulomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.26.650783. [PMID: 40391323 PMCID: PMC12087985 DOI: 10.1101/2025.04.26.650783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Mycobacterial granulomas lie at the center of tuberculosis (TB) pathogenesis and represent a unique niche where infecting bacteria survive in nutrient-restricted conditions and in the face of a host immune response. The granuloma's necrotic core, where bacteria reside extracellularly in humans, is difficult to assess in many experimentally tractable models. Here, using necrotic mycobacterial granulomas in adult zebrafish, we develop dual RNA-seq across different host genotypes to identify the transcriptional alterations that enable bacteria to survive within this key microenvironment. Through pharmacological and genetic interventions, we find that neutrophils within mature, necrotic granulomas promote bacterial growth, in part through upregulation of the bacterial devR regulon. We identify conserved suites of bacterial transcriptional programs induced only in the context of this unique necrotic extracellular niche, including bacterial modules related to K + transport and rpf genes. Analysis of Mycobacterium tuberculosis strains across diverse lineages and human populations suggests that granuloma-specific transcriptional modules are targets for bacterial genetic adaptation in the context of human infection. Summary sentence Dual host-pathogen transcriptional profiling defines granuloma-specific programs during mycobacterial infection.
Collapse
|
2
|
Carey CJ, Duggan N, Drabinska J, McClean S. Harnessing hypoxia: bacterial adaptation and chronic infection in cystic fibrosis. FEMS Microbiol Rev 2025; 49:fuaf018. [PMID: 40312783 PMCID: PMC12071387 DOI: 10.1093/femsre/fuaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 04/04/2025] [Accepted: 04/29/2025] [Indexed: 05/03/2025] Open
Abstract
The exquisite ability of bacteria to adapt to their environment is essential for their capacity to colonize hostile niches. In the cystic fibrosis (CF) lung, hypoxia is among several environmental stresses that opportunistic pathogens must overcome to persist and chronically colonize. Although the role of hypoxia in the host has been widely reviewed, the impact of hypoxia on bacterial pathogens has not yet been studied extensively. This review considers the bacterial oxygen-sensing mechanisms in three species that effectively colonize the lungs of people with CF, namely Pseudomonas aeruginosa, Burkholderia cepacia complex, and Mycobacterium abscessus and draws parallels between their three proposed oxygen-sensing two-component systems: BfiSR, FixLJ, and DosRS, respectively. Moreover, each species expresses regulons that respond to hypoxia: Anr, Lxa, and DosR, and encode multiple proteins that share similar homologies and function. Many adaptations that these pathogens undergo during chronic infection, including antibiotic resistance, protease expression, or changes in motility, have parallels in the responses of the respective species to hypoxia. It is likely that exposure to hypoxia in their environmental habitats predispose these pathogens to colonization of hypoxic niches, arming them with mechanisms than enable their evasion of the immune system and establish chronic infections. Overcoming hypoxia presents a new target for therapeutic options against chronic lung infections.
Collapse
Affiliation(s)
- Ciarán J Carey
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Niamh Duggan
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Joanna Drabinska
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Siobhán McClean
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
3
|
Płocińska R, Struś K, Korycka-Machała M, Płociński P, Kuzioła M, Żaczek A, Słomka M, Dziadek J. MnoSR removal in Mycobacterium smegmatis triggers broad transcriptional response to 1,3-propanediol and glucose as sole carbon sources. Front Cell Infect Microbiol 2024; 14:1427829. [PMID: 39113823 PMCID: PMC11303327 DOI: 10.3389/fcimb.2024.1427829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction The two-component signal transduction systems play an essential role in the adaptation of bacteria to changing environmental conditions. One of them is the MnoSR system involved in the regulation of methylotrophic metabolism in M. smegmatis. Methods Mycobacterium smegmatis mutant strains ΔmnoS, ΔmnoR and ΔmnoS/R lacking functional mnoS, mnoR and both genes were generated using a homologous recombination approach. MnoR recombinant protein was purified by affinity column chromatography. The present study employs molecular biology techniques: cloning strategies, global RNA sequencing, qRT-PCR, EMSA, Microscale thermophoresis, and bioinformatics analysis. Results and discussion The ∆mnoS, ∆mnoR, and ∆mnoS/R mutant strains were generated and cultured in the presence of defined carbon sources. Growth curve analysis confirmed that inactivation of the MnoSR impairs the ability of M. smegmatis cells to use alcohols such as 1,3-propanediol and ethanol but improves the bacterial growth on ethylene glycol, xylitol, and glycerol. The total RNA sequencing method was employed to understand the importance of MnoSR in the global responses of mycobacteria to limited carbon access and in carbon-rich conditions. The loss of MnoSR significantly affected carbon utilization in the case of mycobacteria cultured on glucose or 1,3-propanediol as sole carbon sources as it influenced the expression of multiple metabolic pathways. The numerous transcriptional changes could not be linked to the presence of evident MnoR DNA-binding sites within the promotor regions for the genes outside of the mno operon. This was confirmed by EMSA and microscale thermophoresis with mutated MnoR binding consensus region. Our comprehensive analysis highlights the system's vital role in metabolic adaptability, providing insights into its potential impact on the environmental survival of mycobacteria.
Collapse
Affiliation(s)
- Renata Płocińska
- Institute of Medical Biology of the Polish Academy of Sciences, Łódź, Poland
| | - Katarzyna Struś
- Institute of Medical Biology of the Polish Academy of Sciences, Łódź, Poland
| | | | - Przemysław Płociński
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódz, Łódź, Poland
| | - Magdalena Kuzioła
- Institute of Medical Biology of the Polish Academy of Sciences, Łódź, Poland
- BioMedChem Doctoral School of the UL and Łódź Institutes of the Polish Academy of Sciences, Łódź, Poland
| | - Anna Żaczek
- Department of Microbiology, College of Medical Sciences, University of Rzeszów, Rzeszów, Poland
| | - Marcin Słomka
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Jarosław Dziadek
- Institute of Medical Biology of the Polish Academy of Sciences, Łódź, Poland
| |
Collapse
|
4
|
Kumar K, Dutta T. Transcriptional activation of the Mycobacterium tuberculosis virulence-associated small RNA MTS1338 by the response regulators DosR and PhoP. FEBS Lett 2024; 598:1034-1044. [PMID: 38639734 DOI: 10.1002/1873-3468.14882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/20/2024]
Abstract
MTS1338, a distinctive small RNA in pathogenic mycobacteria, plays a crucial role in host-pathogen interactions during infection. Mycobacterial cells encounter heterogeneous stresses in macrophages, which highly upregulate MTS1338. A dormancy regulatory factor DosR regulates the intracellular abundance of MTS1338. Herein, we investigated the interplay of DosR and a low pH-inducible gene regulator PhoP binding to the MTS1338 promoter. We identified that DosR strongly binds to two regions upstream of the MTS1338 gene. The proximal region possesses a threefold higher affinity than the distal site, but the presence of both regions increased the affinity for DosR by > 10-fold. PhoP did not bind to the MTS1338 gene but binds to the DosR-bound MTS1338 gene, suggesting a concerted mechanism for MTS1338 expression.
Collapse
Affiliation(s)
- Krishan Kumar
- RNA Biology Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, India
| | - Tanmay Dutta
- RNA Biology Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, India
| |
Collapse
|
5
|
Kumar TA, Birua S, SharathChandra M, Mukherjee P, Singh S, Kaul G, Akhir A, Chopra S, Hirschi J, Singh A, Chakrapani H. An Arm-to-Disarm Strategy to Overcome Phenotypic AMR in Mycobacterium tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.23.533925. [PMID: 38260651 PMCID: PMC10802243 DOI: 10.1101/2023.03.23.533925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Most front-line tuberculosis drugs are ineffective against hypoxic non-replicating drug-tolerant Mycobacterium tuberculosis (Mtb) contributing to phenotypic antimicrobial resistance (AMR). This is largely due to the poor permeability in the thick and waxy cell wall of persister cells, leading to diminished drug accumulation and reduced drug-target engagement. Here, using an "arm-to-disarm" prodrug approach, we demonstrate that non-replicating Mtb persisters can be sensitized to Moxifloxacin (MXF), a front-line TB drug. We design and develop a series of nitroheteroaryl MXF prodrugs that are substrates for bacterial nitroreductases (NTR), a class of enzymes that are over-expressed in hypoxic Mtb. Enzymatic activation involves electron-transfer to the nitroheteroaryl compound followed by protonation via water that contributes to the rapid cleavage rate of the protective group by NTR to produce the active drug. Phenotypic and genotypic data are fully consistent with MXF-driven lethality of the prodrug in Mtb with the protective group being a relatively innocuous bystander. The prodrug increased intracellular concentrations of MXF than MXF alone and is more lethal than MXF in non-replicating persisters. Hence, arming drugs to improve permeability, accumulation and drug-target engagement is a new therapeutic paradigm to disarm phenotypic AMR.
Collapse
Affiliation(s)
- T. Anand Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Shalini Birua
- Division of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | | - Piyali Mukherjee
- Division of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Samsher Singh
- Division of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Grace Kaul
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Janakipuram Extension, Sitapur Road, Lucknow-226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abdul Akhir
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Janakipuram Extension, Sitapur Road, Lucknow-226031, Uttar Pradesh, India
| | - Sidharth Chopra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Janakipuram Extension, Sitapur Road, Lucknow-226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Amit Singh
- Division of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, India
| |
Collapse
|
6
|
Cui Y, Dang G, Wang H, Tang Y, Lv M, Liu S, Song N. DosR's multifaceted role on Mycobacterium bovis BCG revealed through multi-omics. Front Cell Infect Microbiol 2023; 13:1292864. [PMID: 38076461 PMCID: PMC10703047 DOI: 10.3389/fcimb.2023.1292864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an intracellular bacterium that causes a highly contagious and potentially lethal tuberculosis (TB) in humans. It can maintain a dormant TB infection within the host. DosR (dormancy survival regulator) (Rv3133c) has been recognized as one of the key transcriptional proteins regulating bacterial dormancy and participating in various metabolic processes. In this study, we extensively investigate the still not well-comprehended role and mechanism of DosR in Mycobacterium bovis (M. bovis) Bacillus Calmette-Guérin (BCG) through a combined omics analysis. Our study finds that deleting DosR significantly affects the transcriptional levels of 104 genes and 179 proteins. Targeted metabolomics data for amino acids indicate that DosR knockout significantly upregulates L-Aspartic acid and serine synthesis, while downregulating seven other amino acids, including L-histidine and lysine. This suggests that DosR regulates amino acid synthesis and metabolism. Taken together, these findings provide molecular and metabolic bases for DosR effects, suggesting that DosR may be a novel regulatory target.
