1
|
Matthews JL, Murphy J, Nasiadka A, Varga ZM. A Simple Method for Inducing Masculinization of Zebrafish Stocks Using 17α-Methyltestosterone. Zebrafish 2022; 19:241-244. [PMID: 36318811 PMCID: PMC9810344 DOI: 10.1089/zeb.2022.0029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Severely skewed sex ratios in zebrafish stocks can pose significant hurdles for line propagation and sperm cryopreservation. To overcome female-biased sex ratios in stocks derived from imported sperm samples, the Zebrafish International Resource Center has implemented routine supplementation of larval food with 17α-methyltestosterone to skew gonadal sex differentiation toward masculinization. Resulting stocks averaged 80% males.
Collapse
Affiliation(s)
- Jennifer L. Matthews
- Zebrafish International Resource Center, University of Oregon, Eugene, Oregon, USA
| | - Joy Murphy
- Zebrafish International Resource Center, University of Oregon, Eugene, Oregon, USA
| | - Andrzej Nasiadka
- Zebrafish International Resource Center, University of Oregon, Eugene, Oregon, USA
| | - Zoltan M. Varga
- Zebrafish International Resource Center, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
2
|
Vona B, Doll J, Hofrichter MAH, Haaf T, Varshney GK. Small fish, big prospects: using zebrafish to unravel the mechanisms of hereditary hearing loss. Hear Res 2020; 397:107906. [PMID: 32063424 PMCID: PMC7415493 DOI: 10.1016/j.heares.2020.107906] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/13/2020] [Accepted: 01/29/2020] [Indexed: 12/16/2022]
Abstract
Over the past decade, advancements in high-throughput sequencing have greatly enhanced our knowledge of the mutational signatures responsible for hereditary hearing loss. In its present state, the field has a largely uncensored view of protein coding changes in a growing number of genes that have been associated with hereditary hearing loss, and many more that have been proposed as candidate genes. Sequencing data can now be generated using methods that have become widespread and affordable. The greatest hurdles facing the field concern functional validation of uncharacterized genes and rapid application to human diseases, including hearing and balance disorders. To date, over 30 hearing-related disease models exist in zebrafish. New genome editing technologies, including CRISPR/Cas9 will accelerate the functional validation of hearing loss genes and variants in zebrafish. Here, we discuss current progress in the field and recent advances in genome editing approaches.
Collapse
Affiliation(s)
- Barbara Vona
- Department of Otolaryngology--Head & Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University Tübingen, Tübingen, Germany.
| | - Julia Doll
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | | | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.
| |
Collapse
|
3
|
Ichino N, Serres MR, Urban RM, Urban MD, Treichel AJ, Schaefbauer KJ, Greif LE, Varshney GK, Skuster KJ, McNulty MS, Daby CL, Wang Y, Liao HK, El-Rass S, Ding Y, Liu W, Anderson JL, Wishman MD, Sabharwal A, Schimmenti LA, Sivasubbu S, Balciunas D, Hammerschmidt M, Farber SA, Wen XY, Xu X, McGrail M, Essner JJ, Burgess SM, Clark KJ, Ekker SC. Building the vertebrate codex using the gene breaking protein trap library. eLife 2020; 9:54572. [PMID: 32779569 PMCID: PMC7486118 DOI: 10.7554/elife.54572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/07/2020] [Indexed: 12/14/2022] Open
Abstract
One key bottleneck in understanding the human genome is the relative under-characterization of 90% of protein coding regions. We report a collection of 1200 transgenic zebrafish strains made with the gene-break transposon (GBT) protein trap to simultaneously report and reversibly knockdown the tagged genes. Protein trap-associated mRFP expression shows previously undocumented expression of 35% and 90% of cloned genes at 2 and 4 days post-fertilization, respectively. Further, investigated alleles regularly show 99% gene-specific mRNA knockdown. Homozygous GBT animals in ryr1b, fras1, tnnt2a, edar and hmcn1 phenocopied established mutants. 204 cloned lines trapped diverse proteins, including 64 orthologs of human disease-associated genes with 40 as potential new disease models. Severely reduced skeletal muscle Ca2+ transients in GBT ryr1b homozygous animals validated the ability to explore molecular mechanisms of genetic diseases. This GBT system facilitates novel functional genome annotation towards understanding cellular and molecular underpinnings of vertebrate biology and human disease.
