1
|
Pagano P, Bertoncini A, Pagano A, Nisa MU, Raynaud C, Balestrazzi A, Macovei A. Exposure of Arabidopsis thaliana Mutants to Genotoxic Stress Provides New Insights for the Involvement of TDP1α and TDP1β genes in DNA-Damage Response. PLANT, CELL & ENVIRONMENT 2024; 47:5483-5497. [PMID: 39219547 DOI: 10.1111/pce.15128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Genotoxic stress activates the DNA-damage response (DDR) signalling cascades responsible for maintaining genome integrity. Downstream DNA repair pathways include the tyrosyl-DNA phosphodiesterase 1 (TDP1) enzyme that hydrolyses the phosphodiester bond between the tyrosine of topoisomerase I (TopI) and 3'-phosphate of DNA. The plant TDP1 subfamily contains the canonical TDP1α gene and the TDP1β gene whose functions are not fully elucidated. The current study proposes to investigate the involvement of TDP1 genes in DDR-related processes by using Arabidopsis thaliana mutants treated with genotoxic agents. The phenotypic and molecular characterization of tdp1α, tdp1β and tdp1α/β mutants treated with cisplatin (CIS), curcumin (CUR), NSC120686 (NSC), zeocin (ZEO), and camptothecin (CPT), evidenced that while tdp1β was highly sensitive to CIS and CPT, tdp1α was more sensitive to NSC. Gene expression analyses showing upregulation of the TDP2 gene in the double mutant indicate the presence of compensatory mechanisms. The downregulation of POL2A gene in the tdp1β mutant along with the upregulation of the TDP1β gene in pol2a mutants, together with its sensitivity to replication inhibitors (CIS, CTP), point towards a function of this gene in the response to replication stress. Therefore, this study brings novel information relative to the activity of TDP1 genes in plants.
Collapse
Affiliation(s)
- Paola Pagano
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Anna Bertoncini
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Andrea Pagano
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Maher-Un Nisa
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, Paris, France
| | - Cécile Raynaud
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, Paris, France
| | - Alma Balestrazzi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
2
|
Bazile J, Nadaud I, Lasserre-Zuber P, Kitt J, De Oliveira R, Choulet F, Sourdille P. TaRECQ4 contributes to maintain both homologous and homoeologous recombination during wheat meiosis. FRONTIERS IN PLANT SCIENCE 2024; 14:1342976. [PMID: 38348162 PMCID: PMC10859459 DOI: 10.3389/fpls.2023.1342976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/29/2023] [Indexed: 02/15/2024]
Abstract
Introduction Meiotic recombination (or crossover, CO) is essential for gamete fertility as well as for alleles and genes reshuffling that is at the heart of plant breeding. However, CO remains a limited event, which strongly hampers the rapid production of original and improved cultivars. RecQ4 is a gene encoding a helicase protein that, when mutated, contributes to improve recombination rate in all species where it has been evaluated so far. Methods In this study, we developed wheat (Triticum aestivum L.) triple mutant (TM) for the three homoeologous copies of TaRecQ4 as well as mutants for two copies and heterozygous for the last one (Htz-A, Htz-B, Htz-D). Results Phenotypic observation revealed a significant reduction of fertility and pollen viability in TM and Htz-B plants compared to wild type plants suggesting major defects during meiosis. Cytogenetic analyses of these plants showed that complete absence of TaRecQ4 as observed in TM plants, leads to chromosome fragmentation during the pachytene stage, resulting in problems in the segregation of chromosomes during meiosis. Htz-A and Htz-D mutants had an almost normal meiotic progression indicating that both TaRecQ4-A and TaRecQ4-D copies are functional and that there is no dosage effect for TaRecQ4 in bread wheat. On the contrary, the TaRecQ4-B copy seems knocked-out, probably because of a SNP leading to a Threonine>Alanine change at position 539 (T539A) of the protein, that occurs in the crucial helicase ATP bind/DEAD/ResIII domain which unwinds nucleic acids. Occurrence of numerous multivalents in TM plants suggests that TaRecQ4 could also play a role in the control of homoeologous recombination. Discussion These findings provide a foundation for further molecular investigations into wheat meiosis regulation to fully understand the underlying mechanisms of how TaRecQ4 affects chiasma formation, as well as to identify ways to mitigate these defects and enhance both homologous and homoeologous recombination efficiency in wheat.
Collapse
Affiliation(s)
- Jeanne Bazile
- INRAE, UMR 1095 INRAE – UCA Genetics, Diversity & Ecophysiology of Cereals, Clermont-Ferrand, France
| | - Isabelle Nadaud
- INRAE, UMR 1095 INRAE – UCA Genetics, Diversity & Ecophysiology of Cereals, Clermont-Ferrand, France
| | - Pauline Lasserre-Zuber
- INRAE, UMR 1095 INRAE – UCA Genetics, Diversity & Ecophysiology of Cereals, Clermont-Ferrand, France
| | - Jonathan Kitt
- INRAE, UMR 1095 INRAE – UCA Genetics, Diversity & Ecophysiology of Cereals, Clermont-Ferrand, France
| | - Romain De Oliveira
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frédéric Choulet
- INRAE, UMR 1095 INRAE – UCA Genetics, Diversity & Ecophysiology of Cereals, Clermont-Ferrand, France
| | - Pierre Sourdille
- INRAE, UMR 1095 INRAE – UCA Genetics, Diversity & Ecophysiology of Cereals, Clermont-Ferrand, France
| |
Collapse
|
3
|
Katche EI, Schierholt A, Schiessl SV, He F, Lv Z, Batley J, Becker HC, Mason AS. Genetic factors inherited from both diploid parents interact to affect genome stability and fertility in resynthesized allotetraploid Brassica napus. G3 (BETHESDA, MD.) 2023; 13:jkad136. [PMID: 37313757 PMCID: PMC10411605 DOI: 10.1093/g3journal/jkad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 04/24/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023]
Abstract
Established allopolyploids are known to be genomically stable and fertile. However, in contrast, most newly resynthesized allopolyploids are infertile and meiotically unstable. Identifying the genetic factors responsible for genome stability in newly formed allopolyploid is key to understanding how 2 genomes come together to form a species. One hypothesis is that established allopolyploids may have inherited specific alleles from their diploid progenitors which conferred meiotic stability. Resynthesized Brassica napus lines are often unstable and infertile, unlike B. napus cultivars. We tested this hypothesis by characterizing 41 resynthesized B. napus lines produced by crosses between 8 Brassica rapa and 8 Brassica oleracea lines for copy number variation resulting from nonhomologous recombination events and fertility. We resequenced 8 B. rapa and 5 B. oleracea parent accessions and analyzed 19 resynthesized lines for allelic variation in a list of meiosis gene homologs. SNP genotyping was performed using the Illumina Infinium Brassica 60K array for 3 individuals per line. Self-pollinated seed set and genome stability (number of copy number variants) were significantly affected by the interaction between both B. rapa and B. oleracea parental genotypes. We identified 13 putative meiosis gene candidates which were significantly associated with frequency of copy number variants and which contained putatively harmful mutations in meiosis gene haplotypes for further investigation. Our results support the hypothesis that allelic variants inherited from parental genotypes affect genome stability and fertility in resynthesized rapeseed.
