1
|
Xian Y, Ye J, Tang Y, Zhang N, Peng C, Huang W, He G. Deubiquitinases as novel therapeutic targets for diseases. MedComm (Beijing) 2024; 5:e70036. [PMID: 39678489 PMCID: PMC11645450 DOI: 10.1002/mco2.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Deubiquitinating enzymes (DUBs) regulate substrate ubiquitination by removing ubiquitin or cleaving within ubiquitin chains, thereby maintaining cellular homeostasis. Approximately 100 DUBs in humans counteract E3 ubiquitin ligases, finely balancing ubiquitination and deubiquitination processes to maintain cellular proteostasis and respond to various stimuli and stresses. Given their role in modulating ubiquitination levels of various substrates, DUBs are increasingly linked to human health and disease. Here, we review the DUB family, highlighting their distinctive structural characteristics and chain-type specificities. We show that DUB family members regulate key signaling pathways, such as NF-κB, PI3K/Akt/mTOR, and MAPK, and play crucial roles in tumorigenesis and other diseases (neurodegenerative disorders, cardiovascular diseases, inflammatory disorders, and developmental diseases), making them promising therapeutic targets Our review also discusses the challenges in developing DUB inhibitors and underscores the critical role of the DUBs in cellular signaling and cancer. This comprehensive analysis enhances our understanding of the complex biological functions of the DUBs and underscores their therapeutic potential.
Collapse
Affiliation(s)
- Yali Xian
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Jing Ye
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yu Tang
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Gu He
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
2
|
Kilgas S, Swift ML, Chowdhury D. 53BP1-the 'Pandora's box' of genome integrity. DNA Repair (Amst) 2024; 144:103779. [PMID: 39476547 DOI: 10.1016/j.dnarep.2024.103779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
53BP1 has several functions in the maintenance of genome integrity. It functions as a key mediator involved in double-strand break (DSB) repair, which functions to maintain a balance in the repair pathway choices and in preserving genomic stability. While its DSB repair functions are relatively well-characterized, its role in DNA replication and replication fork protection is less understood. In response to replication stress, 53BP1 contributes to fork protection by regulating fork reversal and restart. It helps maintain replication fork stability and speed, with 53BP1 loss leading to defective fork progression and increased sensitivity to replication stress agents. However, 53BP1's precise role in fork protection remains debated, as some studies have not observed protective effects. Therefore, it is critical to determine the role of 53BP1 in replication to better understand when it promotes replication fork protection, and the underlying mechanisms involved. Moreover, 53BP1's function in replication stress extends beyond its activity at active replication forks; it also forms specialized nuclear bodies (NBs) which protect stretches of under-replicated DNA (UR-DNA) transmitted from a previous cell cycle to daughter cells through mitosis. The mechanism of 53BP1 NBs in the coordination of replication and repair events at UR-DNA loci is not fully understood and warrants further investigation. The present review article focuses on elucidating 53BP1's functions in replication stress (RS), its role in replication fork protection, and the significance of 53BP1 NBs in this context to provide a more comprehensive understanding of its less well-established role in DNA replication.
Collapse
Affiliation(s)
- Susan Kilgas
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Michelle L Swift
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Dipanjan Chowdhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Gnugnoli M, Rinaldi C, Casari E, Pizzul P, Bonetti D, Longhese MP. Proteasome-mediated degradation of long-range nucleases negatively regulates resection of DNA double-strand breaks. iScience 2024; 27:110373. [PMID: 39071887 PMCID: PMC11277358 DOI: 10.1016/j.isci.2024.110373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/30/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024] Open
Abstract
Homologous recombination is initiated by the nucleolytic degradation (resection) of DNA double-strand breaks (DSBs). DSB resection is a two-step process. In the short-range step, the MRX (Mre11-Rad50-Xrs2) complex, together with Sae2, incises the 5'-terminated strand at the DSB end and resects back toward the DNA end. Then, the long-range resection nucleases Exo1 and Dna2 further elongate the resected DNA tracts. We found that mutations lowering proteasome functionality bypass the need for Sae2 in DSB resection. In particular, the dysfunction of the proteasome subunit Rpn11 leads to hyper-resection and increases the levels of both Exo1 and Dna2 to such an extent that it allows the bypass of the requirement for either Exo1 or Dna2, but not for both. These observations, along with the finding that Exo1 and Dna2 are ubiquitylated, indicate a role of the proteasome in restraining DSB resection by negatively controlling the abundance of the long-range resection nucleases.
Collapse
Affiliation(s)
- Marco Gnugnoli
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Carlo Rinaldi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Erika Casari
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Paolo Pizzul
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Diego Bonetti
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| |
Collapse
|
4
|
Foster BM, Wang Z, Schmidt CK. DoUBLing up: ubiquitin and ubiquitin-like proteases in genome stability. Biochem J 2024; 481:515-545. [PMID: 38572758 PMCID: PMC11088880 DOI: 10.1042/bcj20230284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Maintaining stability of the genome requires dedicated DNA repair and signalling processes that are essential for the faithful duplication and propagation of chromosomes. These DNA damage response (DDR) mechanisms counteract the potentially mutagenic impact of daily genotoxic stresses from both exogenous and endogenous sources. Inherent to these DNA repair pathways is the activity of protein factors that instigate repair processes in response to DNA lesions. The regulation, coordination, and orchestration of these DDR factors is carried out, in a large part, by post-translational modifications, such as phosphorylation, ubiquitylation, and modification with ubiquitin-like proteins (UBLs). The importance of ubiquitylation and UBLylation with SUMO in DNA repair is well established, with the modified targets and downstream signalling consequences relatively well characterised. However, the role of dedicated erasers for ubiquitin and UBLs, known as deubiquitylases (DUBs) and ubiquitin-like proteases (ULPs) respectively, in genome stability is less well established, particularly for emerging UBLs such as ISG15 and UFM1. In this review, we provide an overview of the known regulatory roles and mechanisms of DUBs and ULPs involved in genome stability pathways. Expanding our understanding of the molecular agents and mechanisms underlying the removal of ubiquitin and UBL modifications will be fundamental for progressing our knowledge of the DDR and likely provide new therapeutic avenues for relevant human diseases, such as cancer.
Collapse
Affiliation(s)
- Benjamin M. Foster
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| | - Zijuan Wang
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| | - Christine K. Schmidt
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| |
Collapse
|
5
|
Ascenção C, Sims JR, Dziubek A, Comstock W, Fogarty EA, Badar J, Freire R, Grimson A, Weiss RS, Cohen PE, Smolka MB. A TOPBP1 allele causing male infertility uncouples XY silencing dynamics from sex body formation. eLife 2024; 12:RP90887. [PMID: 38391183 PMCID: PMC10942628 DOI: 10.7554/elife.90887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Meiotic sex chromosome inactivation (MSCI) is a critical feature of meiotic prophase I progression in males. While the ATR kinase and its activator TOPBP1 are key drivers of MSCI within the specialized sex body (SB) domain of the nucleus, how they promote silencing remains unclear given their multifaceted meiotic functions that also include DNA repair, chromosome synapsis, and SB formation. Here we report a novel mutant mouse harboring mutations in the TOPBP1-BRCT5 domain. Topbp1B5/B5 males are infertile, with impaired MSCI despite displaying grossly normal events of early prophase I, including synapsis and SB formation. Specific ATR-dependent events are disrupted, including phosphorylation and localization of the RNA:DNA helicase Senataxin. Topbp1B5/B5 spermatocytes initiate, but cannot maintain ongoing, MSCI. These findings reveal a non-canonical role for the ATR-TOPBP1 signaling axis in MSCI dynamics at advanced stages in pachynema and establish the first mouse mutant that separates ATR signaling and MSCI from SB formation.
