1
|
Li Y, Zhu S, Chen Y, Ma Q, Kan D, Yu W, Zhang B, Chen X, Wei W, Shao Y, Wang K, Zhang M, Deng S, Niu Y, Shang Z. Post-transcriptional modification of m 6A methylase METTL3 regulates ERK-induced androgen-deprived treatment resistance prostate cancer. Cell Death Dis 2023; 14:289. [PMID: 37095108 PMCID: PMC10126012 DOI: 10.1038/s41419-023-05773-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/14/2023] [Accepted: 03/23/2023] [Indexed: 04/26/2023]
Abstract
As the most common modification of RNA, N6-methyladenosin (m6A) has been confirmed to be involved in the occurrence and development of various cancers. However, the relationship between m6A and castration resistance prostate cancer (CRPC), has not been fully studied. By m6A-sequencing of patient cancer tissues, we identified that the overall level of m6A in CRPC was up-regulated than castration sensitive prostate cancer (CSPC). Based on the analysis of m6A-sequencing data, we found m6A modification level of HRas proto-oncogene, GTPase (HRAS) and mitogen-activated protein kinase kinase 2 (MEK2 or MAP2K2) were enhanced in CRPC. Specifically, tissue microarray analysis and molecular biology experiments confirmed that METTL3, an m6A "writer" up-regulated after castration, activated the ERK pathway to contribute to malignant phenotype including ADT resistance, cell proliferation and invasion. We revealed that METTL3-mediated ERK phosphorylation by stabilizing the transcription of HRAS and positively regulating the translation of MEK2. In the Enzalutamide-resistant (Enz-R) C4-2 and LNCap cell line (C4-2R, LNCapR) established in the current study, the ERK pathway was confirmed to be regulated by METTL3. We also found that applying antisense oligonucleotides (ASOs) to target the METTL3/ERK axis can restore Enzalutamide resistance in vitro and in vivo. In conclusion, METTL3 activated the ERK pathway and induced the resistance to Enzalutamide by regulating the m6A level of critical gene transcription in the ERK pathway.
Collapse
Affiliation(s)
- Yang Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shimiao Zhu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yutong Chen
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Qianwang Ma
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Duo Kan
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Wenyue Yu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Boya Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xuanrong Chen
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Wanqing Wei
- Lianshui People's Hospital of Kangda College affiliated with Nanjing Medical University, Huai'an, China
| | - Yi Shao
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Keruo Wang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Mingpeng Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shu Deng
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuanjie Niu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Zhiqun Shang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
2
|
Analysis of human total antibody repertoires in TIF1γ autoantibody positive dermatomyositis. Commun Biol 2021; 4:419. [PMID: 33772100 PMCID: PMC7997983 DOI: 10.1038/s42003-021-01932-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
We investigate the accumulated microbial and autoantigen antibody repertoire in adult-onset dermatomyositis patients sero-positive for TIF1γ (TRIM33) autoantibodies. We use an untargeted high-throughput approach which combines immunoglobulin disease-specific epitope-enrichment and identification of microbial and human antigens. We observe antibodies recognizing a wider repertoire of microbial antigens in dermatomyositis. Antibodies recognizing viruses and Poxviridae family species are significantly enriched. The identified autoantibodies recognise a large portion of the human proteome, including interferon regulated proteins; these proteins cluster in specific biological processes. In addition to TRIM33, we identify autoantibodies against eleven further TRIM proteins, including TRIM21. Some of these TRIM proteins share epitope homology with specific viral species including poxviruses. Our data suggest antibody accumulation in dermatomyositis against an expanded diversity of microbial and human proteins and evidence of non-random targeting of specific signalling pathways. Our findings indicate that molecular mimicry and epitope spreading events may play a role in dermatomyositis pathogenesis. Megremis, Walker at al. identify immunogenic epitopes in dermatomyositis patients. They identify antibodies recognizing a wider diversity of microbial antigens including poxviruses, and autoantibodies recognizing a large portion of the human proteome. Shared epitope homology between viral and human proteins suggests that molecular mimicry and epitope spreading events may play a role in dermatomyositis pathogenesis.
Collapse
|
3
|
Gaba S, Kumari A, Medema M, Kaushik R. Pan-genome analysis and ancestral state reconstruction of class halobacteria: probability of a new super-order. Sci Rep 2020; 10:21205. [PMID: 33273480 PMCID: PMC7713125 DOI: 10.1038/s41598-020-77723-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Halobacteria, a class of Euryarchaeota are extremely halophilic archaea that can adapt to a wide range of salt concentration generally from 10% NaCl to saturated salt concentration of 32% NaCl. It consists of the orders: Halobacteriales, Haloferaciales and Natriabales. Pan-genome analysis of class Halobacteria was done to explore the core (300) and variable components (Softcore: 998, Cloud:36531, Shell:11784). The core component revealed genes of replication, transcription, translation and repair, whereas the variable component had a major portion of environmental information processing. The pan-gene matrix was mapped onto the core-gene tree to find the ancestral (44.8%) and derived genes (55.1%) of the Last Common Ancestor of Halobacteria. A High percentage of derived genes along with presence of transformation and conjugation genes indicate the occurrence of horizontal gene transfer during the evolution of Halobacteria. A Core and pan-gene tree were also constructed to infer a phylogeny which implicated on the new super-order comprising of Natrialbales and Halobacteriales.
