1
|
Lee Y, Gu S, Al-Hashimi HM. Insights into the A-C Mismatch Conformational Ensemble in Duplex DNA and its Role in Genetic Processes through a Structure-based Review. J Mol Biol 2024; 436:168710. [PMID: 39009073 DOI: 10.1016/j.jmb.2024.168710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
Knowing the conformational ensembles formed by mismatches is crucial for understanding how they are generated and repaired and how they contribute to genomic instability. Here, we review structural and energetic studies of the A-C mismatch in duplex DNA and use the information to identify critical conformational states in its ensemble and their significance in genetic processes. In the 1970s, Topal and Fresco proposed the A-C wobble stabilized by two hydrogen bonds, one requiring protonation of adenine-N1. Subsequent NMR and X-ray crystallography studies showed that the protonated A-C wobble was in dynamic equilibrium with a neutral inverted wobble. The mismatch was shown to destabilize duplex DNA in a sequence- and pH-dependent manner by 2.4-3.8 kcal/mol and to have an apparent pKa ranging between 7.2 and 7.7. The A-C mismatch conformational repertoire expanded as structures were determined for damaged and protein-bound DNA. These structures included Watson-Crick-like conformations forming through tautomerization of the bases that drive replication errors, the reverse wobble forming through rotation of the entire nucleotide proposed to increase the fidelity of DNA replication, and the Hoogsteen base-pair forming through the flipping of the adenine base which explained the unusual specificity of DNA polymerases that bypass DNA damage. Thus, the A-C mismatch ensemble encompasses various conformational states that can be selectively stabilized in response to environmental changes such as pH shifts, intermolecular interactions, and chemical modifications, and these adaptations facilitate critical biological processes. This review also highlights the utility of existing 3D structures to build ensemble models for nucleic acid motifs.
Collapse
Affiliation(s)
- Yeongjoon Lee
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, United States of America
| | - Stephanie Gu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, United States of America
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, United States of America.
| |
Collapse
|
2
|
Tian LF, Gao H, Yang S, Liu YP, Li M, Xu W, Yan XX. Structure and function of extreme TLS DNA polymerase TTEDbh from Thermoanaerobacter tengcongensis. Int J Biol Macromol 2023; 253:126770. [PMID: 37683741 DOI: 10.1016/j.ijbiomac.2023.126770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Translesion synthesis (TLS) is a kind of DNA repair that maintains the stability of the genome and ensures the normal growth of life in cells under emergencies. Y-family DNA polymerases, as a kind of error-prone DNA polymerase, mainly perform TLS. Previous studies have suggested that the occurrence of tumors is associated with the overexpression of human DNA polymerase of the Y family. And the combination of Y-family DNA polymerase inhibitors is promising for cancer therapy. Here we report the functional and structural characterization of a member of the Y-family DNA polymerases, TTEDbh. We determine TTEDbh is an extreme TLS polymerase that can cross oxidative damage sites, and further identify the amino acids and novel structures that are critical for DNA binding, synthesis, fidelity, and oxidative damage bypass. Moreover, previously unnoticed structural elements with important functions have been discovered and analyzed. These studies provide a more experimental basis for further elucidating the molecular mechanisms of DNA polymerase in the Y family. It could also shed light on the design of drugs to target tumors.
Collapse
Affiliation(s)
- Li-Fei Tian
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongwei Gao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyu Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Ping Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingzhou Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqing Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Xiao-Xue Yan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Sabei A, Prentiss M, Prévost C. Modeling the Homologous Recombination Process: Methods, Successes and Challenges. Int J Mol Sci 2023; 24:14896. [PMID: 37834348 PMCID: PMC10573387 DOI: 10.3390/ijms241914896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Homologous recombination (HR) is a fundamental process common to all species. HR aims to faithfully repair DNA double strand breaks. HR involves the formation of nucleoprotein filaments on DNA single strands (ssDNA) resected from the break. The nucleoprotein filaments search for homologous regions in the genome and promote strand exchange with the ssDNA homologous region in an unbroken copy of the genome. HR has been the object of intensive studies for decades. Because multi-scale dynamics is a fundamental aspect of this process, studying HR is highly challenging, both experimentally and using computational approaches. Nevertheless, knowledge has built up over the years and has recently progressed at an accelerated pace, borne by increasingly focused investigations using new techniques such as single molecule approaches. Linking this knowledge to the atomic structure of the nucleoprotein filament systems and the succession of unstable, transient intermediate steps that takes place during the HR process remains a challenge; modeling retains a very strong role in bridging the gap between structures that are stable enough to be observed and in exploring transition paths between these structures. However, working on ever-changing long filament systems submitted to kinetic processes is full of pitfalls. This review presents the modeling tools that are used in such studies, their possibilities and limitations, and reviews the advances in the knowledge of the HR process that have been obtained through modeling. Notably, we will emphasize how cooperative behavior in the HR nucleoprotein filament enables modeling to produce reliable information.
Collapse
Affiliation(s)
- Afra Sabei
- CNRS, UPR 9080, Laboratoire de Biochimie Théorique, Université de Paris, 13 Rue Pierre et Marie Curie, F-75005 Paris, France;
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rotschild, PSL Research University, F-75005 Paris, France
| | - Mara Prentiss
- Department of Physics, Harvard University, Cambridge, MA02138, USA;
| | - Chantal Prévost
- CNRS, UPR 9080, Laboratoire de Biochimie Théorique, Université de Paris, 13 Rue Pierre et Marie Curie, F-75005 Paris, France;
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rotschild, PSL Research University, F-75005 Paris, France
| |
Collapse
|
4
|
Geronimo I, Vidossich P, De Vivo M. Local Structural Dynamics at the Metal-Centered Catalytic Site of Polymerases is Critical for Fidelity. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Inacrist Geronimo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Pietro Vidossich
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| |
Collapse
|
5
|
Kaminski AM, Bebenek K, Pedersen LC, Kunkel TA. DNA polymerase mu: An inflexible scaffold for substrate flexibility. DNA Repair (Amst) 2021; 93:102932. [PMID: 33087269 DOI: 10.1016/j.dnarep.2020.102932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
DNA polymerase μ is a Family X member that participates in repair of DNA double strand breaks (DSBs) by non-homologous end joining. Its role is to fill short gaps arising as intermediates in the process of V(D)J recombination and during processing of accidental double strand breaks. Pol μ is the only known template-dependent polymerase that can repair non-complementary DSBs with unpaired 3´primer termini. Here we review the unique properties of Pol μ that allow it to productively engage such a highly unstable substrate to generate a nick that can be sealed by DNA Ligase IV.
