1
|
Herz HM, Bergmann A. The histone demethylase Kdm5 controls Hid-induced cell death in Drosophila. FRONTIERS IN CELL DEATH 2024; 3:1471050. [PMID: 40416947 PMCID: PMC12101616 DOI: 10.3389/fceld.2024.1471050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
We conducted an EMS mutagenesis screen on chromosome arm 2L to identify recessive suppressors of GMR-hid-induced apoptosis in the Drosophila eye. Through this screen, we recovered three alleles of the lysine demethylase gene Kdm5. Kdm5, a member of the JmjC-domain-containing protein family, possesses histone demethylase activity towards H3K4me3. Our data suggest that Kdm5 specifically regulates Hid-induced cell death during development, as we did not observe control of Reaper- or Grim-induced cell death by Kdm5. Interestingly, GMR-hid-induced apoptosis is suppressed independently of Kdm5's demethylase activity. Our findings indicate that Rbf and dMyc are necessary for Kdm5 mosaics to suppress GMR-hid-induced cell death. Moreover, Kdm5 mosaics failed to suppress apoptosis induced by a mutant form of Hid that is resistant to inhibition by Erk-type MAPK activity. Additionally, Kdm5 dominantly enhances the wing phenotype of an activated MAPK mutant. These results collectively suggest that Kdm5 controls Hid-induced apoptosis by regulating the Rbf, dMyc, and MAPK pathways.
Collapse
Affiliation(s)
- Hans-Martin Herz
- St. Jude Children’s Research Hospital, Department of Hematology, 262 Danny Thomas Place, Memphis, TN 38105
| | - Andreas Bergmann
- UMass Chan Medical School, Department of Molecular, Cell and Cancer Biology, 364 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
2
|
Hao Y, Fan R, Zhao Y, Nie K, Wang L, Zhao T, Zhang Z, Tao X, Wu H, Pan J, Hao C, Guan X. Intra species dissection of phytophthora capsici resistance in black pepper. J Adv Res 2024:S2090-1232(24)00469-7. [PMID: 39442874 DOI: 10.1016/j.jare.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/30/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
INTRODUCTION Black pepper, a financially significant tropical crop, assumes a pivotal role in global agriculture for the major source of specie flavor. Nonetheless, the growth and productivity of black pepper face severe impediments due to the destructive pathogen Phytophthora capsici, ultimately resulting in black pepper blight. The dissecting for the genetic source of pathogen resistance for black pepper is beneficial for its global production. The genetic sources include the variations on gene coding sequences, transcription capabilities and epigenetic modifications, which exerts hierarchy of influences on plant defense against pathogen. However, the understanding of genetic source of disease resistance in black pepper remains limited. METHODS The wild species Piper flaviflorum (P. flaviflorum, Pf) is known for blight resistance, while the cultivated species P. nigrum is susceptible. To dissecting the genetic sources of pathogen resistance for black pepper, the chromatin modification on H3K4me3 and transcriptome of black pepper species were profiled for genome wide comparative studies, applied with CUT&Tag and RNA sequencing technologies. RESULTS The intraspecies difference between P. flaviflorum and P. nigrum on gene body region led to coding variations on 5137 genes, including 359 gene with biotic stress responses and regulation. P. flaviflorum exhibited a more comprehensive resistance response to Phytophthora capsici in terms of transcriptome features. The pathogen responsive transcribing was significant associated with histone modification mark of H3K4me3 in black pepper. The collective data on variations of sequence, transcription activity and chromatin structure lead to an exclusive jasmonic acid-responsive pathway for disease resistance in P. flaviflorum was revealed. This research provides a comprehensive frame work to identify the fine genetic source for pathogen resistance from wild species of black pepper.
Collapse
Affiliation(s)
- Yupeng Hao
- China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China
| | - Rui Fan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, China
| | - Yongyan Zhao
- China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ke Nie
- China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China
| | - Luyao Wang
- China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China
| | - Ting Zhao
- China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China
| | - Zhiyuan Zhang
- China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China
| | | | - Hongyu Wu
- China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiaying Pan
- China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China
| | - Chaoyun Hao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, China.
| | - Xueying Guan
- China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China.
| |
Collapse
|
3
|
Rogers MF, Marshall OJ, Secombe J. KDM5-mediated activation of genes required for mitochondrial biology is necessary for viability in Drosophila. Development 2023; 150:dev202024. [PMID: 37800333 PMCID: PMC10651110 DOI: 10.1242/dev.202024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/29/2023] [Indexed: 10/07/2023]
Abstract
Histone-modifying proteins play important roles in the precise regulation of the transcriptional programs that coordinate development. KDM5 family proteins interact with chromatin through demethylation of H3K4me3 as well as demethylase-independent mechanisms that remain less understood. To gain fundamental insights into the transcriptional activities of KDM5 proteins, we examined the essential roles of the single Drosophila Kdm5 ortholog during development. KDM5 performs crucial functions in the larval neuroendocrine prothoracic gland, providing a model to study its role in regulating key gene expression programs. Integrating genome binding and transcriptomic data, we identify that KDM5 regulates the expression of genes required for the function and maintenance of mitochondria, and we find that loss of KDM5 causes morphological changes to mitochondria. This is key to the developmental functions of KDM5, as expression of the mitochondrial biogenesis transcription factor Ets97D, homolog of GABPα, is able to suppress the altered mitochondrial morphology as well as the lethality of Kdm5 null animals. Together, these data establish KDM5-mediated cellular functions that are important for normal development and could contribute to KDM5-linked disorders when dysregulated.
Collapse
Affiliation(s)
- Michael F. Rogers
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Owen J. Marshall
- Menzies Institute for Medical Research, University of Tasmania, Hobart TAS 7000, Australia
| | - Julie Secombe
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
4
|
Han D, Schaffner SH, Davies JP, Benton ML, Plate L, Nordman JT. BRWD3 promotes KDM5 degradation to maintain H3K4 methylation levels. Proc Natl Acad Sci U S A 2023; 120:e2305092120. [PMID: 37722046 PMCID: PMC10523488 DOI: 10.1073/pnas.2305092120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/11/2023] [Indexed: 09/20/2023] Open
Abstract
Histone modifications are critical for regulating chromatin structure and gene expression. Dysregulation of histone modifications likely contributes to disease states and cancer. Depletion of the chromatin-binding protein BRWD3 (Bromodomain and WD repeat-containing protein 3), a known substrate-specificity factor of the Cul4-DDB1 E3 ubiquitin ligase complex, results in increased H3K4me1 (H3 lysine 4 monomethylation) levels. The underlying mechanism linking BRWD3 and H3K4 methylation, however, has yet to be defined. Here, we show that depleting BRWD3 not only causes an increase in H3K4me1 levels but also causes a decrease in H3K4me3 (H3 lysine 4 trimethylation) levels, indicating that BRWD3 influences H3K4 methylation more broadly. Using immunoprecipitation coupled to quantitative mass spectrometry, we identified an interaction between BRWD3 and the H3K4-specific lysine demethylase 5 (KDM5/Lid), an enzyme that removes tri- and dimethyl marks from H3K4. Moreover, analysis of ChIP-seq (chromatin immunoprecipitation sequencing) data revealed that BRWD3 and KDM5 are significantly colocalized throughout the genome and H3K4me3 are highly enriched at BRWD3 binding sites. We show that BRWD3 promotes K48-linked polyubiquitination and degradation of KDM5 and that KDM5 degradation is dependent on both BRWD3 and Cul4. Critically, depleting KDM5 fully restores altered H3K4me3 levels and partially restores H3K4me1 levels upon BRWD3 depletion. Together, our results demonstrate that BRWD3 regulates KDM5 activity to balance H3K4 methylation levels.