Collapse
Affiliation(s)
- Sonam Gaba
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India.,Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Abha Kumari
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Marnix Medema
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Rajeev Kaushik
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
4
|
Timmons PB, Hewage CM. HAPPENN is a novel tool for hemolytic activity prediction for therapeutic peptides which employs neural networks. Sci Rep 2020; 10:10869. [PMID: 32616760 PMCID: PMC7331684 DOI: 10.1038/s41598-020-67701-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
The growing prevalence of resistance to antibiotics motivates the search for new antibacterial agents. Antimicrobial peptides are a diverse class of well-studied membrane-active peptides which function as part of the innate host defence system, and form a promising avenue in antibiotic drug research. Some antimicrobial peptides exhibit toxicity against eukaryotic membranes, typically characterised by hemolytic activity assays, but currently, the understanding of what differentiates hemolytic and non-hemolytic peptides is limited. This study leverages advances in machine learning research to produce a novel artificial neural network classifier for the prediction of hemolytic activity from a peptide's primary sequence. The classifier achieves best-in-class performance, with cross-validated accuracy of [Formula: see text] and Matthews correlation coefficient of 0.71. This innovative classifier is available as a web server at https://research.timmons.eu/happenn , allowing the research community to utilise it for in silico screening of peptide drug candidates for high therapeutic efficacies.
Collapse
Affiliation(s)
- Patrick Brendan Timmons
- UCD School of Biomolecular and Biomedical Science, UCD Centre for Synthesis and Chemical Biology, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Chandralal M Hewage
- UCD School of Biomolecular and Biomedical Science, UCD Centre for Synthesis and Chemical Biology, UCD Conway Institute, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
5
|
Peshkin L, Gupta M, Ryazanova L, Wühr M. Bayesian Confidence Intervals for Multiplexed Proteomics Integrate Ion-statistics with Peptide Quantification Concordance. Mol Cell Proteomics 2019; 18:2108-2120. [PMID: 31311848 PMCID: PMC6773559 DOI: 10.1074/mcp.tir119.001317] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 06/11/2019] [Indexed: 01/28/2023] Open
Abstract
Multiplexed proteomics has emerged as a powerful tool to measure relative protein expression levels across multiple conditions. The relative protein abundances are inferred by comparing the signals generated by isobaric tags, which encode the samples' origins. Intuitively, the trust associated with a protein measurement depends on the similarity of ratios from the protein's peptides and the signal-strength of these measurements. However, typically the average peptide ratio is reported as the estimate of relative protein abundance, which is only the most likely ratio with a very naive model. Moreover, there is no sense on the confidence in these measurements. Here, we present a mathematically rigorous approach that integrates peptide signal strengths and peptide-measurement agreement into an estimation of the true protein ratio and the associated confidence (BACIQ). The main advantages of BACIQ are: (1) It removes the need to threshold reported peptide signal based on an arbitrary cut-off, thereby reporting more measurements from a given experiment; (2) Confidence can be assigned without replicates; (3) For repeated experiments BACIQ provides confidence intervals for the union, not the intersection, of quantified proteins; (4) For repeated experiments, BACIQ confidence intervals are more predictive than confidence intervals based on protein measurement agreement. To demonstrate the power of BACIQ we reanalyzed previously published data on subcellular protein movement on treatment with an Exportin-1 inhibiting drug. We detect ∼2× more highly significant movers, down to subcellular localization changes of ∼1%. Thus, our method drastically increases the value obtainable from quantitative proteomics experiments, helping researchers to interpret their data and prioritize resources. To make our approach easily accessible we distribute it via a Python/Stan package.
Collapse
Affiliation(s)
- Leonid Peshkin
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Meera Gupta
- Department of Molecular Biology & the Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544; DOE Center for Advanced Bioenergy and Bioproducts Innovation, Princeton, NJ 08544
| | - Lillia Ryazanova
- Department of Molecular Biology & the Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544; DOE Center for Advanced Bioenergy and Bioproducts Innovation, Princeton, NJ 08544
| | - Martin Wühr
- Department of Molecular Biology & the Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544; DOE Center for Advanced Bioenergy and Bioproducts Innovation, Princeton, NJ 08544.
| |
Collapse
|
6
|
A novel mitochondrial micropeptide MPM enhances mitochondrial respiratory activity and promotes myogenic differentiation. Cell Death Dis 2019; 10:528. [PMID: 31296841 PMCID: PMC6624212 DOI: 10.1038/s41419-019-1767-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/25/2019] [Accepted: 06/26/2019] [Indexed: 12/14/2022]
Abstract
Micropeptides belong to a class of newly identified small molecules with <100 amino acids in length, and their functions remain largely unknown. Here, we identified a novel muscle-enriched micropeptide that was localized to mitochondria (named MPM, micropeptide in mitochondria) and upregulated during in vitro differentiation of C2C12 myoblasts and in vivo early postnatal skeletal muscle development, and muscle regeneration after cardiotoxin (CTX) damage. Downregulation of MPM was observed in the muscular tissues of tibial muscular dystrophy and Duchenne muscular dystrophy patients. Furthermore, MPM silencing inhibited the differentiation of C2C12 myoblasts into myotubes, whereas MPM overexpression stimulated it. MPM−/− mice exhibited smaller skeletal muscle fibers and worse muscle performance, such as decrease in the maximum grip force of limbs, the latency to fall off rotarod, and the exhausting swimming time. Muscle regeneration was also impaired in MPM−/− mice, as evidenced by lower expression of Pax7, MyoD, and MyoG after CTX injection and smaller regenerated myofibers, compared with wild-type mice. Mechanistical investigations based on both gain- and loss-of function studies revealed that MPM increased oxygen consumption and ATP production of mitochondria. Moreover, ectopic expression of PGC-1α, which can enhance mitochondrial respiration, attenuated the inhibitory effect of siMPM on myogenic differentiation. These results imply that MPM may promote myogenic differentiation and muscle fiber growth by enhancing mitochondrial respiratory activity, which highlights the importance of micropeptides in the elaborate regulatory network of both myogenesis and mitochondrial activity and implicates MPM as a potential target for muscular dystrophy therapy.