Collapse
Affiliation(s)
- Yingying Cui
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guanghui Dang
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hui Wang
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yiyi Tang
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mingyue Lv
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Siguo Liu
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ningning Song
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- School of Life Science and Technology, Weifang Medical University, Weifang, China
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, Weifang, China
| |
Collapse
|
7
|
Banerjee U, Chedere A, Padaki R, Mohan A, Sambaturu N, Singh A, Chandra N. PathTracer Comprehensively Identifies Hypoxia-Induced Dormancy Adaptations in Mycobacterium tuberculosis. J Chem Inf Model 2023; 63:6156-6167. [PMID: 37756209 DOI: 10.1021/acs.jcim.3c00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Mining large-scale data to discover biologically relevant information remains a challenge despite the rapid development of bioinformatics tools. Here, we have developed a new tool, PathTracer, to identify biologically relevant information flows by mining genome-wide protein-protein interaction networks following integration of gene expression data. PathTracer successfully mines interactions between genes and traces the most perturbed paths of perceived activities under the conditions of the study. We further demonstrated the utility of this tool by identifying adaptation mechanisms of hypoxia-induced dormancy in Mycobacterium tuberculosis (Mtb).
Collapse
Affiliation(s)
- Ushashi Banerjee
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Adithya Chedere
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Raksha Padaki
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Abhilash Mohan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Narmada Sambaturu
- IISc Mathematics Initiative, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Amit Singh
- Center for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
- IISc Mathematics Initiative, Indian Institute of Science, Bangalore 560012, Karnataka, India
- BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
8
|
Cui Y, Dang G, Wang H, Tang Y, Lv M, Zang X, Cai Z, Cui Z, Cao J, Liu S, Song N. DosR Regulates the Transcription of the Arginine Biosynthesis Gene Cluster by Binding to the Regulatory Sequences in Mycobacterium bovis Bacille Calmette-Guerin. DNA Cell Biol 2022; 41:1063-1074. [DOI: 10.1089/dna.2022.0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Yingying Cui
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P.R. China
| | - Guanghui Dang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P.R. China
| | - Hui Wang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P.R. China
| | - Yiyi Tang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P.R. China
| | - Mingyue Lv
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P.R. China
| | - Xinxin Zang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P.R. China
| | - Zhuming Cai
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P.R. China
| | - Ziyin Cui
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P.R. China
| | - Jun Cao
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P.R. China
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P.R. China
| | - Ningning Song
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P.R. China
- Bioengineering Department, School of Life Science and Technology, Weifang Medical University, Weifang, P.R. China
| |
Collapse
|
9
|
Novel benzoic thiazolidin-4-one derivatives targeting DevR/DosR dormancy regulator of Mycobacterium tuberculosis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Functional insights into Mycobacterium tuberculosis DevR-dependent transcriptional machinery utilizing Escherichia coli. Biochem J 2021; 478:3079-3098. [PMID: 34350952 DOI: 10.1042/bcj20210268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022]
Abstract
DevR/DosR response regulator is believed to participate in virulence, dormancy adaptation and antibiotic tolerance mechanisms of Mycobacterium tuberculosis by regulating the expression of the dormancy regulon. We have previously shown that the interaction of DevR with RNA polymerase is essential for the expression of DevR-regulated genes. Here, we developed a M. tuberculosis-specific in vivo transcription system to enrich our understanding of DevR-RNA polymerase interaction. This in vivo assay involves co-transforming E. coli with two plasmids that express α, β, β' and σA subunits of M. tuberculosis RNA polymerase and a third plasmid that harbors a DevR expression cassette and a GFP reporter gene under the DevR-regulated fdxA promoter. We show that DevR-dependent transcription is sponsored exclusively by M. tuberculosis RNA polymerase and regulated by α and σA subunits of M. tuberculosis RNA polymerase. Using this E. coli triple plasmid system to express mutant variants of M. tuberculosis RNA polymerase, we identified E280 residue in C-terminal domain of α and K513 and R515 residues of σA to participate in DevR-dependent transcription. In silico modeling of a ternary complex of DevR, σA domain 4 and fdxA promoter suggest an interaction of Q505, R515 and K513 residues of σA with E178 and D172 residues of DevR and E471 of σA, respectively. These findings provide us with new insights into the interactions between DevR and RNA polymerase of M. tuberculosis which can be targeted for intercepting DevR function. Finally, we demonstrate the utility of this system for screening of anti-DevR compounds.
Collapse
|
11
|
Robbe-Saule M, Foulon M, Poncin I, Esnault L, Varet H, Legendre R, Besnard A, Grzegorzewicz AE, Jackson M, Canaan S, Marsollier L, Marion E. Transcriptional adaptation of Mycobacterium ulcerans in an original mouse model: New insights into the regulation of mycolactone. Virulence 2021; 12:1438-1451. [PMID: 34107844 PMCID: PMC8204960 DOI: 10.1080/21505594.2021.1929749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Mycobacterium ulcerans is the causal agent of Buruli ulcer, a chronic infectious disease and the third most common mycobacterial disease worldwide. Without early treatment, M. ulcerans provokes massive skin ulcers, caused by the mycolactone toxin, its main virulence factor. However, spontaneous healing may occur in Buruli ulcer patients several months or years after the disease onset. We have shown, in an original mouse model, that bacterial load remains high and viable in spontaneously healed tissues, with a switch of M. ulcerans to low levels of mycolactone production, adapting its strategy to survive in such a hostile environment. This original model offers the possibility to investigate the regulation of mycolactone production, by using an RNA-seq strategy to study bacterial adaptation during mouse infection. Pathway analysis and characterization of the tissue environment showed that the bacillus adapted to its new environment by modifying its metabolic activity and switching nutrient sources. Thus, M. ulcerans ensures its survival in healing tissues by reducing its secondary metabolism, leading to an inhibition of mycolactone synthesis. These findings shed new light on mycolactone regulation and pave the way for new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Hugo Varet
- Plate-forme Transcriptome Et Epigenome, Biomics, Centre De Ressources Et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France.,Hub De Bioinformatique Et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Rachel Legendre
- Plate-forme Transcriptome Et Epigenome, Biomics, Centre De Ressources Et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France.,Hub De Bioinformatique Et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | | | - Anna E Grzegorzewicz
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States
| | | | | | | |
Collapse
|
12
|
Sharma D. Meet Our Editorial Board Member. Comb Chem High Throughput Screen 2020. [DOI: 10.2174/138620732309201127092910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Deepak Sharma
- Indian Institute of Technology Roorkee Roorkee 247667, India
| |
Collapse
|
13
|
Identification and in silico functional prediction of lineage-specific SNPs distributed in DosR-related proteins and resuscitation-promoting factor proteins of Mycobacterium tuberculosis. Heliyon 2020; 6:e05744. [PMID: 33364506 PMCID: PMC7753917 DOI: 10.1016/j.heliyon.2020.e05744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/21/2020] [Accepted: 12/11/2020] [Indexed: 11/23/2022] Open
Abstract
One-third of the world population is infected by Mycobacterium tuberculosis, which may persist in the latent or dormant state. Bacteria can shift to dormancy when encountering harsh conditions such as low oxygen, nutrient starvation, high acidity and host immune defenses. Genes related to the dormancy survival regulator (DosR) regulon are responsible for the inhibition of aerobic respiration and replication, which is required to enter dormancy. Conversely, resuscitation-promoting factor (rpf) proteins participate in reactivation from dormancy and the development of active tuberculosis (TB). Many DosR regulon and rpf proteins are immunodominant T cell antigens that are highly expressed in latent TB infection. They could serve as TB vaccine candidates and be used for diagnostic development. We explored the genetic polymorphisms of 50 DosR-related genes and 5 rpf genes among 1,170 previously sequenced clinical M. tuberculosis genomes. Forty-three lineage- or sublineage-specific nonsynonymous single nucleotide polymorphisms (nsSNPs) were identified. Ten nsSNPs were specific to all Mtb isolates belonging to lineage 1 (L1). Two common sublineages, the Beijing family (L2.2) and EAI2 (L1.2.1), differed at as many as 26 lineage- or sublineage-specific SNPs. DosR regulon genes related to membrane proteins and the rpf family possessed mean dN/dS ratios greater than one, suggesting that they are under positive selection. Although the T cell epitope regions of DosR-related and rpf antigens were quite conserved, we found that the epitopes in L1 had higher rates of genetic polymorphisms than the other lineages. Some mutations in immunogenic epitopes of the antigens were specific to particular M. tuberculosis lineages. Therefore, the genetic diversity of the DosR regulon and rpf proteins might impact the adaptation of M. tuberculosis to the dormant state and the immunogenicity of latency antigens, which warrants further investigation.
Collapse
|
14
|
Sharma A, Chattopadhyay G, Chopra P, Bhasin M, Thakur C, Agarwal S, Ahmed S, Chandra N, Varadarajan R, Singh R. VapC21 Toxin Contributes to Drug-Tolerance and Interacts With Non-cognate VapB32 Antitoxin in Mycobacterium tuberculosis. Front Microbiol 2020; 11:2037. [PMID: 33042034 PMCID: PMC7517352 DOI: 10.3389/fmicb.2020.02037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
The prokaryotic ubiquitous Toxin-antitoxin (TA) modules encodes for a stable toxin and an unstable antitoxin. VapBC subfamily is the most abundant Type II TA system in M. tuberculosis genome. However, the exact physiological role for most of these Type II TA systems are still unknown. Here, we have comprehensively characterized the VapBC21 TA locus from M. tuberculosis. The overexpression of VapC21 inhibited mycobacterial growth in a bacteriostatic manner and as expected, growth inhibition was abrogated upon co-expression of the cognate antitoxin, VapB21. We observed that the deletion of vapC21 had no noticeable influence on the in vitro and in vivo growth of M. tuberculosis. Using co-expression and biophysical studies, we observed that in addition to VapB21, VapC21 is also able to interact with non-cognate antitoxin, VapB32. The strength of interaction varied between the cognate and non-cognate TA pairs. The overexpression of VapC21 resulted in differential expression of approximately 435 transcripts in M. tuberculosis. The transcriptional profiles obtained upon ectopic expression of VapC21 was similar to those reported in M. tuberculosis upon exposure to stress conditions such as nutrient starvation and enduring hypoxic response. Further, VapC21 overexpression also led to increased expression of WhiB7 regulon and bacterial tolerance to aminoglycosides and ethambutol. Taken together, these results indicate that a complex network of interactions exists between non-cognate TA pairs and VapC21 contributes to drug tolerance in vitro.