Collapse
Affiliation(s)
- Carolline Ascenção
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Jennie R Sims
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Alexis Dziubek
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - William Comstock
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Elizabeth A Fogarty
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Jumana Badar
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Raimundo Freire
- Fundación Canaria del Instituto de Investigación Sanitaria de Canarias (FIISC), Unidad de Investigación, Hospital Universitario de CanariasSanta Cruz de TenerifeSpain
- Instituto de Tecnologías Biomédicas, Universidad de La LagunaLa LagunaSpain
- Universidad Fernando Pessoa CanariasLas Palmas de Gran CanariaSpain
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Robert S Weiss
- Department of Biomedical Sciences, Cornell UniversityIthacaUnited States
| | - Paula E Cohen
- Department of Biomedical Sciences, Cornell UniversityIthacaUnited States
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| |
Collapse
|
6
|
Zeng M, Tang Z, Ren L, Wang H, Wang X, Zhu W, Mao X, Li Z, Mo X, Chen J, Han J, Kong D, Ji J, Carr AM, Liu C. Hepatitis B virus infection disrupts homologous recombination in hepatocellular carcinoma by stabilizing resection inhibitor ADRM1. J Clin Invest 2023; 133:e171533. [PMID: 37815873 PMCID: PMC10688980 DOI: 10.1172/jci171533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
Many cancers harbor homologous recombination defects (HRDs). A HRD is a therapeutic target that is being successfully utilized in treatment of breast/ovarian cancer via synthetic lethality. However, canonical HRD caused by BRCAness mutations do not prevail in liver cancer. Here we report a subtype of HRD caused by the perturbation of a proteasome variant (CDW19S) in hepatitis B virus-bearing (HBV-bearing) cells. This amalgamate protein complex contained the 19S proteasome decorated with CRL4WDR70 ubiquitin ligase, and assembled at broken chromatin in a PSMD4Rpn10- and ATM-MDC1-RNF8-dependent manner. CDW19S promoted DNA end processing via segregated modules that promote nuclease activities of MRE11 and EXO1. Contrarily, a proteasomal component, ADRM1Rpn13, inhibited resection and was removed by CRL4WDR70-catalyzed ubiquitination upon commitment of extensive resection. HBx interfered with ADRM1Rpn13 degradation, leading to the imposition of ADRM1Rpn13-dependent resection barrier and consequent viral HRD subtype distinguishable from that caused by BRCA1 defect. Finally, we demonstrated that viral HRD in HBV-associated hepatocellular carcinoma can be exploited to restrict tumor progression. Our work clarifies the underlying mechanism of a virus-induced HRD subtype.
Collapse
Affiliation(s)
- Ming Zeng
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zizhi Tang
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Laifeng Ren
- Department of Immunology, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, China
| | - Haibin Wang
- Department of Pediatric Surgery, Wuhan Children’s Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojun Wang
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wenyuan Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Xiaobing Mao
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zeyang Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Xianming Mo
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Chen
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Junhong Han
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Daochun Kong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Jianguo Ji
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Antony M. Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Cong Liu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Ren J, Yu P, Liu S, Li R, Niu X, Chen Y, Zhang Z, Zhou F, Zhang L. Deubiquitylating Enzymes in Cancer and Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303807. [PMID: 37888853 PMCID: PMC10754134 DOI: 10.1002/advs.202303807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/30/2023] [Indexed: 10/28/2023]
Abstract
Deubiquitylating enzymes (DUBs) maintain relative homeostasis of the cellular ubiquitome by removing the post-translational modification ubiquitin moiety from substrates. Numerous DUBs have been demonstrated specificity for cleaving a certain type of ubiquitin linkage or positions within ubiquitin chains. Moreover, several DUBs perform functions through specific protein-protein interactions in a catalytically independent manner, which further expands the versatility and complexity of DUBs' functions. Dysregulation of DUBs disrupts the dynamic equilibrium of ubiquitome and causes various diseases, especially cancer and immune disorders. This review summarizes the Janus-faced roles of DUBs in cancer including proteasomal degradation, DNA repair, apoptosis, and tumor metastasis, as well as in immunity involving innate immune receptor signaling and inflammatory and autoimmune disorders. The prospects and challenges for the clinical development of DUB inhibitors are further discussed. The review provides a comprehensive understanding of the multi-faced roles of DUBs in cancer and immunity.
Collapse
Affiliation(s)
- Jiang Ren
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Peng Yu
- Zhongshan Institute for Drug DiscoveryShanghai Institute of Materia MedicaChinese Academy of SciencesZhongshanGuangdongP. R. China
| | - Sijia Liu
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310058China
| | - Ran Li
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Xin Niu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Yan Chen
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Zhenyu Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450003P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| |
Collapse
|
8
|
Ascencao CFR, Sims JR, Dziubek A, Comstock W, Fogarty EA, Badar J, Freire R, Grimson A, Weiss RS, Cohen PE, Smolka M. A TOPBP1 Allele Causing Male Infertility Uncouples XY Silencing Dynamics From Sex Body Formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543071. [PMID: 37398453 PMCID: PMC10312512 DOI: 10.1101/2023.05.31.543071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Meiotic sex chromosome inactivation (MSCI) is a critical feature of meiotic prophase I progression in males. While the ATR kinase and its activator TOPBP1 are key drivers of MSCI within the specialized sex body (SB) domain of the nucleus, how they promote silencing remains unclear given their multifaceted meiotic functions that also include DNA repair, chromosome synapsis and SB formation. Here we report a novel mutant mouse harboring mutations in the TOPBP1-BRCT5 domain. Topbp1 B5/B5 males are infertile, with impaired MSCI despite displaying grossly normal events of early prophase I, including synapsis and SB formation. Specific ATR-dependent events are disrupted including phosphorylation and localization of the RNA:DNA helicase Senataxin. Topbp1 B5/B5 spermatocytes initiate, but cannot maintain ongoing, MSCI. These findings reveal a non-canonical role for the ATR-TOPBP1 signaling axis in MSCI dynamics at advanced stages in pachynema and establish the first mouse mutant that separates ATR signaling and MSCI from SB formation.
Collapse
|
9
|
Wang YL, Zhao WW, Shi J, Wan XB, Zheng J, Fan XJ. Liquid-liquid phase separation in DNA double-strand breaks repair. Cell Death Dis 2023; 14:746. [PMID: 37968256 PMCID: PMC10651886 DOI: 10.1038/s41419-023-06267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023]
Abstract
DNA double-strand breaks (DSBs) are the fatal type of DNA damage mostly induced by exposure genome to ionizing radiation or genotoxic chemicals. DSBs are mainly repaired by homologous recombination (HR) and nonhomologous end joining (NHEJ). To repair DSBs, a large amount of DNA repair factors was observed to be concentrated at the end of DSBs in a specific spatiotemporal manner to form a repair center. Recently, this repair center was characterized as a condensate derived from liquid-liquid phase separation (LLPS) of key DSBs repair factors. LLPS has been found to be the mechanism of membraneless organelles formation and plays key roles in a variety of biological processes. In this review, the recent advances and mechanisms of LLPS in the formation of DSBs repair-related condensates are summarized.
Collapse
Affiliation(s)
- Yun-Long Wang
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Wan-Wen Zhao
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Jie Shi
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Xiang-Bo Wan
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Jian Zheng
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Xin-Juan Fan
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China.
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, PR China.
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China.
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China.
| |
Collapse
|
10
|
Klonisch T, Logue SE, Hombach-Klonisch S, Vriend J. DUBing Primary Tumors of the Central Nervous System: Regulatory Roles of Deubiquitinases. Biomolecules 2023; 13:1503. [PMID: 37892185 PMCID: PMC10605193 DOI: 10.3390/biom13101503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
The ubiquitin proteasome system (UPS) utilizes an orchestrated enzymatic cascade of E1, E2, and E3 ligases to add single or multiple ubiquitin-like molecules as post-translational modification (PTM) to proteins. Ubiquitination can alter protein functions and/or mark ubiquitinated proteins for proteasomal degradation but deubiquitinases (DUBs) can reverse protein ubiquitination. While the importance of DUBs as regulatory factors in the UPS is undisputed, many questions remain on DUB selectivity for protein targeting, their mechanism of action, and the impact of DUBs on the regulation of diverse biological processes. Furthermore, little is known about the expression and role of DUBs in tumors of the human central nervous system (CNS). In this comprehensive review, we have used publicly available transcriptional datasets to determine the gene expression profiles of 99 deubiquitinases (DUBs) from five major DUB families in seven primary pediatric and adult CNS tumor entities. Our analysis identified selected DUBs as potential new functional players and biomarkers with prognostic value in specific subtypes of primary CNS tumors. Collectively, our analysis highlights an emerging role for DUBs in regulating CNS tumor cell biology and offers a rationale for future therapeutic targeting of DUBs in CNS tumors.