Collapse
|
7
|
Abstract
Signal peptidases are the membrane bound enzymes that cleave off the amino-terminal signal peptide from secretory preproteins . There are two types of bacterial signal peptidases . Type I signal peptidase utilizes a serine/lysine catalytic dyad mechanism and is the major signal peptidase in most bacteria. Type II signal peptidase is an aspartic protease specific for prolipoproteins. This chapter will review what is known about the structure, function and mechanism of these unique enzymes.
Collapse
Affiliation(s)
- Mark Paetzel
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
8
|
Peters G, Maertens J, Lammertyn J, De Mey M. Exploring of the feature space of de novo developed post-transcriptional riboregulators. PLoS Comput Biol 2018; 14:e1006170. [PMID: 30118473 PMCID: PMC6114898 DOI: 10.1371/journal.pcbi.1006170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 08/29/2018] [Accepted: 04/30/2018] [Indexed: 11/23/2022] Open
Abstract
Metabolic engineering increasingly depends upon RNA technology to customly rewire the metabolism to maximize production. To this end, pure riboregulators allow dynamic gene repression without the need of a potentially burdensome coexpressed protein like typical Hfq binding small RNAs and clustered regularly interspaced short palindromic repeats technology. Despite this clear advantage, no clear general design principles are available to de novo develop repressing riboregulators, limiting the availability and the reliable development of these type of riboregulators. Here, to overcome this lack of knowledge on the functionality of repressing riboregulators, translation inhibiting RNAs are developed from scratch. These de novo developed riboregulators explore features related to thermodynamical and structural factors previously attributed to translation initiation modulation. In total, 12 structural and thermodynamic features were defined of which six features were retained after removing correlations from an in silico generated riboregulator library. From this translation inhibiting RNA library, 18 riboregulators were selected using a experimental design and subsequently constructed and co-expressed with two target untranslated regions to link the translation inhibiting RNA features to functionality. The pure riboregulators in the design of experiments showed repression down to 6% of the original protein expression levels, which could only be partially explained by a ordinary least squares regression model. To allow reliable forward engineering, a partial least squares regression model was constructed and validated to link the properties of translation inhibiting RNA riboregulators to gene repression. In this model both structural and thermodynamic features were important for efficient gene repression by pure riboregulators. This approach enables a more reliable de novo forward engineering of effective pure riboregulators, which further expands the RNA toolbox for gene expression modulation. To allow reliable forward engineering of microbial cell factories, various metabolic engineering efforts rely on RNA-based technology. As such, programmable riboregulators allow dynamic control over gene expression. However, no clear design principles exist for de novo developed repressing riboregulators, which limits their applicability. Here, various engineering principles are identified and computationally explored. Subsequently, various design criteria are used in an experimental design, which were explored in an in vivo study. This resulted in a regression model that enables a more reliable computational design of repression small RNAs.
Collapse
Affiliation(s)
- Gert Peters
- Centre for Synthetic Biology, Ghent University, Ghent, Belgium
| | - Jo Maertens
- Centre for Synthetic Biology, Ghent University, Ghent, Belgium
| | | | - Marjan De Mey
- Centre for Synthetic Biology, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
9
|
Çakar MM, Mangas-Sanchez J, Birmingham WR, Turner NJ, Binay B. Discovery of a new metal and NAD +-dependent formate dehydrogenase from Clostridium ljungdahlii. Prep Biochem Biotechnol 2018; 48:327-334. [PMID: 29504829 DOI: 10.1080/10826068.2018.1446150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Over the next decades, with the growing concern of rising atmospheric carbon dioxide (CO2) levels, the importance of investigating new approaches for its reduction becomes crucial. Reclamation of CO2 for conversion into biofuels represents an alternative and attractive production method that has been studied in recent years, now with enzymatic methods gaining more attention. Formate dehydrogenases (FDHs) are NAD(P)H-dependent oxidoreductases that catalyze the conversion of formate into CO2 and have been extensively used for cofactor recycling in chemoenzymatic processes. A new FDH from Clostridium ljungdahlii (ClFDH) has been recently shown to possess activity in the reverse reaction: the mineralization of CO2 into formate. In this study, we show the successful homologous expression of ClFDH in Escherichia coli. Biochemical and kinetic characterization of the enzyme revealed that this homologue also demonstrates activity toward CO2 reduction. Structural analysis of the enzyme through homology modeling is also presented.
Collapse
Affiliation(s)
- M Mervan Çakar
- a Department of Chemistry , Gebze Technical University , Gebze , Kocaeli , Turkey
| | | | | | - Nicholas J Turner
- b School of Chemistry & MIB , University of Manchester , Manchester , UK
| | - Barış Binay
- c Department of Bioengineering , Gebze Technical University , Gebze , Kocaeli , Turkey
| |
Collapse
|
10
|
Misra BB. Updates on resources, software tools, and databases for plant proteomics in 2016-2017. Electrophoresis 2018; 39:1543-1557. [PMID: 29420853 DOI: 10.1002/elps.201700401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 01/23/2018] [Accepted: 02/02/2018] [Indexed: 11/05/2022]
Abstract
Proteomics data processing, annotation, and analysis can often lead to major hurdles in large-scale high-throughput bottom-up proteomics experiments. Given the recent rise in protein-based big datasets being generated, efforts in in silico tool development occurrences have had an unprecedented increase; so much so, that it has become increasingly difficult to keep track of all the advances in a particular academic year. However, these tools benefit the plant proteomics community in circumventing critical issues in data analysis and visualization, as these continually developing open-source and community-developed tools hold potential in future research efforts. This review will aim to introduce and summarize more than 50 software tools, databases, and resources developed and published during 2016-2017 under the following categories: tools for data pre-processing and analysis, statistical analysis tools, peptide identification tools, databases and spectral libraries, and data visualization and interpretation tools. Intended for a well-informed proteomics community, finally, efforts in data archiving and validation datasets for the community will be discussed as well. Additionally, the author delineates the current and most commonly used proteomics tools in order to introduce novice readers to this -omics discovery platform.