Collapse
Affiliation(s)
- Arun Sharma
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | | | - Pankaj Chopra
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Munmun Bhasin
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India
| | - Chandrani Thakur
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Sakshi Agarwal
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Shahbaz Ahmed
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India.,Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
15
|
Computational study of parameter sensitivity in DevR regulated gene expression. PLoS One 2020; 15:e0228967. [PMID: 32053690 PMCID: PMC7018068 DOI: 10.1371/journal.pone.0228967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/27/2020] [Indexed: 11/26/2022] Open
Abstract
The DevRS two-component system plays a pivotal role in signal transmission and downstream gene regulation in Mycobacterium tuberculosis. Under the hypoxic condition, phosphorylated DevR interacts with multiple binding sites at the promoter region of the target genes. In the present work, we carried out a detailed computational analysis to figure out the sensitivity of the kinetic parameters. The set of kinetic parameters takes care of the interaction among phosphorylated DevR and the binding sites, transcription and translation processes. We employ the method of stochastic optimization to quantitate the relevant kinetic parameter set necessary for DevR regulated gene expression. Measures of different correlation coefficients provide the relative ordering of kinetic parameters involved in gene regulation. Results obtained from correlation coefficients are further corroborated by sensitivity amplification.
Collapse
|
16
|
Salina EG, Grigorov A, Skvortsova Y, Majorov K, Bychenko O, Ostrik A, Logunova N, Ignatov D, Kaprelyants A, Apt A, Azhikina T. MTS1338, A Small Mycobacterium tuberculosis RNA, Regulates Transcriptional Shifts Consistent With Bacterial Adaptation for Entering Into Dormancy and Survival Within Host Macrophages. Front Cell Infect Microbiol 2019; 9:405. [PMID: 31850238 PMCID: PMC6901956 DOI: 10.3389/fcimb.2019.00405] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/12/2019] [Indexed: 11/13/2022] Open
Abstract
Small non-coding RNAs play a significant role in bacterial adaptation to changing environmental conditions. We investigated the dynamics of expression of MTS1338, a small non-coding RNA of Mycobacterium tuberculosis, in the mouse model in vivo, regulation of its expression in the infected macrophages, and the consequences of its overexpression in bacterial cultures. Here we demonstrate that MTS1338 significantly contributes to host-pathogen interactions. Activation of the host immune system triggered NO-inducible up-regulation of MTS1338 in macrophage-engulfed mycobacteria. Constitutive overexpression of MTS1338 in cultured mycobacteria improved their survival in vitro under low pH conditions. MTS1338 up-regulation launched a spectrum of shifts in the transcriptome profile similar to those reported for M. tuberculosis adaptation to hostile intra-macrophage environment. Using the RNA-seq approach, we demonstrate that gene expression changes accompanying MTS1338 overexpression indicate reduction in translational activity and bacterial growth. These changes indicate mycobacteria entering the dormant state. Taken together, our results suggest a direct involvement of this sRNA in the interplay between mycobacteria and the host immune system during infectious process.
Collapse
Affiliation(s)
- Elena G. Salina
- Laboratory of Biochemistry of Stresses in Microorganisms, Bach Institute of Biochemistry, Research Center of Biotechnology, Moscow, Russia
| | - Artem Grigorov
- Laboratory of Regulatory Transcriptomics, Department of Genomics and Postgenomic Technologies, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Yulia Skvortsova
- Laboratory of Regulatory Transcriptomics, Department of Genomics and Postgenomic Technologies, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Konstantin Majorov
- Laboratory for Immunogenetics, Department of Immunology, Central Institute for Tuberculosis, Moscow, Russia
| | - Oksana Bychenko
- Laboratory of Regulatory Transcriptomics, Department of Genomics and Postgenomic Technologies, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Albina Ostrik
- Laboratory of Biochemistry of Stresses in Microorganisms, Bach Institute of Biochemistry, Research Center of Biotechnology, Moscow, Russia
| | - Nadezhda Logunova
- Laboratory for Immunogenetics, Department of Immunology, Central Institute for Tuberculosis, Moscow, Russia
| | - Dmitriy Ignatov
- Laboratory of Regulatory Transcriptomics, Department of Genomics and Postgenomic Technologies, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Arseny Kaprelyants
- Laboratory of Biochemistry of Stresses in Microorganisms, Bach Institute of Biochemistry, Research Center of Biotechnology, Moscow, Russia
| | - Alexander Apt
- Laboratory for Immunogenetics, Department of Immunology, Central Institute for Tuberculosis, Moscow, Russia
| | - Tatyana Azhikina
- Laboratory of Regulatory Transcriptomics, Department of Genomics and Postgenomic Technologies, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
17
|
Taneja S, Dutta T. On a stake-out: Mycobacterial small RNA identification and regulation. Noncoding RNA Res 2019; 4:86-95. [PMID: 32083232 PMCID: PMC7017587 DOI: 10.1016/j.ncrna.2019.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/30/2019] [Accepted: 05/12/2019] [Indexed: 12/23/2022] Open
Abstract
Persistence of mycobacteria in the hostile environment of human macrophage is pivotal for its successful pathogenesis. Rapid adaptation to diverse stresses is the key aspect for their survival in the host cells. A range of heterogeneous mechanisms operate in bacteria to retaliate stress conditions. Small RNAs (sRNA) have been implicated in many of those mechanisms in either a single or multiple regulatory networks to post-transcriptionally modulate bacterial gene expression. Although small RNA profiling in mycobacteria by advanced technologies like deep sequencing, tilling microarray etc. have identified hundreds of sRNA, however, a handful of those small RNAs have been unearthed with precise regulatory mechanism. Extensive investigations on sRNA-mediated gene regulations in eubacteria like Escherichia coli revealed the existence of a plethora of distinctive sRNA mechanisms e.g. base pairing, protein sequestration, RNA decoy etc. Increasing studies on mycobacterial sRNA also discovered several eccentric mechanisms where sRNAs act at the posttranscriptional stage to either activate or repress target gene expression that lead to promote mycobacterial survival in stresses. Several intrinsic features like high GC content, absence of any homologue of abundant RNA chaperones, Hfq and ProQ, isolate sRNA mechanisms of mycobacteria from that of other bacteria. An insightful approach has been taken in this review to describe sRNA identification and its regulations in mycobacterial species especially in Mycobacterium tuberculosis.
Collapse
Key Words
- Anti-antisense
- Antisense
- Base pairing
- CDS, coding sequence
- Gene regulation by sRNA
- IGR, intergenic region
- ORF, open reading frame
- RBS, Ribosome binding site
- RNAP, RNA polymerase
- SD, Shine Dalgarno sequence
- Small RNAs
- TF, transcription factor
- TIR, translation initiation region
- UTR, untranslated region
- nt, nucleotide
- sRNA, small RNA
Collapse
Affiliation(s)
| | - Tanmay Dutta
- RNA Biology Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
18
|
Andama A, Somoskovi A, Mandel B, Bell D, Gutierrez C. Improving diagnosis and case management of patients with tuberculosis: A review of gaps, needs and potential solutions in accessing laboratory diagnostics. INFECTION GENETICS AND EVOLUTION 2019; 72:131-140. [DOI: 10.1016/j.meegid.2018.08.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/08/2018] [Accepted: 08/19/2018] [Indexed: 11/27/2022]
|
19
|
Song N, Li Z, Cui Z, Chen L, Cui Y, Dang G, Li Z, Li H, Liu S. The prominent alteration in transcriptome and metabolome of Mycobacterium bovis BCG str. Tokyo 172 induced by vitamin B 1. BMC Microbiol 2019; 19:104. [PMID: 31117936 PMCID: PMC6530141 DOI: 10.1186/s12866-019-1492-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 05/14/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Vitamin B1 (VB1) is a crucial dietary nutrient and essential cofactor for several key enzymes in the regulation of cellular and metabolic processes, and more importantly in the activation of immune system. To date, the precise role of VB1 in Mycobacterium tuberculosis remains to be fully understood. RESULTS In this study, the transcriptional and metabolic profiles of VB1-treated Mycobacterium. bovis BCG were analyzed by RNA-sequencing and LC-MS (Liquid chromatography coupled to mass spectrometry). The selection of BCG strain was based on its common physiological features shared with M. tuberculosis. The results of cell growth assays demonstrated that VB1 inhibited the BCG growth rate in vitro. Transcriptomic analysis revealed that the expression levels of genes related to fatty acid metabolism, cholesterol metabolism, glycolipid catabolism, DNA replication, protein translation, cell division and cell wall formation were significantly downregulated in M. bovis BCG treated with VB1. In addition, the metabolomics LC-MS data indicated that most of the amino acids and adenosine diphosphate (ADP) were decreased in M. bovis BCG strain after VB1 treatment. CONCLUSIONS This study provides the molecular and metabolic bases to understand the impacts of VB1 on M.bovis BCG.
Collapse
Affiliation(s)
- Ningning Song
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhaoli Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ziyin Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Liping Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yingying Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guanghui Dang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhe Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - He Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
20
|
Kumar A, Phulera S, Rizvi A, Sonawane PJ, Panwar HS, Banerjee S, Sahu A, Mande SC. Structural basis of hypoxic gene regulation by the Rv0081 transcription factor ofMycobacterium tuberculosis. FEBS Lett 2019; 593:982-995. [DOI: 10.1002/1873-3468.13375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Ashwani Kumar
- National Centre for Cell Science SP Pune University Campus Pune India
| | - Swastik Phulera
- National Centre for Cell Science SP Pune University Campus Pune India
| | - Arshad Rizvi
- Department of Biochemistry University of Hyderabad Hyderabad India
| | | | | | | | - Arvind Sahu
- National Centre for Cell Science SP Pune University Campus Pune India
| | - Shekhar C. Mande
- National Centre for Cell Science SP Pune University Campus Pune India
| |
Collapse
|
21
|
Sharma S, Kumari P, Vashist A, Kumar C, Nandi M, Tyagi JS. Cognate sensor kinase-independent activation of Mycobacterium tuberculosis response regulator DevR (DosR) by acetyl phosphate: implications in anti-mycobacterial drug design. Mol Microbiol 2019; 111:1182-1194. [PMID: 30589958 DOI: 10.1111/mmi.14196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2018] [Indexed: 11/30/2022]
Abstract
The DevRS/DosT two-component system is essential for mycobacterial survival under hypoxia, a prevailing stress within granulomas. DevR (also known as DosR) is activated by an inducing stimulus, such as hypoxia, through conventional phosphorylation by its cognate sensor kinases, DevS (also known as DosS) and DosT. Here, we show that the DevR regulon is activated by acetyl phosphate under 'non-inducing' aerobic conditions when Mycobacterium tuberculosis devS and dosT double deletion strain is cultured on acetate. Overexpression of phosphotransacetylase caused a perturbation of the acetate kinase-phosphotransacetylase pathway, a decrease in the concentration of acetyl phosphate and dampened the aerobic induction response in acetate-grown bacteria. The operation of two pathways of DevR activation, one through sensor kinases and the other by acetyl phosphate, was established by an analysis of wild-type DevS and phosphorylation-defective DevSH395Q mutant strains under conditions partially mimicking a granulomatous-like environment of acetate and hypoxia. Our findings reveal that DevR can be phosphorylated in vivo by acetyl phosphate. Importantly, we demonstrate that acetyl phosphate-dependent phosphorylation can occur in the absence of DevR's cognate kinases. Based on our findings, we conclude that anti-mycobacterial therapy should be targeted to DevR itself and not to DevS/DosT kinases.