Collapse
Affiliation(s)
- Andrea M Kaminski
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Katarzyna Bebenek
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Lars C Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
6
|
The PHP domain of PolX from Staphylococcus aureus aids high fidelity DNA synthesis through the removal of misincorporated deoxyribo-, ribo- and oxidized nucleotides. Sci Rep 2021; 11:4178. [PMID: 33603016 PMCID: PMC7893174 DOI: 10.1038/s41598-021-83498-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023] Open
Abstract
The X family is one of the eight families of DNA polymerases (dPols) and members of this family are known to participate in the later stages of Base Excision Repair. Many prokaryotic members of this family possess a Polymerase and Histidinol Phosphatase (PHP) domain at their C-termini. The PHP domain has been shown to possess 3'-5' exonuclease activity and may represent the proofreading function in these dPols. PolX from Staphylococcus aureus also possesses the PHP domain at the C-terminus, and we show that this domain has an intrinsic Mn2+ dependent 3'-5' exonuclease capable of removing misincorporated dNMPs from the primer. The misincorporation of oxidized nucleotides such as 8oxodGTP and rNTPs are known to be pro-mutagenic and can lead to genomic instability. Here, we show that the PHP domain aids DNA replication by the removal of misincorporated oxidized nucleotides and rNMPs. Overall, our study shows that the proofreading activity of the PHP domain plays a critical role in maintaining genomic integrity and stability. The exonuclease activity of this enzyme can, therefore, be the target of therapeutic intervention to combat infection by methicillin-resistant-Staphylococcus-aureus.
Collapse
|
7
|
Ghodke PP, Pradeepkumar PI. Site‐Specific
N
2
‐dG DNA Adducts: Formation, Synthesis, and TLS Polymerase‐Mediated Bypass. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Pratibha P. Ghodke
- Department of Biochemistry Vanderbilt University School of Medicine 638B Robinson Research Building 2200 Pierce Avenue 37323‐0146 Nashville Tennessee United States
- Department of Chemistry Indian Institute of Technology Bombay 400076 Mumbai Powai India
| | | |
Collapse
|
8
|
Rangadurai A, Szymanski ES, Kimsey I, Shi H, Al-Hashimi HM. Probing conformational transitions towards mutagenic Watson-Crick-like G·T mismatches using off-resonance sugar carbon R 1ρ relaxation dispersion. JOURNAL OF BIOMOLECULAR NMR 2020; 74:457-471. [PMID: 32789613 PMCID: PMC7508749 DOI: 10.1007/s10858-020-00337-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/13/2020] [Indexed: 05/30/2023]
Abstract
NMR off-resonance R1ρ relaxation dispersion measurements on base carbon and nitrogen nuclei have revealed that wobble G·T/U mismatches in DNA and RNA duplexes exist in dynamic equilibrium with short-lived, low-abundance, and mutagenic Watson-Crick-like conformations. As Watson-Crick-like G·T mismatches have base pairing geometries similar to Watson-Crick base pairs, we hypothesized that they would mimic Watson-Crick base pairs with respect to the sugar-backbone conformation as well. Using off-resonance R1ρ measurements targeting the sugar C3' and C4' nuclei, a structure survey, and molecular dynamics simulations, we show that wobble G·T mismatches adopt sugar-backbone conformations that deviate from the canonical Watson-Crick conformation and that transitions toward tautomeric and anionic Watson-Crick-like G·T mismatches restore the canonical Watson-Crick sugar-backbone. These measurements also reveal kinetic isotope effects for tautomerization in D2O versus H2O, which provide experimental evidence in support of a transition state involving proton transfer. The results provide additional evidence in support of mutagenic Watson-Crick-like G·T mismatches, help rule out alternative inverted wobble conformations in the case of anionic G·T-, and also establish sugar carbons as new non-exchangeable probes of this exchange process.
Collapse
Affiliation(s)
- Atul Rangadurai
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Eric S Szymanski
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
- Nymirum, 4324 S. Alston Avenue, Durham, NC, 27713, USA
| | - Isaac Kimsey
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
- Nymirum, 4324 S. Alston Avenue, Durham, NC, 27713, USA
| | - Honglue Shi
- Department of Chemistry, Duke University, Durham, NC, 27710, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Chemistry, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
9
|
Johnson MK, Kottur J, Nair DT. A polar filter in DNA polymerases prevents ribonucleotide incorporation. Nucleic Acids Res 2020; 47:10693-10705. [PMID: 31544946 PMCID: PMC6846668 DOI: 10.1093/nar/gkz792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 12/17/2022] Open
Abstract
The presence of ribonucleotides in DNA can lead to genomic instability and cellular lethality. To prevent adventitious rNTP incorporation, the majority of the DNA polymerases (dPols) possess a steric filter. The dPol named MsDpo4 (Mycobacterium smegmatis) naturally lacks this steric filter and hence is capable of rNTP addition. The introduction of the steric filter in MsDpo4 did not result in complete abrogation of the ability of this enzyme to incorporate ribonucleotides. In comparison, DNA polymerase IV (PolIV) from Escherichia coli exhibited stringent selection for deoxyribonucleotides. A comparison of MsDpo4 and PolIV led to the discovery of an additional polar filter responsible for sugar selectivity. Thr43 represents the filter in PolIV and this residue forms interactions with the incoming nucleotide to draw it closer to the enzyme surface. As a result, the 2’-OH in rNTPs will clash with the enzyme surface, and therefore ribonucleotides cannot be accommodated in the active site in a conformation compatible with productive catalysis. The substitution of the equivalent residue in MsDpo4–Cys47, with Thr led to a drastic reduction in the ability of the mycobacterial enzyme to incorporate rNTPs. Overall, our studies evince that the polar filter serves to prevent ribonucleotide incorporation by dPols.
Collapse
Affiliation(s)
- Mary K Johnson
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India.,National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore 560065, India
| | - Jithesh Kottur
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| | - Deepak T Nair
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| |
Collapse
|
10
|
Kottur J, Nair DT. Pyrophosphate hydrolysis is an intrinsic and critical step of the DNA synthesis reaction. Nucleic Acids Res 2019; 46:5875-5885. [PMID: 29850882 PMCID: PMC6159520 DOI: 10.1093/nar/gky402] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/15/2018] [Indexed: 11/14/2022] Open
Abstract
DNA synthesis by DNA polymerases (dPols) is central to duplication and maintenance of the genome in all living organisms. dPols catalyze the formation of a phosphodiester bond between the incoming deoxynucleoside triphosphate and the terminal primer nucleotide with the release of a pyrophosphate (PPi) group. It is believed that formation of the phosphodiester bond is an endergonic reaction and PPi has to be hydrolyzed by accompanying pyrophosphatase enzymes to ensure that the free energy change of the DNA synthesis reaction is negative and it can proceed in the forward direction. The fact that DNA synthesis proceeds in vitro in the absence of pyrophosphatases represents a long-standing conundrum regarding the thermodynamics of the DNA synthesis reaction. Using time-resolved crystallography, we show that hydrolysis of PPi is an intrinsic and critical step of the DNA synthesis reaction catalyzed by dPols. The hydrolysis of PPi occurs after the formation of the phosphodiester bond and ensures that the DNA synthesis reaction is energetically favorable without the need for additional enzymes. Also, we observe that DNA synthesis is a two Mg2+ ion assisted stepwise associative SN2 reaction. Overall, this study provides deep temporal insight regarding the primary enzymatic reaction responsible for genome duplication.