Collapse
Affiliation(s)
- Thomas Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- CancerCare Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Susan E. Logue
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- CancerCare Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Jerry Vriend
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
11
|
Abstract
High-risk human papillomaviruses (HPVs) are associated with several human cancers. HPVs are small, DNA viruses that rely on host cell machinery for viral replication. The HPV life cycle takes place in the stratified epithelium, which is composed of different cell states, including terminally differentiating cells that are no longer active in the cell cycle. HPVs have evolved mechanisms to persist and replicate in the stratified epithelium by hijacking and modulating cellular pathways, including the DNA damage response (DDR). HPVs activate and exploit DDR pathways to promote viral replication, which in turn increases the susceptibility of the host cell to genomic instability and carcinogenesis. Here, we review recent advances in our understanding of the regulation of the host cell DDR by high-risk HPVs during the viral life cycle and discuss the potential cellular consequences of modulating DDR pathways.
Collapse
Affiliation(s)
- Caleb J Studstill
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;
| | - Cary A Moody
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;
| |
Collapse
|
12
|
Sanati M, Afshari AR, Ahmadi SS, Moallem SA, Sahebkar A. Modulation of the ubiquitin-proteasome system by phytochemicals: Therapeutic implications in malignancies with an emphasis on brain tumors. Biofactors 2023; 49:782-819. [PMID: 37162294 DOI: 10.1002/biof.1958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
Regarding the multimechanistic nature of cancers, current chemo- or radiotherapies often fail to eradicate disease pathology, and frequent relapses or resistance to therapies occur. Brain malignancies, particularly glioblastomas, are difficult-to-treat cancers due to their highly malignant and multidimensional biology. Unfortunately, patients suffering from malignant tumors often experience poor prognoses and short survival periods. Thus far, significant efforts have been conducted to discover novel and more effective modalities. To that end, modulation of the ubiquitin-proteasome system (UPS) has attracted tremendous interest since it affects the homeostasis of proteins critically engaged in various cell functions, for example, cell metabolism, survival, proliferation, and differentiation. With their safe and multimodal actions, phytochemicals are among the promising therapeutic tools capable of turning the operation of various UPS elements. The present review, along with an updated outline of the role of UPS dysregulation in multiple cancers, provided a detailed discussion on the impact of phytochemicals on the UPS function in malignancies, especially brain tumors.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
- Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir R Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Adel Moallem
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Sachsenweger J, Jansche R, Merk T, Heitmeir B, Deniz M, Faust U, Roggia C, Tzschach A, Schroeder C, Riess A, Pospiech H, Peltoketo H, Pylkäs K, Winqvist R, Wiesmüller L. ABRAXAS1 orchestrates BRCA1 activities to counter genome destabilizing repair pathways-lessons from breast cancer patients. Cell Death Dis 2023; 14:328. [PMID: 37198153 DOI: 10.1038/s41419-023-05845-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023]
Abstract
It has been well-established that mutations in BRCA1 and BRCA2, compromising functions in DNA double-strand break repair (DSBR), confer hereditary breast and ovarian cancer risk. Importantly, mutations in these genes explain only a minor fraction of the hereditary risk and of the subset of DSBR deficient tumors. Our screening efforts identified two truncating germline mutations in the gene encoding the BRCA1 complex partner ABRAXAS1 in German early-onset breast cancer patients. To unravel the molecular mechanisms triggering carcinogenesis in these carriers of heterozygous mutations, we examined DSBR functions in patient-derived lymphoblastoid cells (LCLs) and in genetically manipulated mammary epithelial cells. By use of these strategies we were able to demonstrate that these truncating ABRAXAS1 mutations exerted dominant effects on BRCA1 functions. Interestingly, we did not observe haploinsufficiency regarding homologous recombination (HR) proficiency (reporter assay, RAD51-foci, PARP-inhibitor sensitivity) in mutation carriers. However, the balance was shifted to use of mutagenic DSBR-pathways. The dominant effect of truncated ABRAXAS1 devoid of the C-terminal BRCA1 binding site can be explained by retention of the N-terminal interaction sites for other BRCA1-A complex partners like RAP80. In this case BRCA1 was channeled from the BRCA1-A to the BRCA1-C complex, which induced single-strand annealing (SSA). Further truncation, additionally deleting the coiled-coil region of ABRAXAS1, unleashed excessive DNA damage responses (DDRs) de-repressing multiple DSBR-pathways including SSA and non-homologous end-joining (NHEJ). Our data reveal de-repression of low-fidelity repair activities as a common feature of cells from patients with heterozygous mutations in genes encoding BRCA1 and its complex partners.
Collapse
Affiliation(s)
- Juliane Sachsenweger
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Rebecca Jansche
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Tatjana Merk
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Benedikt Heitmeir
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Miriam Deniz
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Ulrike Faust
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Cristiana Roggia
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Andreas Tzschach
- Institute of Human Genetics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christopher Schroeder
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Angelika Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Helmut Pospiech
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Hellevi Peltoketo
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre, Oulu, Finland
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre, Oulu, Finland
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany.
| |
Collapse
|
14
|
Roggan MD, Kronenberg J, Wollert E, Hoffmann S, Nisar H, Konda B, Diegeler S, Liemersdorf C, Hellweg CE. Unraveling astrocyte behavior in the space brain: Radiation response of primary astrocytes. Front Public Health 2023; 11:1063250. [PMID: 37089489 PMCID: PMC10116417 DOI: 10.3389/fpubh.2023.1063250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/06/2023] [Indexed: 04/09/2023] Open
Abstract
IntroductionExposure to space conditions during crewed long-term exploration missions can cause several health risks for astronauts. Space radiation, isolation and microgravity are major limiting factors. The role of astrocytes in cognitive disturbances by space radiation is unknown. Astrocytes' response toward low linear energy transfer (LET) X-rays and high-LET carbon (12C) and iron (56Fe) ions was compared to reveal possible effects of space-relevant high-LET radiation. Since astronauts are exposed to ionizing radiation and microgravity during space missions, the effect of simulated microgravity on DNA damage induction and repair was investigated.MethodsPrimary murine cortical astrocytes were irradiated with different doses of X-rays, 12C and 56Fe ions at the heavy ion accelerator GSI. DNA damage and repair (γH2AX, 53BP1), cell proliferation (Ki-67), astrocytes' reactivity (GFAP) and NF-κB pathway activation (p65) were analyzed by immunofluorescence microscopy. Cell cycle progression was investigated by flow cytometry of DNA content. Gene expression changes after exposure to X- rays were investigated by mRNA-sequencing. RT-qPCR for several genes of interest was performed with RNA from X-rays- and heavy-ion-irradiated astrocytes: Cdkn1a, Cdkn2a, Gfap, Tnf, Il1β, Il6, and Tgfβ1. Levels of the pro inflammatory cytokine IL-6 were determined using ELISA. DNA damage response was investigated after exposure to X-rays followed by incubation on a 2D clinostat to simulate the conditions of microgravity.ResultsAstrocytes showed distinct responses toward the three different radiation qualities. Induction of radiation-induced DNA double strand breaks (DSBs) and the respective repair was dose-, LET- and time-dependent. Simulated microgravity had no significant influence on DNA DSB repair. Proliferation and cell cycle progression was not affected by radiation qualities examined in this study. Astrocytes expressed IL-6 and GFAP with constitutive NF-κB activity independent of radiation exposure. mRNA sequencing of X-irradiated astrocytes revealed downregulation of 66 genes involved in DNA damage response and repair, mitosis, proliferation and cell cycle regulation.DiscussionIn conclusion, primary murine astrocytes are DNA repair proficient irrespective of radiation quality. Only minor gene expression changes were observed after X-ray exposure and reactivity was not induced. Co-culture of astrocytes with microglial cells, brain organoids or organotypic brain slice culture experiments might reveal whether astrocytes show a more pronounced radiation response in more complex network architectures in the presence of other neuronal cell types.