Collapse
Affiliation(s)
- Biswapriya B Misra
- Department of Internal Medicine, Section of Molecular Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| |
Collapse
|
11
|
Computational Techniques for a Comprehensive Understanding of Different Genotype-Phenotype Factors in Biological Systems and Their Applications. Synth Biol (Oxf) 2018. [DOI: 10.1007/978-981-10-8693-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
12
|
Wyatt LE, Strickler SR, Mueller LA, Mazourek M. Comparative analysis of Cucurbita pepo metabolism throughout fruit development in acorn squash and oilseed pumpkin. HORTICULTURE RESEARCH 2016; 3:16045. [PMID: 27688889 PMCID: PMC5030761 DOI: 10.1038/hortres.2016.45] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 08/20/2016] [Accepted: 08/22/2016] [Indexed: 05/23/2023]
Abstract
Both the fruit mesocarp and the seeds of winter squash can be used for consumption, although the focus of breeding efforts varies by cultivar. Cultivars bred for fruit consumption are selected for fruit mesocarp quality traits such as carotenoid content, percent dry matter, and percent soluble solids, while these traits are essentially ignored in oilseed pumpkins. To compare fruit development in these two types of squash, we sequenced the fruit transcriptome of two cultivars bred for different purposes: an acorn squash, 'Sweet REBA', and an oilseed pumpkin, 'Lady Godiva'. Putative metabolic pathways were developed for carotenoid, starch, and sucrose synthesis in winter squash fruit and squash homologs were identified for each of the structural genes in the pathways. Gene expression, especially of known rate-limiting and branch point genes, corresponded with metabolite accumulation both across development and between the two cultivars. Thus, developmental regulation of metabolite genes is an important factor in winter squash fruit quality.
Collapse
Affiliation(s)
- Lindsay E Wyatt
- School of Integrative Plant Sciences, Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14850, USA
| | | | - Lukas A Mueller
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Michael Mazourek
- School of Integrative Plant Sciences, Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
13
|
Abstract
RNA with site-specific modification is a useful tool for RNA biology studies. However, generating kilobase (kb) -long RNA with internal modification at a site distant from RNA termini remains challenging. Here we report an enhanced splint ligation technique, proximal disruptor aided ligation (ProDAL), which allows adequate efficiency toward this purpose. The key to our approach is using multiple DNA oligonucleotides, 'proximal disruptors', to target the RNA substrate sequence next to the ligation site. The binding of disruptors helps to free the ligation site from intramolecular RNA basepairing, and consequently promotes more efficient formation of the pre-ligation complex and a higher overall ligation yield. We used naturally occurring 1.0 kb renilla and 1.9 kb firefly luciferase mRNA sequences to test the efficacy of our approach. ProDAL yielded 9-14% efficiency for the ligation between two RNA substrates, both of which were between 414 and 1313 nucleotides (nt) long. ProDAL also allowed similarly high efficiency for generating kb-long RNA with site-specific internal modification by a simple three-part ligation between two long RNA substrates and a modification-carrying RNA oligonucleotide. In comparison, classical splint ligation yielded a significantly lower efficiency of 0-2% in all cases. We expect that ProDAL will benefit studies involving kb-long RNAs, including translation, long non-coding RNAs, RNA splicing and modification, and large ribonucleoprotein complexes.
Collapse
Affiliation(s)
- Alexander Zhovmer
- a Molecular Biology Program , Memorial Sloan Kettering Cancer Center , New York , USA
| | - Xiaohui Qu
- a Molecular Biology Program , Memorial Sloan Kettering Cancer Center , New York , USA
| |
Collapse
|
14
|
Lababidi S, Sutherland A, Krasnicka B, Forshee RA, Anderson SA. Overall conceptual framework for studying the genetics of autoimmune diseases following vaccination: a regulatory perspective. Biomark Med 2015; 9:1107-20. [DOI: 10.2217/bmm.15.67] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The US Vaccine Adverse Event Reporting System contains case reports of autoimmune diseases (ADs) occurring following vaccinations. ADs are rare and occur in unvaccinated people, making the potential association between vaccines and ADs challenging to evaluate. Developing mechanistic pathways that link genes, immune mediators, vaccine components and ADs would be helpful for hypothesis generation, enhancing theories of biologic plausibility and grouping rare autoimmune adverse events to increase the ability to detect and evaluate safety signals. Here, we propose a conceptual framework for investigating the genetics of ADs as safety signals following vaccination, potentially contributing to the identification of relevant biomarkers. We also discuss a study design that incorporates genetic information into postmarket clinical evaluation of autoimmune adverse events following vaccination.