Collapse
Affiliation(s)
- Noriko Ichino
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - MaKayla R Serres
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Rhianna M Urban
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Mark D Urban
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Anthony J Treichel
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Kyle J Schaefbauer
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Lauren E Greif
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Gaurav K Varshney
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, United States.,Functional & Chemical Genomics Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
| | - Kimberly J Skuster
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Melissa S McNulty
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Camden L Daby
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Ying Wang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Hsin-Kai Liao
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Suzan El-Rass
- Zebrafish Centre for Advanced Drug Discovery & Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto & University of Toronto, Toronto, Canada
| | - Yonghe Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, United States
| | - Weibin Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, United States
| | - Jennifer L Anderson
- Department of Embryology, Carnegie Institution for Science, Baltimore, United States
| | - Mark D Wishman
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Ankit Sabharwal
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Lisa A Schimmenti
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States.,Department of Clinical Genomics, Mayo Clinic, Rochester, United States.,Department of Otorhinolaryngology, Mayo Clinic, Rochester, United States
| | - Sridhar Sivasubbu
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Darius Balciunas
- Department of Biology, Temple University, Philadelphia, United States
| | - Matthias Hammerschmidt
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Steven Arthur Farber
- Department of Embryology, Carnegie Institution for Science, Baltimore, United States
| | - Xiao-Yan Wen
- Zebrafish Centre for Advanced Drug Discovery & Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto & University of Toronto, Toronto, Canada
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, United States
| | - Maura McGrail
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, United States
| | - Karl J Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| |
Collapse
|
4
|
Adamson KI, Sheridan E, Grierson AJ. Use of zebrafish models to investigate rare human disease. J Med Genet 2018; 55:641-649. [PMID: 30065072 DOI: 10.1136/jmedgenet-2018-105358] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 01/07/2023]
Abstract
Rare diseases are collectively common and often extremely debilitating. Following the emergence of next-generation sequencing (NGS) technologies, the variants underpinning rare genetic disorders are being unearthed at an accelerating rate. However, many rare conditions lack effective treatments due to their poorly understood pathophysiology. There is therefore a growing demand for the development of novel experimental models of rare genetic diseases, so that potentially causative variants can be validated, pathogenic mechanisms can be investigated and therapeutic targets can be identified. Animal models of rare diseases need to be genetically and physiologically similar to humans, and well-suited to large-scale experimental manipulation, considering the vast number of novel variants that are being identified through NGS. The zebrafish has emerged as a popular model system for investigating these variants, combining conserved vertebrate characteristics with a capacity for large-scale phenotypic and therapeutic screening. In this review, we aim to highlight the unique advantages of the zebrafish over other in vivo model systems for the large-scale study of rare genetic variants. We will also consider the generation of zebrafish disease models from a practical standpoint, by discussing how genome editing technologies, particularly the recently developed clustered regularly interspaced repeat (CRISPR)/CRISPR-associated protein 9 system, can be used to model rare pathogenic variants in zebrafish. Finally, we will review examples in the literature where zebrafish models have played a pivotal role in confirming variant causality and revealing the underlying mechanisms of rare diseases, often with wider implications for our understanding of human biology.
Collapse
Affiliation(s)
- Kathryn Isabel Adamson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | | | - Andrew James Grierson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK.,Department of Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
5
|
Rafferty SA, Quinn TA. A beginner's guide to understanding and implementing the genetic modification of zebrafish. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:3-19. [PMID: 30032905 DOI: 10.1016/j.pbiomolbio.2018.07.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/07/2018] [Accepted: 07/10/2018] [Indexed: 02/05/2023]
Abstract
Zebrafish are a relevant and useful vertebrate model species to study normal- and patho-physiology, including that of the heart, due to conservation of protein-coding genes, organ system organisation and function, and efficient breeding and housing. Their amenability to genetic modification, particularly compared to other vertebrate species, is another great advantage, and is the focus of this review. A vast number of genetically engineered zebrafish lines and methods for their creation exist, but their incorporation into research programs is hindered by the overwhelming amount of technical details. The purpose of this paper is to provide a simplified guide to the fundamental information required by the uninitiated researcher for the thorough understanding, critical evaluation, and effective implementation of genetic approaches in the zebrafish. First, an overview of existing zebrafish lines generated through large scale chemical mutagenesis, retroviral insertional mutagenesis, and gene and enhancer trap screens is presented. Second, descriptions of commonly-used genetic modification methods are provided including Tol2 transposon, TALENs (transcription activator-like effector nucleases), and CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9). Lastly, design features of genetic modification strategies such as promoters, fluorescent reporters, and conditional transgenesis, are summarised. As a comprehensive resource containing both background information and technical notes of how to obtain or generate zebrafish, this review compliments existing resources to facilitate the use of genetically-modified zebrafish by researchers who are new to the field.