Collapse
Affiliation(s)
- Dongsheng Han
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37212
| | | | - Jonathan P. Davies
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37212
| | | | - Lars Plate
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37212
- Department of Chemistry, Vanderbilt University, Nashville, TN37212
| | - Jared T. Nordman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37212
| |
Collapse
|
5
|
Krasnov AN, Evdokimova AA, Mazina MY, Erokhin M, Chetverina D, Vorobyeva NE. Coregulators Reside within Drosophila Ecdysone-Inducible Loci before and after Ecdysone Treatment. Int J Mol Sci 2023; 24:11844. [PMID: 37511602 PMCID: PMC10380596 DOI: 10.3390/ijms241411844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Ecdysone signaling in Drosophila remains a popular model for investigating the mechanisms of steroid action in eukaryotes. The ecdysone receptor EcR can effectively bind ecdysone-response elements with or without the presence of a hormone. For years, EcR enhancers were thought to respond to ecdysone via recruiting coactivator complexes, which replace corepressors and stimulate transcription. However, the exact mechanism of transcription activation by ecdysone remains unclear. Here, we present experimental data on 11 various coregulators at ecdysone-responsive loci of Drosophila S2 cells. We describe the regulatory elements where coregulators reside within these loci and assess changes in their binding levels following 20-hydroxyecdysone treatment. In the current study, we detected the presence of some coregulators at the TSSs (active and inactive) and boundaries marked with CP190 rather than enhancers of the ecdysone-responsive loci where EcR binds. We observed minor changes in the coregulators' binding level. Most were present at inducible loci before and after 20-hydroxyecdysone treatment. Our findings suggest that: (1) coregulators can activate a particular TSS operating from some distal region (which could be an enhancer, boundary regulatory region, or inactive TSS); (2) coregulators are not recruited after 20-hydroxyecdysone treatment to the responsive loci; rather, their functional activity changes (shown as an increase in H3K27 acetylation marks generated by CBP/p300/Nejire acetyltransferase). Taken together, our findings imply that the 20-hydroxyecdysone signal enhances the functional activity of coregulators rather than promoting their binding to regulatory regions during the ecdysone response.
Collapse
Affiliation(s)
- Aleksey N Krasnov
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | | | - Marina Yu Mazina
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Maksim Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Darya Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Nadezhda E Vorobyeva
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
6
|
Cabrita B, Martinho RG. Genetic and Epigenetic Regulation of Drosophila Oocyte Determination. J Dev Biol 2023; 11:21. [PMID: 37367475 DOI: 10.3390/jdb11020021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/28/2023] Open
Abstract
Primary oocyte determination occurs in many organisms within a germ line cyst, a multicellular structure composed of interconnected germ cells. However, the structure of the cyst is itself highly diverse, which raises intriguing questions about the benefits of this stereotypical multicellular environment for female gametogenesis. Drosophila melanogaster is a well-studied model for female gametogenesis, and numerous genes and pathways critical for the determination and differentiation of a viable female gamete have been identified. This review provides an up-to-date overview of Drosophila oocyte determination, with a particular emphasis on the mechanisms that regulate germ line gene expression.
Collapse
Affiliation(s)
- Brigite Cabrita
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Agra do Crasto, Edifício 30, 3810-193 Aveiro, Portugal
| | - Rui Gonçalo Martinho
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Agra do Crasto, Edifício 30, 3810-193 Aveiro, Portugal
| |
Collapse
|
7
|
Han D, Schaffner SH, Davies JP, Lauren Benton M, Plate L, Nordman JT. BRWD3 promotes KDM5 degradation to maintain H3K4 methylation levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534572. [PMID: 37034668 PMCID: PMC10081218 DOI: 10.1101/2023.03.28.534572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Histone modifications are critical for regulating chromatin structure and gene expression. Dysregulation of histone modifications likely contributes to disease states and cancer. Depletion of the chromatin-binding protein BRWD3, a known substrate-specificity factor of the Cul4-DDB1 E3 ubiquitin ligase complex, results in increased in H3K4me1 levels. The underlying mechanism linking BRWD3 and H3K4 methylation, however, has yet to be defined. Here, we show that depleting BRWD3 not only causes an increase in H3K4me1 levels, but also causes a decrease in H3K4me3 levels, indicating that BRWD3 influences H3K4 methylation more broadly. Using immunoprecipitation coupled to quantitative mass spectrometry, we identified an interaction between BRWD3 and the H3K4-specific demethylase 5 (KDM5/Lid), an enzyme that removes tri- and di- methyl marks from H3K4. Moreover, analysis of ChIP-seq data revealed that BRWD3 and KDM5 are significantly co- localized throughout the genome and that sites of H3K4me3 are highly enriched at BRWD3 binding sites. We show that BRWD3 promotes K48-linked polyubiquitination and degradation of KDM5 and that KDM5 degradation is dependent on both BRWD3 and Cul4. Critically, depleting KDM5 fully restores altered H3K4me3 levels and partially restores H3K4me1 levels upon BRWD3 depletion. Together, our results demonstrate that BRWD3 regulates KDM5 activity to balance H3K4 methylation levels.
Collapse
Affiliation(s)
- Dongsheng Han
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37212, USA
| | | | - Jonathan P. Davies
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37212, USA
| | | | - Lars Plate
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37212, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37212, USA
| | - Jared T. Nordman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37212, USA
| |
Collapse
|
8
|
Hatch HAM, Secombe J. Molecular and cellular events linking variants in the histone demethylase KDM5C to the intellectual disability disorder Claes-Jensen syndrome. FEBS J 2022; 289:7776-7787. [PMID: 34536985 PMCID: PMC8930784 DOI: 10.1111/febs.16204] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/02/2021] [Accepted: 09/16/2021] [Indexed: 01/14/2023]
Abstract
The widespread availability of genetic testing for those with neurodevelopmental disorders has highlighted the importance of many genes necessary for the proper development and function of the nervous system. One gene found to be genetically altered in the X-linked intellectual disability disorder Claes-Jensen syndrome is KDM5C, which encodes a histone demethylase that regulates transcription by altering chromatin. While the genetic link between KDM5C and cognitive (dys)function is clear, how KDM5C functions to control transcriptional programs within neurons to impact their growth and activity remains the subject of ongoing research. Here, we review our current knowledge of Claes-Jensen syndrome and discuss important new data using model organisms that have revealed the importance of KDM5C in regulating aspects of neuronal development and function. Continued research into the molecular and cellular activities regulated by KDM5C is expected to provide critical etiological insights into Claes-Jensen syndrome and highlight potential targets for developing therapies to improve the quality of life of those affected.
Collapse
Affiliation(s)
- Hayden A M Hatch
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Julie Secombe
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
9
|
Diverse Functions of KDM5 in Cancer: Transcriptional Repressor or Activator? Cancers (Basel) 2022; 14:cancers14133270. [PMID: 35805040 PMCID: PMC9265395 DOI: 10.3390/cancers14133270] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 11/16/2022] Open
Abstract
Epigenetic modifications are crucial for chromatin remodeling and transcriptional regulation. Post-translational modifications of histones are epigenetic processes that are fine-tuned by writer and eraser enzymes, and the disorganization of these enzymes alters the cellular state, resulting in human diseases. The KDM5 family is an enzymatic family that removes di- and tri-methyl groups (me2 and me3) from lysine 4 of histone H3 (H3K4), and its dysregulation has been implicated in cancer. Although H3K4me3 is an active chromatin marker, KDM5 proteins serve as not only transcriptional repressors but also transcriptional activators in a demethylase-dependent or -independent manner in different contexts. Notably, KDM5 proteins regulate the H3K4 methylation cycle required for active transcription. Here, we review the recent findings regarding the mechanisms of transcriptional regulation mediated by KDM5 in various contexts, with a focus on cancer, and further shed light on the potential of targeting KDM5 for cancer therapy.
Collapse
|
10
|
Ohguchi H, Park PMC, Wang T, Gryder BE, Ogiya D, Kurata K, Zhang X, Li D, Pei C, Masuda T, Johansson C, Wimalasena VK, Kim Y, Hino S, Usuki S, Kawano Y, Samur MK, Tai YT, Munshi NC, Matsuoka M, Ohtsuki S, Nakao M, Minami T, Lauberth S, Khan J, Oppermann U, Durbin AD, Anderson KC, Hideshima T, Qi J. Lysine Demethylase 5A is Required for MYC Driven Transcription in Multiple Myeloma. Blood Cancer Discov 2021; 2:370-387. [PMID: 34258103 PMCID: PMC8265280 DOI: 10.1158/2643-3230.bcd-20-0108] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 02/22/2021] [Accepted: 03/28/2021] [Indexed: 12/23/2022] Open
Abstract
Lysine demethylase 5A (KDM5A) is a negative regulator of histone H3K4 trimethylation, a histone mark associated with activate gene transcription. We identify that KDM5A interacts with the P-TEFb complex and cooperates with MYC to control MYC targeted genes in multiple myeloma (MM) cells. We develop a cell-permeable and selective KDM5 inhibitor, JQKD82, that increases histone H3K4me3 but paradoxically inhibits downstream MYC-driven transcriptional output in vitro and in vivo. Using genetic ablation together with our inhibitor, we establish that KDM5A supports MYC target gene transcription independent of MYC itself, by supporting TFIIH (CDK7)- and P-TEFb (CDK9)-mediated phosphorylation of RNAPII. These data identify KDM5A as a unique vulnerability in MM functioning through regulation of MYC-target gene transcription, and establish JQKD82 as a tool compound to block KDM5A function as a potential therapeutic strategy for MM.