Collapse
Affiliation(s)
- Samir Lababidi
- Office of Biostatistics & Epidemiology, Center for Biologics Evaluation & Research, US Food & Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993-0002, USA
| | - Andrea Sutherland
- Johns Hopkins University, School of Public Health, Baltimore MD, USA
| | - Barbara Krasnicka
- Division of Biostatistics, Office of Biostatistics & Epidemiology, Center for Biologics Evaluation & Research, US Food & Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993-0002, USA
| | - Richard A Forshee
- Office of Biostatistics & Epidemiology, Center for Biologics Evaluation & Research, US Food & Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993-0002, USA
| | - Steven A Anderson
- Office of Biostatistics & Epidemiology, Center for Biologics Evaluation & Research, US Food & Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993-0002, USA
| |
Collapse
|
15
|
Courtney CM, Chatterjee A. Sequence-Specific Peptide Nucleic Acid-Based Antisense Inhibitors of TEM-1 β-Lactamase and Mechanism of Adaptive Resistance. ACS Infect Dis 2015; 1:253-63. [PMID: 27622741 DOI: 10.1021/acsinfecdis.5b00042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The recent surge of drug-resistant superbugs and shrinking antibiotic pipeline are serious challenges to global health. In particular, the emergence of β-lactamases has caused extensive resistance against the most frequently prescribed class of β-lactam antibiotics. Here, we develop novel synthetic peptide nucleic acid-based antisense inhibitors that target the start codon and ribosomal binding site of the TEM-1 β-lactamase transcript and act via translation inhibition mechanism. We show that these antisense inhibitors are capable of resensitizing drug-resistant Escherichia coli to β-lactam antibiotics exhibiting 10-fold reduction in the minimum inhibitory concentration (MIC). To study the mechanism of resistance, we adapted E. coli at MIC levels of the β-lactam/antisense inhibitor combination and observed a nonmutational, bet-hedging based adaptive antibiotic resistance response as evidenced by phenotypic heterogeneity as well as heterogeneous expression of key stress response genes. Our data show that both the development of new antimicrobials and an understanding of cellular response during the development of tolerance could aid in mitigating the impending antibiotic crisis.
Collapse
Affiliation(s)
- Colleen M. Courtney
- Department of Chemical and Biological Engineering and ‡BioFrontiers
Institute, 596 UCB, University of Colorado, Boulder, Colorado 80303, United States
| | - Anushree Chatterjee
- Department of Chemical and Biological Engineering and ‡BioFrontiers
Institute, 596 UCB, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
16
|
Reiße S, Garbe D, Brück T. Identification and characterization of a highly thermostable crotonase from Meiothermus ruber. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2014.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Wyatt LE, Strickler SR, Mueller LA, Mazourek M. An acorn squash (Cucurbita pepo ssp. ovifera) fruit and seed transcriptome as a resource for the study of fruit traits in Cucurbita. HORTICULTURE RESEARCH 2015; 2:14070. [PMID: 26504561 PMCID: PMC4595981 DOI: 10.1038/hortres.2014.70] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 05/24/2023]
Abstract
Acorn squash (Cucurbita pepo) is an iconic fall vegetable in the United States, known for its unique fruit shape and also prized for its culinary properties. Little is known about the metabolism that underlies the development of fruit quality attributes such as color, sweetness, texture and nutritional qualities in acorn squash, or any other winter squash grown worldwide. To provide insight into winter squash fruit and seed development and add to the genomic resources in the Cucurbita genus, RNA sequencing was used to generate an acorn squash fruit and seed transcriptome from the cultivar Sweet REBA at critical points throughout fruit development. 141 838 600 high-quality paired-end Illumina reads were assembled into 55 949 unigenes. 85% of unigenes with predicted open reading frames had homology with previously identified genes and over 62% could be functionally annotated. Comparison with the watermelon and cucumber genomes provided confirmation that the unigenes are full-length and comprehensive, covering an average of 90% of the coding sequence of their homologs and 72% of the cucumber and watermelon exomes. Key candidate genes associated with carotenoid and carbohydrate metabolism were identified toward a resource for winter squash fruit quality trait dissection. This transcriptome represents a major advance in C. pepo genomics, providing significant new sequence information and revealing the repertoire of genes expressed throughout winter squash fruit and seed development. Future studies on the genetic basis of fruit quality and future breeding efforts will be enhanced by tools and insights developed from this resource.
Collapse
Affiliation(s)
- Lindsay E Wyatt
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| | - Susan R Strickler
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY, USA
| | - Lukas A Mueller
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY, USA
| | - Michael Mazourek
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
18
|
Effects of copy number variable regions on local gene expression in white blood cells of Mexican Americans. Eur J Hum Genet 2015; 23:1229-35. [PMID: 25585699 PMCID: PMC4538210 DOI: 10.1038/ejhg.2014.280] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 09/25/2014] [Accepted: 11/26/2014] [Indexed: 11/23/2022] Open
Abstract
Only few systematic studies on the contribution of copy number variation to gene expression variation have been published to date. Here we identify effects of copy number variable regions (CNVRs) on nearby gene expression by investigating 909 CNVRs and expression levels of 12059 nearby genes in white blood cells from Mexican-American participants of the San Antonio Family Heart Study. We empirically evaluate our ability to detect the contribution of CNVs to proximal gene expression (presumably in cis) at various window sizes (up to a 10 Mb distance) between the gene and CNV. We found a ~1-Mb window size to be optimal for capturing cis effects of CNVs. Up to 10% of the CNVs in this study were found to be significantly associated with the expression of at least one gene within their vicinity. As expected, we find that CNVs that directly overlap gene sequences have the largest effects on gene expression (compared with non-overlapping CNVRs located nearby), with positive correlation (except for a few exceptions) between estimated genomic dosage and expression level. We find that genes whose expression level is significantly influenced by nearby CNVRs are enriched for immunity and autoimmunity related genes. These findings add to the currently limited catalog of CNVRs that are recognized as expression quantitative trait loci, and have implications for future study designs as well as for prioritizing candidate causal variants in genomic regions associated with disease.
