1
|
Hertz LM, White EN, Kuznedelov K, Cheng L, Yu AM, Kakkaramadam R, Severinov K, Chen A, Lucks J. The effect of pseudoknot base pairing on cotranscriptional structural switching of the fluoride riboswitch. Nucleic Acids Res 2024; 52:4466-4482. [PMID: 38567721 PMCID: PMC11077080 DOI: 10.1093/nar/gkae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/17/2024] [Accepted: 03/20/2024] [Indexed: 04/16/2024] Open
Abstract
A central question in biology is how RNA sequence changes influence dynamic conformational changes during cotranscriptional folding. Here we investigated this question through the study of transcriptional fluoride riboswitches, non-coding RNAs that sense the fluoride anion through the coordinated folding and rearrangement of a pseudoknotted aptamer domain and a downstream intrinsic terminator expression platform. Using a combination of Escherichia coli RNA polymerase in vitro transcription and cellular gene expression assays, we characterized the function of mesophilic and thermophilic fluoride riboswitch variants. We showed that only variants containing the mesophilic pseudoknot function at 37°C. We next systematically varied the pseudoknot sequence and found that a single wobble base pair is critical for function. Characterizing thermophilic variants at 65°C through Thermus aquaticus RNA polymerase in vitro transcription showed the importance of this wobble pair for function even at elevated temperatures. Finally, we performed all-atom molecular dynamics simulations which supported the experimental findings, visualized the RNA structure switching process, and provided insight into the important role of magnesium ions. Together these studies provide deeper insights into the role of riboswitch sequence in influencing folding and function that will be important for understanding of RNA-based gene regulation and for synthetic biology applications.
Collapse
Affiliation(s)
- Laura M Hertz
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
| | - Elise N White
- Department of Chemistry and the RNA Institute, University at Albany, Albany, NY 12222, USA
| | | | - Luyi Cheng
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
| | - Angela M Yu
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA
| | - Rivaan Kakkaramadam
- Department of Chemistry and the RNA Institute, University at Albany, Albany, NY 12222, USA
| | - Konstantin Severinov
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854, USA
| | - Alan Chen
- Department of Chemistry and the RNA Institute, University at Albany, Albany, NY 12222, USA
| | - Julius B Lucks
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
2
|
Hertz LM, White EN, Kuznedelov K, Cheng L, Yu AM, Kakkaramadam R, Severinov K, Chen A, Lucks JB. The Effect of Pseudoknot Base Pairing on Cotranscriptional Structural Switching of the Fluoride Riboswitch. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570056. [PMID: 38106011 PMCID: PMC10723315 DOI: 10.1101/2023.12.05.570056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
A central question in biology is how RNA sequence changes influence dynamic conformational changes during cotranscriptional folding. Here we investigated this question through the study of transcriptional fluoride riboswitches, non-coding RNAs that sense the fluoride anion through the coordinated folding and rearrangement of a pseudoknotted aptamer domain and a downstream intrinsic terminator expression platform. Using a combination of E. coli RNA polymerase in vitro transcription and cellular gene expression assays, we characterized the function of mesophilic and thermophilic fluoride riboswitch variants. We showed that only variants containing the mesophilic pseudoknot function at 37 °C. We next systematically varied the pseudoknot sequence and found that a single wobble base pair is critical for function. Characterizing thermophilic variants at 65 °C through Thermus aquaticus RNA polymerase in vitro transcription showed the importance of this wobble pair for function even at elevated temperatures. Finally, we performed all-atom molecular dynamics simulations which supported the experimental findings, visualized the RNA structure switching process, and provided insight into the important role of magnesium ions. Together these studies provide deeper insights into the role of riboswitch sequence in influencing folding and function that will be important for understanding of RNA-based gene regulation and for synthetic biology applications.