Collapse
Affiliation(s)
- Saurabh Sharma
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Priyanka Kumari
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India.,Experimental Animal Facility, National JALMA Institute of Leprosy and other Mycobacterial Diseases, Tajganj, Agra, India
| | - Atul Vashist
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Chanchal Kumar
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Malobi Nandi
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India.,Amity Institute of Biotechnology, Amity University, Haryana, India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| |
Collapse
|
22
|
Lindfors E, van Dam JCJ, Lam CMC, Zondervan NA, Martins dos Santos VAP, Suarez-Diez M. SyNDI: synchronous network data integration framework. BMC Bioinformatics 2018; 19:403. [PMID: 30400817 PMCID: PMC6219086 DOI: 10.1186/s12859-018-2426-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/10/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Systems biology takes a holistic approach by handling biomolecules and their interactions as big systems. Network based approach has emerged as a natural way to model these systems with the idea of representing biomolecules as nodes and their interactions as edges. Very often the input data come from various sorts of omics analyses. Those resulting networks sometimes describe a wide range of aspects, for example different experiment conditions, species, tissue types, stimulating factors, mutants, or simply distinct interaction features of the same network produced by different algorithms. For these scenarios, synchronous visualization of more than one distinct network is an excellent mean to explore all the relevant networks efficiently. In addition, complementary analysis methods are needed and they should work in a workflow manner in order to gain maximal biological insights. RESULTS In order to address the aforementioned needs, we have developed a Synchronous Network Data Integration (SyNDI) framework. This framework contains SyncVis, a Cytoscape application for user-friendly synchronous and simultaneous visualization of multiple biological networks, and it is seamlessly integrated with other bioinformatics tools via the Galaxy platform. We demonstrated the functionality and usability of the framework with three biological examples - we analyzed the distinct connectivity of plasma metabolites in networks associated with high or low latent cardiovascular disease risk; deeper insights were obtained from a few similar inflammatory response pathways in Staphylococcus aureus infection common to human and mouse; and regulatory motifs which have not been reported associated with transcriptional adaptations of Mycobacterium tuberculosis were identified. CONCLUSIONS Our SyNDI framework couples synchronous network visualization seamlessly with additional bioinformatics tools. The user can easily tailor the framework for his/her needs by adding new tools and datasets to the Galaxy platform.
Collapse
Affiliation(s)
- Erno Lindfors
- LifeGlimmer GmbH, Markelstrasse 38, 12163 Berlin, Germany
| | - Jesse C. J. van Dam
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | | | - Niels A. Zondervan
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Vitor A. P. Martins dos Santos
- LifeGlimmer GmbH, Markelstrasse 38, 12163 Berlin, Germany
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
23
|
Vashist A, Malhotra V, Sharma G, Tyagi JS, Clark-Curtiss JE. Interplay of PhoP and DevR response regulators defines expression of the dormancy regulon in virulent Mycobacterium tuberculosis. J Biol Chem 2018; 293:16413-16425. [PMID: 30181216 PMCID: PMC6200940 DOI: 10.1074/jbc.ra118.004331] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/15/2018] [Indexed: 11/06/2022] Open
Abstract
The DevR response regulator of Mycobacterium tuberculosis is an established regulator of the dormancy response in mycobacteria and can also be activated during aerobic growth conditions in avirulent strains, suggesting a complex regulatory system. Previously, we reported culture medium-specific aerobic induction of the DevR regulon genes in avirulent M. tuberculosis H37Ra that was absent in the virulent H37Rv strain. To understand the underlying basis of this differential response, we have investigated aerobic expression of the Rv3134c-devR-devS operon using M. tuberculosis H37Ra and H37Rv devR overexpression strains, designated as LIX48 and LIX50, respectively. Overexpression of DevR led to the up-regulation of a large number of DevR regulon genes in aerobic cultures of LIX48, but not in LIX50. To ascertain the involvement of PhoP response regulator, also known to co-regulate a subset of DevR regulon genes, we complemented the naturally occurring mutant phoPRa gene of LIX48 with the WT phoPRv gene. PhoPRv dampened the induced expression of the DevR regulon by >70-80%, implicating PhoP in the negative regulation of devR expression. Electrophoretic mobility shift assays confirmed phosphorylation-independent binding of PhoPRv to the Rv3134c promoter and further revealed that DevR and PhoPRv proteins exhibit differential DNA binding properties to the target DNA. Through co-incubations with DNA, ELISA, and protein complementation assays, we demonstrate that DevR forms a heterodimer with PhoPRv but not with the mutant PhoPRa protein. The study puts forward a new possible mechanism for coordinated expression of the dormancy regulon, having implications in growth adaptations critical for development of latency.
Collapse
Affiliation(s)
- Atul Vashist
- the Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vandana Malhotra
- the Center for Infectious Diseases and Vaccinology, Biodesign Institute, and
- From the Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi 110021, India
| | - Gunjan Sharma
- the Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Jaya Sivaswami Tyagi
- the Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Josephine E Clark-Curtiss
- the Center for Infectious Diseases and Vaccinology, Biodesign Institute, and
- the School of Life Sciences, Arizona State University, Tempe, Arizona 85287, and
| |
Collapse
|
24
|
Zondervan NA, van Dam JCJ, Schaap PJ, Martins Dos Santos VAP, Suarez-Diez M. Regulation of Three Virulence Strategies of Mycobacterium tuberculosis: A Success Story. Int J Mol Sci 2018; 19:E347. [PMID: 29364195 PMCID: PMC5855569 DOI: 10.3390/ijms19020347] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 12/28/2022] Open
Abstract
Tuberculosis remains one of the deadliest diseases. Emergence of drug-resistant and multidrug-resistant M. tuberculosis strains makes treating tuberculosis increasingly challenging. In order to develop novel intervention strategies, detailed understanding of the molecular mechanisms behind the success of this pathogen is required. Here, we review recent literature to provide a systems level overview of the molecular and cellular components involved in divalent metal homeostasis and their role in regulating the three main virulence strategies of M. tuberculosis: immune modulation, dormancy and phagosomal rupture. We provide a visual and modular overview of these components and their regulation. Our analysis identified a single regulatory cascade for these three virulence strategies that respond to limited availability of divalent metals in the phagosome.
Collapse
Affiliation(s)
- Niels A Zondervan
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Jesse C J van Dam
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
- LifeGlimmer GmbH, Markelstrasse 38, 12163 Berlin, Germany.
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
25
|
van der Meij A, Worsley SF, Hutchings MI, van Wezel GP. Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol Rev 2017; 41:392-416. [DOI: 10.1093/femsre/fux005] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/02/2017] [Indexed: 12/13/2022] Open
|
26
|
Moores A, Riesco AB, Schwenk S, Arnvig KB. Expression, maturation and turnover of DrrS, an unusually stable, DosR regulated small RNA in Mycobacterium tuberculosis. PLoS One 2017; 12:e0174079. [PMID: 28323872 PMCID: PMC5360333 DOI: 10.1371/journal.pone.0174079] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/02/2017] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis depends on the ability to adjust to stresses encountered in a range of host environments, adjustments that require significant changes in gene expression. Small RNAs (sRNAs) play an important role as post-transcriptional regulators of prokaryotic gene expression, where they are associated with stress responses and, in the case of pathogens, adaptation to the host environment. In spite of this, the understanding of M. tuberculosis RNA biology remains limited. Here we have used a DosR-associated sRNA as an example to investigate multiple aspects of mycobacterial RNA biology that are likely to apply to other M. tuberculosis sRNAs and mRNAs. We have found that accumulation of this particular sRNA is slow but robust as cells enter stationary phase. Using reporter gene assays, we find that the sRNA core promoter is activated by DosR, and we have renamed the sRNA DrrS for DosR Regulated sRNA. Moreover, we show that DrrS is transcribed as a longer precursor, DrrS+, which is rapidly processed to the mature and highly stable DrrS. We characterise, for the first time in mycobacteria, an RNA structural determinant involved in this extraordinary stability and we show how the addition of a few nucleotides can lead to acute destabilisation. Finally, we show how this RNA element can enhance expression of a heterologous gene. Thus, the element, as well as its destabilising derivatives may be employed to post-transcriptionally regulate gene expression in mycobacteria in combination with different promoter variants. Moreover, our findings will facilitate further investigations into the severely understudied topic of mycobacterial RNA biology and into the role that regulatory RNA plays in M. tuberculosis pathogenesis.