Collapse
Affiliation(s)
- Marie Denise Roggan
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jessica Kronenberg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Microgravity User Support Center (MUSC), German Aerospace Center (DLR), Cologne, Germany
| | - Esther Wollert
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Sven Hoffmann
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Hasan Nisar
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Medical Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Bikash Konda
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Sebastian Diegeler
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Christian Liemersdorf
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Christine E. Hellweg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- *Correspondence: Christine E. Hellweg
| |
Collapse
|
15
|
Lin XH, Li DP, Liu ZY, Zhang S, Tang WQ, Chen RX, Weng SQ, Tseng YJ, Xue RY, Dong L. Six immune-related promising biomarkers may promote hepatocellular carcinoma prognosis: a bioinformatics analysis and experimental validation. Cancer Cell Int 2023; 23:52. [PMID: 36959615 PMCID: PMC10035283 DOI: 10.1186/s12935-023-02888-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/23/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Abnormal miRNA and mRNA expression and dysregulated immune microenvironment have been found to frequently induce the progression of hepatocellular carcinoma (HCC) in recent reports. In particular, the immune-related competing endogenous RNAs (ceRNA) mechanism plays a crucial role in HCC progression. However, the underlying mechanisms remain unclear. METHODS Differentially expressed immune-related genes were obtained from the Immport, GEO, and TCGA databases. The mRNA and protein expression levels in HCC tissues and adjacent normal tissues were confirmed, and we further investigated the methylation levels of these biomarkers to explore their function. Then, the TIMER and TISCH databases were used to assess the relationship between immune infiltration and hub genes. Survival analysis and univariate and multivariate Cox models were used to evaluate the association between hub genes and HCC diagnosis. Hub gene expression was experimentally validated in six HCC cell lines and 15 HCC samples using qRT-PCR and immunohistochemistry. The hub genes were uploaded to DSigDB for drug prediction enrichment analysis. RESULTS We identified that patients with abnormal miRNAs (hsa-miR-125b-5p and hsa-miR-21-5p) and their targeted genes (NTF3, PSMD14, CD320, and SORT1) had a worse prognosis. Methylation analysis of miRNA-targeted genes suggested that alteration of methylation levels is also a factor in the induction of tumorigenesis. We also found that the development of HCC progression caused by miRNA-mRNA interactions may be closely correlated with the infiltration of immunocytes. Moreover, the GSEA, GO, and KEGG analysis suggested that several common immune-related biological processes and pathways were related to miRNA-targeted genes. The results of qRT-PCR, immunohistochemistry, and western blotting were consistent with our bioinformatics results, suggesting that abnormal miRNAs and their targeted genes may affect HCC progression. CONCLUSIONS Briefly, our study systematically describes the mechanisms of miRNA-mRNA interactions in HCC and predicts promising biomarkers that are associated with immune filtration for HCC progression.
Collapse
Affiliation(s)
- Xia-Hui Lin
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Disease, Shanghai, 200032, China
| | - Dong-Ping Li
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Disease, Shanghai, 200032, China
| | - Zhi-Yong Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Disease, Shanghai, 200032, China
| | - Si Zhang
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Wen-Qing Tang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Disease, Shanghai, 200032, China
| | - Rong-Xin Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shu-Qiang Weng
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Disease, Shanghai, 200032, China.
| | - Yu-Jen Tseng
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China.
| | - Ru-Yi Xue
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Disease, Shanghai, 200032, China.
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Disease, Shanghai, 200032, China.
| |
Collapse
|
16
|
Rass E, Willaume S, Bertrand P. 53BP1: Keeping It under Control, Even at a Distance from DNA Damage. Genes (Basel) 2022; 13:genes13122390. [PMID: 36553657 PMCID: PMC9778356 DOI: 10.3390/genes13122390] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Double-strand breaks (DSBs) are toxic lesions that can be generated by exposure to genotoxic agents or during physiological processes, such as during V(D)J recombination. The repair of these DSBs is crucial to prevent genomic instability and to maintain cellular homeostasis. Two main pathways participate in repairing DSBs, namely, non-homologous end joining (NHEJ) and homologous recombination (HR). The P53-binding protein 1 (53BP1) plays a pivotal role in the choice of DSB repair mechanism, promotes checkpoint activation and preserves genome stability upon DSBs. By preventing DSB end resection, 53BP1 promotes NHEJ over HR. Nonetheless, the balance between DSB repair pathways remains crucial, as unscheduled NHEJ or HR events at different phases of the cell cycle may lead to genomic instability. Therefore, the recruitment of 53BP1 to chromatin is tightly regulated and has been widely studied. However, less is known about the mechanism regulating 53BP1 recruitment at a distance from the DNA damage. The present review focuses on the mechanism of 53BP1 recruitment to damage and on recent studies describing novel mechanisms keeping 53BP1 at a distance from DSBs.
Collapse
Affiliation(s)
- Emilie Rass
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Correspondence:
| | - Simon Willaume
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
| | - Pascale Bertrand
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
| |
Collapse
|
17
|
DNA Damage Response Regulation by Histone Ubiquitination. Int J Mol Sci 2022; 23:ijms23158187. [PMID: 35897775 PMCID: PMC9332593 DOI: 10.3390/ijms23158187] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022] Open
Abstract
Cells are constantly exposed to numerous genotoxic stresses that induce DNA damage. DNA double-strand breaks (DSBs) are among the most serious damages and should be systematically repaired to preserve genomic integrity. The efficiency of repair is closely associated with chromatin structure, which is regulated by posttranslational modifications of histones, including ubiquitination. Recent evidence shows crosstalk between histone ubiquitination and DNA damage responses, suggesting an integrated model for the systematic regulation of DNA repair. There are two major pathways for DSB repair, viz., nonhomologous end joining and homologous recombination, and the choice of the pathway is partially controlled by posttranslational modifications of histones, including ubiquitination. Histone ubiquitination changes chromatin structure in the vicinity of DSBs and serves as a platform to select and recruit repair proteins; the removal of these modifications by deubiquitinating enzymes suppresses the recruitment of repair proteins and promotes the convergence of repair reactions. This article provides a comprehensive overview of the DNA damage response regulated by histone ubiquitination in response to DSBs.
Collapse
|
18
|
Shams F, Bayat H, Mohammadian O, Mahboudi S, Vahidnezhad H, Soosanabadi M, Rahimpour A. Advance trends in targeting homology-directed repair for accurate gene editing: An inclusive review of small molecules and modified CRISPR-Cas9 systems. BIOIMPACTS 2022; 12:371-391. [PMID: 35975201 PMCID: PMC9376165 DOI: 10.34172/bi.2022.23871] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/21/2021] [Accepted: 11/21/2021] [Indexed: 11/25/2022]
Abstract
![]()
Introduction: Clustered regularly interspaced short palindromic repeat and its associated protein (CRISPR-Cas)-based technologies generate targeted modifications in host genome by inducing site-specific double-strand breaks (DSBs) that can serve as a substrate for homology-directed repair (HDR) in both in vitro and in vivo models. HDR pathway could enhance incorporation of exogenous DNA templates into the CRISPR-Cas9-mediated DSB site. Owing to low rate of HDR pathway, the efficiency of accurate genome editing is diminished. Enhancing the efficiency of HDR can provide fast, easy, and accurate technologies based on CRISPR-Cas9 technologies.
Methods: The current study presents an overview of attempts conducted on the precise genome editing strategies based on small molecules and modified CRISPR-Cas9 systems.
Results: In order to increase HDR rate in targeted cells, several logical strategies have been introduced such as generating CRISPR effector chimeric proteins, anti-CRISPR proteins, modified Cas9 with donor template, and using validated synthetic or natural small molecules for either inhibiting non-homologous end joining (NHEJ), stimulating HDR, or synchronizing cell cycle. Recently, high-throughput screening methods have been applied for identification of small molecules which along with the CRISPR system can regulate precise genome editing through HDR.