Collapse
Affiliation(s)
- Elizabeth Ihien Katche
- Plant Breeding Department, University of Bonn, Bonn 53115, Germany
- Department of Plant Breeding, Justus Liebig University, Giessen 35392, Germany
| | - Antje Schierholt
- Department of Crop Sciences, Division of Plant Breeding Methodology, Georg-August University Göttingen, Göttingen 37073, Germany
| | - Sarah-Veronica Schiessl
- Department of Plant Breeding, Justus Liebig University, Giessen 35392, Germany
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main D-60325, Germany
| | - Fei He
- Plant Breeding Department, University of Bonn, Bonn 53115, Germany
| | - Zhenling Lv
- Plant Breeding Department, University of Bonn, Bonn 53115, Germany
- Department of Plant Breeding, Justus Liebig University, Giessen 35392, Germany
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Heiko C Becker
- Department of Crop Sciences, Division of Plant Breeding Methodology, Georg-August University Göttingen, Göttingen 37073, Germany
| | - Annaliese S Mason
- Plant Breeding Department, University of Bonn, Bonn 53115, Germany
- Department of Plant Breeding, Justus Liebig University, Giessen 35392, Germany
| |
Collapse
|
4
|
Emmenecker C, Mézard C, Kumar R. Repair of DNA double-strand breaks in plant meiosis: role of eukaryotic RecA recombinases and their modulators. PLANT REPRODUCTION 2023; 36:17-41. [PMID: 35641832 DOI: 10.1007/s00497-022-00443-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Homologous recombination during meiosis is crucial for the DNA double-strand breaks (DSBs) repair that promotes the balanced segregation of homologous chromosomes and enhances genetic variation. In most eukaryotes, two recombinases RAD51 and DMC1 form nucleoprotein filaments on single-stranded DNA generated at DSB sites and play a central role in the meiotic DSB repair and genome stability. These nucleoprotein filaments perform homology search and DNA strand exchange to initiate repair using homologous template-directed sequences located elsewhere in the genome. Multiple factors can regulate the assembly, stability, and disassembly of RAD51 and DMC1 nucleoprotein filaments. In this review, we summarize the current understanding of the meiotic functions of RAD51 and DMC1 and the role of their positive and negative modulators. We discuss the current models and regulators of homology searches and strand exchange conserved during plant meiosis. Manipulation of these repair factors during plant meiosis also holds a great potential to accelerate plant breeding for crop improvements and productivity.
Collapse
Affiliation(s)
- Côme Emmenecker
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
- University of Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
| | - Christine Mézard
- Institut Jean-Pierre Bourgin (IJPB), CNRS, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| | - Rajeev Kumar
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| |
Collapse
|
5
|
Hacker L, Capdeville N, Feller L, Enderle-Kukla J, Dorn A, Puchta H. The DNA-dependent protease AtWSS1A suppresses persistent double strand break formation during replication. THE NEW PHYTOLOGIST 2022; 233:1172-1187. [PMID: 34761387 DOI: 10.1111/nph.17848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
The protease WSS1A is an important factor in the repair of DNA-protein crosslinks in plants. Here we show that the loss of WSS1A leads to a reduction of 45S rDNA repeats and chromosomal fragmentation in Arabidopsis. Moreover, in the absence of any factor of the RTR (RECQ4A/TOP3α/RMI1/2) complex, which is involved in the dissolution of DNA replication intermediates, WSS1A becomes essential for viability. If WSS1A loss is combined with loss of the classical (c) or alternative (a) nonhomologous end joining (NHEJ) pathways of double-strand break (DSB) repair, the resulting mutants show proliferation defects and enhanced chromosome fragmentation, which is especially aggravated in the absence of aNHEJ. This indicates that WSS1A is involved either in the suppression of DSB formation or in DSB repair itself. To test the latter we induced DSB by CRISPR/Cas9 at different loci in wild-type and mutant cells and analyzed their repair by deep sequencing. However, no change in the quality of the repair events and only a slight increase in their quantity was found. Thus, by removing complex DNA-protein structures, WSS1A seems to be required for the repair of replication intermediates which would otherwise be resolved into persistent DSB leading to genome instability.
Collapse
Affiliation(s)
- Leonie Hacker
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Niklas Capdeville
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Laura Feller
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Janina Enderle-Kukla
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Annika Dorn
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Holger Puchta
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| |
Collapse
|
6
|
Wolter F, Schindele P, Beying N, Scheben A, Puchta H. Different DNA repair pathways are involved in single-strand break-induced genomic changes in plants. THE PLANT CELL 2021; 33:3454-3469. [PMID: 34375428 PMCID: PMC8566284 DOI: 10.1093/plcell/koab204] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/04/2021] [Indexed: 05/03/2023]
Abstract
In nature, single-strand breaks (SSBs) in DNA occur more frequently (by orders of magnitude) than double-strand breaks (DSBs). SSBs induced by the CRISPR/Cas9 nickase at a distance of 50-100 bp on opposite strands are highly mutagenic, leading to insertions/deletions (InDels), with insertions mainly occurring as direct tandem duplications. As short tandem repeats are overrepresented in plant genomes, this mechanism seems to be important for genome evolution. We investigated the distance at which paired 5'-overhanging SSBs are mutagenic and which DNA repair pathways are essential for insertion formation in Arabidopsis thaliana. We were able to detect InDel formation up to a distance of 250 bp, although with much reduced efficiency. Surprisingly, the loss of the classical nonhomologous end joining (NHEJ) pathway factors KU70 or DNA ligase 4 completely abolished tandem repeat formation. The microhomology-mediated NHEJ factor POLQ was required only for patch-like insertions, which are well-known from DSB repair as templated insertions from ectopic sites. As SSBs can also be repaired using homology, we furthermore asked whether the classical homologous recombination (HR) pathway is involved in this process in plants. The fact that RAD54 is not required for homology-mediated SSB repair demonstrates that the mechanisms for DSB- and SSB-induced HR differ in plants.
Collapse
Affiliation(s)
- Felix Wolter
- Botanical Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Patrick Schindele
- Botanical Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Natalja Beying
- Botanical Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Author for correspondence:
| |
Collapse
|
7
|
Wang Y, van Rengs WMJ, Zaidan MWAM, Underwood CJ. Meiosis in crops: from genes to genomes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6091-6109. [PMID: 34009331 PMCID: PMC8483783 DOI: 10.1093/jxb/erab217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/14/2021] [Indexed: 05/06/2023]
Abstract
Meiosis is a key feature of sexual reproduction. During meiosis homologous chromosomes replicate, recombine, and randomly segregate, followed by the segregation of sister chromatids to produce haploid cells. The unique genotypes of recombinant gametes are an essential substrate for the selection of superior genotypes in natural populations and in plant breeding. In this review we summarize current knowledge on meiosis in diverse monocot and dicot crop species and provide a comprehensive resource of cloned meiotic mutants in six crop species (rice, maize, wheat, barley, tomato, and Brassica species). Generally, the functional roles of meiotic proteins are conserved between plant species, but we highlight notable differences in mutant phenotypes. The physical lengths of plant chromosomes vary greatly; for instance, wheat chromosomes are roughly one order of magnitude longer than those of rice. We explore how chromosomal distribution for crossover recombination can vary between species. We conclude that research on meiosis in crops will continue to complement that in Arabidopsis, and alongside possible applications in plant breeding will facilitate a better understanding of how the different stages of meiosis are controlled in plant species.