Collapse
Affiliation(s)
- Hiroto Ohguchi
- Division of Disease Epigenetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan.
| | - Paul M C Park
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Tingjian Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Berkley E Gryder
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, Cleveland, Ohio
| | - Daisuke Ogiya
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Keiji Kurata
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Xiaofeng Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Deyao Li
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Chengkui Pei
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Catrine Johansson
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | | | - Yong Kim
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Shingo Usuki
- Liaison Laboratory Research Promotion Center, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Yawara Kawano
- Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Mehmet K Samur
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Yu-Tzu Tai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nikhil C Munshi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Masao Matsuoka
- Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Takashi Minami
- Division of Molecular and Vascular Biology, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Shannon Lauberth
- Division of Biological Sciences, University of Califonia, San Diego, La Jolla, California
| | - Javed Khan
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Udo Oppermann
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
- Structural Genomics Consortium, University of Oxford, Headington, United Kingdom; Oxford Centre for Translational Myeloma Research, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| | - Adam D Durbin
- Division of Molecular Oncology, Department of Oncology, and Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Kenneth C Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Teru Hideshima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
11
|
Hatch HAM, Belalcazar HM, Marshall OJ, Secombe J. A KDM5-Prospero transcriptional axis functions during early neurodevelopment to regulate mushroom body formation. eLife 2021; 10:63886. [PMID: 33729157 PMCID: PMC7997662 DOI: 10.7554/elife.63886] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Mutations in the lysine demethylase 5 (KDM5) family of transcriptional regulators are associated with intellectual disability, yet little is known regarding their spatiotemporal requirements or neurodevelopmental contributions. Utilizing the mushroom body (MB), a major learning and memory center within the Drosophila brain, we demonstrate that KDM5 is required within ganglion mother cells and immature neurons for proper axogenesis. Moreover, the mechanism by which KDM5 functions in this context is independent of its canonical histone demethylase activity. Using in vivo transcriptional and binding analyses, we identify a network of genes directly regulated by KDM5 that are critical modulators of neurodevelopment. We find that KDM5 directly regulates the expression of prospero, a transcription factor that we demonstrate is essential for MB morphogenesis. Prospero functions downstream of KDM5 and binds to approximately half of KDM5-regulated genes. Together, our data provide evidence for a KDM5-Prospero transcriptional axis that is essential for proper MB development.
Collapse
Affiliation(s)
- Hayden AM Hatch
- Dominick P. Purpura Department of Neuroscience Albert Einstein College of Medicine, Bronx, United States
| | - Helen M Belalcazar
- Department of Genetics Albert Einstein College of Medicine, Bronx, United States
| | - Owen J Marshall
- Menzies Institute for Medical Research University of Tasmania, Hobart, Australia
| | - Julie Secombe
- Dominick P. Purpura Department of Neuroscience Albert Einstein College of Medicine, Bronx, United States.,Department of Genetics Albert Einstein College of Medicine, Bronx, United States
| |
Collapse
|
12
|
The Role of H3K4 Trimethylation in CpG Islands Hypermethylation in Cancer. Biomolecules 2021; 11:biom11020143. [PMID: 33499170 PMCID: PMC7912453 DOI: 10.3390/biom11020143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/30/2020] [Accepted: 01/15/2021] [Indexed: 01/01/2023] Open
Abstract
CpG methylation in transposons, exons, introns and intergenic regions is important for long-term silencing, silencing of parasitic sequences and alternative promoters, regulating imprinted gene expression and determining X chromosome inactivation. Promoter CpG islands, although rich in CpG dinucleotides, are unmethylated and remain so during all phases of mammalian embryogenesis and development, except in specific cases. The biological mechanisms that contribute to the maintenance of the unmethylated state of CpG islands remain elusive, but the modification of established DNA methylation patterns is a common feature in all types of tumors and is considered as an event that intrinsically, or in association with genetic lesions, feeds carcinogenesis. In this review, we focus on the latest results describing the role that the levels of H3K4 trimethylation may have in determining the aberrant hypermethylation of CpG islands in tumors.
Collapse
|
13
|
Kirtana R, Manna S, Patra SK. Molecular mechanisms of KDM5A in cellular functions: Facets during development and disease. Exp Cell Res 2020; 396:112314. [PMID: 33010254 DOI: 10.1016/j.yexcr.2020.112314] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 12/12/2022]
Abstract
Gene expression is influenced at many layers by a fine-tuned crosstalk between multiple extrinsic signalling pathways and intrinsic regulatory molecules that respond to environmental stimuli. Epigenetic modifiers like DNA methyltransferases, histone modifying enzymes and chromatin remodellers are reported to act as triggering factors in many scenarios by exhibiting their control over most of the cellular processes. These epigenetic players can either directly regulate gene expression or interact with some effector molecules that harmonize the expression of downstream genes. One such epigenetic regulator which exhibits multifaceted regulation over gene expression is KDM5A. It is classically a transcriptional repressor acting as H3K4me3 demethylase, but also is reported to act as an activator in many contexts either by loss of activity due to inhibition manifested by other interacting proteins or by downregulating the negative players of a given physiological process thereby escalating the framework. Through this review, we draw attention to the remarkable modes of functioning laid by KDM5A on transcriptional and translational processes, affecting gene expression during differentiation and development and finally summing up on role in disease causation (Fig. 1). We also shed light on different orthologs of KDM5A and their organism specific roles, along with comparison of the sequence similarity to extrapolate some unanswered questions about this protein.
Collapse
Affiliation(s)
- R Kirtana
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
14
|
Torres-Campana D, Kimura S, Orsi GA, Horard B, Benoit G, Loppin B. The Lid/KDM5 histone demethylase complex activates a critical effector of the oocyte-to-zygote transition. PLoS Genet 2020; 16:e1008543. [PMID: 32134927 PMCID: PMC7058283 DOI: 10.1371/journal.pgen.1008543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023] Open
Abstract
Following fertilization of a mature oocyte, the formation of a diploid zygote involves a series of coordinated cellular events that ends with the first embryonic mitosis. In animals, this complex developmental transition is almost entirely controlled by maternal gene products. How such a crucial transcriptional program is established during oogenesis remains poorly understood. Here, we have performed an shRNA-based genetic screen in Drosophila to identify genes required to form a diploid zygote. We found that the Lid/KDM5 histone demethylase and its partner, the Sin3A-HDAC1 deacetylase complex, are necessary for sperm nuclear decompaction and karyogamy. Surprisingly, transcriptomic analyses revealed that these histone modifiers are required for the massive transcriptional activation of deadhead (dhd), which encodes a maternal thioredoxin involved in sperm chromatin remodeling. Unexpectedly, while lid knock-down tends to slightly favor the accumulation of its target, H3K4me3, on the genome, this mark was lost at the dhd locus. We propose that Lid/KDM5 and Sin3A cooperate to establish a local chromatin environment facilitating the unusually high expression of dhd, a key effector of the oocyte-to-zygote transition. Nuclear enzymes that add or remove epigenetic marks on histone tails potentially control gene expression by affecting chromatin structure and DNA accessibility. For instance, members of the KDM5 family of histone demethylases specifically remove methyl groups on the lysine 4 of histone H3, a mark generally correlated with gene expression. Lid (Little imaginal discs), the Drosophila KDM5, is essential for viability but is also required for female fertility. In this paper, we have found that the specific removal of Lid in developing oocytes perturbs the decompaction of the sperm nucleus at fertilization and the integration of paternal chromosomes in the zygote. Sperm nuclear decompaction normally requires the presence of a small redox protein called Deadhead (Dhd), which is massively expressed at the end of oogenesis. Strikingly, our analyses of ovarian transcriptomes revealed that the absence of Lid completely abolishes the expression of dhd. This direct functional link between a general histone modifier and the expression of an essential terminal effector gene represents a rare finding. We hope that our work will help understanding how histone demethylases function in controlling complex developmental transitions as well as cancer progression.