Collapse
Affiliation(s)
- Laura M Hertz
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
| | - Elise N White
- Department of Chemistry and the RNA Institute, University at Albany, Albany, NY 12222, USA
| | | | - Luyi Cheng
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
| | - Angela M Yu
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA
| | - Rivaan Kakkaramadam
- Department of Chemistry and the RNA Institute, University at Albany, Albany, NY 12222, USA
| | - Konstantin Severinov
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854, USA
| | - Alan Chen
- Department of Chemistry and the RNA Institute, University at Albany, Albany, NY 12222, USA
| | - Julius B Lucks
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
3
|
Petushkov IV, Kulbachinskiy AV. Role of Interactions of the CRE Region of Escherichia coli RNA Polymerase with Nontemplate DNA during Promoter Escape. BIOCHEMISTRY (MOSCOW) 2021; 85:792-800. [PMID: 33040723 DOI: 10.1134/s000629792007007x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
RNA polymerase (RNAP) recognizes promoter DNA through many interactions that determine specificity of transcription initiation. In addition to the dedicated transcription initiation σ factor in bacteria, the core enzyme of RNAP can also participate in promoter recognition. In particular, guanine residue at the +2 position (+2G) of the nontemplate DNA strand is bound in the CRE pocket formed by the RNAP β subunit. Here, we analyzed the role of these contacts in the process of promoter escape by RNAP by studying point mutations in the β subunit of Escherichia coli RNAP that disrupted these interactions. We found that the presence of +2G in the promoter slowed down the rate of promoter escape and increased proportion of inactive complexes. Amino acid substitutions in the CRE pocket decreased the promoter complex stability and changed the pattern of short RNA products synthesized during initiation, but did not significantly affect the rate of transition to elongation, regardless of the presence of +2G. Thus, the contacts of the CRE pocket with +2G do not make a significant contribution to the kinetics of promoter escape by RNAP, while the observed changes in the efficiency of abortive synthesis are not directly related to the rate of promoter escape.
Collapse
Affiliation(s)
- I V Petushkov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| | - A V Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| |
Collapse
|
4
|
Bonnerjee D, Mukhopadhyay S, Bagh S. Design, Fabrication, and Device Chemistry of a 3-Input-3-Output Synthetic Genetic Combinatorial Logic Circuit with a 3-Input AND Gate in a Single Bacterial Cell. Bioconjug Chem 2019; 30:3013-3020. [PMID: 31596072 DOI: 10.1021/acs.bioconjchem.9b00517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Advancement of in-cell molecular computation requires multi-input-multi-output genetic logic devices. However, increased physical size, a higher number of molecular interactions, cross-talk, and complex systems level device chemistry limited the realization of such multi-input-multi-output devices in a single bacterial cell. Here, by adapting a circuit minimization and conjugated promoter engineering approach, we created the first 3-input-3-output logic function in a single bacterial cell. The circuit integrated three extracellular chemical signals as inputs and produced three different fluorescent proteins as outputs following the truth table of the circuit. First, we created a noncascaded 1-gate-3-input synthetic genetic AND gate in bacteria. We showed that the 3-input AND gate was digital in nature and mathematically predictable, two important characteristics, which were not reported for previous 3-input AND gates in bacteria. Our design consists of a 128 bp DNA scaffold, which conjugated various protein-binding sites in a single piece of DNA and worked as a hybrid promoter. The scaffold was a few times smaller than the similar 3-input synthetic genetic AND gate promoter reported. Integrating this AND gate with a new 2-input-2-output integrated circuit, which was also digital-like and predictive, we created a 3-input-3-output combinatorial logic circuit. This work demonstrated the integration of a 3-input AND gate in a larger circuit and a 3-input-3-output synthetic genetic circuit, both for the first time. The work has significance in molecular computation, biorobotics, DNA nanotechnology, and synthetic biology.
Collapse
Affiliation(s)
- Deepro Bonnerjee
- Biophysics and Structural Genomics Division , Saha Institute of Nuclear Physics, Homi Bhabha National Institute (HBNI) , Block A/F, Sector-I, Bidhannagar, Kolkata 700064 , India
| | - Sayak Mukhopadhyay
- Biophysics and Structural Genomics Division , Saha Institute of Nuclear Physics, Homi Bhabha National Institute (HBNI) , Block A/F, Sector-I, Bidhannagar, Kolkata 700064 , India
| | - Sangram Bagh
- Biophysics and Structural Genomics Division , Saha Institute of Nuclear Physics, Homi Bhabha National Institute (HBNI) , Block A/F, Sector-I, Bidhannagar, Kolkata 700064 , India
| |
Collapse
|
5
|
Zhu DX, Garner AL, Galburt EA, Stallings CL. CarD contributes to diverse gene expression outcomes throughout the genome of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2019; 116:13573-13581. [PMID: 31217290 PMCID: PMC6613185 DOI: 10.1073/pnas.1900176116] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ability to regulate gene expression through transcription initiation underlies the adaptability and survival of all bacteria. Recent work has revealed that the transcription machinery in many bacteria diverges from the paradigm that has been established in Escherichia coliMycobacterium tuberculosis (Mtb) encodes the RNA polymerase (RNAP)-binding protein CarD, which is absent in E. coli but is required to form stable RNAP-promoter open complexes (RPo) and is essential for viability in Mtb The stabilization of RPo by CarD has been proposed to result in activation of gene expression; however, CarD has only been examined on limited promoters that do not represent the typical promoter structure in Mtb In this study, we investigate the outcome of CarD activity on gene expression from Mtb promoters genome-wide by performing RNA sequencing on a panel of mutants that differentially affect CarD's ability to stabilize RPo In all CarD mutants, the majority of Mtb protein encoding transcripts were differentially expressed, demonstrating that CarD had a global effect on gene expression. Contrary to the expected role of CarD as a transcriptional activator, mutation of CarD led to both up- and down-regulation of gene expression, suggesting that CarD can also act as a transcriptional repressor. Furthermore, we present evidence that stabilization of RPo by CarD could lead to transcriptional repression by inhibiting promoter escape, and the outcome of CarD activity is dependent on the intrinsic kinetic properties of a given promoter region. Collectively, our data support CarD's genome-wide role of regulating diverse transcription outcomes.