Collapse
|
19
|
Abstract
Within the last decade open data concepts has been gaining increasing interest in the area of drug discovery. With the launch of ChEMBL and PubChem, an enormous amount of bioactivity data was made easily accessible to the public domain. In addition, platforms that semantically integrate those data, such as the Open PHACTS Discovery Platform, permit querying across different domains of open life science data beyond the concept of ligand-target-pharmacology. However, most public databases are compiled from literature sources and are thus heterogeneous in their coverage. In addition, assay descriptions are not uniform and most often lack relevant information in the primary literature and, consequently, in databases. This raises the question how useful large public data sources are for deriving computational models. In this perspective, we highlight selected open-source initiatives and outline the possibilities and also the limitations when exploiting this huge amount of bioactivity data.
Collapse
|
20
|
Pentakota SK, Sandhya S, P Sikarwar A, Chandra N, Satyanarayana Rao MR. Mapping post-translational modifications of mammalian testicular specific histone variant TH2B in tetraploid and haploid germ cells and their implications on the dynamics of nucleosome structure. J Proteome Res 2014; 13:5603-17. [PMID: 25252820 DOI: 10.1021/pr500597a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Histones regulate a variety of chromatin templated events by their post-translational modifications (PTMs). Although there are extensive reports on the PTMs of canonical histones, the information on the histone variants remains very scanty. Here, we report the identification of different PTMs, such as acetylation, methylation, and phosphorylation of a major mammalian histone variant TH2B. Our mass spectrometric analysis has led to the identification of both conserved and unique modifications across tetraploid spermatocytes and haploid spermatids. We have also computationally derived the 3-dimensional model of a TH2B containing nucleosome in order to study the spatial orientation of the PTMs identified and their effect on nucleosome stability and DNA binding potential. From our nucleosome model, it is evident that substitution of specific amino acid residues in TH2B results in both differential histone-DNA and histone-histone contacts. Furthermore, we have also observed that acetylation on the N-terminal tail of TH2B weakens the interactions with the DNA. These results provide direct evidence that, similar to somatic H2B, the testis specific histone TH2B also undergoes multiple PTMs, suggesting the possibility of chromatin regulation by such covalent modifications in mammalian male germ cells.
Collapse
Affiliation(s)
- Satya Krishna Pentakota
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore, Karnataka 560064, India
| | | | | | | | | |
Collapse
|
21
|
Dong G, Calhoun S, Fan H, Kalyanaraman C, Branch MC, Mashiyama ST, London N, Jacobson MP, Babbitt PC, Shoichet BK, Armstrong RN, Sali A. Prediction of substrates for glutathione transferases by covalent docking. J Chem Inf Model 2014; 54:1687-99. [PMID: 24802635 PMCID: PMC4068255 DOI: 10.1021/ci5001554] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Indexed: 01/07/2023]
Abstract
Enzymes in the glutathione transferase (GST) superfamily catalyze the conjugation of glutathione (GSH) to electrophilic substrates. As a consequence they are involved in a number of key biological processes, including protection of cells against chemical damage, steroid and prostaglandin biosynthesis, tyrosine catabolism, and cell apoptosis. Although virtual screening has been used widely to discover substrates by docking potential noncovalent ligands into active site clefts of enzymes, docking has been rarely constrained by a covalent bond between the enzyme and ligand. In this study, we investigate the accuracy of docking poses and substrate discovery in the GST superfamily, by docking 6738 potential ligands from the KEGG and MetaCyc compound libraries into 14 representative GST enzymes with known structures and substrates using the PLOP program [ Jacobson Proteins 2004 , 55 , 351 ]. For X-ray structures as receptors, one of the top 3 ranked models is within 3 Å all-atom root mean square deviation (RMSD) of the native complex in 11 of the 14 cases; the enrichment LogAUC value is better than random in all cases, and better than 25 in 7 of 11 cases. For comparative models as receptors, near-native ligand-enzyme configurations are often sampled but difficult to rank highly. For models based on templates with the highest sequence identity, the enrichment LogAUC is better than 25 in 5 of 11 cases, not significantly different from the crystal structures. In conclusion, we show that covalent docking can be a useful tool for substrate discovery and point out specific challenges for future method improvement.
Collapse
Affiliation(s)
- Guang
Qiang Dong
- Department
of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical
Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California at San Francisco, San Francisco, California 94158, United States
| | - Sara Calhoun
- Department
of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical
Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California at San Francisco, San Francisco, California 94158, United States
| | - Hao Fan
- Bioinformatics
Institute, Agency for Science, Technology
and Research (A*STAR), 30 Biopolis Street, Matrix No. 07-01, Singapore SG 1386715
| | - Chakrapani Kalyanaraman
- Department
Pharmaceutical Chemistry, California Institute for Quantitative Biosciences
(QB3), University of California at San Francisco, San Francisco, California 94158, United States
| | - Megan C. Branch
- Departments
of Biochemistry and Chemistry, Center in Molecular Toxicology, and
Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232-0146, United States
| | - Susan T. Mashiyama
- Department
of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical
Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California at San Francisco, San Francisco, California 94158, United States
| | - Nir London
- Department
Pharmaceutical Chemistry, California Institute for Quantitative Biosciences
(QB3), University of California at San Francisco, San Francisco, California 94158, United States
| | - Matthew P. Jacobson
- Department
Pharmaceutical Chemistry, California Institute for Quantitative Biosciences
(QB3), University of California at San Francisco, San Francisco, California 94158, United States
| | - Patricia C. Babbitt
- Department
of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical
Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California at San Francisco, San Francisco, California 94158, United States
| | - Brian K. Shoichet
- Faculty
of Pharmacy, University of Toronto, 160 College Street, Toronto, Ontario, Canada M5S 3E1
| | - Richard N. Armstrong
- Departments
of Biochemistry and Chemistry, Center in Molecular Toxicology, and
Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232-0146, United States
| | - Andrej Sali
- Department
of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical
Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California at San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
22
|
Crook NC, Schmitz AC, Alper HS. Optimization of a yeast RNA interference system for controlling gene expression and enabling rapid metabolic engineering. ACS Synth Biol 2014; 3:307-13. [PMID: 24328131 DOI: 10.1021/sb4001432] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Reduction of endogenous gene expression is a fundamental operation of metabolic engineering, yet current methods for gene knockdown (i.e., genome editing) remain laborious and slow, especially in yeast. In contrast, RNA interference allows facile and tunable gene knockdown via a simple plasmid transformation step, enabling metabolic engineers to rapidly prototype knockdown strategies in multiple strains before expending significant cost to undertake genome editing. Although RNAi is naturally present in a myriad of eukaryotes, it has only been recently implemented in Saccharomyces cerevisiae as a heterologous pathway and so has not yet been optimized as a metabolic engineering tool. In this study, we elucidate a set of design principles for the construction of hairpin RNA expression cassettes in yeast and implement RNA interference to quickly identify routes for improvement of itaconic acid production in this organism. The approach developed here enables rapid prototyping of knockdown strategies and thus accelerates and reduces the cost of the design-build-test cycle in yeast.