Collapse
Affiliation(s)
- Yazhong Wang
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| | - Willem M J van Rengs
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| | - Mohd Waznul Adly Mohd Zaidan
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| | - Charles J Underwood
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| |
Collapse
|
8
|
Rönspies M, Dorn A, Schindele P, Puchta H. CRISPR-Cas-mediated chromosome engineering for crop improvement and synthetic biology. NATURE PLANTS 2021; 7:566-573. [PMID: 33958776 DOI: 10.1038/s41477-021-00910-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/31/2021] [Indexed: 05/20/2023]
Abstract
Plant breeding relies on the presence of genetic variation, as well as on the ability to break or stabilize genetic linkages between traits. The development of the genome-editing tool clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) has allowed breeders to induce genetic variability in a controlled and site-specific manner, and to improve traits with high efficiency. However, the presence of genetic linkages is a major obstacle to the transfer of desirable traits from wild species to their cultivated relatives. One way to address this issue is to create mutants with deficiencies in the meiotic recombination machinery, thereby enhancing global crossover frequencies between homologous parental chromosomes. Although this seemed to be a promising approach at first, thus far, no crossover frequencies could be enhanced in recombination-cold regions of the genome. Additionally, this approach can lead to unintended genomic instabilities due to DNA repair defects. Therefore, efforts have been undertaken to obtain predefined crossovers between homologues by inducing site-specific double-strand breaks (DSBs) in meiotic, as well as in somatic plant cells using CRISPR-Cas tools. However, this strategy has not been able to produce a substantial number of heritable homologous recombination-based crossovers. Most recently, heritable chromosomal rearrangements, such as inversions and translocations, have been obtained in a controlled way using CRISPR-Cas in plants. This approach unlocks a completely new way of manipulating genetic linkages, one in which the DSBs are induced in somatic cells, enabling the formation of chromosomal rearrangements in the megabase range, by DSB repair via non-homologous end-joining. This technology might also enable the restructuring of genomes more globally, resulting in not only the obtainment of synthetic plant chromosome, but also of novel plant species.
Collapse
Affiliation(s)
- Michelle Rönspies
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Annika Dorn
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Patrick Schindele
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
9
|
Whitbread AL, Dorn A, Röhrig S, Puchta H. Different functional roles of RTR complex factors in DNA repair and meiosis in Arabidopsis and tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:965-977. [PMID: 33619799 DOI: 10.1111/tpj.15211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
The RTR (RecQ/Top3/Rmi1) complex has been elucidated as essential for ensuring genome stability in eukaryotes. Fundamental for the dissolution of Holliday junction (HJ)-like recombination intermediates, the factors have been shown to play further, partly distinct roles in DNA repair and homologous recombination. Across all kingdoms, disruption of this complex results in characteristic phenotypes including hyper-recombination and sensitivity to genotoxins. The type IA topoisomerase TOP3α has been shown as essential for viability in various animals. In contrast, in the model plant species Arabidopsis, the top3α mutant is viable. rmi1 mutants are deficient in the repair of DNA damage. Moreover, as opposed to other eukaryotes, TOP3α and RMI1 were found to be indispensable for proper meiotic progression, with mutants showing severe meiotic defects and sterility. We now established mutants of both TOP3α and RMI1 in tomato using CRISPR/Cas technology. Surprisingly, we found phenotypes that differed dramatically from those of Arabidopsis: the top3α mutants proved to be embryo-lethal, implying an essential role of the topoisomerase in tomato. In contrast, no defect in somatic DNA repair or meiosis was detectable for rmi1 mutants in tomato. This points to a differentiation of function of RTR complex partners between plant species. Our results indicate that there are relevant differences in the roles of basic factors involved in DNA repair and meiosis within dicotyledons, and thus should be taken as a note of caution when generalizing knowledge regarding basic biological processes obtained in the model plant Arabidopsis for the entire plant kingdom.
Collapse
Affiliation(s)
- Amy Leanne Whitbread
- Karlsruhe Institute of Technology, Botanical Institute, Fritz-Haber-Weg 4, Karlsruhe, 76133, Germany
| | - Annika Dorn
- Karlsruhe Institute of Technology, Botanical Institute, Fritz-Haber-Weg 4, Karlsruhe, 76133, Germany
| | - Sarah Röhrig
- Karlsruhe Institute of Technology, Botanical Institute, Fritz-Haber-Weg 4, Karlsruhe, 76133, Germany
| | - Holger Puchta
- Karlsruhe Institute of Technology, Botanical Institute, Fritz-Haber-Weg 4, Karlsruhe, 76133, Germany
| |
Collapse
|
10
|
DNA Helicases as Safekeepers of Genome Stability in Plants. Genes (Basel) 2019; 10:genes10121028. [PMID: 31835565 PMCID: PMC6947026 DOI: 10.3390/genes10121028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 02/07/2023] Open
Abstract
Genetic information of all organisms is coded in double-stranded DNA. DNA helicases are essential for unwinding this double strand when it comes to replication, repair or transcription of genetic information. In this review, we will focus on what is known about a variety of DNA helicases that are required to ensure genome stability in plants. Due to their sessile lifestyle, plants are especially exposed to harmful environmental factors. Moreover, many crop plants have large and highly repetitive genomes, making them absolutely dependent on the correct interplay of DNA helicases for safeguarding their stability. Although basic features of a number of these enzymes are conserved between plants and other eukaryotes, a more detailed analysis shows surprising peculiarities, partly also between different plant species. This is additionally of high relevance for plant breeding as a number of these helicases are also involved in crossover control during meiosis and influence the outcome of different approaches of CRISPR/Cas based plant genome engineering. Thus, gaining knowledge about plant helicases, their interplay, as well as the manipulation of their pathways, possesses the potential for improving agriculture. In the long run, this might even help us cope with the increasing obstacles of climate change threatening food security in completely new ways.
Collapse
|
11
|
Wolter F, Puchta H. In planta gene targeting can be enhanced by the use of CRISPR/Cas12a. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1083-1094. [PMID: 31381206 DOI: 10.1111/tpj.14488] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/08/2019] [Accepted: 07/29/2019] [Indexed: 05/20/2023]
Abstract
The controlled change of plant genomes by homologous recombination (HR) is still difficult to achieve. We previously developed the in planta gene targeting (ipGT) technology which depends on the simultaneous activation of the target locus by a double-strand break and the excision of the target vector. Whereas the use of SpCas9 resulted in low ipGT frequencies in Arabidopsis, we were recently able to improve the efficiency by using egg cell-specific expression of the potent but less broadly applicable SaCas9 nuclease. In this study, we now tested whether we could improve ipGT further, by either performing it in cells with enhanced intrachromosomal HR efficiencies or by the use of Cas12a, a different kind of CRISPR/Cas nuclease with an alternative cutting mechanism. We could show before that plants possess three kinds of DNA ATPase complexes, which all lead to instabilities of homologous genomic repeats if lost by mutation. As these proteins act in independent pathways, we tested ipGT in double mutants in which intrachromosomal HR is enhanced 20-80-fold. However, we were not able to obtain higher ipGT frequencies, indicating that mechanisms for gene targeting (GT) and chromosomal repeat-induced HR differ. However, using LbCas12a, the GT frequencies were higher than with SaCas9, despite a lower non-homologous end-joining (NHEJ) induction efficiency, demonstrating the particular suitability of Cas12a to induce HR. As SaCas9 has substantial restrictions due to its longer GC rich PAM sequence, the use of LbCas12a with its AT-rich PAM broadens the range of ipGT drastically, particularly when targeting in CG-deserts like promoters and introns.