Collapse
Affiliation(s)
- Dennis X Zhu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Ashley L Garner
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Eric A Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110;
| |
Collapse
|
6
|
Regulation of transcription initiation by Gfh factors from Deinococcus radiodurans. Biochem J 2016; 473:4493-4505. [PMID: 27754888 DOI: 10.1042/bcj20160659] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/15/2016] [Accepted: 10/17/2016] [Indexed: 02/06/2023]
Abstract
Transcription factors of the Gre family bind within the secondary channel of bacterial RNA polymerase (RNAP) directly modulating its catalytic activities. Universally conserved Gre factors activate RNA cleavage by RNAP, by chelating catalytic metal ions in the RNAP active site, and facilitate both promoter escape and transcription elongation. Gfh factors are Deinococcus/Thermus-specific homologues of Gre factors whose transcription functions remain poorly understood. Recently, we found that Gfh1 and Gfh2 proteins from Deinococcus radiodurans dramatically stimulate RNAP pausing during transcription elongation in the presence of Mn2+, but not Mg2+, ions. In contrast, we show that Gfh1 and Gfh2 moderately inhibit transcription initiation in the presence of either Mg2+ or Mn2+ ions. By using a molecular beacon assay, we demonstrate that Gfh1 and Gfh2 do not significantly change promoter complex stability or the rate of promoter escape by D. radiodurans RNAP. At the same time, Gfh factors significantly increase the apparent KM value for the 5'-initiating nucleotide, without having major effects on the affinity of metal ions for the RNAP active site. Similar inhibitory effects of Gfh factors are observed for transcription initiation on promoters recognized by the principal and an alternative σ factor. In summary, our data suggest that D. radiodurans Gfh factors impair the binding of initiating substrates independently of the metal ions bound in the RNAP active site, but have only mild overall effects on transcription initiation. Thus the mechanisms of modulation of RNAP activity by these factors are different for various steps of transcription.
Collapse
|
7
|
Backtracked and paused transcription initiation intermediate of Escherichia coli RNA polymerase. Proc Natl Acad Sci U S A 2016; 113:E6562-E6571. [PMID: 27729537 DOI: 10.1073/pnas.1605038113] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Initiation is a highly regulated, rate-limiting step in transcription. We used a series of approaches to examine the kinetics of RNA polymerase (RNAP) transcription initiation in greater detail. Quenched kinetics assays, in combination with gel-based assays, showed that RNAP exit kinetics from complexes stalled at later stages of initiation (e.g., from a 7-base transcript) were markedly slower than from earlier stages (e.g., from a 2- or 4-base transcript). In addition, the RNAP-GreA endonuclease accelerated transcription kinetics from otherwise delayed initiation states. Further examination with magnetic tweezers transcription experiments showed that RNAP adopted a long-lived backtracked state during initiation and that the paused-backtracked initiation intermediate was populated abundantly at physiologically relevant nucleoside triphosphate (NTP) concentrations. The paused intermediate population was further increased when the NTP concentration was decreased and/or when an imbalance in NTP concentration was introduced (situations that mimic stress). Our results confirm the existence of a previously hypothesized paused and backtracked RNAP initiation intermediate and suggest it is biologically relevant; furthermore, such intermediates could be exploited for therapeutic purposes and may reflect a conserved state among paused, initiating eukaryotic RNA polymerase II enzymes.