Collapse
Affiliation(s)
- Alexandra Moores
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
| | - Ana B. Riesco
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
| | - Stefan Schwenk
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
| | - Kristine B. Arnvig
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Sharma S, Tyagi JS. Mycobacterium tuberculosis DevR/DosR Dormancy Regulator Activation Mechanism: Dispensability of Phosphorylation, Cooperativity and Essentiality of α10 Helix. PLoS One 2016; 11:e0160723. [PMID: 27490491 PMCID: PMC4973870 DOI: 10.1371/journal.pone.0160723] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 07/22/2016] [Indexed: 01/17/2023] Open
Abstract
DevR/DosR is a well-characterized regulator in Mycobacterium tuberculosis which is implicated in various processes ranging from dormancy/persistence to drug tolerance. DevR induces the expression of an ~48-gene dormancy regulon in response to gaseous stresses, including hypoxia. Strains of the Beijing lineage constitutively express this regulon, which may confer upon them a significant advantage, since they would be ‘pre-adapted’ to the environmental stresses that predominate during infection. Aerobic DevR regulon expression in laboratory-manipulated overexpression strains is also reported. In both instances, the need for an inducing signal is bypassed. While a phosphorylation-mediated conformational change in DevR was proposed as the activation mechanism under hypoxia, the mechanism underlying constitutive expression is not understood. Because DevR is implicated in bacterial dormancy/persistence and is a promising drug target, it is relevant to resolve the mechanistic puzzle of hypoxic activation on one hand and constitutive expression under ‘non-inducing’ conditions on the other. Here, an overexpression strategy was employed to elucidate the DevR activation mechanism. Using a panel of kinase and transcription factor mutants, we establish that DevR, upon overexpression, circumvents DevS/DosT sensor kinase-mediated or small molecule phosphodonor-dependent activation, and also cooperativity-mediated effects, which are key aspects of hypoxic activation mechanism. However, overexpression failed to rescue the defect of C-terminal-truncated DevR lacking the α10 helix, establishing the α10 helix as an indispensable component of DevR activation mechanism. We propose that aerobic overexpression of DevR likely increases the concentration of α10 helix-mediated active dimer species to above the threshold level, as during hypoxia, and enables regulon expression. This advance in the understanding of DevR activation mechanism clarifies a long standing question as to the mechanism of DevR overexpression-mediated induction of the regulon in the absence of the normal environmental cue and establishes the α10 helix as an universal and pivotal targeting interface for DevR inhibitor development.
Collapse
Affiliation(s)
- Saurabh Sharma
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
- * E-mail: ;
| |
Collapse
|
28
|
Kaur K, Kumari P, Sharma S, Sehgal S, Tyagi JS. DevS/DosS sensor is bifunctional and its phosphatase activity precludes aerobic DevR/DosR regulon expression inMycobacterium tuberculosis. FEBS J 2016; 283:2949-62. [DOI: 10.1111/febs.13787] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/04/2016] [Accepted: 06/20/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Kohinoor Kaur
- Department of Biotechnology; All India Institute of Medical Sciences; New Delhi India
| | - Priyanka Kumari
- Department of Biotechnology; All India Institute of Medical Sciences; New Delhi India
| | - Saurabh Sharma
- Department of Biotechnology; All India Institute of Medical Sciences; New Delhi India
| | - Snigdha Sehgal
- Department of Biotechnology; All India Institute of Medical Sciences; New Delhi India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology; All India Institute of Medical Sciences; New Delhi India
| |
Collapse
|
29
|
OsdR of Streptomyces coelicolor and the Dormancy Regulator DevR of Mycobacterium tuberculosis Control Overlapping Regulons. mSystems 2016; 1:mSystems00014-16. [PMID: 27822533 PMCID: PMC5069765 DOI: 10.1128/msystems.00014-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/29/2016] [Indexed: 11/20/2022] Open
Abstract
Dormancy is a state of growth cessation that allows bacteria to escape the host defense system and antibiotic challenge. Understanding the mechanisms that control dormancy is of key importance for the treatment of latent infections, such as those from Mycobacterium tuberculosis. In mycobacteria, dormancy is controlled by the response regulator DevR, which responds to conditions of hypoxia. Here, we show that OsdR of Streptomyces coelicolor recognizes the same regulatory element and controls a regulon that consists of genes involved in the control of stress and development. Only the core regulon in the direct vicinity of dosR and osdR is conserved between M. tuberculosis and S. coelicolor, respectively. Thus, we show how the system has diverged from allowing escape from the host defense system by mycobacteria to the control of sporulation by complex multicellular streptomycetes. This provides novel insights into how bacterial growth and development are coordinated with the environmental conditions. Two-component regulatory systems allow bacteria to respond adequately to changes in their environment. In response to a given stimulus, a sensory kinase activates its cognate response regulator via reversible phosphorylation. The response regulator DevR activates a state of dormancy under hypoxia in Mycobacterium tuberculosis, allowing this pathogen to escape the host defense system. Here, we show that OsdR (SCO0204) of the soil bacterium Streptomyces coelicolor is a functional orthologue of DevR. OsdR, when activated by the sensory kinase OsdK (SCO0203), binds upstream of the DevR-controlled dormancy genes devR, hspX, and Rv3134c of M. tuberculosis. In silico analysis of the S. coelicolor genome combined with in vitro DNA binding studies identified many binding sites in the genomic region around osdR itself and upstream of stress-related genes. This binding correlated well with transcriptomic responses, with deregulation of developmental genes and genes related to stress and hypoxia in the osdR mutant. A peak in osdR transcription in the wild-type strain at the onset of aerial growth correlated with major changes in global gene expression. Taken together, our data reveal the existence of a dormancy-related regulon in streptomycetes which plays an important role in the transcriptional control of stress- and development-related genes. IMPORTANCE Dormancy is a state of growth cessation that allows bacteria to escape the host defense system and antibiotic challenge. Understanding the mechanisms that control dormancy is of key importance for the treatment of latent infections, such as those from Mycobacterium tuberculosis. In mycobacteria, dormancy is controlled by the response regulator DevR, which responds to conditions of hypoxia. Here, we show that OsdR of Streptomyces coelicolor recognizes the same regulatory element and controls a regulon that consists of genes involved in the control of stress and development. Only the core regulon in the direct vicinity of dosR and osdR is conserved between M. tuberculosis and S. coelicolor, respectively. Thus, we show how the system has diverged from allowing escape from the host defense system by mycobacteria to the control of sporulation by complex multicellular streptomycetes. This provides novel insights into how bacterial growth and development are coordinated with the environmental conditions.
Collapse
|
30
|
Gomes ALC, Wang HH. The Role of Genome Accessibility in Transcription Factor Binding in Bacteria. PLoS Comput Biol 2016; 12:e1004891. [PMID: 27104615 PMCID: PMC4841574 DOI: 10.1371/journal.pcbi.1004891] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 03/31/2016] [Indexed: 02/01/2023] Open
Abstract
ChIP-seq enables genome-scale identification of regulatory regions that govern gene expression. However, the biological insights generated from ChIP-seq analysis have been limited to predictions of binding sites and cooperative interactions. Furthermore, ChIP-seq data often poorly correlate with in vitro measurements or predicted motifs, highlighting that binding affinity alone is insufficient to explain transcription factor (TF)-binding in vivo. One possibility is that binding sites are not equally accessible across the genome. A more comprehensive biophysical representation of TF-binding is required to improve our ability to understand, predict, and alter gene expression. Here, we show that genome accessibility is a key parameter that impacts TF-binding in bacteria. We developed a thermodynamic model that parameterizes ChIP-seq coverage in terms of genome accessibility and binding affinity. The role of genome accessibility is validated using a large-scale ChIP-seq dataset of the M. tuberculosis regulatory network. We find that accounting for genome accessibility led to a model that explains 63% of the ChIP-seq profile variance, while a model based in motif score alone explains only 35% of the variance. Moreover, our framework enables de novo ChIP-seq peak prediction and is useful for inferring TF-binding peaks in new experimental conditions by reducing the need for additional experiments. We observe that the genome is more accessible in intergenic regions, and that increased accessibility is positively correlated with gene expression and anti-correlated with distance to the origin of replication. Our biophysically motivated model provides a more comprehensive description of TF-binding in vivo from first principles towards a better representation of gene regulation in silico, with promising applications in systems biology.
Collapse
Affiliation(s)
- Antonio L. C. Gomes
- Department of Systems Biology, Columbia University, New York, New York, United States of America
| | - Harris H. Wang
- Department of Systems Biology, Columbia University, New York, New York, United States of America
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
31
|
de Keijzer J, Mulder A, de Beer J, de Ru AH, van Veelen PA, van Soolingen D. Mechanisms of Phenotypic Rifampicin Tolerance in Mycobacterium tuberculosis Beijing Genotype Strain B0/W148 Revealed by Proteomics. J Proteome Res 2016; 15:1194-204. [PMID: 26930559 DOI: 10.1021/acs.jproteome.5b01073] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The "successful" Russian clone B0/W148 of Mycobacterium tuberculosis Beijing is well-known for its capacity to develop antibiotic resistance. During treatment, resistant mutants can occur that have inheritable resistance to specific antibiotics. Next to mutations, M. tuberculosis has several mechanisms that increase their tolerance to a variety of antibiotics. Insights in the phenotypic mechanisms that contribute to drug tolerance will increase our understanding of how antibiotic resistance develops in M. tuberculosis. In this study, we examined the (phospho)proteome dynamics in M. tuberculosis Beijing strain B0/W148 when exposed to a high dose of rifampicin; one of the most potent first-line antibiotics. A total of 2,534 proteins and 191 phosphorylation sites were identified, and revealed the differential regulation of DosR regulon proteins, which are necessary for the development of a dormant phenotype that is less susceptible to antibiotics. By examining independent phenotypic markers of dormancy, we show that persisters of in vitro rifampicin exposure entered a metabolically hypoactive state, which yields rifampicin and other antibiotics largely ineffective. These new insights in the role of protein regulation and post-translational modifications during the initial phase of rifampicin treatment reveal a shortcoming in the antituberculosis regimen that is administered to 8-9 million individuals annually.
Collapse
Affiliation(s)
- Jeroen de Keijzer
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC) , Leiden 2300 RC, The Netherlands
| | - Arnout Mulder
- Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM) , Bilthoven 3720 BA, The Netherlands
| | - Jessica de Beer
- Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM) , Bilthoven 3720 BA, The Netherlands
| | - Arnoud H de Ru
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC) , Leiden 2300 RC, The Netherlands
| | - Peter A van Veelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC) , Leiden 2300 RC, The Netherlands
| | - Dick van Soolingen
- Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM) , Bilthoven 3720 BA, The Netherlands.,Departments of Pulmonary Diseases and Medical Microbiology, Radboud University Medical Center , Nijmegen 6500 HB, The Netherlands
| |
Collapse
|
32
|
Vashist A, Prithvi Raj D, Gupta UD, Bhat R, Tyagi JS. The α10 helix of DevR, the Mycobacterium tuberculosis dormancy response regulator, regulates its DNA binding and activity. FEBS J 2016; 283:1286-99. [PMID: 26799615 DOI: 10.1111/febs.13664] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 01/05/2016] [Accepted: 01/18/2016] [Indexed: 11/26/2022]
Abstract
The crystal structures of several bacterial response regulators provide insight into the various interdomain molecular interactions potentially involved in maintaining their 'active' or 'inactive' states. However, the requirement of high concentrations of protein, an optimal pH and ionic strength buffers during crystallization may result in a structure somewhat different from that observed in solution. Therefore, functional assessment of the physiological relevance of the crystal structure data is imperative. DevR/DosR dormancy regulator of Mycobacterium tuberculosis (Mtb) belongs to the NarL subfamily of response regulators. The crystal structure of unphosphorylated DevR revealed that it forms a dimer through the α5/α6 interface. It was proposed that phosphorylation may trigger extensive structural rearrangements in DevR that culminate in the formation of a DNA-binding competent dimeric species via α10-α10 helix interactions. The α10 helix-deleted DevR protein (DevR∆α10 ) was hyperphosphorylated but defective with respect to in vitro DNA binding. Biophysical characterization reveals that DevR∆α10 has an open but less stable conformation. The combined cross-linking and DNA-binding data demonstrate that the α10 helix is essential for the formation and stabilization of the DNA-binding proficient DevR structure in both the phosphorylated and unphosphorylated states. Genetic studies establish that Mtb strains expressing DevR∆α10 are defective with respect to dormancy regulon expression under hypoxia. The present study highlights the indispensable role of the α10 helix in DevR activation and function under hypoxia and establishes the α10-α10 helix interface as a novel target for developing inhibitors against DevR, a key regulator of hypoxia-triggered dormancy.