Collapse
Affiliation(s)
- Felix Wolter
- Botanical Institute, Karlsruhe Institute of Technology, POB 6980, 76049, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, POB 6980, 76049, Karlsruhe, Germany
| |
Collapse
|
12
|
Dorn A, Feller L, Castri D, Röhrig S, Enderle J, Herrmann NJ, Block-Schmidt A, Trapp O, Köhler L, Puchta H. An Arabidopsis FANCJ helicase homologue is required for DNA crosslink repair and rDNA repeat stability. PLoS Genet 2019; 15:e1008174. [PMID: 31120885 PMCID: PMC6550410 DOI: 10.1371/journal.pgen.1008174] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/05/2019] [Accepted: 05/03/2019] [Indexed: 11/18/2022] Open
Abstract
Proteins of the Fanconi Anemia (FA) complementation group are required for crosslink (CL) repair in humans and their loss leads to severe pathological phenotypes. Here we characterize a homolog of the Fe-S cluster helicase FANCJ in the model plant Arabidopsis, AtFANCJB, and show that it is involved in interstrand CL repair. It acts at a presumably early step in concert with the nuclease FAN1 but independently of the nuclease AtMUS81, and is epistatic to both error-prone and error-free post-replicative repair in Arabidopsis. The simultaneous knock out of FANCJB and the Fe-S cluster helicase RTEL1 leads to induced cell death in root meristems, indicating an important role of the enzymes in replicative DNA repair. Surprisingly, we found that AtFANCJB is involved in safeguarding rDNA stability in plants. In the absence of AtRTEL1 and AtFANCJB, we detected a synergetic reduction to about one third of the original number of 45S rDNA copies. It is tempting to speculate that the detected rDNA instability might be due to deficiencies in G-quadruplex structure resolution and might thus contribute to pathological phenotypes of certain human genetic diseases.
Collapse
Affiliation(s)
- Annika Dorn
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Laura Feller
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Dominique Castri
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Sarah Röhrig
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Janina Enderle
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Natalie J. Herrmann
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Astrid Block-Schmidt
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Oliver Trapp
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Laura Köhler
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
13
|
Chen P, Sjogren CA, Larsen PB, Schnittger A. A multi-level response to DNA damage induced by aluminium. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:479-491. [PMID: 30657222 PMCID: PMC6850279 DOI: 10.1111/tpj.14231] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/03/2018] [Accepted: 12/18/2018] [Indexed: 05/17/2023]
Abstract
Aluminium (Al) ions are one of the primary growth-limiting factors for plants on acid soils, globally restricting agriculture. Despite its impact, little is known about Al action in planta. Earlier work has indicated that, among other effects, Al induces DNA damage. However, the loss of major DNA damage response regulators, such SOG1, partially suppressed the growth reduction in plants seen on Al-containing media. This raised the question whether Al actually causes DNA damage and, if so, how. Here, we provide cytological and genetic data corroborating that exposure to Al leads to DNA double-strand breaks. We find that the Al-induced damage specifically involves homology-dependent (HR) recombination repair. Using an Al toxicity assay that delivers higher Al concentrations than used in previous tests, we find that sog1 mutants become highly sensitive to Al. This indicates a multi-level response to Al-induced DNA damage in plants.
Collapse
Affiliation(s)
- Poyu Chen
- Department of Developmental BiologyUniversity of HamburgHamburg22609Germany
| | | | - Paul B. Larsen
- Department of BiochemistryUniversity of CaliforniaRiversideCA92521USA
| | - Arp Schnittger
- Department of Developmental BiologyUniversity of HamburgHamburg22609Germany
| |
Collapse
|
14
|
Jia Y, Bai JQ, Liu ML, Jiang ZF, Wu Y, Fang MF, Li ZH. Transcriptome analysis of the endangered Notopterygium incisum: Cold-tolerance gene discovery and identification of EST-SSR and SNP markers. PLANT DIVERSITY 2019; 41:1-6. [PMID: 30931411 PMCID: PMC6412102 DOI: 10.1016/j.pld.2019.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 05/28/2023]
Abstract
Notopterygium incisum C. C. Ting ex H. T. Chang (Apiaceae) is an endangered perennial herb in China. The lack of transcriptomic and genomic resources for N. incisum greatly hinders studies of its population genetics and conservation. In this study, we employed RNA-seq technology to characterize transcriptomes for the flowers, leaves, and stems of this endangered herb. A total of 56 million clean reads were assembled into 120,716 unigenes with an N50 length of 850 bp. Among these unigenes, 70,245 (58.19%) were successfully annotated and 65,965 (54.64%) were identified as coding sequences based on their similarities with sequences in public databases. We identified 21 unigenes that had significant relationships with cold tolerance in N. incisum according to gene ontology (GO) annotation analysis. In addition, 13,149 simple sequence repeats (SSRs) and 85,681 single nucleotide polymorphisms were detected as potential molecular genetic markers. Ninety-six primer pairs of SSRs were randomly selected to validate their amplification efficiency and polymorphism. Nineteen SSR loci exhibited polymorphism in three natural populations of N. incisum. These results provide valuable resources to facilitate future functional genomics and conservation genetics studies of N. incisum.
Collapse
Affiliation(s)
- Yun Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Ji-Qing Bai
- Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Mi-Li Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zhen-Fang Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yan Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Min-Feng Fang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| |
Collapse
|
15
|
Dorn A, Röhrig S, Papp K, Schröpfer S, Hartung F, Knoll A, Puchta H. The topoisomerase 3α zinc-finger domain T1 of Arabidopsis thaliana is required for targeting the enzyme activity to Holliday junction-like DNA repair intermediates. PLoS Genet 2018; 14:e1007674. [PMID: 30222730 PMCID: PMC6160208 DOI: 10.1371/journal.pgen.1007674] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/27/2018] [Accepted: 08/31/2018] [Indexed: 12/18/2022] Open
Abstract
Topoisomerase 3α, a class I topoisomerase, consists of a TOPRIM domain, an active centre and a variable number of zinc-finger domains (ZFDs) at the C-terminus, in multicellular organisms. Whereas the functions of the TOPRIM domain and the active centre are known, the specific role of the ZFDs is still obscure. In contrast to mammals where a knockout of TOP3α leads to lethality, we found that CRISPR/Cas induced mutants in Arabidopsis are viable but show growth retardation and meiotic defects, which can be reversed by the expression of the complete protein. However, complementation with AtTOP3α missing either the TOPRIM-domain or carrying a mutation of the catalytic tyrosine of the active centre leads to embryo lethality. Surprisingly, this phenotype can be overcome by the simultaneous removal of the ZFDs from the protein. In combination with a mutation of the nuclease AtMUS81, the TOP3α knockout proved to be also embryo lethal. Here, expression of TOP3α without ZFDs, and in particular without the conserved ZFD T1, leads to only a partly complementation in root growth-in contrast to the complete protein, that restores root length to mus81-1 mutant level. Expressing the E. coli resolvase RusA in this background, which is able to process Holliday junction (HJ)-like recombination intermediates, we could rescue this root growth defect. Considering all these results, we conclude that the ZFD T1 is specifically required for targeting the topoisomerase activity to HJ like recombination intermediates to enable their processing. In the case of an inactivated enzyme, this leads to cell death due to the masking of these intermediates, hindering their resolution by MUS81.
Collapse
Affiliation(s)
- Annika Dorn
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Sarah Röhrig
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Kristin Papp
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Susan Schröpfer
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Frank Hartung
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Alexander Knoll
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
16
|
Röhrig S, Dorn A, Enderle J, Schindele A, Herrmann NJ, Knoll A, Puchta H. The RecQ-like helicase HRQ1 is involved in DNA crosslink repair in Arabidopsis in a common pathway with the Fanconi anemia-associated nuclease FAN1 and the postreplicative repair ATPase RAD5A. THE NEW PHYTOLOGIST 2018; 218:1478-1490. [PMID: 29577315 DOI: 10.1111/nph.15109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/12/2018] [Indexed: 05/24/2023]
Abstract
RecQ helicases are important caretakers of genome stability and occur in varying copy numbers in different eukaryotes. Subsets of RecQ paralogs are involved in DNA crosslink (CL) repair. The orthologs of AtRECQ2, AtRECQ3 and AtHRQ1, HsWRN, DmRECQ5 and ScHRQ1 participate in CL repair in their respective organisms, and we aimed to define the function of these helicases for plants. We obtained Arabidopsis mutants of the three RecQ helicases and determined their sensitivity against CL agents in single- and double-mutant analyses. Only Athrq1, but not Atrecq2 and Atrecq3, mutants proved to be sensitive to intra- and interstrand crosslinking agents. AtHRQ1 is specifically involved in the repair of replicative damage induced by CL agents. It shares pathways with the Fanconi anemia-related endonuclease FAN1 but not with the endonuclease MUS81. Most surprisingly, AtHRQ1 is epistatic to the ATPase RAD5A for intra- as well as interstrand CL repair. We conclude that, as in fungi, AtHRQ1 has a conserved function in DNA excision repair. Additionally, HRQ1 not only shares pathways with the Fanconi anemia repair factors, but in contrast to fungi also seems to act in a common pathway with postreplicative DNA repair.