Collapse
Affiliation(s)
- Nathan C. Crook
- Department of Chemical Engineering, The University of Texas at Austin, 200 East Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - Alexander C. Schmitz
- Department of Chemical Engineering, The University of Texas at Austin, 200 East Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - Hal S. Alper
- Department of Chemical Engineering, The University of Texas at Austin, 200 East Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, Texas 78712, United States
| |
Collapse
|
23
|
Wu P, Zhang H, Lin W, Hao Y, Ren L, Zhang C, Li N, Wei H, Jiang Y, He F. Discovery of novel genes and gene isoforms by integrating transcriptomic and proteomic profiling from mouse liver. J Proteome Res 2014; 13:2409-2419. [PMID: 24717071 DOI: 10.1021/pr4012206] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Comprehensively identifying gene expression in both transcriptomic and proteomic levels of one tissue is a prerequisite for a deeper understanding of its biological functions. Alternative splicing and RNA editing, two main forms of transcriptional processing, play important roles in transcriptome and proteome diversity and result in multiple isoforms for one gene, which are hard to identify by mass spectrometry (MS)-based proteomics approach due to the relative lack of isoform information in standard protein databases. In our study, we employed MS and RNA-Seq in parallel into mouse liver tissue and captured a considerable catalogue of both transcripts and proteins that, respectively, covered 60 and 34% of protein-coding genes in Ensembl. We then developed a bioinformatics workflow for building a customized protein database that for the first time included new splicing-derived peptides and RNA-editing-caused peptide variants, allowing us to more completely identify protein isoforms. Using this experimentally determined database, we totally identified 150 peptides not present in standard biological databases at false discovery rate of <1%, corresponding to 72 novel splicing isoforms, 43 new genetic regions, and 15 RNA-editing sites. Of these, 11 randomly selected novel events passed experimental verification by PCR and Sanger sequencing. New discoveries of gene products with high confidence in two omics levels demonstrated the robustness and effectiveness of our approach and its potential application into improve genome annotation. All the MS data have been deposited to the iProx ( http://ww.iprox.org ) with the identifier IPX00003601.
Collapse
Affiliation(s)
- Peng Wu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine , 33 Life Science Park Road, Beijing 102206, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Schalk AM, Lavie A. Structural and kinetic characterization of guinea pig L-asparaginase type III. Biochemistry 2014; 53:2318-28. [PMID: 24669941 PMCID: PMC4004260 DOI: 10.1021/bi401692v] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated whether an uncharacterized protein from guinea pig could be the enzyme behind Kidd's serendipitous discovery, made over 60 years ago, that guinea pig serum has cell killing ability. It has been long known that an enzyme with l-asparaginase activity is responsible for cell killing, although astonishingly, its identity remains unclear. Bacterial asparaginases with similar cell killing properties have since become a mainstay therapy of certain cancers such as acute lymphoblastic leukemia. By hydrolyzing asparagine to aspartate and ammonia, these drugs deplete the asparagine present in the blood, killing cancer cells that rely on extracellular asparagine uptake for survival. However, bacterial asparaginases can elicit an adverse immune response. We propose that replacement of bacterial enzymes with the guinea pig asparaginase responsible for serum activity, by its virtue of being more closely related to human enzymes, will be less immunogenic. To this goal, we investigated whether an uncharacterized protein from guinea pig with putative asparaginase activity, which we call gpASNase3, could be that enzyme. We examined its self-activation process (gpASNase3 requires autocleavage to become active), kinetically characterized it for asparaginase and β-aspartyl dipeptidase activity, and elucidated its crystal structure in both the uncleaved and cleaved states. This work reveals that gpASNase3 is not the enzyme responsible for the antitumor effects of guinea pig serum. It exhibits a low affinity for asparagine as measured by a high Michaelis constant, KM, in the millimolar range, in contrast to the low KM (micromolar range) required for asparaginase to be effective as an anticancer agent.