Collapse
Affiliation(s)
- Sara A Rafferty
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada; School of Biomedical Engineering, Dalhousie University, Halifax, Canada.
| |
Collapse
|
6
|
Bedell V, Buglo E, Marcato D, Pylatiuk C, Mikut R, Stegmaier J, Scudder W, Wray M, Züchner S, Strähle U, Peravali R, Dallman JE. Zebrafish: A Pharmacogenetic Model for Anesthesia. Methods Enzymol 2018; 602:189-209. [PMID: 29588029 PMCID: PMC10559369 DOI: 10.1016/bs.mie.2018.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
General anesthetics are small molecules that interact with and effect the function of many different proteins to promote loss of consciousness, amnesia, and sometimes, analgesia. Owing to the complexity of this state transition and the transient nature of these drug/protein interactions, anesthetics can be difficult to study. The zebrafish is an emerging model for the discovery of both new genes required for the response to and side effects of anesthesia. Here we discuss the tools available to manipulate the zebrafish genome, including both genetic screens and genome engineering approaches. Additionally, there are various robust behavior assays available to study anesthetic and other drug responses. These assays are available for single-gene study or high throughput for genetic or drug discovery. Finally, we present a case study of using propofol as an anesthetic in the zebrafish. These techniques and protocols make the zebrafish a powerful model to study anesthetic mechanisms and drug discovery.
Collapse
Affiliation(s)
- Victoria Bedell
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States.
| | - Elena Buglo
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, United States; Dr. John T. MacDonald Foundation, University of Miami, Miami, FL, United States; University of Miami, Coral Gables, FL, United States
| | - Daniel Marcato
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Christian Pylatiuk
- Institute of Applied Computer Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ralf Mikut
- Institute of Applied Computer Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Johannes Stegmaier
- Institute of Applied Computer Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Will Scudder
- University of Miami, Coral Gables, FL, United States
| | - Maxwell Wray
- University of Miami, Coral Gables, FL, United States
| | - Stephan Züchner
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, United States; Dr. John T. MacDonald Foundation, University of Miami, Miami, FL, United States
| | - Uwe Strähle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ravindra Peravali
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | |
Collapse
|
7
|
Baxendale S, van Eeden F, Wilkinson R. The Power of Zebrafish in Personalised Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:179-197. [PMID: 28840558 DOI: 10.1007/978-3-319-60733-7_10] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The goal of personalised medicine is to develop tailor-made therapies for patients in whom currently available therapeutics fail. This approach requires correlating individual patient genotype data to specific disease phenotype data and using these stratified data sets to identify bespoke therapeutics. Applications for personalised medicine include common complex diseases which may have multiple targets, as well as rare monogenic disorders, for which the target may be unknown. In both cases, whole genome sequence analysis (WGS) is discovering large numbers of disease associated mutations in new candidate genes and potential modifier genes. Currently, the main limiting factor is the determination of which mutated genes are important for disease progression and therefore represent potential targets for drug discovery. Zebrafish have gained popularity as a model organism for understanding developmental processes, disease mechanisms and more recently for drug discovery and toxicity testing. In this chapter, we will examine the diverse roles that zebrafish can make in the expanding field of personalised medicine, from generating humanised disease models to xenograft screening of different cancer cell lines, through to finding new drugs via in vivo phenotypic screens. We will discuss the tools available for zebrafish research and recent advances in techniques, highlighting the advantages and potential of using zebrafish for high throughput disease modeling and precision drug discovery.
Collapse
Affiliation(s)
- Sarah Baxendale
- The Bateson Centre, Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK.
| | - Freek van Eeden
- The Bateson Centre, Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Robert Wilkinson
- The Bateson Centre, Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK.,Department of Infection, Immunity and Cardiovascular Disease, Medical School, Beech Hill Rd, University of Sheffield, Sheffield, S10 2RX, UK
| |
Collapse
|
8
|
Van Otterloo E, Williams T, Artinger KB. The old and new face of craniofacial research: How animal models inform human craniofacial genetic and clinical data. Dev Biol 2016; 415:171-187. [PMID: 26808208 DOI: 10.1016/j.ydbio.2016.01.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 01/16/2016] [Accepted: 01/21/2016] [Indexed: 12/31/2022]
Abstract
The craniofacial skeletal structures that comprise the human head develop from multiple tissues that converge to form the bones and cartilage of the face. Because of their complex development and morphogenesis, many human birth defects arise due to disruptions in these cellular populations. Thus, determining how these structures normally develop is vital if we are to gain a deeper understanding of craniofacial birth defects and devise treatment and prevention options. In this review, we will focus on how animal model systems have been used historically and in an ongoing context to enhance our understanding of human craniofacial development. We do this by first highlighting "animal to man" approaches; that is, how animal models are being utilized to understand fundamental mechanisms of craniofacial development. We discuss emerging technologies, including high throughput sequencing and genome editing, and new animal repository resources, and how their application can revolutionize the future of animal models in craniofacial research. Secondly, we highlight "man to animal" approaches, including the current use of animal models to test the function of candidate human disease variants. Specifically, we outline a common workflow deployed after discovery of a potentially disease causing variant based on a select set of recent examples in which human mutations are investigated in vivo using animal models. Collectively, these topics will provide a pipeline for the use of animal models in understanding human craniofacial development and disease for clinical geneticist and basic researchers alike.