Collapse
Affiliation(s)
- Jithesh Kottur
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121 001, India
| | - Deepak T Nair
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121 001, India
| |
Collapse
|
11
|
Engineering Polymerases for New Functions. Trends Biotechnol 2019; 37:1091-1103. [PMID: 31003719 DOI: 10.1016/j.tibtech.2019.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/08/2019] [Accepted: 03/19/2019] [Indexed: 01/04/2023]
Abstract
DNA polymerases are critical tools in biotechnology, enabling efficient and accurate amplification of DNA templates, yet many desired functions are not readily available in natural DNA polymerases. New or improved functions can be engineered in DNA polymerases by mutagenesis or through the creation of protein chimeras. Engineering often necessitates the development of new techniques, such as selections in water-in-oil emulsions that connect genotype to phenotype and allow more flexibility in engineering than phage display. Engineering efforts have led to DNA polymerases that can withstand extreme conditions or the presence of inhibitors, as well as polymerases with the ability to copy modified DNA templates. In this review we discuss polymerases for biotechnology that have been reported along with tools to enable further development.
Collapse
|
12
|
Tashjian TF, Danilowicz C, Molza AE, Nguyen BH, Prévost C, Prentiss M, Godoy VG. Residues in the fingers domain of the translesion DNA polymerase DinB enable its unique participation in error-prone double-strand break repair. J Biol Chem 2019; 294:7588-7600. [PMID: 30872406 DOI: 10.1074/jbc.ra118.006233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/28/2019] [Indexed: 11/06/2022] Open
Abstract
The evolutionarily conserved Escherichia coli translesion DNA polymerase IV (DinB) is one of three enzymes that can bypass potentially deadly DNA lesions on the template strand during DNA replication. Remarkably, however, DinB is the only known translesion DNA polymerase active in RecA-mediated strand exchange during error-prone double-strand break repair. In this process, a single-stranded DNA (ssDNA)-RecA nucleoprotein filament invades homologous dsDNA, pairing the ssDNA with the complementary strand in the dsDNA. When exchange reaches the 3' end of the ssDNA, a DNA polymerase can add nucleotides onto the end, using one strand of dsDNA as a template and displacing the other. It is unknown what makes DinB uniquely capable of participating in this reaction. To explore this topic, we performed molecular modeling of DinB's interactions with the RecA filament during strand exchange, identifying key contacts made with residues in the DinB fingers domain. These residues are highly conserved in DinB, but not in other translesion DNA polymerases. Using a novel FRET-based assay, we found that DinB variants with mutations in these conserved residues are less effective at stabilizing RecA-mediated strand exchange than native DinB. Furthermore, these variants are specifically deficient in strand displacement in the absence of RecA filament. We propose that the amino acid patch of highly conserved residues in DinB-like proteins provides a mechanistic explanation for DinB's function in strand exchange and improves our understanding of recombination by providing evidence that RecA plays a role in facilitating DinB's activity during strand exchange.
Collapse
Affiliation(s)
- Tommy F Tashjian
- From the Department of Biology, Northeastern University, Boston, Massachusetts 02115
| | - Claudia Danilowicz
- the Department of Physics, Harvard University, Cambridge, Massachusetts 02138, and
| | - Anne-Elizabeth Molza
- the Laboratoire de Biochimie Théorique, CNRS UPR9080 and Université Paris Diderot, IBPC, 75005 Paris, France
| | - Brian H Nguyen
- From the Department of Biology, Northeastern University, Boston, Massachusetts 02115
| | - Chantal Prévost
- the Laboratoire de Biochimie Théorique, CNRS UPR9080 and Université Paris Diderot, IBPC, 75005 Paris, France
| | - Mara Prentiss
- the Department of Physics, Harvard University, Cambridge, Massachusetts 02138, and
| | - Veronica G Godoy
- From the Department of Biology, Northeastern University, Boston, Massachusetts 02115,
| |
Collapse
|
13
|
Abstract
CRISPR-Cas9 is a bacterial immune system with exciting applications for genome editing. In spite of extensive experimental characterization, the active site chemistry of the RuvC domain-which performs DNA cleavages-has remained elusive. Its knowledge is key for structure-based engineering aimed at improving DNA cleavages. Here, we deliver an in-depth characterization by using quantum-classical (QM/MM) molecular dynamics (MD) simulations and a Gaussian accelerated MD method, coupled with bioinformatics analysis. We disclose a two-metal aided architecture in the RuvC active site, which is poised to operate DNA cleavages, in analogy with other DNA/RNA processing enzymes. The conformational dynamics of the RuvC domain further reveals that an "arginine finger" stably contacts the scissile phosphate, with the function of stabilizing the active complex. Remarkably, the formation of a catalytically competent state of the RuvC domain is only observed upon the conformational activation of the other nuclease domain of CRISPR-Cas9-i.e., the HNH domain-such allowing concerted cleavages of double stranded DNA. This structure is in agreement with the available experimental data and remarkably differs from previous models based on classical mechanics, demonstrating also that only quantum mechanical simulations can accurately describe the metal-aided active site in CRISPR-Cas9. This fully catalytic structure-in which both the HNH and RuvC domains are prone to perform DNA cleavages-constitutes a stepping-stone for understanding DNA cleavage and specificity. It calls for novel experimental verifications and offers the structural foundations for engineering efforts aimed at improving the genome editing capability of CRISPR-Cas9.