Collapse
Affiliation(s)
- Atul Vashist
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India.,Experimental Animal Facility, National JALMA Institute of Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
| | - D Prithvi Raj
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Umesh Datta Gupta
- Experimental Animal Facility, National JALMA Institute of Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
| | - Rajiv Bhat
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
33
|
Marion E, Jarry U, Cano C, Savary C, Beauvillain C, Robbe-Saule M, Preisser L, Altare F, Delneste Y, Jeannin P, Marsollier L. FVB/N Mice Spontaneously Heal Ulcerative Lesions Induced by Mycobacterium ulcerans and Switch M. ulcerans into a Low Mycolactone Producer. THE JOURNAL OF IMMUNOLOGY 2016; 196:2690-8. [DOI: 10.4049/jimmunol.1502194] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/15/2016] [Indexed: 12/29/2022]
|
34
|
Abstract
Transcription factors (TFs) play a central role in regulating gene expression in all bacteria. Yet until recently, studies of TF binding were limited to a small number of factors at a few genomic locations. Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) provides the ability to map binding sites globally for TFs, and the scalability of the technology enables the ability to map binding sites for every DNA binding protein in a prokaryotic organism. We have developed a protocol for ChIP-Seq tailored for use with mycobacteria and an analysis pipeline for processing the resulting data. The protocol and pipeline have been used to map over 100 TFs from Mycobacterium tuberculosis, as well as numerous TFs from related mycobacteria and other bacteria. The resulting data provide evidence that the long-accepted spatial relationship between TF binding site, promoter motif, and the corresponding regulated gene may be too simple a paradigm, failing to adequately capture the variety of TF binding sites found in prokaryotes. In this article we describe the protocol and analysis pipeline, the validation of these methods, and the results of applying these methods to M. tuberculosis.
Collapse
|
35
|
Chaves AS, Rodrigues MF, Mattos AMM, Teixeira HC. Challenging Mycobacterium tuberculosis dormancy mechanisms and their immunodiagnostic potential. Braz J Infect Dis 2015; 19:636-42. [PMID: 26358744 PMCID: PMC9425411 DOI: 10.1016/j.bjid.2015.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/30/2015] [Accepted: 08/17/2015] [Indexed: 12/17/2022] Open
Abstract
Mycobacterium tuberculosis is the etiologic agent of tuberculosis, one of the world's greatest cause of morbidity and mortality due to infectious disease. Many evolutionary mechanisms have contributed to its high level of adaptation as a host pathogen. Prior to become dormant, a group of about 50 genes related to metabolic changes are transcribed by the DosR regulon, one of the most complex and important systems of host-pathogen interaction. This genetic mechanism allows the mycobacteria to persist during long time periods, establishing the so-called latent infection. Even in the presence of a competent immune response, the host cannot eliminate the pathogen, only managing to keep it surrounded by an unfavorable microenvironment for its growth. However, conditions such as immunosuppression may reestablish optimal conditions for bacterial growth, culminating in the onset of active disease. The interactions between the pathogen and its host are still not completely elucidated. Nonetheless, many studies are being carried out in order to clarify this complex relationship, thus creating new possibilities for patient approach and laboratory screening.
Collapse
Affiliation(s)
- Alexandre Silva Chaves
- Department of Parasitology, Microbiology and Immunology, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Michele Fernandes Rodrigues
- Department of Parasitology, Microbiology and Immunology, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Ana Márcia Menezes Mattos
- Department of Parasitology, Microbiology and Immunology, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Henrique Couto Teixeira
- Department of Parasitology, Microbiology and Immunology, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil.
| |
Collapse
|
36
|
Malhotra V, Agrawal R, Duncan TR, Saini DK, Clark-Curtiss JE. Mycobacterium tuberculosis response regulators, DevR and NarL, interact in vivo and co-regulate gene expression during aerobic nitrate metabolism. J Biol Chem 2015; 290:8294-309. [PMID: 25659431 DOI: 10.1074/jbc.m114.591800] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis genes Rv0844c/Rv0845 encoding the NarL response regulator and NarS histidine kinase are hypothesized to constitute a two-component system involved in the regulation of nitrate metabolism. However, there is no experimental evidence to support this. In this study, we established M. tuberculosis NarL/NarS as a functional two-component system and identified His(241) and Asp(61) as conserved phosphorylation sites in NarS and NarL, respectively. Transcriptional profiling between M. tuberculosis H37Rv and a ΔnarL mutant strain during exponential growth in broth cultures with or without nitrate defined an ∼30-gene NarL regulon that exhibited significant overlap with DevR-regulated genes, thereby implicating a role for the DevR response regulator in the regulation of nitrate metabolism. Notably, expression analysis of a subset of genes common to NarL and DevR regulons in M. tuberculosis ΔdevR, ΔdevSΔdosT, and ΔnarL mutant strains revealed that in response to nitrite produced during aerobic nitrate metabolism, the DevRS/DosT regulatory system plays a primary role that is augmented by NarL. Specifically, NarL itself was unable to bind to the narK2, acg, and Rv3130c promoters in phosphorylated or unphosphorylated form; however, its interaction with DevR∼P resulted in cooperative binding, thereby enabling co-regulation of these genes. These findings support the role of physiologically derived nitrite as a metabolic signal in mycobacteria. We propose NarL-DevR binding, possibly as a heterodimer, as a novel mechanism for co-regulation of gene expression by the DevRS/DosT and NarL/NarS regulatory systems.
Collapse
Affiliation(s)
- Vandana Malhotra
- From the Center for Infectious Diseases and Vaccinology, Biodesign Institute, and
| | - Ruchi Agrawal
- the Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Tammi R Duncan
- From the Center for Infectious Diseases and Vaccinology, Biodesign Institute, and the School of Life Sciences, Arizona State University, Tempe, Arizona 85287 and
| | - Deepak K Saini
- the Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Josephine E Clark-Curtiss
- From the Center for Infectious Diseases and Vaccinology, Biodesign Institute, and the School of Life Sciences, Arizona State University, Tempe, Arizona 85287 and
| |
Collapse
|
37
|
A terD domain-encoding gene (SCO2368) is involved in calcium homeostasis and participates in calcium regulation of a DosR-like regulon in Streptomyces coelicolor. J Bacteriol 2014; 197:913-23. [PMID: 25535276 DOI: 10.1128/jb.02278-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although Streptomyces coelicolor is not resistant to tellurite, it possesses several TerD domain-encoding (tdd) genes of unknown function. To elucidate the function of tdd8, the transcriptomes of S. coelicolor strain M145 and of a tdd8 deletion mutant derivative (the Δtdd8 strain) were compared. Several orthologs of Mycobacterium tuberculosis genes involved in dormancy survival were upregulated in the deletion mutant at the visual onset of prodiginine production. These genes are organized in a putative redox stress response cluster comprising two large loci. A binding motif similar to the dormancy survival regulator (DosR) binding site of M. tuberculosis has been identified in the upstream sequences of most genes in these loci. A predicted role for these genes in the redox stress response is supported by the low NAD(+)/NADH ratio in the Δtdd8 strain. This S. coelicolor gene cluster was shown to be induced by hypoxia and NO stress. While the tdd8 deletion mutant (the Δtdd8 strain) was unable to maintain calcium homeostasis in a calcium-depleted medium, the addition of Ca(2+) in Δtdd8 culture medium reduced the expression of several genes of the redox stress response cluster. The results shown in this work are consistent with Tdd8 playing a significant role in calcium homeostasis and redox stress adaptation.
Collapse
|
38
|
van Dam JCJ, Schaap PJ, Martins dos Santos VAP, Suárez-Diez M. Integration of heterogeneous molecular networks to unravel gene-regulation in Mycobacterium tuberculosis. BMC SYSTEMS BIOLOGY 2014; 8:111. [PMID: 25279447 PMCID: PMC4181829 DOI: 10.1186/s12918-014-0111-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/05/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND Different methods have been developed to infer regulatory networks from heterogeneous omics datasets and to construct co-expression networks. Each algorithm produces different networks and efforts have been devoted to automatically integrate them into consensus sets. However each separate set has an intrinsic value that is diluted and partly lost when building a consensus network. Here we present a methodology to generate co-expression networks and, instead of a consensus network, we propose an integration framework where the different networks are kept and analysed with additional tools to efficiently combine the information extracted from each network. RESULTS We developed a workflow to efficiently analyse information generated by different inference and prediction methods. Our methodology relies on providing the user the means to simultaneously visualise and analyse the coexisting networks generated by different algorithms, heterogeneous datasets, and a suite of analysis tools. As a show case, we have analysed the gene co-expression networks of Mycobacterium tuberculosis generated using over 600 expression experiments. Regarding DNA damage repair, we identified SigC as a key control element, 12 new targets for LexA, an updated LexA binding motif, and a potential mismatch repair system. We expanded the DevR regulon with 27 genes while identifying 9 targets wrongly assigned to this regulon. We discovered 10 new genes linked to zinc uptake and a new regulatory mechanism for ZuR. The use of co-expression networks to perform system level analysis allows the development of custom made methodologies. As show cases we implemented a pipeline to integrate ChIP-seq data and another method to uncover multiple regulatory layers. CONCLUSIONS Our workflow is based on representing the multiple types of information as network representations and presenting these networks in a synchronous framework that allows their simultaneous visualization while keeping specific associations from the different networks. By simultaneously exploring these networks and metadata, we gained insights into regulatory mechanisms in M. tuberculosis that could not be obtained through the separate analysis of each data type.