Collapse
Affiliation(s)
- Eric Van Otterloo
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Trevor Williams
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristin Bruk Artinger
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
9
|
Parant JM, Yeh JRJ. Approaches to Inactivate Genes in Zebrafish. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:61-86. [PMID: 27165349 DOI: 10.1007/978-3-319-30654-4_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Animal models of tumor initiation and tumor progression are essential components toward understanding cancer and designing/validating future therapies. Zebrafish is a powerful model for studying tumorigenesis and has been successfully exploited in drug discovery. According to the zebrafish reference genome, 82 % of disease-associated genes in the Online Mendelian Inheritance in Man (OMIM) database have clear zebrafish orthologues. Using a variety of large-scale random mutagenesis methods developed to date, zebrafish can provide a unique opportunity to identify gene mutations that may be associated with cancer predisposition. On the other hand, newer technologies enabling targeted mutagenesis can facilitate reverse cancer genetic studies and open the door for complex genetic analysis of tumorigenesis. In this chapter, we will describe the various technologies for conducting genome editing in zebrafish with special emphasis on the approaches to inactivate genes.
Collapse
Affiliation(s)
- John M Parant
- Department of Pharmacology and Toxicology, UAB Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35294, USA.
| | - Jing-Ruey Joanna Yeh
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
10
|
Haque S, Kaushik K, Leonard VE, Kapoor S, Sivadas A, Joshi A, Scaria V, Sivasubbu S. Short stories on zebrafish long noncoding RNAs. Zebrafish 2015; 11:499-508. [PMID: 25110965 DOI: 10.1089/zeb.2014.0994] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The recent re-annotation of the transcriptome of human and other model organisms, using next-generation sequencing approaches, has unravelled a hitherto unknown repertoire of transcripts that do not have a potential to code for proteins. These transcripts have been largely classified into an amorphous class popularly known as long noncoding RNAs (lncRNA). This discovery of lncRNAs in human and other model systems have added a new layer to the understanding of gene regulation at the transcriptional and post-transcriptional levels. In recent years, three independent studies have discovered a number of lncRNAs expressed in different stages of zebrafish development and adult tissues using a high-throughput RNA sequencing approach, significantly adding to the repertoire of genes known in zebrafish. A subset of these transcripts also shows distinct and specific spatiotemporal patterns of gene expression, pointing to a tight regulatory control and potential functional roles in development, organogenesis, and/ or homeostasis. This review provides an overview of the lncRNAs in zebrafish and discusses how their discovery could provide new insights into understanding biology, explaining mutant phenotypes, and helping in potentially modeling disease processes.
Collapse
Affiliation(s)
- Shadabul Haque
- 1 Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology , Delhi, India
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Varshney GK, Pei W, LaFave MC, Idol J, Xu L, Gallardo V, Carrington B, Bishop K, Jones M, Li M, Harper U, Huang SC, Prakash A, Chen W, Sood R, Ledin J, Burgess SM. High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Res 2015; 25:1030-42. [PMID: 26048245 PMCID: PMC4484386 DOI: 10.1101/gr.186379.114] [Citation(s) in RCA: 374] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 04/22/2015] [Indexed: 02/07/2023]
Abstract
The use of CRISPR/Cas9 as a genome-editing tool in various model organisms has radically changed targeted mutagenesis. Here, we present a high-throughput targeted mutagenesis pipeline using CRISPR/Cas9 technology in zebrafish that will make possible both saturation mutagenesis of the genome and large-scale phenotyping efforts. We describe a cloning-free single-guide RNA (sgRNA) synthesis, coupled with streamlined mutant identification methods utilizing fluorescent PCR and multiplexed, high-throughput sequencing. We report germline transmission data from 162 loci targeting 83 genes in the zebrafish genome, in which we obtained a 99% success rate for generating mutations and an average germline transmission rate of 28%. We verified 678 unique alleles from 58 genes by high-throughput sequencing. We demonstrate that our method can be used for efficient multiplexed gene targeting. We also demonstrate that phenotyping can be done in the F1 generation by inbreeding two injected founder fish, significantly reducing animal husbandry and time. This study compares germline transmission data from CRISPR/Cas9 with those of TALENs and ZFNs and shows that efficiency of CRISPR/Cas9 is sixfold more efficient than other techniques. We show that the majority of published "rules" for efficient sgRNA design do not effectively predict germline transmission rates in zebrafish, with the exception of a GG or GA dinucleotide genomic match at the 5' end of the sgRNA. Finally, we show that predicted off-target mutagenesis is of low concern for in vivo genetic studies.