Collapse
Affiliation(s)
- Giulia Palermo
- Department of Bioengineering, Bourns College of Engineering , University of California Riverside , 900 University Avenue , Riverside , California 92521 , United States
| |
Collapse
|
14
|
Ghodke PP, Bommisetti P, Nair DT, Pradeepkumar PI. Synthesis of N 2-Deoxyguanosine Modified DNAs and the Studies on Their Translesion Synthesis by the E. coli DNA Polymerase IV. J Org Chem 2019; 84:1734-1747. [PMID: 30628447 DOI: 10.1021/acs.joc.8b02082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the synthesis of N2-aryl (benzyl, naphthyl, anthracenyl, and pyrenyl)-deoxyguanosine (dG) modified phosphoramidite building blocks and the corresponding damaged DNAs. Primer extension studies using E. coli Pol IV, a translesion polymerase, demonstrate that translesion synthesis (TLS) across these N2-dG adducts is error free. However, the efficiency of TLS activity decreases with increase in the steric bulkiness of the adducts. Molecular dynamics simulations of damaged DNA-Pol IV complexes reveal the van der Waals interactions between key amino acid residues (Phe13, Ile31, Gly32, Gly33, Ser42, Pro73, Gly74, Phe76, and Tyr79) of the enzyme and adduct that help to accommodate the bulky damages in a hydrophobic pocket to facilitate TLS. Overall, the results presented here provide insights into the TLS across N2-aryl-dG damaged DNAs by Pol IV.
Collapse
Affiliation(s)
- Pratibha P Ghodke
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | - Praneeth Bommisetti
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | - Deepak T Nair
- Regional Centre for Biotechnology , NCR Biotech Science Cluster , third Milestone, Faridabad-Gurgaon Expressway , Faridabad 121001 , India
| | - P I Pradeepkumar
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| |
Collapse
|
15
|
Parasuram R, Coulther TA, Hollander JM, Keston-Smith E, Ondrechen MJ, Beuning PJ. Prediction of Active Site and Distal Residues in E. coli DNA Polymerase III alpha Polymerase Activity. Biochemistry 2018; 57:1063-1072. [DOI: 10.1021/acs.biochem.7b01004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ramya Parasuram
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Timothy A. Coulther
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Judith M. Hollander
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Elise Keston-Smith
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Mary Jo Ondrechen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Penny J. Beuning
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
16
|
Increased Processivity, Misincorporation, and Nucleotide Incorporation Efficiency in Sulfolobus solfataricus Dpo4 Thumb Domain Mutants. Appl Environ Microbiol 2017; 83:AEM.01013-17. [PMID: 28710267 DOI: 10.1128/aem.01013-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/04/2017] [Indexed: 01/21/2023] Open
Abstract
The present study aimed to increase the processivity of Sulfolobus solfataricus DNA polymerase Dpo4. Protein engineering and bioinformatics were used to compile a library of potential Dpo4 mutation sites. Ten potential mutants were identified and constructed. A primer extension assay was used to evaluate the processivity of Dpo4 mutants. Thumb (A181D) and finger (E63K) domain mutants showed a processivity of 20 and 19 nucleotides (nt), respectively. A little finger domain mutant (I248Y) exhibited a processivity of 17 nt, only 1 nt more than wild-type Dpo4. Furthermore, the A181D mutant showed lower fidelity and higher nucleotide incorporation efficiency (4.74 × 10-4 s-1 μM-1) than E63K and I248Y mutants. When tasked with bypassing damage, the A181D mutant exhibited a 3.81-fold and 2.62-fold higher catalytic efficiency (kcat/Km ) at incorporating dCTP and dATP, respectively, than wild-type Dpo4. It also showed a 55% and 91.5% higher catalytic efficiency when moving beyond the damaged 8-oxoG:C and 8-oxoG:A base pairs, respectively, compared to wild-type Dpo4. Protein engineering and bioinformatics methods can effectively increase the processivity and translesion synthesis ability of Dpo4.IMPORTANCE DNA polymerases with poor fidelity can be exploited to store data and record changes in response to the intracellular environment. Sulfolobus solfataricus Dpo4 is such an enzyme, although its use is hindered by its low processivity. In this work, we used a bioinformatics and protein engineering approach to generate Dpo4 mutants with improved processivity. We identified the Dpo4 thumb domain as the most relevant in controlling processivity.
Collapse
|
17
|
Kottur J, Nair DT. Reactive Oxygen Species Play an Important Role in the Bactericidal Activity of Quinolone Antibiotics. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201509340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jithesh Kottur
- Regional Centre for Biotechnology; NCR Biotech Science Cluster; 3rd Milestone, Faridabad-Gurgaon Expressway Faridabad 121001 India
- Manipal University, Madhav Nagar; Manipal 576104 India
| | - Deepak T. Nair
- Regional Centre for Biotechnology; NCR Biotech Science Cluster; 3rd Milestone, Faridabad-Gurgaon Expressway Faridabad 121001 India
- National Centre for Biological Sciences, NCBS-TIFR, GKVK Campus; Bangalore 560065 India
| |
Collapse
|
18
|
Kottur J, Nair DT. Reactive Oxygen Species Play an Important Role in the Bactericidal Activity of Quinolone Antibiotics. Angew Chem Int Ed Engl 2016; 55:2397-400. [PMID: 26757158 DOI: 10.1002/anie.201509340] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/23/2015] [Indexed: 11/10/2022]
Abstract
Recent studies posit that reactive oxygen species (ROS) contribute to the cell lethality of bactericidal antibiotics. However, this conjecture has been challenged and remains controversial. To resolve this controversy, we adopted a strategy that involves DNA polymerase IV (PolIV). The nucleotide pool of the cell gets oxidized by ROS and PolIV incorporates the damaged nucleotides (especially 8oxodGTP) into the genome, which results in death of the bacteria. By using a combination of structural and biochemical tools coupled with growth assays, it was shown that selective perturbation of the 8oxodGTP incorporation activity of PolIV results in considerable enhancement of the survival of bacteria in the presence of the norfloxacin antibiotic. Our studies therefore indicate that ROS induced in bacteria by the presence of antibiotics in the environment contribute significantly to cell lethality.
Collapse
Affiliation(s)
- Jithesh Kottur
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India.,Manipal University, Madhav Nagar, Manipal, 576104, India
| | - Deepak T Nair
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India. .,National Centre for Biological Sciences, NCBS-TIFR, GKVK Campus, Bangalore, 560065, India.
| |
Collapse
|
19
|
Ghodke PP, Gore KR, Harikrishna S, Samanta B, Kottur J, Nair DT, Pradeepkumar PI. The N(2)-Furfuryl-deoxyguanosine Adduct Does Not Alter the Structure of B-DNA. J Org Chem 2016; 81:502-11. [PMID: 26650891 DOI: 10.1021/acs.joc.5b02341] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
N(2)-Furfuryl-deoxyguanosine (fdG) is carcinogenic DNA adduct that originates from furfuryl alcohol. It is also a stable structural mimic of the damage induced by the nitrofurazone family of antibiotics. For the structural and functional studies of this model N(2)-dG adduct, reliable and rapid access to fdG-modified DNAs are warranted. Toward this end, here we report the synthesis of fdG-modified DNAs using phosphoramidite chemistry involving only three steps. The functional integrity of the modified DNA has been verified by primer extension studies with DNA polymerases I and IV from E. coli. Introduction of fdG into a DNA duplex decreases the Tm by ∼1.6 °C/modification. Molecular dynamics simulations of a DNA duplex bearing the fdG adduct revealed that though the overall B-DNA structure is maintained, this lesion can disrupt W-C H-bonding, stacking interactions, and minor groove hydrations to some extent at the modified site, and these effects lead to slight variations in the local base pair parameters. Overall, our studies show that fdG is tolerated at the minor groove of the DNA to a better extent compared with other bulky DNA damages, and this property will make it difficult for the DNA repair pathways to detect this adduct.