Collapse
Affiliation(s)
- Daniela Torres-Campana
- Laboratoire de Biologie et de Modélisation de la Cellule, CNRS UMR5239, Ecole Normale Supérieure de Lyon, University of Lyon, France
| | - Shuhei Kimura
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR 5558, Villeurbanne F-69622, France
| | - Guillermo A. Orsi
- Laboratoire de Biologie et de Modélisation de la Cellule, CNRS UMR5239, Ecole Normale Supérieure de Lyon, University of Lyon, France
| | - Béatrice Horard
- Laboratoire de Biologie et de Modélisation de la Cellule, CNRS UMR5239, Ecole Normale Supérieure de Lyon, University of Lyon, France
| | - Gérard Benoit
- Laboratoire de Biologie et de Modélisation de la Cellule, CNRS UMR5239, Ecole Normale Supérieure de Lyon, University of Lyon, France
| | - Benjamin Loppin
- Laboratoire de Biologie et de Modélisation de la Cellule, CNRS UMR5239, Ecole Normale Supérieure de Lyon, University of Lyon, France
- * E-mail:
| |
Collapse
|
15
|
You JJ, Ren P, He S, Liang XF, Xiao QQ, Zhang YP. Histone Methylation of H3K4 Involved in the Anorexia of Carnivorous Mandarin Fish ( Siniperca chuatsi) After Feeding on a Carbohydrate-Rich Diet. Front Endocrinol (Lausanne) 2020; 11:323. [PMID: 32636801 PMCID: PMC7316955 DOI: 10.3389/fendo.2020.00323] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022] Open
Abstract
Food intake of carnivorous fish decreases after feeding on a carbohydrate-rich diet. However, the molecular mechanism underlying the anorexia caused by high-carbohydrate diets has remained elusive. We domesticated the mandarin fish to feed on carbohydrate-rich (8%) diets. After 61 days of feeding, several fish (Group A) fed well on artificial diets during the whole feeding period; the other fish (Group B) fed well on artificial diets at the beginning of the feeding period, with their food intake then decreasing to half (anorexia) and then to zero for 5 days; and, finally, a negative control (Group C) fed on live prey fish throughout the experimental process. The plasma glucose was significantly higher in the mandarin fish of Group B than in those of Group A, whereas levels of hepatic glycogen and plasma triglyceride were significantly lower. Using transcriptome sequencing, we investigated the differentially expressed genes between Groups A and B and excluded the genes that were not differentially expressed between Groups A and C. The activation of mTOR and Jak/STAT pathways were found in the mandarin fish with anorexia, which was consistent with the higher expression levels of pepck and pomc genes. We found a higher expression of histone methyltransferase setd1b gene and an increased histone H3 tri-methylated at lysine 4 (H3K4me3) in the fish of Group B. Furthermore, using ChIP assay and inhibitor treatment, we found that the up-regulated H3K4me3 could activate pepck expression, which might have contributed to the hyperglycemia and anorexia in the mandarin fish that fed on carbohydrate-rich diets. Our study initially indicated a link between histone methylation and pepck expression, which might be a novel regulatory mechanism of fish who are fed a carbohydrate-rich diet.
Collapse
Affiliation(s)
- Jun-Jie You
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
| | - Ping Ren
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
| | - Shan He
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
- *Correspondence: Shan He
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
| | - Qian-Qian Xiao
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
| | - Yan-Peng Zhang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
| |
Collapse
|
16
|
Drelon C, Rogers MF, Belalcazar HM, Secombe J. The histone demethylase KDM5 controls developmental timing in Drosophila by promoting prothoracic gland endocycles. Development 2019; 146:dev.182568. [PMID: 31862793 PMCID: PMC6955219 DOI: 10.1242/dev.182568] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022]
Abstract
In Drosophila, the larval prothoracic gland integrates nutritional status with developmental signals to regulate growth and maturation through the secretion of the steroid hormone ecdysone. While the nutritional signals and cellular pathways that regulate prothoracic gland function are relatively well studied, the transcriptional regulators that orchestrate the activity of this tissue remain less characterized. Here, we show that lysine demethylase 5 (KDM5) is essential for prothoracic gland function. Indeed, restoring kdm5 expression only in the prothoracic gland in an otherwise kdm5 null mutant animal is sufficient to rescue both the larval developmental delay and the pupal lethality caused by loss of KDM5. Our studies show that KDM5 functions by promoting the endoreplication of prothoracic gland cells, a process that increases ploidy and is rate limiting for the expression of ecdysone biosynthetic genes. Molecularly, we show that KDM5 activates the expression of the receptor tyrosine kinase torso, which then promotes polyploidization and growth through activation of the MAPK signaling pathway. Taken together, our studies provide key insights into the biological processes regulated by KDM5 and expand our understanding of the transcriptional regulators that coordinate animal development. Summary: Identification of KDM5 as a new transcriptional regulator of the MAPK signaling cascade provides insights into the molecular mechanisms governing the regulation of ecdysone production and developmental growth control.
Collapse
Affiliation(s)
- Coralie Drelon
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Michael F Rogers
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Helen M Belalcazar
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Julie Secombe
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA .,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA
| |
Collapse
|
17
|
Varma P, Mishra RK. Little imaginal discs, a Trithorax group member, is a constituent of nuclear matrix of Drosophila melanogaster embryos. J Biosci 2018; 43:621-633. [PMID: 30207309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nuclear Matrix (NuMat) is the structural and functional framework of the nucleus. It has been shown that attachment of chromatin to NuMat brings significant regulation of the transcriptional activity of particular genes; however, key components of NuMat involved in this process remain elusive. We have identified Lid (Little imaginal discs) as one of the components of NuMat. It belongs to the TrxG group of proteins involved in activation of important developmental genes. However, unlike other activator proteins of TrxG, Lid is a Jumonji protein involved in H3K4me3 demethylation. Here, we report the association of Lid and its various domains with NuMat which implicates its structural role in chromatin organization and epigenetic basis of cellular memory. We have found that both N and C terminal regions of this protein are capable of associating with NuMat. We have further mapped the association of individual domains and found that, PHD, ARID and JmjC domains can associate with NuMat individually. Moreover, deletion of N-terminal PHD finger does not alter Lid's NuMat association implying that although it is sufficient, yet, it is not necessary for Lid's structural role in NuMat. Based on our findings, we hypothesize that C terminal region of Lid which contains PHD fingers might be responsible for its NuMat association via protein-DNA interactions. However, for the N terminal region harboring both a PHD and an ARID finger, Lid anchors to the NuMat via both protein-protein and protein-DNA interactions. The association of JmjC domain with NuMat is the first report of the association of a demethylase domain with NuMat suggesting that Lid, a demethylase, being part of NuMat might be involved in regulating the chromatin dynamics via its NuMat association.
Collapse
Affiliation(s)
- Parul Varma
- CSIR - Center for Cellular and Molecular Biology, Hyderabad 500 007, India
| | | |
Collapse
|
18
|
The Germline Linker Histone dBigH1 and the Translational Regulator Bam Form a Repressor Loop Essential for Male Germ Stem Cell Differentiation. Cell Rep 2018; 21:3178-3189. [PMID: 29241545 DOI: 10.1016/j.celrep.2017.11.060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/31/2017] [Accepted: 11/15/2017] [Indexed: 12/13/2022] Open
Abstract
Drosophila spermatogenesis constitutes a paradigmatic system to study maintenance, proliferation, and differentiation of adult stem cell lineages. Each Drosophila testis contains 6-12 germ stem cells (GSCs) that divide asymmetrically to produce gonialblast cells that undergo four transit-amplifying (TA) spermatogonial divisions before entering spermatocyte differentiation. Mechanisms governing these crucial transitions are not fully understood. Here, we report the essential role of the germline linker histone dBigH1 during early spermatogenesis. Our results suggest that dBigH1 is a general silencing factor that represses Bam, a key regulator of spermatogonia proliferation that is silenced in spermatocytes. Reciprocally, Bam represses dBigH1 during TA divisions. This double-repressor mechanism switches dBigH1/Bam expression from off/on in spermatogonia to on/off in spermatocytes, regulating progression into spermatocyte differentiation. dBigH1 is also required for GSC maintenance and differentiation. These results show the critical importance of germline H1s for male GSC lineage differentiation, unveiling a regulatory interaction that couples transcriptional and translational repression.
Collapse
|
19
|
Little imaginal discs, a Trithorax group member, is a constituent of nuclear matrix of Drosophila melanogaster embryos. J Biosci 2018. [DOI: 10.1007/s12038-018-9773-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
The Histone Demethylase KDM5 Is Essential for Larval Growth in Drosophila. Genetics 2018; 209:773-787. [PMID: 29764901 PMCID: PMC6028249 DOI: 10.1534/genetics.118.301004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/11/2018] [Indexed: 02/07/2023] Open
Abstract
Regulated gene expression is necessary for developmental and homeostatic processes. The KDM5 family of transcriptional regulators are histone H3 lysine 4 demethylases that can function through both demethylase-dependent and -independent mechanisms. While loss and overexpression of KDM5 proteins are linked to intellectual disability and cancer, respectively, their normal developmental functions remain less characterized. Drosophila melanogaster provides an ideal system to investigate KDM5 function, as it encodes a single ortholog in contrast to the four paralogs found in mammalian cells. To examine the consequences of complete loss of KDM5, we generated a null allele of Drosophila kdm5, also known as little imaginal discs (lid), and show that it is essential for viability. Animals lacking KDM5 show a dramatically delayed larval development that coincides with decreased proliferation and increased cell death in wing imaginal discs. Interestingly, this developmental delay is independent of the well-characterized Jumonji C (JmjC) domain-encoded histone demethylase activity of KDM5, suggesting key functions for less characterized domains. Consistent with the phenotypes observed, transcriptome analyses of kdm5 null mutant wing imaginal discs revealed the dysregulation of genes involved in several cellular processes, including cell cycle progression and DNA repair. Together, our analyses reveal KDM5 as a key regulator of larval growth and offer an invaluable tool for defining the biological activities of KDM5 family proteins.