Collapse
Affiliation(s)
- Sarah Röhrig
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, BW, 76131, Germany
| | - Annika Dorn
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, BW, 76131, Germany
| | - Janina Enderle
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, BW, 76131, Germany
| | - Angelina Schindele
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, BW, 76131, Germany
| | - Natalie J Herrmann
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, BW, 76131, Germany
| | - Alexander Knoll
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, BW, 76131, Germany
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, BW, 76131, Germany
| |
Collapse
|
17
|
Wiedemann G, van Gessel N, Köchl F, Hunn L, Schulze K, Maloukh L, Nogué F, Decker EL, Hartung F, Reski R. RecQ Helicases Function in Development, DNA Repair, and Gene Targeting in Physcomitrella patens. THE PLANT CELL 2018; 30:717-736. [PMID: 29514942 PMCID: PMC5894843 DOI: 10.1105/tpc.17.00632] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 02/16/2018] [Accepted: 03/06/2018] [Indexed: 05/18/2023]
Abstract
RecQ DNA helicases are genome surveillance proteins found in all kingdoms of life. They are characterized best in humans, as mutations in RecQ genes lead to developmental abnormalities and diseases. To better understand RecQ functions in plants we concentrated on Arabidopsis thaliana and Physcomitrella patens, the model species predominantly used for studies on DNA repair and gene targeting. Phylogenetic analysis of the six P. patens RecQ genes revealed their orthologs in humans and plants. Because Arabidopsis and P. patens differ in their RecQ4 and RecQ6 genes, reporter and deletion moss mutants were generated and gene functions studied in reciprocal cross-species and cross-kingdom approaches. Both proteins can be found in meristematic moss tissues, although at low levels and with distinct expression patterns. PpRecQ4 is involved in embryogenesis and in subsequent development as demonstrated by sterility of ΔPpRecQ4 mutants and by morphological aberrations. Additionally, ΔPpRecQ4 displays an increased sensitivity to DNA damages and an increased rate of gene targeting. Therefore, we conclude that PpRecQ4 acts as a repressor of recombination. In contrast, PpRecQ6 is not obviously important for moss development or DNA repair but does function as a potent enhancer of gene targeting.
Collapse
Affiliation(s)
- Gertrud Wiedemann
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Nico van Gessel
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Fabian Köchl
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Lisa Hunn
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Katrin Schulze
- Julius Kuehn Institute, Institute for Biosafety in Plant Biotechnology, 06484 Quedlinburg, Germany
| | - Lina Maloukh
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Frank Hartung
- Julius Kuehn Institute, Institute for Biosafety in Plant Biotechnology, 06484 Quedlinburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
18
|
Klemm T, Mannuß A, Kobbe D, Knoll A, Trapp O, Dorn A, Puchta H. The DNA translocase RAD5A acts independently of the other main DNA repair pathways, and requires both its ATPase and RING domain for activity in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:725-740. [PMID: 28509359 DOI: 10.1111/tpj.13602] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/27/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
Multiple pathways exist to repair DNA damage induced by methylating and crosslinking agents in Arabidopsis thaliana. The SWI2/SNF2 translocase RAD5A, the functional homolog of budding yeast Rad5 that is required for the error-free branch of post-replicative repair, plays a surprisingly prominent role in the repair of both kinds of lesions in Arabidopsis. Here we show that both the ATPase domain and the ubiquitination function of the RING domain of the Arabidopsis protein are essential for the cellular response to different forms of DNA damage. To define the exact role of RAD5A within the complex network of DNA repair pathways, we crossed the rad5a mutant line with mutants of different known repair factors of Arabidopsis. We had previously shown that RAD5A acts independently of two main pathways of replication-associated DNA repair defined by the helicase RECQ4A and the endonuclease MUS81. The enhanced sensitivity of all double mutants tested in this study indicates that the repair of damaged DNA by RAD5A also occurs independently of nucleotide excision repair (AtRAD1), single-strand break repair (AtPARP1), as well as microhomology-mediated double-strand break repair (AtTEB). Moreover, RAD5A can partially complement for a deficient AtATM-mediated DNA damage response in plants, as the double mutant shows phenotypic growth defects.
Collapse
Affiliation(s)
- Tobias Klemm
- Botanical Institute, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131, Karlsruhe, Germany
| | | | - Daniela Kobbe
- Botanical Institute, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131, Karlsruhe, Germany
| | - Alexander Knoll
- Botanical Institute, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131, Karlsruhe, Germany
| | | | - Annika Dorn
- Botanical Institute, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131, Karlsruhe, Germany
| |
Collapse
|
19
|
Yadav V, Hemansi, Kim N, Tuteja N, Yadav P. G Quadruplex in Plants: A Ubiquitous Regulatory Element and Its Biological Relevance. FRONTIERS IN PLANT SCIENCE 2017; 8:1163. [PMID: 28725233 PMCID: PMC5495829 DOI: 10.3389/fpls.2017.01163] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/16/2017] [Indexed: 10/31/2023]
Abstract
G quadruplexes (G4) are higher-order DNA and RNA secondary structures formed by G-rich sequences that are built around tetrads of hydrogen-bonded guanine bases. Potential G4 quadruplex sequences have been identified in G-rich eukaryotic non-telomeric and telomeric genomic regions. Upon function, G4 formation is known to involve in chromatin remodeling, gene regulation and has been associated with genomic instability, genetic diseases and cancer progression. The natural role and biological validation of G4 structures is starting to be explored, and is of particular interest for the therapeutic interventions for human diseases. However, the existence and physiological role of G4 DNA and G4 RNA in plants species have not been much investigated yet and therefore, is of great interest for the development of improved crop varieties for sustainable agriculture. In this context, several recent studies suggests that these highly diverse G4 structures in plants can be employed to regulate expression of genes involved in several pathophysiological conditions including stress response to biotic and abiotic stresses as well as DNA damage. In the current review, we summarize the recent findings regarding the emerging functional significance of G4 structures in plants and discuss their potential value in the development of improved crop varieties.