Collapse
Affiliation(s)
- Pratibha P Ghodke
- Department of Chemistry, Indian Institute of Technology Bombay , Mumbai-400076, India
| | - Kiran R Gore
- Department of Chemistry, Indian Institute of Technology Bombay , Mumbai-400076, India.,Department of Chemistry, University of Mumbai , Mumbai-400098, India
| | - S Harikrishna
- Department of Chemistry, Indian Institute of Technology Bombay , Mumbai-400076, India
| | - Biswajit Samanta
- Department of Chemistry, Indian Institute of Technology Bombay , Mumbai-400076, India
| | - Jithesh Kottur
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, India.,Manipal University, Manipal-576104, India
| | - Deepak T Nair
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, India.,National Centre for Biological Sciences (NCBS-TIFR), GKVK Campus, Bellary Road, Bangalore-560065, India
| | - P I Pradeepkumar
- Department of Chemistry, Indian Institute of Technology Bombay , Mumbai-400076, India
| |
Collapse
|
20
|
Fernandez-Leiro R, Conrad J, Scheres SH, Lamers MH. cryo-EM structures of the E. coli replicative DNA polymerase reveal its dynamic interactions with the DNA sliding clamp, exonuclease and τ. eLife 2015; 4. [PMID: 26499492 PMCID: PMC4703070 DOI: 10.7554/elife.11134] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/23/2015] [Indexed: 11/13/2022] Open
Abstract
The replicative DNA polymerase PolIIIα from Escherichia coli is a uniquely fast and processive enzyme. For its activity it relies on the DNA sliding clamp β, the proofreading exonuclease ε and the C-terminal domain of the clamp loader subunit τ. Due to the dynamic nature of the four-protein complex it has long been refractory to structural characterization. Here we present the 8 Å resolution cryo-electron microscopy structures of DNA-bound and DNA-free states of the PolIII-clamp-exonuclease-τc complex. The structures show how the polymerase is tethered to the DNA through multiple contacts with the clamp and exonuclease. A novel contact between the polymerase and clamp is made in the DNA bound state, facilitated by a large movement of the polymerase tail domain and τc. These structures provide crucial insights into the organization of the catalytic core of the replisome and form an important step towards determining the structure of the complete holoenzyme.
Collapse
Affiliation(s)
| | - Julian Conrad
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | |
Collapse
|
21
|
Sholder G, Creech A, Loechler EL. How Y-Family DNA polymerase IV is more accurate than Dpo4 at dCTP insertion opposite an N2-dG adduct of benzo[a]pyrene. DNA Repair (Amst) 2015; 35:144-53. [PMID: 26523515 DOI: 10.1016/j.dnarep.2015.09.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/11/2015] [Accepted: 09/11/2015] [Indexed: 12/11/2022]
Abstract
To bypass DNA damage, cells have Y-Family DNA polymerases (DNAPs). One Y-Family-class includes DNAP κ and DNAP IV, which accurately insert dCTP opposite N(2)-dG adducts, including from the carcinogen benzo[a]pyrene (BP). Another class includes DNAP η and DNAP V, which insert accurately opposite UV-damage, but inaccurately opposite BP-N(2)-dG. To investigate structural differences between Y-Family-classes, regions are swapped between DNAP IV (a κ/IV-class-member) and Dpo4 (a η/V-class-member); the kinetic consequences are evaluated via primer-extension studies with a BP-N(2)-dG-containing template. Four key structural elements are revealed. (1) Y-Family DNAPs have discreet non-covalent contacts between their little finger-domain (LF-Domain) and their catalytic core-domain (CC-Domain), which we call "non-covalent bridges" (NCBs). Arg37 and Arg38 in DNAP IV's CC-Domain near the active site form a non-covalent bridge (AS-NCB) by interacting with Glu251 and Asp252, respectively, in DNAP IV's LF-Domain. Without these interactions dATP/dGTP/dTTP misinsertions increase. DNAP IV's AS-NCB suppresses misinsertions better than Dpo4's equivalent AS-NCB. (2) DNAP IV also suppresses dATP/dGTP/dTTP misinsertions via a second non-covalent bridge, which is ∼8Å from the active site (Distal-NCB). Dpo4 has no Distal-NCB, rendering it inferior at dATP/dGTP/dTTP suppression. (3) dCTP insertion is facilitated by the larger minor groove opening near the active site in DNAP IV versus Dpo4, which is sensible given that Watson/Crick-like [dCTP:BP-N(2)-dG] pairing requires the BP-moiety to be in the minor groove. (4) Compared to Dpo4, DNAP IV has a smaller major groove opening, which suppresses dGTP misinsertion, implying BP-N(2)-dG bulk in the major groove during Hoogsteen syn-adduct-dG:dGTP pairing. In summary, DNAP IV has a large minor groove opening to enhance dCTP insertion, a plugged major groove opening to suppress dGTP misinsertion, and two non-covalent bridges (near and distal to the active site) to suppress dATP/dGTP/dTTP misinsertions; collectively these four structural features enhance DNAP IV's dNTP insertion fidelity opposite a BP-N(2)-dG adduct compared to Dpo4.