Conclusion: The stimulation of HDR components or inhibiting NHEJ can increase the accuracy of CRISPR-Cas-mediated engineering systems. Generating chimeric programmable endonucleases provide this opportunity to direct DNA template close proximity of CRISPR-Cas-mediated DSB. Small molecules and their derivatives can also proficiently block or activate certain DNA repair pathways and bring up novel perspectives for increasing HDR efficiency, especially in human cells. Further, high throughput screening of small molecule libraries could result in more discoveries of promising chemicals that improve HDR efficiency and CRISPR-Cas9 systems.
Collapse
Affiliation(s)
- Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Bayat
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Mohammadian
- Medical Nano-Technology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Mahboudi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Hassan Vahidnezhad
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mohsen Soosanabadi
- Department of Medical Genetics, Semnan University of Medical Sciences, Semnan, Iran
| | - Azam Rahimpour
- Medical Nano-Technology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Structural and Functional Basis of JAMM Deubiquitinating Enzymes in Disease. Biomolecules 2022; 12:biom12070910. [PMID: 35883466 PMCID: PMC9313428 DOI: 10.3390/biom12070910] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Deubiquitinating enzymes (DUBs) are a group of proteases that are important for maintaining cell homeostasis by regulating the balance between ubiquitination and deubiquitination. As the only known metalloproteinase family of DUBs, JAB1/MPN/Mov34 metalloenzymes (JAMMs) are specifically associated with tumorigenesis and immunological and inflammatory diseases at multiple levels. The far smaller numbers and distinct catalytic mechanism of JAMMs render them attractive drug targets. Currently, several JAMM inhibitors have been successfully developed and have shown promising therapeutic efficacy. To gain greater insight into JAMMs, in this review, we focus on several key proteins in this family, including AMSH, AMSH-LP, BRCC36, Rpn11, and CSN5, and emphatically discuss their structural basis, diverse functions, catalytic mechanism, and current reported inhibitors targeting JAMMs. These advances set the stage for the exploitation of JAMMs as a target for the treatment of various diseases.
Collapse
|
20
|
Spataro V, Buetti-Dinh A. POH1/Rpn11/PSMD14: a journey from basic research in fission yeast to a prognostic marker and a druggable target in cancer cells. Br J Cancer 2022; 127:788-799. [PMID: 35501388 PMCID: PMC9428165 DOI: 10.1038/s41416-022-01829-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
POH1/Rpn11/PSMD14 is a highly conserved protein in eukaryotes from unicellular organisms to human and has a crucial role in cellular homoeostasis. It is a subunit of the regulatory particle of the proteasome, where it acts as an intrinsic deubiquitinase removing polyubiquitin chains from substrate proteins. This function is not only coupled to the translocation of substrates into the core of the proteasome and their subsequent degradation but also, in some instances, to the stabilisation of ubiquitinated proteins through their deubiquitination. POH1 was initially discovered as a functional homologue of the fission yeast gene pad1+, which confers drug resistance when overexpressed. In translational studies, expression of POH1 has been found to be increased in several tumour types relative to normal adjacent tissue and to correlate with tumour progression, higher tumour grade, decreased sensitivity to cytotoxic drugs and poor prognosis. Proteasome inhibitors targeting the core particle of the proteasome are highly active in the treatment of myeloma, and recently developed POH1 inhibitors, such as capzimin and thiolutin, have shown promising anticancer activity in cell lines of solid tumours and leukaemia. Here we give an overview of POH1 function in the cell, of its potential role in oncogenesis and of recent progress in developing POH1-targeting drugs.
Collapse
Affiliation(s)
- Vito Spataro
- Service of Medical Oncology, Oncology Institute of Southern Switzerland (IOSI), Ospedale San Giovanni, Via Gallino, 6500, Bellinzona, Switzerland.
| | - Antoine Buetti-Dinh
- Institute of Microbiology, Department of Environmental Constructions and Design, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500, Bellinzona, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge, Batiment Genopode, 1015, Lausanne, Switzerland
| |
Collapse
|
21
|
Feng S, Ma S, Li K, Gao S, Ning S, Shang J, Guo R, Chen Y, Blumenfeld B, Simon I, Li Q, Guo R, Xu D. RIF1-ASF1-mediated high-order chromatin structure safeguards genome integrity. Nat Commun 2022; 13:957. [PMID: 35177609 PMCID: PMC8854732 DOI: 10.1038/s41467-022-28588-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 02/01/2022] [Indexed: 11/12/2022] Open
Abstract
The 53BP1-RIF1 pathway antagonizes resection of DNA broken ends and confers PARP inhibitor sensitivity on BRCA1-mutated tumors. However, it is unclear how this pathway suppresses initiation of resection. Here, we identify ASF1 as a partner of RIF1 via an interacting manner similar to its interactions with histone chaperones CAF-1 and HIRA. ASF1 is recruited to distal chromatin flanking DNA breaks by 53BP1-RIF1 and promotes non-homologous end joining (NHEJ) using its histone chaperone activity. Epistasis analysis shows that ASF1 acts in the same NHEJ pathway as RIF1, but via a parallel pathway with the shieldin complex, which suppresses resection after initiation. Moreover, defects in end resection and homologous recombination (HR) in BRCA1-deficient cells are largely suppressed by ASF1 deficiency. Mechanistically, ASF1 compacts adjacent chromatin by heterochromatinization to protect broken DNA ends from BRCA1-mediated resection. Taken together, our findings identify a RIF1-ASF1 histone chaperone complex that promotes changes in high-order chromatin structure to stimulate the NHEJ pathway for DSB repair. The 53BP1-RIF1 pathway is important for DNA repair. Here, the authors identified the histone chaperone ASF1, which functions as a suppressor of DNA end resection through changing high-order chromatin structure, as a partner of RIF1. This finding links DNA repair and dynamic changes of high-order chromatin structure.
Collapse
Affiliation(s)
- Sumin Feng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Sai Ma
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Kejiao Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Shengxian Gao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Shaokai Ning
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Jinfeng Shang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Ruiyuan Guo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Yingying Chen
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Britny Blumenfeld
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem, 91120, Israel
| | - Itamar Simon
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem, 91120, Israel
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Rong Guo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Dongyi Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China.
| |
Collapse
|
22
|
ATM's Role in the Repair of DNA Double-Strand Breaks. Genes (Basel) 2021; 12:genes12091370. [PMID: 34573351 PMCID: PMC8466060 DOI: 10.3390/genes12091370] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Ataxia telangiectasia mutated (ATM) is a central kinase that activates an extensive network of responses to cellular stress via a signaling role. ATM is activated by DNA double strand breaks (DSBs) and by oxidative stress, subsequently phosphorylating a plethora of target proteins. In the last several decades, newly developed molecular biological techniques have uncovered multiple roles of ATM in response to DNA damage-e.g., DSB repair, cell cycle checkpoint arrest, apoptosis, and transcription arrest. Combinational dysfunction of these stress responses impairs the accuracy of repair, consequently leading to dramatic sensitivity to ionizing radiation (IR) in ataxia telangiectasia (A-T) cells. In this review, we summarize the roles of ATM that focus on DSB repair.