Collapse
Affiliation(s)
- Vikas Yadav
- Department of Biochemistry, Central University of HaryanaMahendergarh, India
| | - Hemansi
- Department of Microbiology, Central University of HaryanaMahendergarh, India
| | - Nayun Kim
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, HoustonTX, United States
- The University of Texas Graduate School of Biomedical Sciences, HoustonTX, United States
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB)New Delhi, India
| | - Puja Yadav
- Department of Microbiology, Central University of HaryanaMahendergarh, India
| |
Collapse
|
20
|
Spampinato CP. Protecting DNA from errors and damage: an overview of DNA repair mechanisms in plants compared to mammals. Cell Mol Life Sci 2017; 74:1693-1709. [PMID: 27999897 PMCID: PMC11107726 DOI: 10.1007/s00018-016-2436-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 01/10/2023]
Abstract
The genome integrity of all organisms is constantly threatened by replication errors and DNA damage arising from endogenous and exogenous sources. Such base pair anomalies must be accurately repaired to prevent mutagenesis and/or lethality. Thus, it is not surprising that cells have evolved multiple and partially overlapping DNA repair pathways to correct specific types of DNA errors and lesions. Great progress in unraveling these repair mechanisms at the molecular level has been made by several talented researchers, among them Tomas Lindahl, Aziz Sancar, and Paul Modrich, all three Nobel laureates in Chemistry for 2015. Much of this knowledge comes from studies performed in bacteria, yeast, and mammals and has impacted research in plant systems. Two plant features should be mentioned. Plants differ from higher eukaryotes in that they lack a reserve germline and cannot avoid environmental stresses. Therefore, plants have evolved different strategies to sustain genome fidelity through generations and continuous exposure to genotoxic stresses. These strategies include the presence of unique or multiple paralogous genes with partially overlapping DNA repair activities. Yet, in spite (or because) of these differences, plants, especially Arabidopsis thaliana, can be used as a model organism for functional studies. Some advantages of this model system are worth mentioning: short life cycle, availability of both homozygous and heterozygous lines for many genes, plant transformation techniques, tissue culture methods and reporter systems for gene expression and function studies. Here, I provide a current understanding of DNA repair genes in plants, with a special focus on A. thaliana. It is expected that this review will be a valuable resource for future functional studies in the DNA repair field, both in plants and animals.
Collapse
Affiliation(s)
- Claudia P Spampinato
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| |
Collapse
|
21
|
Kobbe D, Kahles A, Walter M, Klemm T, Mannuss A, Knoll A, Focke M, Puchta H. AtRAD5A is a DNA translocase harboring a HIRAN domain which confers binding to branched DNA structures and is required for DNA repair in vivo. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:521-530. [PMID: 27458713 DOI: 10.1111/tpj.13283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 05/26/2023]
Abstract
DNA lesions such as crosslinks represent obstacles for the replication machinery. Nonetheless, replication can proceed via the DNA damage tolerance pathway also known as postreplicative repair pathway. SNF2 ATPase Rad5 homologs, such as RAD5A of the model plant Arabidopsis thaliana, are important for the error-free mode of this pathway. We able to demonstrate before, that RAD5A is a key factor in the repair of DNA crosslinks in Arabidopsis. Here, we show by in vitro analysis that AtRAD5A protein is a DNA translocase able to catalyse fork regression. Interestingly, replication forks with a gap in the leading strand are processed best, in line with its suggested function. Furthermore AtRAD5A catalyses branch migration of a Holliday junction and is furthermore not impaired by the DNA binding of a model protein, which is indicative of its ability to displace other proteins. Rad5 homologs possess HIRAN (Hip116, Rad5; N-terminal) domains. By biochemical analysis we were able to demonstrate that the HIRAN domain variant from Arabidopsis RAD5A mediates structure selective DNA binding without the necessity for a free 3'OH group as has been shown to be required for binding of HIRAN domains in a mammalian RAD5 homolog. The biological importance of the HIRAN domain in AtRAD5A is demonstrated by our result that it is required for its function in DNA crosslink repair in vivo.
Collapse
Affiliation(s)
- Daniela Kobbe
- Botanical Institute II, Karlsruhe Institute of Technology (KIT), Karlsruhe, 76131, Germany
| | - Andy Kahles
- Botanical Institute II, Karlsruhe Institute of Technology (KIT), Karlsruhe, 76131, Germany
| | - Maria Walter
- Botanical Institute II, Karlsruhe Institute of Technology (KIT), Karlsruhe, 76131, Germany
| | - Tobias Klemm
- Botanical Institute II, Karlsruhe Institute of Technology (KIT), Karlsruhe, 76131, Germany
| | - Anja Mannuss
- Botanical Institute II, Karlsruhe Institute of Technology (KIT), Karlsruhe, 76131, Germany
| | - Alexander Knoll
- Botanical Institute II, Karlsruhe Institute of Technology (KIT), Karlsruhe, 76131, Germany
| | - Manfred Focke
- Botanical Institute II, Karlsruhe Institute of Technology (KIT), Karlsruhe, 76131, Germany
| | - Holger Puchta
- Botanical Institute II, Karlsruhe Institute of Technology (KIT), Karlsruhe, 76131, Germany
| |
Collapse
|
22
|
Röhrig S, Schröpfer S, Knoll A, Puchta H. The RTR Complex Partner RMI2 and the DNA Helicase RTEL1 Are Both Independently Involved in Preserving the Stability of 45S rDNA Repeats in Arabidopsis thaliana. PLoS Genet 2016; 12:e1006394. [PMID: 27760121 PMCID: PMC5070779 DOI: 10.1371/journal.pgen.1006394] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/29/2016] [Indexed: 11/18/2022] Open
Abstract
The stability of repetitive sequences in complex eukaryotic genomes is safeguarded by factors suppressing homologues recombination. Prominent in this is the role of the RTR complex. In plants, it consists of the RecQ helicase RECQ4A, the topoisomerase TOP3α and RMI1. Like mammals, but not yeast, plants harbor an additional complex partner, RMI2. Here, we demonstrate that, in Arabidopsis thaliana, RMI2 is involved in the repair of aberrant replication intermediates in root meristems as well as in intrastrand crosslink repair. In both instances, RMI2 is involved independently of the DNA helicase RTEL1. Surprisingly, simultaneous loss of RMI2 and RTEL1 leads to loss of male fertility. As both the RTR complex and RTEL1 are involved in suppression of homologous recombination (HR), we tested the efficiency of HR in the double mutant rmi2-2 rtel1-1 and found a synergistic enhancement (80-fold). Searching for natural target sequences we found that RTEL1 is required for stabilizing 45S rDNA repeats. In the double mutant with rmi2-2 the number of 45S rDNA repeats is further decreased sustaining independent roles of both factors in this process. Thus, loss of suppression of HR does not only lead to a destabilization of rDNA repeats but might be especially deleterious for tissues undergoing multiple cell divisions such as the male germline. The Bloom syndrome and Hoyeraal Hreidarsson syndrome are severe diseases in humans that are correlated with genome instability. Interestingly, plants harbor homologs of factors that are defective in the respective diseases. In the model plant A. thaliana these proteins play important roles in various aspects of the repair of genetic information and the maintenance of repetitive elements. Here, we show that the concomitant loss of function of two specific factors that are representative for each syndrome leads in plants to male sterility, due to somatic catastrophe leading to instability and cell death. This defect is correlated with a massive loss of repetitive genes involved in general protein production. It has been shown before for mammals that loss of certain other factors involved in genome stability leads to a defect in neural development. Our results now demonstrate that genome instability can also result in organ-specific defects in plants, in our case during flower development, leading to a defect in the cell proliferation of the premeiotic male germline.
Collapse
Affiliation(s)
- Sarah Röhrig
- Botanical Institute II, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Susan Schröpfer
- Botanical Institute II, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Alexander Knoll
- Botanical Institute II, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute II, Karlsruhe Institute of Technology, Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
23
|
Jia N, Liu X, Gao H. A DNA2 Homolog Is Required for DNA Damage Repair, Cell Cycle Regulation, and Meristem Maintenance in Plants. PLANT PHYSIOLOGY 2016; 171:318-33. [PMID: 26951435 PMCID: PMC4854720 DOI: 10.1104/pp.16.00312] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 03/04/2016] [Indexed: 05/18/2023]
Abstract
Plant meristem cells divide and differentiate in a spatially and temporally regulated manner, ultimately giving rise to organs. In this study, we isolated the Arabidopsis jing he sheng 1 (jhs1) mutant, which exhibited retarded growth, an abnormal pattern of meristem cell division and differentiation, and morphological defects such as fasciation, an irregular arrangement of siliques, and short roots. We identified JHS1 as a homolog of human and yeast DNA Replication Helicase/Nuclease2, which is known to be involved in DNA replication and damage repair. JHS1 is strongly expressed in the meristem of Arabidopsis. The jhs1 mutant was sensitive to DNA damage stress and had an increased DNA damage response, including increased expression of genes involved in DNA damage repair and cell cycle regulation, and a higher frequency of homologous recombination. In the meristem of the mutant plants, cell cycle progression was delayed at the G2 or late S phase and genes essential for meristem maintenance were misregulated. These results suggest that JHS1 plays an important role in DNA replication and damage repair, meristem maintenance, and development in plants.