Collapse
Affiliation(s)
- Gaurav K Varshney
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Wuhong Pei
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Matthew C LaFave
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jennifer Idol
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Lisha Xu
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Viviana Gallardo
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Blake Carrington
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kevin Bishop
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - MaryPat Jones
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Mingyu Li
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Ursula Harper
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sunny C Huang
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Anupam Prakash
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Wenbiao Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Raman Sood
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Johan Ledin
- Department of Organismal Biology, Science for Life Laboratory, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
12
|
Dhiman H, Kapoor S, Sivadas A, Sivasubbu S, Scaria V. zflncRNApedia: A Comprehensive Online Resource for Zebrafish Long Non-Coding RNAs. PLoS One 2015; 10:e0129997. [PMID: 26065909 PMCID: PMC4466246 DOI: 10.1371/journal.pone.0129997] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 05/15/2015] [Indexed: 12/13/2022] Open
Abstract
Recent transcriptome annotation using deep sequencing approaches have annotated a large number of long non-coding RNAs in zebrafish, a popular model organism for human diseases. These studies characterized lncRNAs in critical developmental stages as well as adult tissues. Each of the studies has uncovered a distinct set of lncRNAs, with minor overlaps. The availability of the raw RNA-Seq datasets in public domain encompassing critical developmental time-points and adult tissues provides us with a unique opportunity to understand the spatiotemporal expression patterns of lncRNAs. In the present report, we created a catalog of lncRNAs in zebrafish, derived largely from the three annotation sets, as well as manual curation of literature to compile a total of 2,267 lncRNA transcripts in zebrafish. The lncRNAs were further classified based on the genomic context and relationship with protein coding gene neighbors into 4 categories. Analysis revealed a total of 86 intronic, 309 promoter associated, 485 overlapping and 1,386 lincRNAs. We created a comprehensive resource which houses the annotation of lncRNAs as well as associated information including expression levels, promoter epigenetic marks, genomic variants and retroviral insertion mutants. The resource also hosts a genome browser where the datasets could be browsed in the genome context. To the best of our knowledge, this is the first comprehensive resource providing a unified catalog of lncRNAs in zebrafish. The resource is freely available at URL: http://genome.igib.res.in/zflncRNApedia
Collapse
Affiliation(s)
- Heena Dhiman
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR–Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110020, India
| | - Shruti Kapoor
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR–Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110020, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, Delhi, 110001, India
| | - Ambily Sivadas
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR–Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110020, India
| | - Sridhar Sivasubbu
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110025, India
- * E-mail: (SS); (VS)
| | - Vinod Scaria
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR–Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110020, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, Delhi, 110001, India
- * E-mail: (SS); (VS)
| |
Collapse
|
13
|
Varshney GK, Pei W, LaFave MC, Idol J, Xu L, Gallardo V, Carrington B, Bishop K, Jones M, Li M, Harper U, Huang SC, Prakash A, Chen W, Sood R, Ledin J, Burgess SM. High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Res 2015. [PMID: 26048245 DOI: 10.1101/gr.186379.114.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The use of CRISPR/Cas9 as a genome-editing tool in various model organisms has radically changed targeted mutagenesis. Here, we present a high-throughput targeted mutagenesis pipeline using CRISPR/Cas9 technology in zebrafish that will make possible both saturation mutagenesis of the genome and large-scale phenotyping efforts. We describe a cloning-free single-guide RNA (sgRNA) synthesis, coupled with streamlined mutant identification methods utilizing fluorescent PCR and multiplexed, high-throughput sequencing. We report germline transmission data from 162 loci targeting 83 genes in the zebrafish genome, in which we obtained a 99% success rate for generating mutations and an average germline transmission rate of 28%. We verified 678 unique alleles from 58 genes by high-throughput sequencing. We demonstrate that our method can be used for efficient multiplexed gene targeting. We also demonstrate that phenotyping can be done in the F1 generation by inbreeding two injected founder fish, significantly reducing animal husbandry and time. This study compares germline transmission data from CRISPR/Cas9 with those of TALENs and ZFNs and shows that efficiency of CRISPR/Cas9 is sixfold more efficient than other techniques. We show that the majority of published "rules" for efficient sgRNA design do not effectively predict germline transmission rates in zebrafish, with the exception of a GG or GA dinucleotide genomic match at the 5' end of the sgRNA. Finally, we show that predicted off-target mutagenesis is of low concern for in vivo genetic studies.