Collapse
|
21
|
Li D, Sun H, Sun WJ, Bao HB, Si SH, Fan JL, Lin P, Cui RJ, Pan YJ, Wen SM, Zheng XL, Yu XG. Role of RbBP5 and H3K4me3 in the vicinity of Snail transcription start site during epithelial-mesenchymal transition in prostate cancer cell. Oncotarget 2018; 7:65553-65567. [PMID: 27566588 PMCID: PMC5323174 DOI: 10.18632/oncotarget.11549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/13/2016] [Indexed: 01/09/2023] Open
Abstract
EMT (epithelial-mesenchymal transition) occurs in a wide range of tumor types, and has been shown to be crucial for metastasis. Epigenetic modifications of histones contribute to chromatin structure and result in the alterations in gene expression. Tri-methylation of histone H3 lysine 4 (H3K4me3) is associated with the promoters of actively transcribed genes and can serve as a transcriptional on/off switch. RbBP5 is a component of the COMPASS/ -like complex, which catalyzes H3K4me3 formation. In this study, we found that in the process of TGF-Beta1 induced EMT in the prostate cancer cell line DU145, H3K4me3 enrichment and RbBP5 binding increased in the vicinity of Snail (SNAI1) transcription start site. Knocking-down of RbBP5 notably decreased Snail expression and EMT. Recruitment of RbBP5 and formation of H3K4me3 at Snail TSS during EMT depend on binding of SMAD2/3 and CBP at Snail TSS. This study links the SMAD2/3 signal with Snail transcription via a histone modification - H3K4me3. Furthermore, our research also demonstrates that RbBP5 and even WRAD may be a promising therapeutic candidates in treating prostate cancer metastasis, and that DU145 cells maintain their incomplete mesenchymal state in an auto/paracrine manner.
Collapse
Affiliation(s)
- Dong Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hui Sun
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China.,Department of Clinical Laboratory, The Second Clinical Medical School of Inner Mongolia University for The Nationalities, (Inner Mongolia Forestry General Hospital), Hulunbuir, Inner Mongolia 022150, P.R. China
| | - Wen-Jing Sun
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hong-Bo Bao
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Shu-Han Si
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Jia-Lin Fan
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Ping Lin
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Rong-Jun Cui
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China.,Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157000, P.R. China
| | - Yu-Jia Pan
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Si-Min Wen
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xiu-Lan Zheng
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Xiao-Guang Yu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
22
|
Mazina MY, Kovalenko EV, Derevyanko PK, Nikolenko JV, Krasnov AN, Vorobyeva NE. One signal stimulates different transcriptional activation mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:178-189. [PMID: 29410380 DOI: 10.1016/j.bbagrm.2018.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/10/2017] [Accepted: 01/15/2018] [Indexed: 12/30/2022]
Abstract
Transcriptional activation is often represented as a "one-step process" that involves the simultaneous recruitment of co-activator proteins, leading to a change in gene status. Using Drosophila developmental ecdysone-dependent genes as a model, we demonstrated that activation of transcription is instead a continuous process that consists of a number of steps at which different phases of transcription (initiation or elongation) are stimulated. Thorough evaluation of the behaviour of multiple transcriptional complexes during the early activation process has shown that the pathways by which activation proceeds for different genes may vary considerably, even in response to the same induction signal. RNA polymerase II recruitment is an important step that is involved in one of the pathways. RNA polymerase II recruitment is accompanied by the recruitment of a significant number of transcriptional coactivators as well as slight changes in the chromatin structure. The second pathway involves the stimulation of transcriptional elongation as its key step. The level of coactivator binding to the promoter shows almost no increase, whereas chromatin modification levels change significantly.
Collapse
Affiliation(s)
- Marina Yu Mazina
- Group of Transcriptional Complexes Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Elena V Kovalenko
- Group of Transcriptional Complexes Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Polina K Derevyanko
- Group of Transcriptional Complexes Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Julia V Nikolenko
- Group of Studying an Association of Transcription and mRNA Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Aleksey N Krasnov
- Group of Studying an Association of Transcription and mRNA Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Nadezhda E Vorobyeva
- Group of Transcriptional Complexes Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| |
Collapse
|
23
|
Yu X, Chen H, Zuo C, Jin X, Yin Y, Wang H, Jin M, Ozato K, Xu S. Chromatin remodeling: demethylating H3K4me3 of type I IFNs gene by Rbp2 through interacting with Piasy for transcriptional attenuation. FASEB J 2018; 32:552-567. [PMID: 28970247 DOI: 10.1096/fj.201700088rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Type I IFNs (IFNIs) are involved in the course of antiviral and antimicrobial activities; however, robust inductions of these can lead to host immunopathology. We have reported that the Pias (protein inhibitor of activated signal transducer and activator of transcription) family member, Piasy, possesses the ability to suppress IFNI transcriptions in mouse embryonic fibroblasts (MEFs), yet the specific molecular mechanism by which it acts remains elusive. Here, we identify that the H3K4me3 levels, one activation mark of genes, in MEFs that were stimulated by poly(I:C) were impaired by Piasy in the IFN-β gene. Piasy bound to the promoter region of the IFN-β gene in MEFs. Meanwhile, retinoblastoma binding protein 2 (Rbp2) was proven to be the only known and novel H3K4me3 demethylase that interacted with Piasy. Overexpression of Rbp2, but not its enzymatically inactive mutant Rbp2H483G/E485Q, retarded the transcription activities of IFNI, whereas small interfering RNA-mediated or short hairpin RNA-mediated knockdown of Rbp2 enhanced IFNI promoter responses. Above all, coexpression of Piasy and Rbp2 led to statistically less IFNI induction than overexpression of either Piasy or Rbp2 alone. Mechanistically, Piasy bound to the Jmjc domain (451-503 aa) of Rbp2 via its PINIT domain (101-218 aa), which is consistent with the domain required for their attenuation of transcription and H3K4me3 levels of IFNI genes. Our study demonstrates that Piasy may prevent exaggerated transcription of IFNI by Rbp2-mediated demethylation of H3K4me3 of IFNI, avoiding excessive immune responses.-Yu, X., Chen, H., Zuo, C., Jin, X., Yin, Y., Wang, H., Jin, M., Ozato, K., Xu, S. Chromatin remodeling: demethylating H3K4me3 of type I IFNs gene by Rbp2 through interacting with Piasy for transcriptional attenuation.
Collapse
Affiliation(s)
- Xiaoli Yu
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Chen
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Zuo
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xi Jin
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yibing Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hong Wang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Mei Jin
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Keiko Ozato
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Songxiao Xu
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Harmeyer KM, Facompre ND, Herlyn M, Basu D. JARID1 Histone Demethylases: Emerging Targets in Cancer. Trends Cancer 2017; 3:713-725. [PMID: 28958389 DOI: 10.1016/j.trecan.2017.08.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 01/04/2023]
Abstract
JARID1 proteins are histone demethylases that both regulate normal cell fates during development and contribute to the epigenetic plasticity that underlies malignant transformation. This H3K4 demethylase family participates in multiple repressive transcriptional complexes at promoters and has broader regulatory effects on chromatin that remain ill-defined. There is growing understanding of the oncogenic and tumor suppressive functions of JARID1 proteins, which are contingent on cell context and the protein isoform. Their contributions to stem cell-like dedifferentiation, tumor aggressiveness, and therapy resistance in cancer have sustained interest in the development of JARID1 inhibitors. Here we review the diverse and context-specific functions of the JARID1 proteins that may impact the utilization of emerging targeted inhibitors of this histone demethylase family in cancer therapy.