Collapse
|
8
|
Mekler V, Severinov K. Use of RNA polymerase molecular beacon assay to measure RNA polymerase interactions with model promoter fragments. Methods Mol Biol 2015; 1276:199-210. [PMID: 25665565 DOI: 10.1007/978-1-4939-2392-2_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
RNA polymerase-promoter interactions that keep the transcription initiation complex together are complex and multipartite, and formation of the RNA polymerase-promoter complex proceeds through multiple intermediates. Short promoter fragments can be used as a tool to dissect RNA polymerase-promoter interactions and to pinpoint elements responsible for specific properties of the entire promoter complex. A recently developed fluorometric molecular beacon assay allows one to monitor the enzyme interactions with various DNA probes and quantitatively characterize partial RNA polymerase-promoter interactions. Here, we present detailed protocols for the preparation of an Escherichia coli molecular beacon and its application to study RNA polymerase interactions with model promoter fragments.
Collapse
Affiliation(s)
- Vladimir Mekler
- Waksman Institute of Microbiology, Rutgers, State University of New Jersey, Piscataway, NJ, 08854, USA,
| | | |
Collapse
|
9
|
Esyunina DM, Kulbachinskiy AV. Purification and characterization of recombinant Deinococcus radiodurans RNA Polymerase. BIOCHEMISTRY (MOSCOW) 2015; 80:1271-8. [DOI: 10.1134/s0006297915100077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Mekler V, Severinov K. RNA polymerase molecular beacon as tool for studies of RNA polymerase-promoter interactions. Methods 2015; 86:19-26. [PMID: 25956222 DOI: 10.1016/j.ymeth.2015.04.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 10/23/2022] Open
Abstract
The molecular details of formation of transcription initiation complex upon the interaction of bacterial RNA polymerase (RNAP) with promoters are not completely understood. One way to address this problem is to understand how RNAP interacts with different parts of promoter DNA. A recently developed fluorometric RNAP molecular beacon assay allows one to monitor the RNAP interactions with various unlabeled DNA probes and quantitatively characterize partial RNAP-promoter interactions. This paper focuses on methodological aspects of application of this powerful assay to study the mechanism of transcription initiation complex formation by Escherichia coli RNA polymerase σ(70) holoenzyme and its regulation by bacterial and phage encoded factors.
Collapse
Affiliation(s)
- Vladimir Mekler
- Waksman Institute of Microbiology, Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Konstantin Severinov
- Waksman Institute of Microbiology, Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA; Skolkovo Institute of Science and Technology, 143025 Skolkovo, Russia; Institutes of Gene Biology and Molecular Genetics, Russian Academy of Sciences, 119334 Moscow, Russia.
| |
Collapse
|
11
|
Davis E, Chen J, Leon K, Darst SA, Campbell EA. Mycobacterial RNA polymerase forms unstable open promoter complexes that are stabilized by CarD. Nucleic Acids Res 2014; 43:433-45. [PMID: 25510492 PMCID: PMC4288152 DOI: 10.1093/nar/gku1231] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli has served as the archetypal organism on which the overwhelming majority of biochemical characterizations of bacterial RNA polymerase (RNAP) have been focused; the properties of E. coli RNAP have been accepted as generally representative for all bacterial RNAPs. Here, we directly compare the initiation properties of a mycobacterial transcription system with E. coli RNAP on two different promoters. The detailed characterizations include abortive transcription assays, RNAP/promoter complex stability assays and DNAse I and KMnO4 footprinting. Based on footprinting, we find that promoter complexes formed by E. coli and mycobacterial RNAPs use very similar protein/DNA interactions and generate the same transcription bubbles. However, we find that the open promoter complexes formed by E. coli RNAP on the two promoters tested are highly stable and essentially irreversible (with lifetimes much greater than 1 h), while the open promoter complexes on the same two promoters formed by mycobacterial RNAP are very unstable (lifetimes of about 2 min or less) and readily reversible. We show here that CarD, an essential mycobacterial transcription activator that is not found in E. coli, stabilizes the mycobacterial RNAP/open promoter complexes considerably by preventing transcription bubble collapse.
Collapse
Affiliation(s)
- Elizabeth Davis
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - James Chen
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Katherine Leon
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Seth A Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
12
|
Osmundson J, Darst SA. Biochemical insights into the function of phage G1 gp67 in Staphylococcus aureus. BACTERIOPHAGE 2014; 3:e24767. [PMID: 23819108 PMCID: PMC3694059 DOI: 10.4161/bact.24767] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 04/22/2013] [Accepted: 04/22/2013] [Indexed: 01/06/2023]
Abstract
Bacteriophage (phage) are among the most diverse and abundant life forms on Earth. Studies have recently used phage diversity to identify novel antimicrobial peptides and proteins. We showed that one such phage protein, Staphylococcus aureus (Sau) phage G1 gp67, inhibits cell growth in Sau by an unusual mechanism. Gp67 binds to the host RNA polymerase (RNAP) through an interaction with the promoter specificity σ subunit, but unlike many other σ-binding phage proteins, gp67 does not disrupt transcription at most promoters. Rather, gp67 prevents binding of another RNAP domain, the α-C-terminal domain, to upstream A/T-rich elements required for robust transcription at rRNA promoters. Here, we discuss additional biochemical insights on gp67, how phage promoters escape the inhibitory function of gp67, and methodological advancements that were foundational to our work.