Collapse
Affiliation(s)
- Gaurav K Varshney
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Wuhong Pei
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Matthew C LaFave
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jennifer Idol
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Lisha Xu
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Viviana Gallardo
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Blake Carrington
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kevin Bishop
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - MaryPat Jones
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Mingyu Li
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Ursula Harper
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sunny C Huang
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Anupam Prakash
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Wenbiao Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Raman Sood
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Johan Ledin
- Department of Organismal Biology, Science for Life Laboratory, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
14
|
Yang J, Shih YH, Xu X. Understanding cardiac sarcomere assembly with zebrafish genetics. Anat Rec (Hoboken) 2015; 297:1681-93. [PMID: 25125181 DOI: 10.1002/ar.22975] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 01/06/2023]
Abstract
Mutations in sarcomere genes have been found in many inheritable human diseases, including hypertrophic cardiomyopathy. Elucidating the molecular mechanisms of sarcomere assembly shall facilitate understanding of the pathogenesis of sarcomere-based cardiac disease. Recently, biochemical and genomic studies have identified many new genes encoding proteins that localize to the sarcomere. However, their precise functions in sarcomere assembly and sarcomere-based cardiac disease are unknown. Here, we review zebrafish as an emerging vertebrate model for these studies. We summarize the techniques offered by this animal model to manipulate genes of interest, annotate gene expression, and describe the resulting phenotypes. We survey the sarcomere genes that have been investigated in zebrafish and discuss the potential of applying this in vivo model for larger-scale genetic studies.
Collapse
Affiliation(s)
- Jingchun Yang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota; Division of Cardiovascular Diseases, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | | | |
Collapse
|
15
|
|
16
|
Yuan Y, Zhang Y, Yao S, Shi H, Huang X, Li Y, Wei Y, Lin S. The translation initiation factor eIF3i up-regulates vascular endothelial growth factor A, accelerates cell proliferation, and promotes angiogenesis in embryonic development and tumorigenesis. J Biol Chem 2014; 289:28310-23. [PMID: 25147179 DOI: 10.1074/jbc.m114.571356] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Vascular endothelial growth factor A (VEGFA) is a critical proangiogenic factor that is activated by hypoxia at both the transcriptional and post-transcriptional levels. In hypoxia conditions, stabilized hypoxia-inducible factor 1α (HIF1A) is the key regulator for transcriptional activation of VEGFA. However, the post-transcriptional control of VEGFA expression remains poorly understood. Here, we report that the eukaryotic translation initiation factor 3i (eIF3i) is required for VEGFA protein expression in both normal embryonic and tumorigenic angiogenesis. eIF3i is dynamically expressed in the early stages of zebrafish embryogenesis and in human hepatocellular carcinoma tissues. eIF3i homozygous mutant zebrafish embryos show severe angiogenesis defects and human hepatocellular cancer cells with depletion of eIF3i to induce less angiogenesis in tumor models. Under hypoxia, the HIF1A protein can interact with its binding sequence in the eIF3i promoter and activate eIF3i transcription. The expression of VEGFA, which should rise in hypoxia, is significantly inhibited by eIF3i siRNA treatment. Moreover, eIF3i knockdown did not cause a general translation repression but specifically reduced the translation efficiency of the VEGFA mRNAs. Taken together, our results suggest that eIF3i is induced by HIF1A under hypoxia and controls normal and tumorigenic angiogenesis through regulating VEGFA protein translation.
Collapse
Affiliation(s)
- Yike Yuan
- From the State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yaguang Zhang
- From the State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shaohua Yao
- From the State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China,
| | - Huashan Shi
- From the State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China, the Department of Head and Neck Oncology, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Xi Huang
- From the State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuhao Li
- the Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin 300071, China, and
| | - Yuquan Wei
- From the State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuo Lin
- From the State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China, the Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, California 90095-1606
| |
Collapse
|
17
|
Porwollik S, Santiviago CA, Cheng P, Long F, Desai P, Fredlund J, Srikumar S, Silva CA, Chu W, Chen X, Canals R, Reynolds MM, Bogomolnaya L, Shields C, Cui P, Guo J, Zheng Y, Endicott-Yazdani T, Yang HJ, Maple A, Ragoza Y, Blondel CJ, Valenzuela C, Andrews-Polymenis H, McClelland M. Defined single-gene and multi-gene deletion mutant collections in Salmonella enterica sv Typhimurium. PLoS One 2014; 9:e99820. [PMID: 25007190 PMCID: PMC4089911 DOI: 10.1371/journal.pone.0099820] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/19/2014] [Indexed: 01/30/2023] Open
Abstract
We constructed two collections of targeted single gene deletion (SGD) mutants and two collections of targeted multi-gene deletion (MGD) mutants in Salmonella enterica sv Typhimurium 14028s. The SGD mutant collections contain (1), 3517 mutants in which a single gene is replaced by a cassette containing a kanamycin resistance (KanR) gene oriented in the sense direction (SGD-K), and (2), 3376 mutants with a chloramphenicol resistance gene (CamR) oriented in the antisense direction (SGD-C). A combined total of 3773 individual genes were deleted across these SGD collections. The MGD collections contain mutants bearing deletions of contiguous regions of three or more genes and include (3), 198 mutants spanning 2543 genes replaced by a KanR cassette (MGD-K), and (4), 251 mutants spanning 2799 genes replaced by a CamR cassette (MGD-C). Overall, 3476 genes were deleted in at least one MGD collection. The collections with different antibiotic markers permit construction of all viable combinations of mutants in the same background. Together, the libraries allow hierarchical screening of MGDs for different phenotypic followed by screening of SGDs within the target MGD regions. The mutants of these collections are stored at BEI Resources (www.beiresources.org) and publicly available.