Collapse
Affiliation(s)
- Ning Jia
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China (N.J., X.L., H.G.)
| | - Xiaomin Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China (N.J., X.L., H.G.)
| | - Hongbo Gao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China (N.J., X.L., H.G.)
| |
Collapse
|
24
|
Kobbe S, Trapp O, Knoll A, Manuss A, Puchta H. The Translesion Polymerase ζ Has Roles Dependent on and Independent of the Nuclease MUS81 and the Helicase RECQ4A in DNA Damage Repair in Arabidopsis. PLANT PHYSIOLOGY 2015; 169:2718-29. [PMID: 26474640 PMCID: PMC4677884 DOI: 10.1104/pp.15.00806] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/15/2015] [Indexed: 05/20/2023]
Abstract
DNA polymerase zeta catalytic subunit REV3 is known to play an important role in the repair of DNA damage induced by cross-linking and methylating agents. Here, we demonstrate that in Arabidopsis (Arabidopsis thaliana), the basic polymerase activity of REV3 is essential for resistance protection against these different types of damaging agents. Interestingly, its processivity is mainly required for resistance to interstrand and intrastrand cross-linking agents, but not alkylating agents. To better define the role of REV3 in relation to other key factors involved in DNA repair, we perform epistasis analysis and show that REV3-mediated resistance to DNA-damaging agents is independent of the replication damage checkpoint kinase ataxia telangiectasia-mutated and rad3-related homolog. REV3 cooperates with the endonuclease MMS and UV-sensitive protein81 in response to interstrand cross links and alkylated bases, whereas it acts independently of the ATP-dependent DNA helicase RECQ4A. Taken together, our data show that four DNA intrastrand cross-link subpathways exist in Arabidopsis, defined by ATP-dependent DNA Helicase RECQ4A, MMS and UV-sensitive protein81, REV3, and the ATPase Radiation Sensitive Protein 5A.
Collapse
Affiliation(s)
- Sabrina Kobbe
- Botanical Institute II, Karlsruhe Institute of Technology, 76187 Karlsruhe, Germany
| | - Oliver Trapp
- Botanical Institute II, Karlsruhe Institute of Technology, 76187 Karlsruhe, Germany
| | - Alexander Knoll
- Botanical Institute II, Karlsruhe Institute of Technology, 76187 Karlsruhe, Germany
| | - Anja Manuss
- Botanical Institute II, Karlsruhe Institute of Technology, 76187 Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute II, Karlsruhe Institute of Technology, 76187 Karlsruhe, Germany
| |
Collapse
|
25
|
Donà M, Mittelsten Scheid O. DNA Damage Repair in the Context of Plant Chromatin. PLANT PHYSIOLOGY 2015; 168:1206-18. [PMID: 26089404 PMCID: PMC4528755 DOI: 10.1104/pp.15.00538] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/17/2015] [Indexed: 05/03/2023]
Abstract
The integrity of DNA molecules is constantly challenged. All organisms have developed mechanisms to detect and repair multiple types of DNA lesions. The basic principles of DNA damage repair (DDR) in prokaryotes and unicellular and multicellular eukaryotes are similar, but the association of DNA with nucleosomes in eukaryotic chromatin requires mechanisms that allow access of repair enzymes to the lesions. This is achieved by chromatin-remodeling factors, and their necessity for efficient DDR has recently been demonstrated for several organisms and repair pathways. Plants share many features of chromatin organization and DNA repair with fungi and animals, but they differ in other, important details, which are both interesting and relevant for our understanding of genome stability and genetic diversity. In this Update, we compare the knowledge of the role of chromatin and chromatin-modifying factors during DDR in plants with equivalent systems in yeast and humans. We emphasize plant-specific elements and discuss possible implications.
Collapse
Affiliation(s)
- Mattia Donà
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| |
Collapse
|
26
|
Herrmann NJ, Knoll A, Puchta H. The nuclease FAN1 is involved in DNA crosslink repair in Arabidopsis thaliana independently of the nuclease MUS81. Nucleic Acids Res 2015; 43:3653-66. [PMID: 25779053 PMCID: PMC4402529 DOI: 10.1093/nar/gkv208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/01/2015] [Indexed: 01/06/2023] Open
Abstract
Fanconi anemia is a severe genetic disorder. Mutations in one of several genes lead to defects in DNA crosslink (CL) repair in human cells. An essential step in CL repair is the activation of the pathway by the monoubiquitination of the heterodimer FANCD2/FANCI, which recruits the nuclease FAN1 to the CL site. Surprisingly, FAN1 function is not conserved between different eukaryotes. No FAN1 homolog is present in Drosophila and Saccharomyces cerevisiae. The FAN1 homolog in Schizosaccharomyces pombe is involved in CL repair; a homolog is present in Xenopus but is not involved in CL repair. Here we show that a FAN1 homolog is present in plants and it is involved in CL repair in Arabidopsis thaliana. Both the virus-type replication-repair nuclease and the ubiquitin-binding ubiquitin-binding zinc finger domains are essential for this function. FAN1 likely acts upstream of two sub-pathways of CL repair. These pathways are defined by the Bloom syndrome homolog RECQ4A and the ATPase RAD5A, which is involved in error-free post-replicative repair. Mutations in both FAN1 and the endonuclease MUS81 resulted in greater sensitivity against CLs than in the respective single mutants. These results indicate that the two nucleases define two independent pathways of CL repair in plants.
Collapse
Affiliation(s)
- Natalie J Herrmann
- Botanical Institute II, Karlsruhe Institute of Technology, Hertzstrasse 16, Karlsruhe, 76187, Germany
| | - Alexander Knoll
- Botanical Institute II, Karlsruhe Institute of Technology, Hertzstrasse 16, Karlsruhe, 76187, Germany
| | - Holger Puchta
- Botanical Institute II, Karlsruhe Institute of Technology, Hertzstrasse 16, Karlsruhe, 76187, Germany
| |
Collapse
|
27
|
Rapid and inexpensive whole-genome genotyping-by-sequencing for crossover localization and fine-scale genetic mapping. G3-GENES GENOMES GENETICS 2015; 5:385-98. [PMID: 25585881 PMCID: PMC4349092 DOI: 10.1534/g3.114.016501] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The reshuffling of existing genetic variation during meiosis is important both during evolution and in breeding. The reassortment of genetic variants relies on the formation of crossovers (COs) between homologous chromosomes. The pattern of genome-wide CO distributions can be rapidly and precisely established by the short-read sequencing of individuals from F2 populations, which in turn are useful for quantitative trait locus (QTL) mapping. Although sequencing costs have decreased precipitously in recent years, the costs of library preparation for hundreds of individuals have remained high. To enable rapid and inexpensive CO detection and QTL mapping using low-coverage whole-genome sequencing of large mapping populations, we have developed a new method for library preparation along with Trained Individual GenomE Reconstruction, a probabilistic method for genotype and CO predictions for recombinant individuals. In an example case with hundreds of F2 individuals from two Arabidopsis thaliana accessions, we resolved most CO breakpoints to within 2 kb and reduced a major flowering time QTL to a 9-kb interval. In addition, an extended region of unusually low recombination revealed a 1.8-Mb inversion polymorphism on the long arm of chromosome 4. We observed no significant differences in the frequency and distribution of COs between F2 individuals with and without a functional copy of the DNA helicase gene RECQ4A. In summary, we present a new, cost-efficient method for large-scale, high-precision genotyping-by-sequencing.