Collapse
|
23
|
Hussain SS, Majumdar R, Moore GM, Narang H, Buechelmaier E, Bazil MJ, Ravindran PT, Leeman J, Li Y, Jalan M, Anderson KS, Farina A, Soni R, Mohibullah N, Hamzic E, Rong-Mullins X, Sifuentes C, Damerla RR, Viale A, Powell SN, Higginson D. Measuring nonhomologous end-joining, homologous recombination and alternative end-joining simultaneously at an endogenous locus in any transfectable human cell. Nucleic Acids Res 2021; 49:e74. [PMID: 33877327 PMCID: PMC8287935 DOI: 10.1093/nar/gkab262] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023] Open
Abstract
Double strand break (DSB) repair primarily occurs through 3 pathways: non-homologous end-joining (NHEJ), alternative end-joining (Alt-EJ), and homologous recombination (HR). Typical methods to measure pathway usage include integrated cassette reporter assays or visualization of DNA damage induced nuclear foci. It is now well understood that repair of Cas9-induced breaks also involves NHEJ, Alt-EJ, and HR pathways, providing a new format to measure pathway usage. Here, we have developed a simple Cas9-based system with validated repair outcomes that accurately represent each pathway and then converted it to a droplet digital PCR (ddPCR) readout, thus obviating the need for Next Generation Sequencing and bioinformatic analysis with the goal to make Cas9-based system accessible to more laboratories. The assay system has reproduced several important insights. First, absence of the key Alt-EJ factor Pol θ only abrogates ∼50% of total Alt-EJ. Second, single-strand templated repair (SSTR) requires BRCA1 and MRE11 activity, but not BRCA2, establishing that SSTR commonly used in genome editing is not conventional HR. Third, BRCA1 promotes Alt-EJ usage at two-ended DSBs in contrast to BRCA2. This assay can be used in any system, which permits Cas9 delivery and, importantly, allows rapid genotype-to-phenotype correlation in isogenic cell line pairs.
Collapse
Affiliation(s)
- Suleman S Hussain
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rahul Majumdar
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Grace M Moore
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Himanshi Narang
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Erika S Buechelmaier
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medicine, Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Maximilian J Bazil
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Jonathan E Leeman
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02189, USA
| | - Yi Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Manisha Jalan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kyrie S Anderson
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrea Farina
- Integrated Genomics Operations, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rekha Soni
- Integrated Genomics Operations, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Neeman Mohibullah
- Integrated Genomics Operations, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Edin Hamzic
- Biocomputix, Sarajevo, 71000, Bosnia and Herzegovina
| | - Xiaoqing Rong-Mullins
- Department of Biostatistics, The Ohio State University College of Public Health, Columbus, OH 43210, USA
| | | | - Rama R Damerla
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Agnes Viale
- Integrated Genomics Operations, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Simon N Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daniel S Higginson
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
24
|
Ackerson SM, Romney C, Schuck PL, Stewart JA. To Join or Not to Join: Decision Points Along the Pathway to Double-Strand Break Repair vs. Chromosome End Protection. Front Cell Dev Biol 2021; 9:708763. [PMID: 34322492 PMCID: PMC8311741 DOI: 10.3389/fcell.2021.708763] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/17/2021] [Indexed: 01/01/2023] Open
Abstract
The regulation of DNA double-strand breaks (DSBs) and telomeres are diametrically opposed in the cell. DSBs are considered one of the most deleterious forms of DNA damage and must be quickly recognized and repaired. Telomeres, on the other hand, are specialized, stable DNA ends that must be protected from recognition as DSBs to inhibit unwanted chromosome fusions. Decisions to join DNA ends, or not, are therefore critical to genome stability. Yet, the processing of telomeres and DSBs share many commonalities. Accordingly, key decision points are used to shift DNA ends toward DSB repair vs. end protection. Additionally, DSBs can be repaired by two major pathways, namely homologous recombination (HR) and non-homologous end joining (NHEJ). The choice of which repair pathway is employed is also dictated by a series of decision points that shift the break toward HR or NHEJ. In this review, we will focus on these decision points and the mechanisms that dictate end protection vs. DSB repair and DSB repair choice.
Collapse
Affiliation(s)
- Stephanie M Ackerson
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - Carlan Romney
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - P Logan Schuck
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - Jason A Stewart
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
25
|
Fhu CW, Ali A. Dysregulation of the Ubiquitin Proteasome System in Human Malignancies: A Window for Therapeutic Intervention. Cancers (Basel) 2021; 13:cancers13071513. [PMID: 33805973 PMCID: PMC8037609 DOI: 10.3390/cancers13071513] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The ubiquitin proteasome system (UPS) governs the non-lysosomal degradation of oxidized, damaged, or misfolded proteins in eukaryotic cells. Dysregulation of the UPS results in loss of ability to maintain protein quality through proteolysis, and is closely related to the development of various malignancies and tumorigenesis. Here, we provide a comprehensive general overview on the regulation and roles of UPS and discuss the mechanisms linking dysregulated UPS to human malignancies. Inhibitors developed against components of the UPS, which include U.S. Food and Drug Administration FDA-approved and those currently undergoing clinical trials, are also presented in this review. Abstract The ubiquitin proteasome system (UPS) governs the non-lysosomal degradation of oxidized, damaged, or misfolded proteins in eukaryotic cells. This process is tightly regulated through the activation and transfer of polyubiquitin chains to target proteins which are then recognized and degraded by the 26S proteasome complex. The role of UPS is crucial in regulating protein levels through degradation to maintain fundamental cellular processes such as growth, division, signal transduction, and stress response. Dysregulation of the UPS, resulting in loss of ability to maintain protein quality through proteolysis, is closely related to the development of various malignancies and tumorigenesis. Here, we provide a comprehensive general overview on the regulation and roles of UPS and discuss functional links of dysregulated UPS in human malignancies. Inhibitors developed against components of the UPS, which include U.S. Food and Drug Administration FDA-approved and those currently undergoing clinical trials, are also presented in this review.
Collapse
|
26
|
Nakamura K, Kustatscher G, Alabert C, Hödl M, Forne I, Völker-Albert M, Satpathy S, Beyer TE, Mailand N, Choudhary C, Imhof A, Rappsilber J, Groth A. Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination. Mol Cell 2021; 81:1084-1099.e6. [PMID: 33450211 PMCID: PMC7939521 DOI: 10.1016/j.molcel.2020.12.025] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/29/2022]
Abstract
Cells have evolved an elaborate DNA repair network to ensure complete and accurate DNA replication. Defects in these repair machineries can fuel genome instability and drive carcinogenesis while creating vulnerabilities that may be exploited in therapy. Here, we use nascent chromatin capture (NCC) proteomics to characterize the repair of replication-associated DNA double-strand breaks (DSBs) triggered by topoisomerase 1 (TOP1) inhibitors. We reveal profound changes in the fork proteome, including the chromatin environment and nuclear membrane interactions, and identify three classes of repair factors according to their enrichment at broken and/or stalled forks. ATM inhibition dramatically rewired the broken fork proteome, revealing that ataxia telangiectasia mutated (ATM) signalling stimulates DNA end resection, recruits PLK1, and concomitantly suppresses the canonical DSB ubiquitination response by preventing accumulation of RNF168 and BRCA1-A. This work and collection of replication fork proteomes provide a new framework to understand how cells orchestrate homologous recombination repair of replication-associated DSBs.
Collapse
Affiliation(s)
- Kyosuke Nakamura
- The Novo Nordisk Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Georg Kustatscher
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Constance Alabert
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Martina Hödl
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ignasi Forne
- Biomedical Center, Chromatin Proteomics Group, Department of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg- Martinsried, Germany
| | - Moritz Völker-Albert
- Biomedical Center, Chromatin Proteomics Group, Department of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg- Martinsried, Germany
| | - Shankha Satpathy
- The Novo Nordisk Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Tracey E Beyer
- The Novo Nordisk Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Niels Mailand
- The Novo Nordisk Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Chunaram Choudhary
- The Novo Nordisk Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Axel Imhof
- Biomedical Center, Chromatin Proteomics Group, Department of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg- Martinsried, Germany
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK; Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany.