Collapse
Affiliation(s)
- Gabriel Sholder
- Biology Department, Boston University, Boston, MA 02215, USA
| | | | | |
Collapse
|
22
|
A Genetic Selection for dinB Mutants Reveals an Interaction between DNA Polymerase IV and the Replicative Polymerase That Is Required for Translesion Synthesis. PLoS Genet 2015; 11:e1005507. [PMID: 26352807 PMCID: PMC4564189 DOI: 10.1371/journal.pgen.1005507] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/14/2015] [Indexed: 11/19/2022] Open
Abstract
Translesion DNA synthesis (TLS) by specialized DNA polymerases (Pols) is a conserved mechanism for tolerating replication blocking DNA lesions. The actions of TLS Pols are managed in part by ring-shaped sliding clamp proteins. In addition to catalyzing TLS, altered expression of TLS Pols impedes cellular growth. The goal of this study was to define the relationship between the physiological function of Escherichia coli Pol IV in TLS and its ability to impede growth when overproduced. To this end, 13 novel Pol IV mutants were identified that failed to impede growth. Subsequent analysis of these mutants suggest that overproduced levels of Pol IV inhibit E. coli growth by gaining inappropriate access to the replication fork via a Pol III-Pol IV switch that is mechanistically similar to that used under physiological conditions to coordinate Pol IV-catalyzed TLS with Pol III-catalyzed replication. Detailed analysis of one mutant, Pol IV-T120P, and two previously described Pol IV mutants impaired for interaction with either the rim (Pol IVR) or the cleft (Pol IVC) of the β sliding clamp revealed novel insights into the mechanism of the Pol III-Pol IV switch. Specifically, Pol IV-T120P retained complete catalytic activity in vitro but, like Pol IVR and Pol IVC, failed to support Pol IV TLS function in vivo. Notably, the T120P mutation abrogated a biochemical interaction of Pol IV with Pol III that was required for Pol III-Pol IV switching. Taken together, these results support a model in which Pol III-Pol IV switching involves interaction of Pol IV with Pol III, as well as the β clamp rim and cleft. Moreover, they provide strong support for the view that Pol III-Pol IV switching represents a vitally important mechanism for regulating TLS in vivo by managing access of Pol IV to the DNA. Bacterial DNA polymerase IV (Pol IV) is capable of replicating damaged DNA via a process termed translesion DNA synthesis (TLS). Pol IV-mediated TLS can be accurate or error-prone, depending on the type of DNA damage. Errors made by Pol IV contribute to antibiotic resistance and adaptation of bacterial pathogens. In addition to catalyzing TLS, overproduction of Escherichia coli Pol IV impedes growth. In the current work, we demonstrate that both of these functions rely on the ability of Pol IV to bind the β sliding processivity clamp and switch places on DNA with the replicative Pol, Pol III. This switch requires that Pol IV contact both Pol III as well as two discrete sites on the β clamp protein. Taken together, these results provide a deeper understanding of how E. coli manages the actions of Pol III and Pol IV to coordinate high fidelity replication with potentially error-prone TLS.
Collapse
|
23
|
Nair DT, Kottur J, Sharma R. A rescue act: Translesion DNA synthesis past N(2) -deoxyguanosine adducts. IUBMB Life 2015; 67:564-74. [PMID: 26173005 DOI: 10.1002/iub.1403] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 01/14/2023]
Abstract
Genomic DNA is continually subjected to a number of chemical insults that result in the formation of modified nucleotides--termed as DNA lesions. The N(2) -atom of deoxyguanosine is particularly reactive and a number of chemicals react at this site to form different kinds of DNA adducts. The N(2) -deoxyguanosine adducts perturb different genomic processes and are particularly deleterious for DNA replication as they have a strong tendency to inhibit replicative DNA polymerases. Many organisms possess specialized dPols--generally classified in the Y-family--that serves to rescue replication stalled at N(2) -dG and other adducts. A review of minor groove N(2) -adducts and the known strategies utilized by Y-family dPols to replicate past these lesions will be presented here.
Collapse
Affiliation(s)
- Deepak T Nair
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, 121 001, India
| | - Jithesh Kottur
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, 121 001, India.,Manipal University, Manipal.Edu, Manipal, 576104, Karnataka, India
| | - Rahul Sharma
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, 121 001, India.,Manipal University, Manipal.Edu, Manipal, 576104, Karnataka, India
| |
Collapse
|
24
|
Nevin P, Lu X, Zhang K, Engen JR, Beuning PJ. Noncognate DNA damage prevents the formation of the active conformation of the Y-family DNA polymerases DinB and DNA polymerase κ. FEBS J 2015; 282:2646-60. [PMID: 25899385 DOI: 10.1111/febs.13304] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 01/24/2023]
Abstract
Y-family DNA polymerases are specialized to copy damaged DNA, and are associated with increased mutagenesis, owing to their low fidelity. It is believed that the mechanism of nucleotide selection by Y-family DNA polymerases involves conformational changes preceding nucleotidyl transfer, but there is limited experimental evidence for such structural changes. In particular, nucleotide-induced conformational changes in bacterial or eukaryotic Y-family DNA polymerases have, to date, not been extensively characterized. Using hydrogen-deuterium exchange mass spectrometry, we demonstrate here that the Escherichia coli Y-family DNA polymerase DinB and its human ortholog DNA polymerase κ undergo a conserved nucleotide-induced conformational change in the presence of undamaged DNA and the correct incoming nucleotide. Notably, this holds true for damaged DNA containing N(2) -furfuryl-deoxyguanosine, which is efficiently copied by these two polymerases, but not for damaged DNA containing the major groove modification O(6) -methyl-deoxyguanosine, which is a poor substrate. Our observations suggest that DinB and DNA polymerase κ utilize a common mechanism for nucleotide selection involving a conserved prechemical conformational transition promoted by the correct nucleotide and only preferred DNA substrates.
Collapse
Affiliation(s)
- Philip Nevin
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Xueguang Lu
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Ke Zhang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Penny J Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| |
Collapse
|
25
|
Nevin P, Engen JR, Beuning PJ. Steric gate residues of Y-family DNA polymerases DinB and pol kappa are crucial for dNTP-induced conformational change. DNA Repair (Amst) 2015; 29:65-73. [PMID: 25684709 DOI: 10.1016/j.dnarep.2015.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 01/08/2023]
Abstract
Discrimination against ribonucleotides by DNA polymerases is critical to preserve DNA integrity. For many DNA polymerases, including those of the Y family, rNTP discrimination has been attributed to steric clashes between a residue near the active site, the steric gate, and the 2'-hydroxyl of the incoming rNTP. Here we used hydrogen/deuterium exchange (HDX) mass spectrometry (MS) to probe the effects of the steric gate in the Y-family DNA polymerases Escherichia coli DinB and human DNA pol κ. Formation of a ternary complex with a G:dCTP base pair in the active site resulted in slower hydrogen exchange relative to a ternary complex with G:rCTP in the active site. The protection from exchange was localized to regions both distal and proximal to the active site, suggesting that DinB and DNA pol κ adopt different conformations depending on the sugar of the incoming nucleotide. In contrast, when the respective steric gate residues were mutated to alanine, the differences in HDX between the dNTP- and rNTP-bound ternary complexes were attenuated such that for DinB(F13A) and pol κ(Y112A), ternary complexes with either G:dCTP or G:rCTP base pairs had similar HDX profiles. Furthermore, the HDX in these ternary complexes resembled that of the rCTP-bound state rather than the dCTP-bound state of the wild-type enzymes. Primer extension assays confirmed that DinB(F13A) and pol κ(Y112A) do not discriminate against rNTPs to the same extent as the wild-type enzymes. Our observations indicate that the steric gate is crucial for rNTP discrimination because of its role in specifically promoting a dNTP-induced conformational change and that rNTP discrimination occurs in a relatively closed state of the polymerases.