Collapse
Affiliation(s)
- Kayla M Harmeyer
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicole D Facompre
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Devraj Basu
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA; The Wistar Institute, Philadelphia, PA 19104, USA; Philadelphia VA Medical Center, Philadelphia, PA 19104, USA.
| |
Collapse
|
25
|
Mazina MY, Derevyanko PK, Kocheryzhkina EV, Nikolenko YV, Krasnov AN, Vorobyeva NE. Coactivator complexes participate in different stages of the Drosophila melanogaster hsp70 gene transcription. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417010094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Kang MK, Mehrazarin S, Park NH, Wang CY. Epigenetic gene regulation by histone demethylases: emerging role in oncogenesis and inflammation. Oral Dis 2016; 23:709-720. [PMID: 27514027 DOI: 10.1111/odi.12569] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/05/2016] [Accepted: 08/09/2016] [Indexed: 12/11/2022]
Abstract
Histone N-terminal tails of nucleosomes are the sites of complex regulation of gene expression through post-translational modifications. Among these modifications, histone methylation had long been associated with permanent gene inactivation until the discovery of Lys-specific demethylase (LSD1), which is responsible for dynamic gene regulation. There are more than 30 members of the Lys demethylase (KDM) family, and with exception of LSD1 and LSD2, all other KDMs possess the Jumonji C (JmjC) domain exhibiting demethylase activity and require unique cofactors, for example, Fe(II) and α-ketoglutarate. These cofactors have been targeted when devising KDM inhibitors, which may yield therapeutic benefit. KDMs and their counterpart Lys methyltransferases (KMTs) regulate multiple biological processes, including oncogenesis and inflammation. KDMs' functional interactions with retinoblastoma (Rb) and E2 factor (E2F) target promoters illustrate their regulatory role in cell cycle progression and oncogenesis. Recent findings also demonstrate the control of inflammation and immune functions by KDMs, such as KDM6B that regulates the pro-inflammatory gene expression and CD4+ T helper (Th) cell lineage determination. This review will highlight the mechanisms by which KDMs and KMTs regulate the target gene expression and how epigenetic mechanisms may be applied to our understanding of oral inflammation.
Collapse
Affiliation(s)
- M K Kang
- Shapiro Laboratory of Viral Oncology and Aging Research, Los Angeles, CA, USA
| | - S Mehrazarin
- Shapiro Laboratory of Viral Oncology and Aging Research, Los Angeles, CA, USA
| | - N-H Park
- Shapiro Laboratory of Viral Oncology and Aging Research, Los Angeles, CA, USA.,David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - C-Y Wang
- Laboratory of Molecular Signaling, UCLA School of Dentistry, Los Angeles, CA, USA
| |
Collapse
|
27
|
Navarro-Costa P, McCarthy A, Prudêncio P, Greer C, Guilgur LG, Becker JD, Secombe J, Rangan P, Martinho RG. Early programming of the oocyte epigenome temporally controls late prophase I transcription and chromatin remodelling. Nat Commun 2016; 7:12331. [PMID: 27507044 PMCID: PMC4987523 DOI: 10.1038/ncomms12331] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 06/22/2016] [Indexed: 12/12/2022] Open
Abstract
Oocytes are arrested for long periods of time in the prophase of the first meiotic division (prophase I). As chromosome condensation poses significant constraints to gene expression, the mechanisms regulating transcriptional activity in the prophase I-arrested oocyte are still not entirely understood. We hypothesized that gene expression during the prophase I arrest is primarily epigenetically regulated. Here we comprehensively define the Drosophila female germ line epigenome throughout oogenesis and show that the oocyte has a unique, dynamic and remarkably diversified epigenome characterized by the presence of both euchromatic and heterochromatic marks. We observed that the perturbation of the oocyte's epigenome in early oogenesis, through depletion of the dKDM5 histone demethylase, results in the temporal deregulation of meiotic transcription and affects female fertility. Taken together, our results indicate that the early programming of the oocyte epigenome primes meiotic chromatin for subsequent functions in late prophase I.
Collapse
Affiliation(s)
- Paulo Navarro-Costa
- Departamento de Ciências Biomédicas e Medicina, and Center for Biomedical Research, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Alicia McCarthy
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, New York 12222, USA
| | - Pedro Prudêncio
- Departamento de Ciências Biomédicas e Medicina, and Center for Biomedical Research, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Christina Greer
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Leonardo G. Guilgur
- Departamento de Ciências Biomédicas e Medicina, and Center for Biomedical Research, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Jörg D. Becker
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Julie Secombe
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Prashanth Rangan
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, New York 12222, USA
| | - Rui G. Martinho
- Departamento de Ciências Biomédicas e Medicina, and Center for Biomedical Research, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| |
Collapse
|
28
|
The fission yeast CENP-B protein Abp1 prevents pervasive transcription of repetitive DNA elements. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1314-21. [PMID: 27345571 DOI: 10.1016/j.bbagrm.2016.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 06/03/2016] [Accepted: 06/22/2016] [Indexed: 11/20/2022]
Abstract
It is well established that eukaryotic genomes are pervasively transcribed producing cryptic unstable transcripts (CUTs). However, the mechanisms regulating pervasive transcription are not well understood. Here, we report that the fission yeast CENP-B homolog Abp1 plays an important role in preventing pervasive transcription. We show that loss of abp1 results in the accumulation of CUTs, which are targeted for degradation by the exosome pathway. These CUTs originate from different types of genomic features, but the highest increase corresponds to Tf2 retrotransposons and rDNA repeats, where they map along the entire elements. In the absence of abp1, increased RNAPII-Ser5P occupancy is observed throughout the Tf2 coding region and, unexpectedly, RNAPII-Ser5P is enriched at rDNA repeats. Loss of abp1 also results in Tf2 derepression and increased nucleolus size. Altogether these results suggest that Abp1 prevents pervasive RNAPII transcription of repetitive DNA elements (i.e., Tf2 and rDNA repeats) from internal cryptic sites.
Collapse
|
29
|
Abstract
Epigenetic regulation of chromatin structure is a fundamental process for eukaryotes. Regulators include DNA methylation, microRNAs and chromatin modifications. Within the chromatin modifiers, one class of enzymes that can functionally bind and modify chromatin, through the removal of methyl marks, is the histone lysine demethylases. Here, we summarize the current findings of the 13 known histone lysine demethylases in Drosophila melanogaster, and discuss the critical role of these histone-modifying enzymes in the maintenance of genomic functions. Additionally, as histone demethylase dysregulation has been identified in cancer, we discuss the advantages for using Drosophila as a model system to study tumorigenesis.
Collapse
Affiliation(s)
- Andreana Holowatyj
- a Department of Oncology ; Wayne State University School of Medicine ; Detroit , MI USA
| | | | | |
Collapse
|
30
|
Krasnov AN, Mazina MY, Nikolenko JV, Vorobyeva NE. On the way of revealing coactivator complexes cross-talk during transcriptional activation. Cell Biosci 2016; 6:15. [PMID: 26913181 PMCID: PMC4765067 DOI: 10.1186/s13578-016-0081-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 02/09/2016] [Indexed: 08/07/2023] Open
Abstract
Transcriptional activation is a complex, multistage process implemented by hundreds of proteins. Many transcriptional proteins are organized into coactivator complexes, which participate in transcription regulation at numerous genes and are a driver of this process. The molecular action mechanisms of coactivator complexes remain largely understudied. Relevant publications usually deal with the involvement of these complexes in the entire process of transcription, and only a few studies are aimed to elucidate their functions at its particular stages. This review summarizes available information on the participation of key coactivator complexes in transcriptional activation. The timing of coactivator complex binding/removal has been used for restructuring previously described information about the transcriptional process. Several major stages of transcriptional activation have been distinguished based on the presence of covalent histone modifications and general transcriptional factors, and the recruitment and/or removal phases have been determined for each coactivator included in analysis. Recruitment of Mediator, SWItch/Sucrose Non-Fermentable and NUcleosome Remodeling Factor complexes during transcription activation has been investigated thoroughly; CHD and INOsitol auxotrophy 80 families are less well studied. In most cases, the molecular mechanisms responsible for the removal of certain coactivator complexes after the termination of their functions at the promoters are still not understood. On the basis of the summarized information, we propose a scheme that illustrates the involvement of coactivator complexes in different stages of the transcription activation process. This scheme may help to gain a deeper insight into the molecular mechanism of functioning of coactivator complexes, find novel participants of the process, and reveal novel structural or functional connections between different coactivators.