| | - Anja Groth
- The Novo Nordisk Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
27
|
Testicular Germ Cell Tumors Acquire Cisplatin Resistance by Rebalancing the Usage of DNA Repair Pathways. Cancers (Basel) 2021; 13:cancers13040787. [PMID: 33668653 PMCID: PMC7917736 DOI: 10.3390/cancers13040787] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/27/2021] [Accepted: 02/08/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Germ cell tumors are a model of curable solid tumors due to their unique sensitivity to cisplatin-based chemotherapy. Patients are typically young adults, and despite high cure rate, about 20% of them do not achieve remission or relapse, and 50% of them succumb to the disease. The mechanisms behind their resistance to therapy are largely unknown. By using Testicular Germ Cell Tumor (TGCT) cell lines as a model, we investigated the mechanism of acquired resistance to cisplatin. We demonstrated that resistance occurred by a fine modulation of the DNA repair pathway choice. Namely, in resistant cells, repair of double-strand breaks by non-homologous end joining was dampened by the reduced expression of TP53-binding protein 1 (53BP1) and DNA-dependent protein kinase (DNA-PKcs). However, cisplatin-induced damage was repaired efficiently by homologous recombination. Additionally, we demonstrate that pharmacological inhibition of poly (ADP-ribose) polymerase (PARP) combined with cisplatin had an additive/synergistic effect on cisplatin-resistant cells, which represents the proof of concept for introducing PARP inhibitors in salvage therapy. Abstract Despite germ cell tumors (GCTs) responding to cisplatin-based chemotherapy at a high rate, a subset of patients does not respond to treatment and have significantly worse prognosis. The biological mechanisms underlying the resistance remain unknown. In this study, by using two TGCT cell lines that have acquired cisplatin resistance after chronic exposure to the drug, we identified some key proteins and mechanisms of acquired resistance. We show that cisplatin-resistant cell lines had a non-homologous end-joining (NHEJ)-less phenotype. This correlated with a reduced basal expression of TP53-binding protein 1 (53BP1) and DNA-dependent protein kinase (DNA-PKcs) proteins and reduced formation of 53BP1 foci after cisplatin treatment. Consistent with these observations, modulation of 53BP1 protein expression altered the cell line’s resistance to cisplatin, and inhibition of DNA-PKcs activity antagonized cisplatin cytotoxicity. Dampening of NHEJ was accompanied by a functional increase in the repair of DNA double-strand breaks (DSBs) by the homologous recombination repair pathway. As a result, cisplatin-resistant cells were more resistant to PARP inhibitor (PARPi) monotherapy. Moreover, when PARPi was given in combination with cisplatin, it exerted an additive/synergistic effect, and reduced the cisplatin dose for cytotoxicity. These results suggest that treatment of cisplatin-refractory patients may benefit from low-dose cisplatin therapy combined with PARPi.
Collapse
|
28
|
Li Y, Yuan J. Role of deubiquitinating enzymes in DNA double-strand break repair. J Zhejiang Univ Sci B 2021; 22:63-72. [PMID: 33448188 DOI: 10.1631/jzus.b2000309] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
DNA is the hereditary material in humans and almost all other organisms. It is essential for maintaining accurate transmission of genetic information. In the life cycle, DNA replication, cell division, or genome damage, including that caused by endogenous and exogenous agents, may cause DNA aberrations. Of all forms of DNA damage, DNA double-strand breaks (DSBs) are the most serious. If the repair function is defective, DNA damage may cause gene mutation, genome instability, and cell chromosome loss, which in turn can even lead to tumorigenesis. DNA damage can be repaired through multiple mechanisms. Homologous recombination (HR) and non-homologous end joining (NHEJ) are the two main repair mechanisms for DNA DSBs. Increasing amounts of evidence reveal that protein modifications play an essential role in DNA damage repair. Protein deubiquitination is a vital post-translational modification which removes ubiquitin molecules or polyubiquitinated chains from substrates in order to reverse the ubiquitination reaction. This review discusses the role of deubiquitinating enzymes (DUBs) in repairing DNA DSBs. Exploring the molecular mechanisms of DUB regulation in DSB repair will provide new insights to combat human diseases and develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Yunhui Li
- The Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jian Yuan
- The Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China. .,Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
29
|
Repair Kinetics of DNA Double Strand Breaks Induced by Simulated Space Radiation. Life (Basel) 2020; 10:life10120341. [PMID: 33321941 PMCID: PMC7763067 DOI: 10.3390/life10120341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/26/2022] Open
Abstract
Radiation is unavoidable in space. Energetic particles in space radiation are reported to induce cluster DNA damage that is difficult to repair. In this study, normal human fibroblasts were irradiated with components of space radiation such as proton, helium, or carbon ion beams. Immunostaining for γ-H2AX and 53BP1 was performed over time to evaluate the kinetics of DNA damage repair. Our data clearly show that the repair kinetics of DNA double strand breaks (DSBs) induced by carbon ion irradiation, which has a high linear energy transfer (LET), are significantly slower than those of proton and helium ion irradiation. Mixed irradiation with carbon ions, followed by helium ions, did not have an additive effect on the DSB repair kinetics. Interestingly, the mean γ-H2AX focus size was shown to increase with LET, suggesting that the delay in repair kinetics was due to damage that is more complex. Further, the 53BP1 focus size also increased in an LET-dependent manner. Repair of DSBs, characterized by large 53BP1 foci, was a slow process within the biphasic kinetics of DSB repair, suggesting non-homologous end joining with error-prone end resection. Our data suggest that the biological effects of space radiation may be significantly influenced by the dose as well as the type of radiation exposure.
Collapse
|
30
|
Rabl J. BRCA1-A and BRISC: Multifunctional Molecular Machines for Ubiquitin Signaling. Biomolecules 2020; 10:biom10111503. [PMID: 33142801 PMCID: PMC7692841 DOI: 10.3390/biom10111503] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
The K63-linkage specific deubiquitinase BRCC36 forms the core of two multi-subunit deubiquitination complexes: BRCA1-A and BRISC. BRCA1-A is recruited to DNA repair foci, edits ubiquitin signals on chromatin, and sequesters BRCA1 away from the site of damage, suppressing homologous recombination by limiting resection. BRISC forms a complex with metabolic enzyme SHMT2 and regulates the immune response, mitosis, and hematopoiesis. Almost two decades of research have revealed how BRCA1-A and BRISC use the same core of subunits to perform very distinct biological tasks.
Collapse
Affiliation(s)
- Julius Rabl
- Cryo-EM Knowledge Hub, ETH Zürich, Otto-Stern-Weg 3, HPM C51, 8093 Zürich, Switzerland
| |
Collapse
|
31
|
Shibata A, Jeggo PA. Roles for the DNA-PK complex and 53BP1 in protecting ends from resection during DNA double-strand break repair. JOURNAL OF RADIATION RESEARCH 2020; 61:718-726. [PMID: 32779701 PMCID: PMC7482155 DOI: 10.1093/jrr/rraa053] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/29/2020] [Accepted: 12/19/2019] [Indexed: 05/04/2023]
Abstract
p53-binding protein 1 (53BP1) exerts distinct impacts in different situations involving DNA double-strand break (DSB) rejoining. Here we focus on how 53BP1 impacts upon the repair of ionising radiation-induced DSBs (IR-DSBs) and how it interfaces with Ku, the DNA end-binding component of canonical non-homologous end-joining (c-NHEJ), the major DSB repair pathway in mammalian cells. We delineate three forms of IR-DSB repair: resection-independent c-NHEJ, which rejoins most IR-DSBs with fast kinetics in G1 and G2, and Artemis and resection-dependent c-NHEJ and homologous recombination (HR), which repair IR-DSBs with slow kinetics in G1 and G2 phase, respectively. The fast component of DSB repair after X-ray exposure occurs via c-NHEJ with normal kinetics in the absence of 53BP1. Ku is highly abundant and has avid DNA end-binding capacity which restricts DNA end-resection and promotes resection-independent c-NHEJ at most IR-DSBs. Thus, 53BP1 is largely dispensable for resection-independent c-NHEJ. In contrast, 53BP1 is essential for the process of rejoining IR-DSBs with slow kinetics. This role requires 53BP1's breast cancer susceptibility gene I (BRCA1) C-terminal (BRCT) 2 domain, persistent ataxia telangiectasia mutated (ATM) activation and potentially relaxation of compacted chromatin at heterochromatic-DSBs. In distinction, 53BP1 inhibits resection-dependent IR-DSB repair in G1 and G2, and this resection-inhibitory function can be counteracted by BRCA1. We discuss a model whereby most IR-DSBs are rapidly repaired by 53BP1-independent and resection-independent c-NHEJ due to the ability of Ku to inhibit resection, but, if delayed, then resection in the presence of Ku is triggered, the 53BP1 barrier comes into force and BRCA1 counteraction is required for resection.