Collapse
|
28
|
Recker J, Knoll A, Puchta H. The Arabidopsis thaliana homolog of the helicase RTEL1 plays multiple roles in preserving genome stability. THE PLANT CELL 2014; 26:4889-902. [PMID: 25516598 PMCID: PMC4311205 DOI: 10.1105/tpc.114.132472] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In humans, mutations in the DNA helicase Regulator of Telomere Elongation Helicase1 (RTEL1) lead to Hoyeraal-Hreidarsson syndrome, a severe, multisystem disorder. Here, we demonstrate that the RTEL1 homolog in Arabidopsis thaliana plays multiple roles in preserving genome stability. RTEL1 suppresses homologous recombination in a pathway parallel to that of the DNA translocase FANCM. Cytological analyses of root meristems indicate that RTEL1 is involved in processing DNA replication intermediates independently from FANCM and the nuclease MUS81. Moreover, RTEL1 is involved in interstrand and intrastrand DNA cross-link repair independently from FANCM and (in intrastrand cross-link repair) parallel to MUS81. RTEL1 contributes to telomere homeostasis; the concurrent loss of RTEL1 and the telomerase TERT leads to rapid, severe telomere shortening, which occurs much more rapidly than it does in the single-mutant line tert, resulting in developmental arrest after four generations. The double mutant rtel1-1 recq4A-4 exhibits massive growth defects, indicating that this RecQ family helicase, which is also involved in the suppression of homologous recombination and the repair of DNA lesions, can partially replace RTEL1 in the processing of DNA intermediates. The requirement for RTEL1 in multiple pathways to preserve genome stability in plants can be explained by its putative role in the destabilization of DNA loop structures, such as D-loops and T-loops.
Collapse
Affiliation(s)
- Julia Recker
- Botanical Institute II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Alexander Knoll
- Botanical Institute II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
29
|
Bauknecht M, Kobbe D. AtGEN1 and AtSEND1, two paralogs in Arabidopsis, possess holliday junction resolvase activity. PLANT PHYSIOLOGY 2014; 166:202-16. [PMID: 25037209 PMCID: PMC4149707 DOI: 10.1104/pp.114.237834] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 07/10/2014] [Indexed: 05/02/2023]
Abstract
Holliday junctions (HJs) are physical links between homologous DNA molecules that arise as central intermediary structures during homologous recombination and repair in meiotic and somatic cells. It is necessary for these structures to be resolved to ensure correct chromosome segregation and other functions. In eukaryotes, including plants, homologs of a gene called XPG-like endonuclease1 (GEN1) have been identified that process HJs in a manner analogous to the HJ resolvases of phages, archaea, and bacteria. Here, we report that Arabidopsis (Arabidopsis thaliana), a eukaryotic organism, has two functional GEN1 homologs instead of one. Like all known eukaryotic resolvases, AtGEN1 and Arabidopsis single-strand DNA endonuclease1 both belong to class IV of the Rad2/XPG family of nucleases. Their resolvase activity shares the characteristics of the Escherichia coli radiation and UV sensitive C paradigm for resolvases, which involves resolving HJs by symmetrically oriented incisions in two opposing strands. This leads to ligatable products without the need for further processing. The observation that the sequence context influences the cleavage by the enzymes can be interpreted as a hint for the existence of sequence specificity. The two Arabidopsis paralogs differ in their preferred sequences. The precise cleavage positions observed for the resolution of mobile nicked HJs suggest that these cleavage positions are determined by both the substrate structure and the sequence context at the junction point.
Collapse
Affiliation(s)
- Markus Bauknecht
- Botanical Institute II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Daniela Kobbe
- Botanical Institute II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
30
|
Dangel NJ, Knoll A, Puchta H. MHF1 plays Fanconi anaemia complementation group M protein (FANCM)-dependent and FANCM-independent roles in DNA repair and homologous recombination in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:822-833. [PMID: 24635147 DOI: 10.1111/tpj.12507] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 02/28/2014] [Accepted: 03/06/2014] [Indexed: 06/03/2023]
Abstract
Fanconi anaemia complementation group M protein (FANCM), a component of the human Fanconi anemia pathway, acts as DNA translocase that is essential during the repair of DNA interstrand cross-links. The DNA-damage-binding function of FANCM is strongly enhanced by the histone fold-containing FANCM-associated protein MHF1. We identified a single homologue of MHF1 in the genome of Arabidopsis thaliana. Similar to the loss of AtFANCM, the loss of AtMHF1 leads to several meiotic defects, such as chromosome bridges between bivalents and an unequal distribution of chromosomes. Moreover, MHF1, together with FANCM, is involved in interstrand cross-link repair in plants. This phenotype is detectable only in double mutants of the RecQ helicase and BLM homologue RECQ4A, which appears to function in a parallel pathway to the FANCM/MHF1 complex. However, in somatic cells, FANCM has an MHF1-independent function in replicative repair in a parallel pathway to the endonuclease MUS81. Furthermore, MHF1 is required for efficient somatic homologous recombination (HR) - a role antagonistic to FANCM. FANCM and RECQ4A define two parallel pathways of HR suppression in Arabidopsis. Hyperrecombination in the fancm but not the recq4A mutant can be abolished by MHF1 mutations. This finding indicates that MHF1 and FANCM act at different steps of a single, common, HR pathway.
Collapse
Affiliation(s)
- Natalie J Dangel
- Botanical Institute II, Karlsruhe Institute of Technology, Hertzstr. 16, Karlsruhe, 76187, Germany
| | | | | |
Collapse
|
31
|
Knoll A, Schröpfer S, Puchta H. The RTR complex as caretaker of genome stability and its unique meiotic function in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:33. [PMID: 24575106 PMCID: PMC3921566 DOI: 10.3389/fpls.2014.00033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/25/2014] [Indexed: 05/02/2023]
Abstract
The RTR complex consisting of a RecQ helicase, a type IA topoisomerase and the structural protein RMI1 is involved in the processing of DNA recombination intermediates in all eukaryotes. In Arabidopsis thaliana the complex partners RECQ4A, topoisomerase 3α and RMI1 have been shown to be involved in DNA repair and in the suppression of homologous recombination in somatic cells. Interestingly, mutants of AtTOP3A and AtRMI1 are also sterile due to extensive chromosome breakage in meiosis I, a phenotype that seems to be specific for plants. Although both proteins are essential for meiotic recombination it is still elusive on what kind of intermediates they are acting on. Recent data indicate that the pattern of non-crossover (NCO)-associated meiotic gene conversion (GC) differs between plants and other eukaryotes, as less NCOs in comparison to crossovers (CO) could be detected in Arabidopsis. This indicates that NCOs happen either more rarely in plants or that the conversion tract length is significantly shorter than in other organisms. As the TOP3α/RMI1-mediated dissolution of recombination intermediates results exclusively in NCOs, we suggest that the peculiar GC pattern found in plants is connected to the unique role, members of the RTR complex play in plant meiosis.
Collapse
Affiliation(s)
| | | | - Holger Puchta
- *Correspondence: Holger Puchta, Botanical Institute II, Karlsruhe Institute of Technology, Hertzstraße 16, 76187 Karlsruhe, Germany e-mail:
| |
Collapse
|