Collapse
Affiliation(s)
- Philip Nevin
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Penny J Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Fast native-SAD phasing for routine macromolecular structure determination. Nat Methods 2014; 12:131-3. [PMID: 25506719 DOI: 10.1038/nmeth.3211] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 10/29/2014] [Indexed: 11/08/2022]
Abstract
We describe a data collection method that uses a single crystal to solve X-ray structures by native SAD (single-wavelength anomalous diffraction). We solved the structures of 11 real-life examples, including a human membrane protein, a protein-DNA complex and a 266-kDa multiprotein-ligand complex, using this method. The data collection strategy is suitable for routine structure determination and can be implemented at most macromolecular crystallography synchrotron beamlines.
Collapse
|
27
|
Kottur J, Sharma A, Gore KR, Narayanan N, Samanta B, Pradeepkumar PI, Nair DT. Unique structural features in DNA polymerase IV enable efficient bypass of the N2 adduct induced by the nitrofurazone antibiotic. Structure 2014; 23:56-67. [PMID: 25497730 DOI: 10.1016/j.str.2014.10.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 11/17/2022]
Abstract
The reduction in the efficacy of therapeutic antibiotics represents a global problem of increasing intensity and concern. Nitrofuran antibiotics act primarily through the formation of covalent adducts at the N(2) atom of the deoxyguanosine nucleotide in genomic DNA. These adducts inhibit replicative DNA polymerases (dPols), leading to the death of the prokaryote. N(2)-furfuryl-deoxyguanosine (fdG) represents a stable structural analog of the nitrofuran-induced adducts. Unlike other known dPols, DNA polymerase IV (PolIV) from E. coli can bypass the fdG adduct accurately with high catalytic efficiency. This property of PolIV is central to its role in reducing the sensitivity of E. coli toward nitrofuran antibiotics such as nitrofurazone (NFZ). We present the mechanism used by PolIV to bypass NFZ-induced adducts and thus improve viability of E. coli in the presence of NFZ. Our results can be used to develop specific inhibitors of PolIV that may potentiate the activity of nitrofuran antibiotics.
Collapse
Affiliation(s)
- Jithesh Kottur
- National Centre for Biological Sciences (NCBS-TIFR), GKVK Campus, Bellary Road, Bangalore 560065, India; Manipal University, Manipal.edu, Madhav Nagar, Manipal 576104, India
| | - Amit Sharma
- National Centre for Biological Sciences (NCBS-TIFR), GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Kiran R Gore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Naveen Narayanan
- National Centre for Biological Sciences (NCBS-TIFR), GKVK Campus, Bellary Road, Bangalore 560065, India; Manipal University, Manipal.edu, Madhav Nagar, Manipal 576104, India
| | - Biswajit Samanta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | - Deepak T Nair
- Regional Centre for Biotechnology, 180, Udyog Vihar, Phase 1, Gurgaon 122016, India; National Centre for Biological Sciences (NCBS-TIFR), GKVK Campus, Bellary Road, Bangalore 560065, India.
| |
Collapse
|
28
|
Ordonez H, Shuman S. Mycobacterium smegmatis DinB2 misincorporates deoxyribonucleotides and ribonucleotides during templated synthesis and lesion bypass. Nucleic Acids Res 2014; 42:12722-34. [PMID: 25352547 PMCID: PMC4227753 DOI: 10.1093/nar/gku1027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Mycobacterium smegmatis DinB2 is the founder of a clade of Y-family DNA polymerase that is naturally adept at utilizing rNTPs or dNTPs as substrates. Here we investigate the fidelity and lesion bypass capacity of DinB2. We report that DinB2 is an unfaithful DNA and RNA polymerase with a distinctive signature for misincorporation of dNMPs, rNMPs and oxoguanine nucleotides during templated synthesis in vitro. DinB2 has a broader mutagenic spectrum with manganese than magnesium, though low ratios of manganese to magnesium suffice to switch DinB2 to its more mutagenic mode. DinB2 discrimination against incorrect dNTPs in magnesium is primarily at the level of substrate binding affinity, rather than kpol. DinB2 can incorporate any dNMP or rNMP opposite oxo-dG in the template strand with manganese as cofactor, with a kinetic preference for synthesis of an A:oxo-dG Hoogsteen pair. With magnesium, DinB2 is adept at synthesizing A:oxo-dG or C:oxo-dG pairs. DinB2 effectively incorporates deoxyribonucleotides, but not ribonucleotides, opposite an abasic site, with kinetic preference for dATP as the substrate. We speculate that DinB2 might contribute to mycobacterial mutagenesis, oxidative stress and quiescence, and discuss the genetic challenges to linking the polymerase biochemistry to an in vivo phenotype.
Collapse
Affiliation(s)
- Heather Ordonez
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
29
|
Ordonez H, Uson ML, Shuman S. Characterization of three mycobacterial DinB (DNA polymerase IV) paralogs highlights DinB2 as naturally adept at ribonucleotide incorporation. Nucleic Acids Res 2014; 42:11056-70. [PMID: 25200080 PMCID: PMC4176160 DOI: 10.1093/nar/gku752] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
This study unveils Mycobacterium smegmatis DinB2 as the founder of a clade of Y-family DNA polymerase that is naturally adept at incorporating ribonucleotides by virtue of a leucine in lieu of a canonical aromatic steric gate. DinB2 efficiently scavenges limiting dNTP and rNTP substrates in the presence of manganese. DinB2's sugar selectivity factor, gauged by rates of manganese-dependent dNMP versus rNMP addition, is 2.7- to 3.8-fold. DinB2 embeds ribonucleotides during DNA synthesis when rCTP and dCTP are at equimolar concentration. DinB2 can incorporate at least 16 consecutive ribonucleotides. In magnesium, DinB2 has a 26- to 78-fold lower affinity for rNTPs than dNTPs, but only a 2.6- to 6-fold differential in rates of deoxy versus ribo addition (kpol). Two other M. smegmatis Y-family polymerases, DinB1 and DinB3, are characterized here as template-dependent DNA polymerases that discriminate strongly against ribonucleotides, a property that, in the case of DinB1, correlates with its aromatic steric gate side chain. We speculate that the unique ability of DinB2 to utilize rNTPs might allow for DNA repair with a 'ribo patch' when dNTPs are limiting. Phylogenetic analysis reveals DinB2-like polymerases, with leucine, isoleucine or valine steric gates, in many taxa of the phylum Actinobacteria.