Collapse
|
13
|
Mekler V, Minakhin L, Borukhov S, Mustaev A, Severinov K. Coupling of downstream RNA polymerase-promoter interactions with formation of catalytically competent transcription initiation complex. J Mol Biol 2014; 426:3973-3984. [PMID: 25311862 DOI: 10.1016/j.jmb.2014.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/05/2014] [Accepted: 10/06/2014] [Indexed: 01/22/2023]
Abstract
Bacterial RNA polymerase (RNAP) makes extensive contacts with duplex DNA downstream of the transcription bubble in initiation and elongation complexes. We investigated the role of downstream interactions in formation of catalytically competent transcription initiation complex by measuring initiation activity of stable RNAP complexes with model promoter DNA fragments whose downstream ends extend from +3 to +21 relative to the transcription start site at +1. We found that DNA downstream of position +6 does not play a significant role in transcription initiation when RNAP-promoter interactions upstream of the transcription start site are strong and promoter melting region is AT rich. Further shortening of downstream DNA dramatically reduces efficiency of transcription initiation. The boundary of minimal downstream DNA duplex needed for efficient transcription initiation shifted further away from the catalytic center upon increasing the GC content of promoter melting region or in the presence of bacterial stringent response regulators DksA and ppGpp. These results indicate that the strength of RNAP-downstream DNA interactions has to reach a certain threshold to retain the catalytically competent conformation of the initiation complex and that establishment of contacts between RNAP and downstream DNA can be coupled with promoter melting. The data further suggest that RNAP interactions with DNA immediately downstream of the transcription bubble are particularly important for initiation of transcription. We hypothesize that these active center-proximal contacts stabilize the DNA template strand in the active center cleft and/or position the RNAP clamp domain to allow RNA synthesis.
Collapse
Affiliation(s)
- Vladimir Mekler
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA.
| | - Leonid Minakhin
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA
| | - Sergei Borukhov
- Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Arkady Mustaev
- Public Health Research Institute Center, New Jersey Medical School, Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey, NJ 07103, USA
| | - Konstantin Severinov
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Biochemistry and Molecular Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Institutes of Gene Biology and Molecular Genetics, Russian Academy of Sciences, Leninsky Avenue, 14, 119991 Moscow, Russia.
| |
Collapse
|
14
|
Mekler V, Severinov K. Cooperativity and interaction energy threshold effects in recognition of the -10 promoter element by bacterial RNA polymerase. Nucleic Acids Res 2013; 41:7276-85. [PMID: 23771146 PMCID: PMC3753650 DOI: 10.1093/nar/gkt541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RNA polymerase (RNAP) melts promoter DNA to form transcription-competent open promoter complex (RPo). Interaction of the RNAP σ subunit with non-template strand bases of a conserved -10 element (consensus sequence T-12A-11T-10A-9A-8T-7) is an important source of energy-driving localized promoter melting. Here, we used an RNAP molecular beacon assay to investigate interdependencies of RNAP interactions with -10 element nucleotides. The results reveal a strong cooperation between RNAP interactions with individual -10 element non-template strand nucleotides and indicate that recognition of the -10 element bases occurs only when free energy of the overall RNAP -10 element binding reaches a certain threshold level. The threshold-like mode of the -10 element recognition may be related to the energetic cost of attaining a conformation of the -10 element that is recognizable by RNAP. The RNAP interaction with T/A-12 base pair was found to be strongly stimulated by RNAP interactions with other -10 element bases and with promoter spacer between the -10 and -35 promoter elements. The data also indicate that unmelted -10 promoter element can impair RNAP interactions with promoter DNA upstream of the -11 position. We suggest that cooperativity and threshold effects are important factors guiding the dynamics and selectivity of RPo formation.
Collapse
Affiliation(s)
- Vladimir Mekler
- Department of Molecular Biology and Biochemistry, Waksman Institute of Microbiology Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA and Institutes of Molecular Genetics and Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | | |
Collapse
|