Collapse
Affiliation(s)
- Steffen Porwollik
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Carlos A. Santiviago
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Pui Cheng
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Fred Long
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Prerak Desai
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Jennifer Fredlund
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Shabarinath Srikumar
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Cecilia A. Silva
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Weiping Chu
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Xin Chen
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Rocío Canals
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - M. Megan Reynolds
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Lydia Bogomolnaya
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Christine Shields
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Ping Cui
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Jinbai Guo
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Yi Zheng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Tiana Endicott-Yazdani
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Hee-Jeong Yang
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Aimee Maple
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Yury Ragoza
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Carlos J. Blondel
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Camila Valenzuela
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Helene Andrews-Polymenis
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
18
|
Abstract
Substantial intrastrain variation at the nucleotide level complicates molecular and genetic studies in zebrafish, such as the use of CRISPRs or morpholinos to inactivate genes. In the absence of robust inbred zebrafish lines, we generated NHGRI-1, a healthy and fecund strain derived from founder parents we sequenced to a depth of ∼50×. Within this strain, we have identified the majority of the genome that matches the reference sequence and documented most of the variants. This strain has utility for many reasons, but in particular it will be useful for any researcher who needs to know the exact sequence (with all variants) of a particular genomic region or who wants to be able to robustly map sequences back to a genome with all possible variants defined.
Collapse
|
19
|
Pickart MA, Klee EW. Zebrafish approaches enhance the translational research tackle box. Transl Res 2014; 163:65-78. [PMID: 24269745 DOI: 10.1016/j.trsl.2013.10.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 10/24/2013] [Accepted: 10/28/2013] [Indexed: 01/08/2023]
Abstract
During the past few decades, zebrafish (Danio rerio) have been a workhorse for developmental biology and genetics. Concurrently, zebrafish have proved highly accessible and effective for translational research by providing a vertebrate animal model useful for gene discovery, disease modeling, chemical genetic screening, and other medically relevant studies. Key resources such as an annotated and complete genome sequence, and diverse tools for genetic manipulation continue to spur broad use of zebrafish. Thus, the purpose of this introductory review is to provide a window into the unique characteristics and diverse uses of zebrafish and to highlight in particular the increasing relevance of zebrafish as a translational animal model. This is accomplished by reviewing broad considerations of anatomic and physiological conservation, approaches for disease modeling and creation, general laboratory methods, genetic tools, genome conservation, and diverse opportunities for functional validation. Additional commentary throughout the review also guides the reader to the 4 new reviews found elsewhere in this special issue that showcase the many unique ways the zebrafish is improving understanding of renal regeneration, mitochondrial disease, dyslipidemia, and aging, for example. With many other possible approaches and a rapidly increasing number of medically relevant reports, zebrafish approaches enhance significantly the tools available for translational research and are actively improving the understanding of human disease.
Collapse
Affiliation(s)
| | - Eric W Klee
- Mayo Clinic, College of Medicine, Rochester, Minn
| |
Collapse
|
20
|
Varshney GK, Burgess SM. Mutagenesis and phenotyping resources in zebrafish for studying development and human disease. Brief Funct Genomics 2013; 13:82-94. [PMID: 24162064 DOI: 10.1093/bfgp/elt042] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The zebrafish (Danio rerio) is an important model organism for studying development and human disease. The zebrafish has an excellent reference genome and the functions of hundreds of genes have been tested using both forward and reverse genetic approaches. Recent years have seen an increasing number of large-scale mutagenesis projects and the number of mutants or gene knockouts in zebrafish has increased rapidly, including for the first time conditional knockout technologies. In addition, targeted mutagenesis techniques such as zinc finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short sequences (CRISPR) or CRISPR-associated (Cas), have all been shown to effectively target zebrafish genes as well as the first reported germline homologous recombination, further expanding the utility and power of zebrafish genetics. Given this explosion of mutagenesis resources, it is now possible to perform systematic, high-throughput phenotype analysis of all zebrafish gene knockouts.