Collapse
Affiliation(s)
- Aleksey N Krasnov
- Department of Transcription Regulation and Chromatin Dynamic, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - Marina Yu Mazina
- Department of Transcription Regulation and Chromatin Dynamic, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - Julia V Nikolenko
- Department of Transcription Regulation and Chromatin Dynamic, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - Nadezhda E Vorobyeva
- Department of Transcription Regulation and Chromatin Dynamic, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| |
Collapse
|
31
|
Gajan A, Barnes VL, Liu M, Saha N, Pile LA. The histone demethylase dKDM5/LID interacts with the SIN3 histone deacetylase complex and shares functional similarities with SIN3. Epigenetics Chromatin 2016; 9:4. [PMID: 26848313 PMCID: PMC4740996 DOI: 10.1186/s13072-016-0053-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/14/2016] [Indexed: 01/01/2023] Open
Abstract
Background Regulation of gene expression by histone-modifying enzymes is essential to control cell fate decisions and developmental processes. Two histone-modifying enzymes, RPD3, a deacetylase, and dKDM5/LID, a demethylase, are present in a single complex, coordinated through the SIN3 scaffold protein. While the SIN3 complex has been demonstrated to have functional histone deacetylase activity, the role of the demethylase dKDM5/LID as part of the complex has not been investigated. Results Here, we analyzed the developmental and transcriptional activities of dKDM5/LID in relation to SIN3. Knockdown of either Sin3A or lid resulted in decreased cell proliferation in S2 cells and wing imaginal discs. Conditional knockdown of either Sin3A or lid resulted in flies that displayed wing developmental defects. Interestingly, overexpression of dKDM5/LID rescued the wing developmental defect due to reduced levels of SIN3 in female flies, indicating a major role for dKDM5/LID in cooperation with SIN3 during development. Together, these observed phenotypes strongly suggest that dKDM5/LID as part of the SIN3 complex can impact previously uncharacterized transcriptional networks. Transcriptome analysis revealed that SIN3 and dKDM5/LID regulate many common genes. While several genes implicated in cell cycle and wing developmental pathways were affected upon altering the level of these chromatin factors, a significant affect was also observed on genes required to mount an effective stress response. Further, under conditions of induced oxidative stress, reduction of SIN3 and/or dKDM5/LID altered the expression of a greater number of genes involved in cell cycle-related processes relative to normal conditions. This highlights an important role for SIN3 and dKDM5/LID proteins to maintain proper progression through the cell cycle in environments of cellular stress. Further, we find that target genes are bound by both SIN3 and dKDM5/LID, however, histone acetylation, not methylation, plays a predominant role in gene regulation by the SIN3 complex. Conclusions We have provided genetic evidence to demonstrate functional cooperation between the histone demethylase dKDM5/LID and SIN3. Biochemical and transcriptome data further support functional links between these proteins. Together, the data provide a solid framework for analyzing the gene regulatory pathways through which SIN3 and dKDM5/LID control diverse biological processes in the organism. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0053-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ambikai Gajan
- Department of Biological Sciences, Wayne State University, Detroit, MI USA
| | - Valerie L Barnes
- Department of Biological Sciences, Wayne State University, Detroit, MI USA
| | - Mengying Liu
- Department of Biological Sciences, Wayne State University, Detroit, MI USA
| | - Nirmalya Saha
- Department of Biological Sciences, Wayne State University, Detroit, MI USA
| | - Lori A Pile
- Department of Biological Sciences, Wayne State University, Detroit, MI USA
| |
Collapse
|
32
|
Liu X, Secombe J. The Histone Demethylase KDM5 Activates Gene Expression by Recognizing Chromatin Context through Its PHD Reader Motif. Cell Rep 2015; 13:2219-31. [PMID: 26673323 DOI: 10.1016/j.celrep.2015.11.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/05/2015] [Accepted: 10/31/2015] [Indexed: 12/22/2022] Open
Abstract
KDM5 family proteins are critically important transcriptional regulators whose physiological functions in the context of a whole animal remain largely unknown. Using genome-wide gene expression and binding analyses in Drosophila adults, we demonstrate that KDM5 (Lid) is a direct regulator of genes required for mitochondrial structure and function. Significantly, this occurs independently of KDM5's well-described JmjC domain-encoded histone demethylase activity. Instead, it requires the PHD motif of KDM5 that binds to histone H3 that is di- or trimethylated on lysine 4 (H3K4me2/3). Genome-wide, KDM5 binding overlaps with the active chromatin mark H3K4me3, and a fly strain specifically lacking H3K4me2/3 binding shows defective KDM5 promoter recruitment and gene activation. KDM5 therefore plays a central role in regulating mitochondrial function by utilizing its ability to recognize specific chromatin contexts. Importantly, KDM5-mediated regulation of mitochondrial activity is likely to be key in human diseases caused by dysfunction of this family of proteins.
Collapse
Affiliation(s)
- Xingyin Liu
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Julie Secombe
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
33
|
The Drosophila histone demethylase dKDM5/LID regulates hematopoietic development. Dev Biol 2015; 405:260-8. [DOI: 10.1016/j.ydbio.2015.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 06/12/2015] [Accepted: 07/12/2015] [Indexed: 01/08/2023]
|
34
|
dDsk2 regulates H2Bub1 and RNA polymerase II pausing at dHP1c complex target genes. Nat Commun 2015; 6:7049. [PMID: 25916810 DOI: 10.1038/ncomms8049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 03/26/2015] [Indexed: 12/13/2022] Open
Abstract
dDsk2 is a conserved extraproteasomal ubiquitin receptor that targets ubiquitylated proteins for degradation. Here we report that dDsk2 plays a nonproteolytic function in transcription regulation. dDsk2 interacts with the dHP1c complex, localizes at promoters of developmental genes and is required for transcription. Through the ubiquitin-binding domain, dDsk2 interacts with H2Bub1, a modification that occurs at dHP1c complex-binding sites. H2Bub1 is not required for binding of the complex; however, dDsk2 depletion strongly reduces H2Bub1. Co-depletion of the H2Bub1 deubiquitylase dUbp8/Nonstop suppresses this reduction and rescues expression of target genes. RNA polymerase II is strongly paused at promoters of dHP1c complex target genes and dDsk2 depletion disrupts pausing. Altogether, these results suggest that dDsk2 prevents dUbp8/Nonstop-dependent H2Bub1 deubiquitylation at promoters of dHP1c complex target genes and regulates RNA polymerase II pausing. These results expand the catalogue of nonproteolytic functions of ubiquitin receptors to the epigenetic regulation of chromatin modifications.
Collapse
|
35
|
Liu X, Greer C, Secombe J. KDM5 interacts with Foxo to modulate cellular levels of oxidative stress. PLoS Genet 2014; 10:e1004676. [PMID: 25329053 PMCID: PMC4199495 DOI: 10.1371/journal.pgen.1004676] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/14/2014] [Indexed: 12/12/2022] Open
Abstract
Increased cellular levels of oxidative stress are implicated in a large number of human diseases. Here we describe the transcription co-factor KDM5 (also known as Lid) as a new critical regulator of cellular redox state. Moreover, this occurs through a novel KDM5 activity whereby it alters the ability of the transcription factor Foxo to bind to DNA. Our microarray analyses of kdm5 mutants revealed a striking enrichment for genes required to regulate cellular levels of oxidative stress. Consistent with this, loss of kdm5 results in increased sensitivity to treatment with oxidizers, elevated levels of oxidized proteins, and increased mutation load. KDM5 activates oxidative stress resistance genes by interacting with Foxo to facilitate its recruitment to KDM5-Foxo co-regulated genes. Significantly, this occurs independently of KDM5's well-characterized demethylase activity. Instead, KDM5 interacts with the lysine deacetylase HDAC4 to promote Foxo deacetylation, which affects Foxo DNA binding.
Collapse
Affiliation(s)
- Xingyin Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Christina Greer
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Julie Secombe
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
36
|
Nishibuchi G, Shibata Y, Hayakawa T, Hayakawa N, Ohtani Y, Sinmyozu K, Tagami H, Nakayama JI. Physical and functional interactions between the histone H3K4 demethylase KDM5A and the nucleosome remodeling and deacetylase (NuRD) complex. J Biol Chem 2014; 289:28956-70. [PMID: 25190814 DOI: 10.1074/jbc.m114.573725] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Histone H3K4 methylation has been linked to transcriptional activation. KDM5A (also known as RBP2 or JARID1A), a member of the KDM5 protein family, is an H3K4 demethylase, previously implicated in the regulation of transcription and differentiation. Here, we show that KDM5A is physically and functionally associated with two histone deacetylase complexes. Immunoaffinity purification of KDM5A confirmed a previously described association with the SIN3B-containing histone deacetylase complex and revealed an association with the nucleosome remodeling and deacetylase (NuRD) complex. Sucrose density gradient and sequential immunoprecipitation analyses further confirmed the stable association of KDM5A with these two histone deacetylase complexes. KDM5A depletion led to changes in the expression of hundreds of genes, two-thirds of which were also controlled by CHD4, the NuRD catalytic subunit. Gene ontology analysis confirmed that the genes commonly regulated by both KDM5A and CHD4 were categorized as developmentally regulated genes. ChIP analyses suggested that CHD4 modulates H3K4 methylation levels at the promoter and coding regions of target genes. We further demonstrated that the Caenorhabditis elegans homologues of KDM5 and CHD4 function in the same pathway during vulva development. These results suggest that KDM5A and the NuRD complex cooperatively function to control developmentally regulated genes.