Collapse
Affiliation(s)
- Heather Ordonez
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Maria Loressa Uson
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
30
|
Cafarelli TM, Rands TJ, Godoy VG. The DinB•RecA complex of Escherichia coli mediates an efficient and high-fidelity response to ubiquitous alkylation lesions. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:92-102. [PMID: 24243543 DOI: 10.1002/em.21826] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/12/2013] [Indexed: 06/02/2023]
Abstract
Alkylation DNA lesions are ubiquitous, and result from normal cellular metabolism as well as from treatment with methylating agents and chemotherapeutics. DNA damage tolerance by translesion synthesis DNA polymerases has an important role in cellular resistance to alkylating agents. However, it is not yet known whether Escherichia coli (E. coli) DNA Pol IV (DinB) alkylation lesion bypass efficiency and fidelity in vitro are similar to those inferred by genetic analyses. We hypothesized that DinB-mediated bypass of 3-deaza-3-methyladenine, a stable analog of 3-methyladenine, the primary replication fork-stalling alkylation lesion, would be of high fidelity. We performed here the first kinetic analyses of E. coli DinB•RecA binary complexes. Whether alone or in a binary complex, DinB inserted the correct deoxyribonucleoside triphosphate (dNTP) opposite either lesion-containing or undamaged template; the incorporation of other dNTPs was largely inefficient. DinB prefers undamaged DNA, but the DinB•RecA binary complex increases its catalytic efficiency on lesion-containing template, perhaps as part of a regulatory mechanism to better respond to alkylation damage. Notably, we find that a DinB derivative with enhanced affinity for RecA, either alone or in a binary complex, is less efficient and has a lower fidelity than DinB or DinB•RecA. This finding contrasts our previous genetic analyses. Therefore, mutagenesis resulting from alkylation lesions is likely limited in cells by the activity of DinB•RecA. These two highly conserved proteins play an important role in maintaining genomic stability when cells are faced with ubiquitous DNA damage. Kinetic analyses are important to gain insights into the mechanism(s) regulating TLS DNA polymerases.
Collapse
|
31
|
Aravind L, Anand S, Iyer LM. Novel autoproteolytic and DNA-damage sensing components in the bacterial SOS response and oxidized methylcytosine-induced eukaryotic DNA demethylation systems. Biol Direct 2013; 8:20. [PMID: 23945014 PMCID: PMC3765255 DOI: 10.1186/1745-6150-8-20] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 08/06/2013] [Indexed: 12/19/2022] Open
Abstract
Abstract The bacterial SOS response is an elaborate program for DNA repair, cell cycle regulation and adaptive mutagenesis under stress conditions. Using sensitive sequence and structure analysis, combined with contextual information derived from comparative genomics and domain architectures, we identify two novel domain superfamilies in the SOS response system. We present evidence that one of these, the SOS response associated peptidase (SRAP; Pfam: DUF159) is a novel thiol autopeptidase. Given the involvement of other autopeptidases, such as LexA and UmuD, in the SOS response, this finding suggests that multiple structurally unrelated peptidases have been recruited to this process. The second of these, the ImuB-C superfamily, is linked to the Y-family DNA polymerase-related domain in ImuB, and also occurs as a standalone protein. We present evidence using gene neighborhood analysis that both these domains function with different mutagenic polymerases in bacteria, such as Pol IV (DinB), Pol V (UmuCD) and ImuA-ImuB-DnaE2 and also other repair systems, which either deploy Ku and an ATP-dependent ligase or a SplB-like radical SAM photolyase. We suggest that the SRAP superfamily domain functions as a DNA-associated autoproteolytic switch that recruits diverse repair enzymes upon DNA damage, whereas the ImuB-C domain performs a similar function albeit in a non-catalytic fashion. We propose that C3Orf37, the eukaryotic member of the SRAP superfamily, which has been recently shown to specifically bind DNA with 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxycytosine, is a sensor for these oxidized bases generated by the TET enzymes from methylcytosine. Hence, its autoproteolytic activity might help it act as a switch that recruits DNA repair enzymes to remove these oxidized methylcytosine species as part of the DNA demethylation pathway downstream of the TET enzymes. Reviewers This article was reviewed by RDS, RF and GJ.
Collapse
Affiliation(s)
- L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | |
Collapse
|
32
|
Walsh JM, Ippoliti PJ, Ronayne EA, Rozners E, Beuning PJ. Discrimination against major groove adducts by Y-family polymerases of the DinB subfamily. DNA Repair (Amst) 2013; 12:713-22. [PMID: 23791649 DOI: 10.1016/j.dnarep.2013.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/20/2013] [Accepted: 05/22/2013] [Indexed: 10/26/2022]
Abstract
Y-family DNA polymerases bypass DNA adducts in a process known as translesion synthesis (TLS). Y-family polymerases make contacts with the minor groove side of the DNA substrate at the nascent base pair. The Y-family polymerases also contact the DNA major groove via the unique little finger domain, but they generally lack contacts with the major groove at the nascent base pair. Escherichia coli DinB efficiently and accurately copies certain minor groove guanosine adducts. In contrast, we previously showed that the presence in the DNA template of the major groove-modified base 1,3-diaza-2-oxophenothiazine (tC) inhibits the activity of E. coli DinB. Even when the DNA primer is extended up to three nucleotides beyond the site of the tC analog, DinB activity is strongly inhibited. These findings prompted us to investigate discrimination against other major groove modifications by DinB and its orthologs. We chose a set of pyrimidines and purines with modifications in the major groove and determined the activity of DinB and several orthologs with these substrates. DinB, human pol kappa, and Sulfolobus solfataricus Dpo4 show differing specificities for the major groove adducts pyrrolo-dC, dP, N(6)-furfuryl-dA, and etheno-dA. In general, DinB was least efficient for bypass of all of these major groove adducts, whereas Dpo4 was most efficient. DinB activity was essentially completely inhibited by the presence of etheno-dA, while pol kappa activity was strongly inhibited. All three of these DNA polymerases were able to bypass N(6)-furfuryl-dA with modest efficiency, with DinB being the least efficient. We also determined that the R35A variant of DinB enhances bypass of N(6)-furfuryl-dA but not etheno-dA. In sum, we find that whereas DinB is specific for bypass of minor groove adducts, it is specifically inhibited by major groove DNA modifications.
Collapse
Affiliation(s)
- Jason M Walsh
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|