Collapse
Affiliation(s)
- Jesse CJ van Dam
- />Laboratory of Systems and Synthetic Biology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | - Peter J Schaap
- />Laboratory of Systems and Synthetic Biology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | - Vitor AP Martins dos Santos
- />Laboratory of Systems and Synthetic Biology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
- />LifeGlimmer GmbH, Markelstrasse 38, Berlin, Germany
| | - María Suárez-Diez
- />Laboratory of Systems and Synthetic Biology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| |
Collapse
|
39
|
DevR (DosR) mimetic peptides impair transcriptional regulation and survival of Mycobacterium tuberculosis under hypoxia by inhibiting the autokinase activity of DevS sensor kinase. BMC Microbiol 2014; 14:195. [PMID: 25048654 PMCID: PMC4110071 DOI: 10.1186/1471-2180-14-195] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/11/2014] [Indexed: 01/06/2023] Open
Abstract
Background Two-component systems have emerged as compelling targets for antibacterial drug design for a number of reasons including the distinct histidine phosphorylation property of their constituent sensor kinases. The DevR-DevS/DosT two component system of Mycobacterium tuberculosis (M. tb) is essential for survival under hypoxia, a stress associated with dormancy development in vivo. In the present study a combinatorial peptide phage display library was screened for DevS histidine kinase interacting peptides with the aim of isolating inhibitors of DevR-DevS signaling. Results DevS binding peptides were identified from a phage display library after three rounds of panning using DevS as bait. The peptides showed sequence similarity with conserved residues in the N-terminal domain of DevR and suggested that they may represent interacting surfaces between DevS and DevR. Two DevR mimetic peptides were found to specifically inhibit DevR-dependent transcriptional activity and restrict the hypoxic survival of M. tb. The mechanism of peptide action is majorly attributed to an inhibition of DevS autokinase activity. Conclusions These findings demonstrate that DevR mimetic peptides impede DevS activation and that intercepting DevS activation at an early step in the signaling cascade impairs M. tb survival in a hypoxia persistence model.
Collapse
|
40
|
Gomes ALC, Abeel T, Peterson M, Azizi E, Lyubetskaya A, Carvalho L, Galagan J. Decoding ChIP-seq with a double-binding signal refines binding peaks to single-nucleotides and predicts cooperative interaction. Genome Res 2014; 24:1686-97. [PMID: 25024162 PMCID: PMC4199365 DOI: 10.1101/gr.161711.113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The comprehension of protein and DNA binding in vivo is essential to understand gene regulation. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) provides a global map of the regulatory binding network. Most ChIP-seq analysis tools focus on identifying binding regions from coverage enrichment. However, less work has been performed to infer the physical and regulatory details inside the enriched regions. This research extends a previous blind-deconvolution approach to develop a post-peak-calling algorithm that improves binding site resolution and predicts cooperative interactions. At the core of our new method is a physically motivated model that characterizes the binding signal as an extreme value distribution. This model suggests a mathematical framework to study physical properties of DNA shearing from the ChIP-seq coverage. The model explains the ChIP-seq coverage with two signals: The first considers DNA fragments with only a single binding event, whereas the second considers fragments with two binding events (a double-binding signal). The model incorporates motif discovery and is able to detect multiple sites in an enriched region with single-nucleotide resolution, high sensitivity, and high specificity. Our method improves peak caller sensitivity, from less than 45% up to 94%, at a false positive rate < 11% for a set of 47 experimentally validated prokaryotic sites. It also improves resolution of highly enriched regions of large-scale eukaryotic data sets. The double-binding signal provides a novel application in ChIP-seq analysis: the identification of cooperative interaction. Predictions of known cooperative binding sites show a 0.85 area under an ROC curve.
Collapse
Affiliation(s)
- Antonio L C Gomes
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | - Thomas Abeel
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA; VIB Department of Plant Systems Biology, Ghent University, 9052 Ghent, Belgium
| | - Matthew Peterson
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Elham Azizi
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | - Anna Lyubetskaya
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | - Luís Carvalho
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA; Department of Mathematics and Statistics, Boston University, Boston, Massachusetts 02215, USA
| | - James Galagan
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA; Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA; Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA;
| |
Collapse
|
41
|
Gautam US, Mehra S, Ahsan MH, Alvarez X, Niu T, Kaushal D. Role of TNF in the altered interaction of dormant Mycobacterium tuberculosis with host macrophages. PLoS One 2014; 9:e95220. [PMID: 24743303 PMCID: PMC3990579 DOI: 10.1371/journal.pone.0095220] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 03/24/2014] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) persists within lung granulomas, despite being subjected to diverse stress conditions, including hypoxia. We hypothesized that the response of host phagocytes to Mtb experiencing hypoxia is radically altered and designed in vitro experiment to study this phenomenon. Hypoxia-stressed (Mtb-H) and aerobically grown Mtb (Mtb-A) were used to infect Rhesus Macaque Bone Marrow Derived Macrophages (Rh-BMDMs) and the comparative host response to Mtb infection studied. Mechanistic insights were gained by employing RNAi. Mtb-H accumulated significantly lower bacterial burden during growth in Rh-BMDMs, concomitantly generating a drastically different host transcriptional profile (with only <2% of all genes perturbed by either infection being shared between the two groups). A key component of this signature was significantly higher TNF and apopotosis in Mtb-H- compared to Mtb-A-infected Rh-BMDMs. Silencing of TNF by RNAi reversed the significant control of Mtb replication. These results indicate a potential mechanism for the rapid clearance of hypoxia-conditioned bacilli by phagocytes. In conclusion, hypoxia-conditioned Mtb undergo significantly different interactions with host macrophages compared to Mtb grown in normoxia. These interactions result in the induction of the TNF signaling pathway, activation of apoptosis, and DNA-damage stress response. Our results show that Mtb-H bacilli are particularly susceptible to killing governed by TNF.
Collapse
Affiliation(s)
- Uma S. Gautam
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Smriti Mehra
- Department of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Muhammad H. Ahsan
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Xavier Alvarez
- Department of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Tianhua Niu
- Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine
| | - Deepak Kaushal
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
42
|
Bandyopadhyay A, Biswas S, Maity AK, Banik SK. Analysis of DevR regulated genes in Mycobacterium tuberculosis. SYSTEMS AND SYNTHETIC BIOLOGY 2014; 8:3-20. [PMID: 24592287 DOI: 10.1007/s11693-014-9133-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 11/25/2022]
Abstract
The DevRS two component system of Mycobacterium tuberculosis is responsible for its dormancy in host and becomes operative under hypoxic condition. It is experimentally known that phosphorylated DevR controls the expression of several downstream genes in a complex manner. In the present work we propose a theoretical model to show role of binding sites in DevR mediated gene expression. Individual and collective role of binding sites in regulating DevR mediated gene expression has been shown via modeling. Objective of the present work is twofold. First, to describe qualitatively the temporal dynamics of wild type genes and their known mutants. Based on these results we propose that DevR controlled gene expression follows a specific pattern which is efficient in describing other DevR mediated gene expression. Second, to analyze behavior of the system from information theoretical point of view. Using the tools of information theory we have calculated molecular efficiency of the system and have shown that it is close to the maximum limit of isothermal efficiency.
Collapse
Affiliation(s)
- Arnab Bandyopadhyay
- Department of Chemistry, Bose Institute, 93/1 A P C Road, Kolkata, 700009 India
| | - Soumi Biswas
- Department of Chemistry, Bose Institute, 93/1 A P C Road, Kolkata, 700009 India
| | - Alok Kumar Maity
- Department of Chemistry, University of Calcutta, 92 A P C Road, Kolkata, 700009 India
| | - Suman K Banik
- Department of Chemistry, Bose Institute, 93/1 A P C Road, Kolkata, 700009 India
| |
Collapse
|
43
|
Essentiality of DevR/DosR interaction with SigA for the dormancy survival program in Mycobacterium tuberculosis. J Bacteriol 2013; 196:790-9. [PMID: 24317401 DOI: 10.1128/jb.01270-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The DevR/DosR regulator is believed to play a key role in dormancy adaptation mechanisms of Mycobacterium tuberculosis in response to a multitude of gaseous stresses, including hypoxia, which prevails within granulomas. DevR activates transcription by binding to target promoters containing a minimum of two binding sites. The proximal site overlaps with the SigA -35 element, suggesting that DevR-SigA interaction is required for activating transcription. We evaluated the roles of 14 charged residues of DevR in transcriptional activation under hypoxic stress. Seven of the 14 alanine substitution mutants were defective in regulon activation, of which K191A, R197A, and K179A+K168A (designated K179A*) mutants were significantly or completely compromised in DNA binding. Four mutants, namely, E154A, R155A, E178A, and K208A, were activation defective in spite of binding to DNA and were classified as positive-control (pc) mutants. The SigA interaction defect of the E154A and E178A proteins was established by in vitro and in vivo assays and implies that these substitutions lead to an activation defect because they disrupt an interaction(s) with SigA. The relevance of DevR interaction to the transcriptional machinery was further established by the hypoxia survival phenotype displayed by SigA interaction-defective mutants. Our findings demonstrate the role of DevR-SigA interaction in the activation mechanism and in bacterial survival under hypoxia and establish the housekeeping sigma factor SigA as a molecular target of DevR. The interaction of DevR and RNA polymerase suggests a new and novel interceptable molecular interface for future antidormancy strategies for Mycobacterium tuberculosis.
Collapse
|
44
|
Schubert OT, Mouritsen J, Ludwig C, Röst HL, Rosenberger G, Arthur PK, Claassen M, Campbell DS, Sun Z, Farrah T, Gengenbacher M, Maiolica A, Kaufmann SHE, Moritz RL, Aebersold R. The Mtb proteome library: a resource of assays to quantify the complete proteome of Mycobacterium tuberculosis. Cell Host Microbe 2013; 13:602-612. [PMID: 23684311 DOI: 10.1016/j.chom.2013.04.008] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 03/27/2013] [Accepted: 04/15/2013] [Indexed: 12/18/2022]
Abstract
Research advancing our understanding of Mycobacterium tuberculosis (Mtb) biology and complex host-Mtb interactions requires consistent and precise quantitative measurements of Mtb proteins. We describe the generation and validation of a compendium of assays to quantify 97% of the 4,012 annotated Mtb proteins by the targeted mass spectrometric method selected reaction monitoring (SRM). Furthermore, we estimate the absolute abundance for 55% of all Mtb proteins, revealing a dynamic range within the Mtb proteome of over four orders of magnitude, and identify previously unannotated proteins. As an example of the assay library utility, we monitored the entire Mtb dormancy survival regulon (DosR), which is linked to anaerobic survival and Mtb persistence, and show its dynamic protein-level regulation during hypoxia. In conclusion, we present a publicly available research resource that supports the sensitive, precise, and reproducible quantification of virtually any Mtb protein by a robust and widely accessible mass spectrometric method.