Collapse
Affiliation(s)
- Gohei Nishibuchi
- From the Graduate School of Natural Sciences, Nagoya City University, Nagoya 467-8501
| | - Yukimasa Shibata
- the Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, Sanda, Hyogo 669-1337, and
| | | | | | | | - Kaori Sinmyozu
- Proteomics Support Unit, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Hideaki Tagami
- From the Graduate School of Natural Sciences, Nagoya City University, Nagoya 467-8501
| | - Jun-ichi Nakayama
- From the Graduate School of Natural Sciences, Nagoya City University, Nagoya 467-8501, the Laboratory for Chromatin Dynamics and
| |
Collapse
|
37
|
Zheng Y, Tipton JD, Thomas PM, Kelleher NL, Sweet SMM. Site-specific human histone H3 methylation stability: fast K4me3 turnover. Proteomics 2014; 14:2190-9. [PMID: 24826939 DOI: 10.1002/pmic.201400060] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/11/2014] [Accepted: 05/09/2014] [Indexed: 12/16/2022]
Abstract
We employ stable-isotope labeling and quantitative mass spectrometry to track histone methylation stability. We show that H3 trimethyl K9 and K27 are slow to be established on new histones and slow to disappear from old histones, with half-lives of multiple cell divisions. By contrast, the transcription-associated marks K4me3 and K36me3 turn over far more rapidly, with half-lives of 6.8 h and 57 h, respectively. Inhibition of demethylases increases K9 and K36 methylation, with K9 showing the largest and most robust increase. We interpret different turnover rates in light of genome-wide localization data and transcription-dependent nucleosome rearrangements proximal to the transcription start site.
Collapse
Affiliation(s)
- Yupeng Zheng
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | | | | | | | | |
Collapse
|
38
|
Cuartero S, Fresán U, Reina O, Planet E, Espinàs ML. Ibf1 and Ibf2 are novel CP190-interacting proteins required for insulator function. EMBO J 2014; 33:637-47. [PMID: 24502977 DOI: 10.1002/embj.201386001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Insulators are DNA-protein complexes that play a central role in chromatin organization and regulation of gene expression. In Drosophila different proteins, dCTCF, Su(Hw), and BEAF bind to specific subsets of insulators most of them having in common CP190. It has been shown that there are a number of CP190-binding sites that are not shared with any other known insulator protein, suggesting that other proteins could cooperate with CP190 to regulate insulator activity. Here we report on the identification of two previously uncharacterized proteins as CP190-interacting proteins, that we have named Ibf1 and Ibf2. These proteins localize at insulator bodies and associate with chromatin at CP190-binding sites throughout the genome. We also show that Ibf1 and Ibf2 are DNA-binding proteins that form hetero-oligomers that mediate CP190 binding to chromatin. Moreover, Ibf1 and Ibf2 are necessary for insulator activity in enhancer-blocking assays and Ibf2 null mutation cause a homeotic phenotype. Taken together our data reveal a novel pathway of CP190 recruitment to chromatin that is required for insulator activity.
Collapse
Affiliation(s)
- Sergi Cuartero
- Institute of Molecular Biology of Barcelona IBMB-CSIC, and Institute for Research in Biomedicine IRB, Barcelona, Spain
| | | | | | | | | |
Collapse
|
39
|
Font-Burgada J, Reina O, Rossell D, Azorín F. chroGPS, a global chromatin positioning system for the functional analysis and visualization of the epigenome. Nucleic Acids Res 2014; 42:2126-37. [PMID: 24271395 PMCID: PMC3936722 DOI: 10.1093/nar/gkt1186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/31/2013] [Accepted: 11/02/2013] [Indexed: 11/15/2022] Open
Abstract
Development of tools to jointly visualize the genome and the epigenome remains a challenge. chroGPS is a computational approach that addresses this question. chroGPS uses multidimensional scaling techniques to represent similarity between epigenetic factors, or between genetic elements on the basis of their epigenetic state, in 2D/3D reference maps. We emphasize biological interpretability, statistical robustness, integration of genetic and epigenetic data from heterogeneous sources, and computational feasibility. Although chroGPS is a general methodology to create reference maps and study the epigenetic state of any class of genetic element or genomic region, we focus on two specific kinds of maps: chroGPS(factors), which visualizes functional similarities between epigenetic factors, and chroGPS(genes), which describes the epigenetic state of genes and integrates gene expression and other functional data. We use data from the modENCODE project on the genomic distribution of a large collection of epigenetic factors in Drosophila, a model system extensively used to study genome organization and function. Our results show that the maps allow straightforward visualization of relationships between factors and elements, capturing relevant information about their functional properties that helps to interpret epigenetic information in a functional context and derive testable hypotheses.
Collapse
Affiliation(s)
- Joan Font-Burgada
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Rexac, 10, 08028 Barcelona, Spain, Institute for Research in Biomedicine, IRB Barcelona, Baldiri Reixac, 10, 08028 Barcelona, Spain and Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
| | - Oscar Reina
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Rexac, 10, 08028 Barcelona, Spain, Institute for Research in Biomedicine, IRB Barcelona, Baldiri Reixac, 10, 08028 Barcelona, Spain and Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
| | - David Rossell
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Rexac, 10, 08028 Barcelona, Spain, Institute for Research in Biomedicine, IRB Barcelona, Baldiri Reixac, 10, 08028 Barcelona, Spain and Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
| | - Fernando Azorín
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Rexac, 10, 08028 Barcelona, Spain, Institute for Research in Biomedicine, IRB Barcelona, Baldiri Reixac, 10, 08028 Barcelona, Spain and Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
40
|
Pérez-Montero S, Carbonell A, Morán T, Vaquero A, Azorín F. The embryonic linker histone H1 variant of Drosophila, dBigH1, regulates zygotic genome activation. Dev Cell 2013; 26:578-90. [PMID: 24055651 DOI: 10.1016/j.devcel.2013.08.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 05/21/2013] [Accepted: 08/15/2013] [Indexed: 01/15/2023]
Abstract
Histone H1 is an essential chromatin component. Metazoans usually contain multiple stage-specific H1s. In particular, specific variants replace somatic H1s during early embryogenesis. In this regard, Drosophila was an exception because a single dH1 was identified that, starting at cellularization, is detected throughout development in somatic cells. Here, we identify the embryonic H1 of Drosophila, dBigH1. dBigH1 is abundant before cellularization occurs, when somatic dH1 is absent and the zygotic genome is inactive. Upon cellularization, when the zygotic genome is progressively activated, dH1 replaces dBigH1 in the soma, but not in the primordial germ cells (PGCs) that have delayed zygotic genome activation (ZGA). In addition, a loss-of-function mutant shows premature ZGA in both the soma and PGCs. Mutant embryos die at cellularization, showing increased levels of active RNApol II and zygotic transcripts, along with DNA damage and mitotic defects. These results show an essential function of dBigH1 in ZGA regulation.
Collapse
Affiliation(s)
- Salvador Pérez-Montero
- Institute of Molecular Biology of Barcelona, CSIC, 08028 Barcelona, Spain; Institute for Research in Biomedicine, IRB Barcelona, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
41
|
The histone demethylase Jarid1b ensures faithful mouse development by protecting developmental genes from aberrant H3K4me3. PLoS Genet 2013; 9:e1003461. [PMID: 23637629 PMCID: PMC3630093 DOI: 10.1371/journal.pgen.1003461] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 03/04/2013] [Indexed: 12/12/2022] Open
Abstract
Embryonic development is tightly regulated by transcription factors and chromatin-associated proteins. H3K4me3 is associated with active transcription and H3K27me3 with gene repression, while the combination of both keeps genes required for development in a plastic state. Here we show that deletion of the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) results in major neonatal lethality due to respiratory failure. Jarid1b knockout embryos have several neural defects including disorganized cranial nerves, defects in eye development, and increased incidences of exencephaly. Moreover, in line with an overlap of Jarid1b and Polycomb target genes, Jarid1b knockout embryos display homeotic skeletal transformations typical for Polycomb mutants, supporting a functional interplay between Polycomb proteins and Jarid1b. To understand how Jarid1b regulates mouse development, we performed a genome-wide analysis of histone modifications, which demonstrated that normally inactive genes encoding developmental regulators acquire aberrant H3K4me3 during early embryogenesis in Jarid1b knockout embryos. H3K4me3 accumulates as embryonic development proceeds, leading to increased expression of neural master regulators like Pax6 and Otx2 in Jarid1b knockout brains. Taken together, these results suggest that Jarid1b regulates mouse development by protecting developmental genes from inappropriate acquisition of active histone modifications.
Collapse
|