Collapse
Affiliation(s)
- Amanda M Schalk
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago , 900 S. Ashland, Chicago , Illinois 60607, United States
| | | |
Collapse
|
25
|
Stadler C, Fagerberg L, Sivertsson Å, Oksvold P, Zwahlen M, Hallström BM, Lundberg E, Uhlén M. RNA- and antibody-based profiling of the human proteome with focus on chromosome 19. J Proteome Res 2014; 13:2019-27. [PMID: 24579871 DOI: 10.1021/pr401156g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An important part of the Human Proteome Project is to characterize the protein complement of the genome with antibody-based profiling. Within the framework of this effort, a new version 12 of the Human Protein Atlas ( www.proteinatlas.org ) has been launched, including transcriptomics data for 27 tissues and 44 cell lines to complement the protein expression data from antibody-based profiling. Besides the extensive addition of transcriptomics data, the Human Protein Atlas now contains antibody-based protein profiles for 82% of the 20 329 putative protein-coding genes. The comprehensive data resulting from RNA-seq analysis and antibody-based profiling performed within the Human Protein Atlas as well as information from UniProt were used to generate evidence summary scores for each of the 20 329 genes, of which 94% now have experimental evidence at least at transcript level. The evidence scores for all individual genes are displayed with regards to both RNA- and antibody-based protein profiles, including chromosome-centric visualizations. An analysis of the human chromosome 19 shows that ∼43% of the genes are expressed at the transcript level in all 27 tissues analyzed, suggesting a "house-keeping" function, while 12% of the genes show a more tissue-specific pattern with enriched expression in one of the analyzed tissues only.
Collapse
Affiliation(s)
- Charlotte Stadler
- Science for Life Laboratory, KTH - Royal Institute of Technology , SE-171 21 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Day L, Abdelhadi Ep Souki O, Albrecht AA, Steinhöfel K. Accessibility of microRNA binding sites in metastable RNA secondary structures in the presence of SNPs. ACTA ACUST UNITED AC 2013; 30:343-52. [PMID: 24292936 DOI: 10.1093/bioinformatics/btt695] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MOTIVATION We study microRNA (miRNA) bindings to metastable RNA secondary structures close to minimum free energy conformations in the context of single nucleotide polymorphisms (SNPs) and messenger RNA (mRNA) concentration levels, i.e. whether features of miRNA bindings to metastable conformations could provide additional information supporting the differences in expression levels of the two sequences defined by a SNP. In our study, the instances [mRNA/3'UTR; SNP; miRNA] were selected based on strong expression level analyses, SNP locations within binding regions and the computationally feasible identification of metastable conformations. RESULTS We identified 14 basic cases [mRNA; SNP; miRNA] of 3' UTR-lengths ranging from 124 up to 1078 nt reported in recent literature, and we analyzed the number, structure and miRNA binding to metastable conformations within an energy offset above mfe conformations. For each of the 14 instances, the miRNA binding characteristics are determined by the corresponding STarMir output. Among the different parameters we introduced and analyzed, we found that three of them, related to the average depth and average opening energy of metastable conformations, may provide supporting information for a stronger separation between miRNA bindings to the two alleles defined by a given SNP. AVAILABILITY AND IMPLEMENTATION At http://kks.inf.kcl.ac.uk/MSbind.html the MSbind tool is available for calculating features of metastable conformations determined by putative miRNA binding sites.
Collapse
Affiliation(s)
- Luke Day
- Department of Informatics, King's College London, London WC2R 2LS and Middlesex University London, School of Science and Technology, London NW4 4BT, UK
| | | | | | | |
Collapse
|
27
|
Abstract
Adequate therapies are lacking for Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and other neurodegenerative diseases. The ability to use antisense oligonucleotides (ASOs) to target disease-associated genes by means of RNA may offer a potent approach for the treatment of these, and other, neurodegenerative disorders. In modifying the basic backbone chemistry, chemical groups, and target sequence, ASOs can act through numerous mechanisms to decrease or increase total protein levels, preferentially shift splicing patterns, and inhibit microRNAs, all at the level of the RNA molecule. Here, we discuss many of the more commonly used ASO chemistries, as well as the different mechanisms of action that can result from these specific chemical modifications. When applied to multiple neurodegenerative mouse models, ASOs that specifically target the detrimental transgenes have been shown to rescue disease associated phenotypes in vivo. These supporting mouse model data have moved the ASOs from the bench to the clinic, with two neuro-focused human clinical trials now underway and several more being proposed. Although still early in development, translating ASOs into human patients for neurodegeneration appears promising.
Collapse
Affiliation(s)
- Sarah L. DeVos
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
| | - Timothy M. Miller
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
28
|
Mizrahi RA, Schirle NT, Beal PA. Potent and selective inhibition of A-to-I RNA editing with 2'-O-methyl/locked nucleic acid-containing antisense oligoribonucleotides. ACS Chem Biol 2013; 8:832-9. [PMID: 23394403 DOI: 10.1021/cb300692k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
ADARs (adenosine deaminases acting on RNA) are RNA editing enzymes that bind double helical RNAs and deaminate select adenosines (A). The product inosine (I) is read during translation as guanosine (G), so such changes can alter codon meaning. ADAR-catalyzed A to I changes occur in coding sequences for several proteins of importance to the nervous system. However, these sites constitute only a very small fraction of known A to I sites in the human transcriptome, and the significance of editing at the vast majority sites is unknown at this time. Site-selective inhibitors of RNA editing are needed to advance our understanding of the function of editing at specific sites. Here we show that 2'-O-methyl/locked nucleic acid (LNA) mixmer antisense oligonucleotides are potent and selective inhibitors of RNA editing on two different target RNAs. These reagents are capable of binding with high affinity to RNA editing substrates and remodeling the secondary structure by a strand-invasion mechanism. The potency observed here for 2'-O-methyl/LNA mixmers suggests this backbone structure is superior to the morpholino backbone structure for inhibition of RNA editing. Finally, we demonstrate antisense inhibition of editing of the mRNA for the DNA repair glycosylase NEIL1 in cultured human cells, providing a new approach to exploring the link between RNA editing and the cellular response to oxidative DNA damage.
Collapse
Affiliation(s)
- Rena A. Mizrahi
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Nicole T. Schirle
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Peter A. Beal
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|