Collapse
Affiliation(s)
- Olga T Schubert
- Institute of Molecular Systems Biology, ETH Zurich, Zurich CH-8093, Switzerland; Systems Biology Graduate School, Zurich, CH-8057, Switzerland
| | - Jeppe Mouritsen
- Institute of Molecular Systems Biology, ETH Zurich, Zurich CH-8093, Switzerland; Molecular Life Sciences Graduate School, Zurich, CH-8093, Switzerland
| | - Christina Ludwig
- Institute of Molecular Systems Biology, ETH Zurich, Zurich CH-8093, Switzerland
| | - Hannes L Röst
- Institute of Molecular Systems Biology, ETH Zurich, Zurich CH-8093, Switzerland; Systems Biology Graduate School, Zurich, CH-8057, Switzerland
| | - George Rosenberger
- Institute of Molecular Systems Biology, ETH Zurich, Zurich CH-8093, Switzerland; Systems Biology Graduate School, Zurich, CH-8057, Switzerland
| | - Patrick K Arthur
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Manfred Claassen
- Institute of Molecular Systems Biology, ETH Zurich, Zurich CH-8093, Switzerland
| | | | - Zhi Sun
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Terry Farrah
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Martin Gengenbacher
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin D-10117, Germany
| | - Alessio Maiolica
- Institute of Molecular Systems Biology, ETH Zurich, Zurich CH-8093, Switzerland
| | - Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin D-10117, Germany
| | | | - Ruedi Aebersold
- Institute of Molecular Systems Biology, ETH Zurich, Zurich CH-8093, Switzerland; Faculty of Science, University of Zurich, Zurich CH-8057, Switzerland.
| |
Collapse
|
45
|
The Mycobacterium tuberculosis regulatory network and hypoxia. Nature 2013; 499:178-83. [PMID: 23823726 DOI: 10.1038/nature12337] [Citation(s) in RCA: 347] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 05/23/2013] [Indexed: 12/26/2022]
Abstract
We have taken the first steps towards a complete reconstruction of the Mycobacterium tuberculosis regulatory network based on ChIP-Seq and combined this reconstruction with system-wide profiling of messenger RNAs, proteins, metabolites and lipids during hypoxia and re-aeration. Adaptations to hypoxia are thought to have a prominent role in M. tuberculosis pathogenesis. Using ChIP-Seq combined with expression data from the induction of the same factors, we have reconstructed a draft regulatory network based on 50 transcription factors. This network model revealed a direct interconnection between the hypoxic response, lipid catabolism, lipid anabolism and the production of cell wall lipids. As a validation of this model, in response to oxygen availability we observe substantial alterations in lipid content and changes in gene expression and metabolites in corresponding metabolic pathways. The regulatory network reveals transcription factors underlying these changes, allows us to computationally predict expression changes, and indicates that Rv0081 is a regulatory hub.
Collapse
|
46
|
Chauviac FX, Bommer M, Yan J, Parkin G, Daviter T, Lowden P, Raven EL, Thalassinos K, Keep NH. Crystal structure of reduced MsAcg, a putative nitroreductase from Mycobacterium smegmatis and a close homologue of Mycobacterium tuberculosis Acg. J Biol Chem 2012; 287:44372-83. [PMID: 23148223 DOI: 10.1074/jbc.m112.406264] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This paper presents the structure of MsAcg (MSMEG_5246), a Mycobacterium smegmatis homologue of Mycobacterium tuberculosis Acg (Rv2032) in its reduced form at 1.6 Å resolution using x-ray crystallography. Rv2032 is one of the most induced genes under the hypoxic model of tuberculosis dormancy. The Acg family turns out to be unusual flavin mononucleotide (FMN)-binding proteins that have probably arisen by gene duplication and fusion from a classical homodimeric nitroreductase such that the monomeric protein resembles a classical nitroreductase dimer but with one active site deleted and the other active site covered by a unique lid. The FMN cofactor is not reduced by either NADH or NADPH, but the chemically reduced enzyme is capable of reduction of nitro substrates, albeit at no kinetic advantage over free FMN. The reduced enzyme is rapidly oxidized by oxygen but without any evidence for a radical state commonly seen in oxygen-sensitive nitroreductases. The presence of the unique lid domain, the lack of reduction by NAD(P)H, and the slow rate of reaction of the chemically reduced protein raises a possible alternative function of Acg proteins in FMN storage or sequestration from other biochemical pathways as part of the bacteria's adaptation to a dormancy state.
Collapse
Affiliation(s)
- François-Xavier Chauviac
- Crystallography, Institute for Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London, WC1E 7HX, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Analysis of two distinct mycelial populations in liquid-grown Streptomyces cultures using a flow cytometry-based proteomics approach. Appl Microbiol Biotechnol 2012; 96:1301-12. [PMID: 23070651 DOI: 10.1007/s00253-012-4490-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 09/30/2012] [Accepted: 10/01/2012] [Indexed: 12/23/2022]
Abstract
Streptomycetes are proficient producers of enzymes and antibiotics. When grown in bioreactors, these filamentous microorganisms form mycelial pellets that consist of interconnected hyphae. We here employed a flow cytometry approach designed for large particles (COPAS) and demonstrate that liquid-grown Streptomyces cultures consist of two distinct populations of pellets. One population consists of mycelia with a constant mean diameter of approximately 260 μm, whereas the other population contains larger mycelia whose diameter depends on the strain, the age of the culture, and medium composition. Quantitative proteomics analysis revealed that 37 proteins differed in abundance between the two populations of pellets. Stress-related proteins and biosynthetic proteins for production of the calcium-dependent antibiotic were more abundant in the population of large mycelia, while proteins involved in DNA topology, modification, or degradation were overrepresented in the population of small mycelia. Deletion of genes for the cellulose synthase-like protein CslA and the chaplins affected the average size of the population of large pellets but not that of small pellets. Considering the fact that the production of enzymes and metabolites depends on pellet size, these results provide new leads toward rational strain design of Streptomyces strains tailored for industrial fermentations.
Collapse
|
48
|
Mycobacterium tuberculosis DosR regulon gene Rv0079 encodes a putative, 'dormancy associated translation inhibitor (DATIN)'. PLoS One 2012; 7:e38709. [PMID: 22719925 PMCID: PMC3374827 DOI: 10.1371/journal.pone.0038709] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/11/2012] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium tuberculosis is a major human pathogen that has evolved survival mechanisms to persist in an immune-competent host under a dormant condition. The regulation of M. tuberculosis metabolism during latent infection is not clearly known. The dormancy survival regulon (DosR regulon) is chiefly responsible for encoding dormancy related functions of M. tuberculosis. We describe functional characterization of an important gene of DosR regulon, Rv0079, which appears to be involved in the regulation of translation through the interaction of its product with bacterial ribosomal subunits. The protein encoded by Rv0079, possibly, has an inhibitory role with respect to protein synthesis, as revealed by our experiments. We performed computational modelling and docking simulation studies involving the protein encoded by Rv0079 followed by in vitro translation and growth curve analysis experiments, involving recombinant E. coli and Bacille Calmette Guérin (BCG) strains that overexpressed Rv0079. Our observations concerning the interaction of the protein with the ribosomes are supportive of its role in regulation/inhibition of translation. We propose that the protein encoded by locus Rv0079 is a 'dormancy associated translation inhibitor' or DATIN.
Collapse
|
49
|
MprA and DosR coregulate a Mycobacterium tuberculosis virulence operon encoding Rv1813c and Rv1812c. Infect Immun 2012; 80:3018-33. [PMID: 22689819 DOI: 10.1128/iai.00520-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis remains a significant global pathogen, causing extensive morbidity and mortality worldwide. This bacterium persists within granulomatous lesions in a poorly characterized, nonreplicating state. The two-component signal transduction systems MprAB and DosRS-DosT (DevRS-Rv2027c) are responsive to conditions likely to be present within granulomatous lesions and mediate aspects of M. tuberculosis persistence in vitro and in vivo. Here, we describe a previously uncharacterized locus, Rv1813c-Rv1812c, that is coregulated by both MprA and DosR. We demonstrate that MprA and DosR bind to adjacent and overlapping sequences within the promoter region of Rv1813c and direct transcription from an initiation site located several hundred base pairs upstream of the Rv1813 translation start site. We further show that Rv1813c and Rv1812c are cotranscribed, and that the genomic organization of this operon is specific to M. tuberculosis and Mycobacterium bovis. Although Rv1813c is not required for survival of M. tuberculosis in vitro, including under conditions in which MprAB and DosRST signaling are activated, an M. tuberculosis ΔRv1813c mutant is attenuated in the low-dose aerosol model of murine tuberculosis, where it exhibits a lower bacterial burden, delayed time to death, and decreased ability to stimulate proinflammatory cytokines interleukin-1β (IL-1β) and IL-12. Interestingly, overcomplementation of these phenotypes is observed in the M. tuberculosis ΔRv1813c mutant expressing both Rv1813c and Rv1812c, but not Rv1813c alone, in trans. Therefore, Rv1813c and Rv1812c may represent general stress-responsive elements that are necessary for aspects of M. tuberculosis virulence and the host immune response to infection.
Collapse
|
50
|
Gao CH, Yang M, He ZG. Characterization of a novel ArsR-like regulator encoded by Rv2034 in Mycobacterium tuberculosis. PLoS One 2012; 7:e36255. [PMID: 22558408 PMCID: PMC3338718 DOI: 10.1371/journal.pone.0036255] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 04/03/2012] [Indexed: 11/18/2022] Open
Abstract
The genome of Mycobacterium tuberculosis, the causative agent of tuberculosis, encodes a large number of putative transcriptional regulators. However, the identity and target genes of only a few of them have been clearly identified to date. In a recent study, the ArsR family regulator Rv2034 was characterized as a novel positive regulator of phoP. In the current study, we characterized the auto-repressive capabilities of Rv2034 and identified several residues in the protein critical for its DNA binding activities. We also provide evidence that Rv2034 forms dimers in vitro. Furthermore, by using DNaseI footprinting assays, a palindromic sequence was identified as its binding site. Notably, we found that the dosR promoter region contains the binding motif for Rv2034, and that Rv2034 positively regulates the expression of the dosR gene. The potential roles of Rv2034 in the regulation of lipid metabolism and hypoxic adaptation are discussed.
Collapse
Affiliation(s)
- Chun-hui Gao
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Min Yang
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zheng-Guo He
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|