Collapse
Affiliation(s)
- Gaurav Kumar Varshney
- Developmental Genomics Section, Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
21
|
Hosen MJ, Vanakker OM, Willaert A, Huysseune A, Coucke P, De Paepe A. Zebrafish models for ectopic mineralization disorders: practical issues from morpholino design to post-injection observations. Front Genet 2013; 4:74. [PMID: 23760765 PMCID: PMC3669896 DOI: 10.3389/fgene.2013.00074] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 04/15/2013] [Indexed: 01/06/2023] Open
Abstract
Zebrafish (ZF, Danio rerio) has emerged as an important and popular model species to study different human diseases. Key regulators of skeletal development and calcium metabolism are highly conserved between mammals and ZF. The corresponding orthologs share significant sequence similarities and an overlap in expression patterns when compared to mammals, making ZF a potential model for the study of mineralization-related disorders and soft tissue mineralization. To characterize the function of early mineralization-related genes in ZF, these genes can be knocked down by injecting morpholinos into early stage embryos. Validation of the morpholino needs to be performed and the concern of aspecific effects can be addressed by applying one or more independent techniques to knock down the gene of interest. Post-injection assessment of early mineralization defects can be done using general light microscopy, calcein staining, Alizarin red staining, Alizarin red-Alcian blue double staining, and by the use of transgenic lines. Examination of general molecular defects can be done by performing protein and gene expression analysis, and more specific processes can be explored by investigating ectopic mineralization-related mechanisms such as apoptosis and mitochondrial dysfunction. In this paper, we will discuss all details about the aforementioned techniques; shared knowledge will be very useful for the future investigation of ZF models for ectopic mineralization disorders and to understand the underlying pathways involved in soft tissue calcification.
Collapse
Affiliation(s)
- Mohammad Jakir Hosen
- Center for Medical Genetics, Ghent University Hospital Ghent, Belgium ; Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology Sylhet, Bangladesh
| | | | | | | | | | | |
Collapse
|
22
|
Chiu CN, Prober DA. Regulation of zebrafish sleep and arousal states: current and prospective approaches. Front Neural Circuits 2013; 7:58. [PMID: 23576957 PMCID: PMC3620505 DOI: 10.3389/fncir.2013.00058] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 03/14/2013] [Indexed: 01/20/2023] Open
Abstract
Every day, we shift among various states of sleep and arousal to meet the many demands of our bodies and environment. A central puzzle in neurobiology is how the brain controls these behavioral states, which are essential to an animal's well-being and survival. Mammalian models have predominated sleep and arousal research, although in the past decade, invertebrate models have made significant contributions to our understanding of the genetic underpinnings of behavioral states. More recently, the zebrafish has emerged as a promising model system for sleep and arousal research. Here we review experimental evidence that the zebrafish, a diurnal vertebrate, exhibits fundamental behavioral and neurochemical characteristics of mammalian sleep and arousal. We also propose how specific advantages of the zebrafish can be harnessed to advance the field. These include tractable genetics to identify and manipulate molecular and cellular regulators of behavioral states, optical transparency to facilitate in vivo observation of neural structure and function, and amenability to high-throughput drug screens to discover novel therapies for neurological disorders.
Collapse
Affiliation(s)
| | - David A. Prober
- Division of Biology, California Institute of TechnologyPasadena, CA, USA
| |
Collapse
|
23
|
Varshney GK, Lu J, Gildea DE, Huang H, Pei W, Yang Z, Huang SC, Schoenfeld D, Pho NH, Casero D, Hirase T, Mosbrook-Davis D, Zhang S, Jao LE, Zhang B, Woods IG, Zimmerman S, Schier AF, Wolfsberg TG, Pellegrini M, Burgess SM, Lin S. A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome Res 2013; 23:727-35. [PMID: 23382537 PMCID: PMC3613589 DOI: 10.1101/gr.151464.112] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
With the completion of the zebrafish genome sequencing project, it becomes possible to analyze the function of zebrafish genes in a systematic way. The first step in such an analysis is to inactivate each protein-coding gene by targeted or random mutation. Here we describe a streamlined pipeline using proviral insertions coupled with high-throughput sequencing and mapping technologies to widely mutagenize genes in the zebrafish genome. We also report the first 6144 mutagenized and archived F1's predicted to carry up to 3776 mutations in annotated genes. Using in vitro fertilization, we have rescued and characterized ∼0.5% of the predicted mutations, showing mutation efficacy and a variety of phenotypes relevant to both developmental processes and human genetic diseases. Mutagenized fish lines are being made freely available to the public through the Zebrafish International Resource Center. These fish lines establish an important milestone for zebrafish genetics research and should greatly facilitate systematic functional studies of the vertebrate genome.
Collapse
Affiliation(s)
- Gaurav K Varshney
- Developmental Genomics Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|