Collapse
Affiliation(s)
- Atsushi Shibata
- Signal Transduction Program, Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan
| | - Penny A Jeggo
- Genome Damage and Stability Centre, School of Life Sciences, East Sussex BN19RQ, UK
- Corresponding author. Genome Damage and Stability Centre, School of Life Sciences, East Sussex BN19RQ, UK. Tel: 0044 1273 678482; Fax: 0044 1273 678121;
| |
Collapse
|
32
|
Shibata A, Jeggo PA. Roles for 53BP1 in the repair of radiation-induced DNA double strand breaks. DNA Repair (Amst) 2020; 93:102915. [DOI: 10.1016/j.dnarep.2020.102915] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Regulation of Histone Ubiquitination in Response to DNA Double Strand Breaks. Cells 2020; 9:cells9071699. [PMID: 32708614 PMCID: PMC7407225 DOI: 10.3390/cells9071699] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Eukaryotic cells are constantly exposed to both endogenous and exogenous stressors that promote the induction of DNA damage. Of this damage, double strand breaks (DSBs) are the most lethal and must be efficiently repaired in order to maintain genomic integrity. Repair of DSBs occurs primarily through one of two major pathways: non-homologous end joining (NHEJ) or homologous recombination (HR). The choice between these pathways is in part regulated by histone post-translational modifications (PTMs) including ubiquitination. Ubiquitinated histones not only influence transcription and chromatin architecture at sites neighboring DSBs but serve as critical recruitment platforms for repair machinery as well. The reversal of these modifications by deubiquitinating enzymes (DUBs) is increasingly being recognized in a number of cellular processes including DSB repair. In this context, DUBs ensure proper levels of ubiquitin, regulate recruitment of downstream effectors, dictate repair pathway choice, and facilitate appropriate termination of the repair response. This review outlines the current understanding of histone ubiquitination in response to DSBs, followed by a comprehensive overview of the DUBs that catalyze the removal of these marks.
Collapse
|
34
|
DNA double-strand break end resection: a critical relay point for determining the pathway of repair and signaling. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s42764-020-00017-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractA DNA double-strand break (DSB) is considered the most critical DNA lesion because it causes cell death and severe mutations if it is not repaired or repaired incorrectly. Accumulating evidence has shown that the majority of DSBs are repaired by DNA non-homologous end joining (NHEJ), the first utilized repair pathway in human cells. In contrast, the repair pathway is sometimes diverted into using homologous recombination (HR), which has increased precision under specific circumstances: e.g., when DSBs are generated at transcriptionally active loci or are not readily repaired due to the complexity of damage at the DSB ends or due to highly compacted chromatin. DSB end resection (resection) is considered the most critical turning point for directing repair towards HR. After resection, the HR process is finalized by RAD51 loading and recombination. Thus, understanding the process of resection is critically important to understand the regulation of the choice of DSB repair pathway. In addition, resection is also an important factor influencing DNA damage signaling because unresected ends preferentially activate ATM, whereas longer resected ends activate ATR. Thus, DSB end resection is a key relay point that determines the repair pathway and the signal balance. In this review, we summarize the mechanism underlying DSB end resection and further discuss how it is involved in cancer therapy.
Collapse
|
35
|
Gatti V, Bernassola F, Talora C, Melino G, Peschiaroli A. The Impact of the Ubiquitin System in the Pathogenesis of Squamous Cell Carcinomas. Cancers (Basel) 2020; 12:1595. [PMID: 32560247 PMCID: PMC7352818 DOI: 10.3390/cancers12061595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023] Open
Abstract
The ubiquitin system is a dynamic regulatory pathway controlling the activity, subcellular localization and stability of a myriad of cellular proteins, which in turn affects cellular homeostasis through the regulation of a variety of signaling cascades. Aberrant activity of key components of the ubiquitin system has been functionally linked with numerous human diseases including the initiation and progression of human tumors. In this review, we will contextualize the importance of the two main components of the ubiquitin system, the E3 ubiquitin ligases (E3s) and deubiquitinating enzymes (DUBs), in the etiology of squamous cell carcinomas (SCCs). We will discuss the signaling pathways regulated by these enzymes, emphasizing the genetic and molecular determinants underlying their deregulation in SCCs.
Collapse
Affiliation(s)
- Veronica Gatti
- National Research Council of Italy, Institute of Translational Pharmacology, 00133 Rome, Italy;
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (F.B.); (G.M.)
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy;
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (F.B.); (G.M.)
| | - Angelo Peschiaroli
- National Research Council of Italy, Institute of Translational Pharmacology, 00133 Rome, Italy;
| |
Collapse
|
36
|
Tarsounas M, Sung P. The antitumorigenic roles of BRCA1-BARD1 in DNA repair and replication. Nat Rev Mol Cell Biol 2020; 21:284-299. [PMID: 32094664 PMCID: PMC7204409 DOI: 10.1038/s41580-020-0218-z] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2020] [Indexed: 11/09/2022]
Abstract
The tumour suppressor breast cancer type 1 susceptibility protein (BRCA1) promotes DNA double-strand break (DSB) repair by homologous recombination and protects DNA replication forks from attrition. BRCA1 partners with BRCA1-associated RING domain protein 1 (BARD1) and other tumour suppressor proteins to mediate the initial nucleolytic resection of DNA lesions and the recruitment and regulation of the recombinase RAD51. The discovery of the opposing functions of BRCA1 and the p53-binding protein 1 (53BP1)-associated complex in DNA resection sheds light on how BRCA1 influences the choice of homologous recombination over non-homologous end joining and potentially other mutagenic pathways of DSB repair. Understanding the functional crosstalk between BRCA1-BARD1 and its cofactors and antagonists will illuminate the molecular basis of cancers that arise from a deficiency or misregulation of chromosome damage repair and replication fork maintenance. Such knowledge will also be valuable for understanding acquired tumour resistance to poly(ADP-ribose) polymerase (PARP) inhibitors and other therapeutics and for the development of new treatments. In this Review, we discuss recent advances in elucidating the mechanisms by which BRCA1-BARD1 functions in DNA repair, replication fork maintenance and tumour suppression, and its therapeutic relevance.
Collapse
Affiliation(s)
- Madalena Tarsounas
- Genome Stability and Tumourigenesis Group, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK.
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
37
|
Zhang L, Xu H, Ma C, Zhang J, Zhao Y, Yang X, Wang S, Li D. Upregulation of deubiquitinase PSMD14 in lung adenocarcinoma (LUAD) and its prognostic significance. J Cancer 2020; 11:2962-2971. [PMID: 32226511 PMCID: PMC7086243 DOI: 10.7150/jca.39539] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/24/2020] [Indexed: 01/01/2023] Open
Abstract
PSMD14 is a 19S-proteasome-associated deubiquitinating enzyme that facilitates protein degradation by the 20S proteasome core particle. Although accumulating evidence indicates that PSMD14 has emerged as a critical oncogenic factor by promoting tumor growth, the expression and function of PSMD14 in non-small cell lung cancer (NSCLC) remain largely unknown. In this study, we assessed PSMD14 expression and correlated it with clinical-pathological features and patient survival in NSCLC. We also determined the roles of PSMD14 in the regulation of lung adenocarcinoma (LUAD) cell growth. The results showed that PSMD14 expression was significantly upregulated in human NSCLC tissues compared with adjacent non-cancerous tissues. The PSMD14 level was associated with tumor size, lymph node invasion, and TNM stage in LUAD patients. Importantly, high PSMD14 expression was associated with poor overall survival (OS) and disease-free survival (DFS) in LUAD patients. Further, knockdown of PSMD14 significantly inhibited cell growth and caused G1 arrest and cellular senescence by increasing p21 stability in LUAD cells. PSMD14 knockdown also promoted cell apoptosis by increasing cleaved caspase-3 levels in H1299 cells. PSMD14 may serve as a potential prognostic marker and therapeutic target for LUAD patients.
Collapse
Affiliation(s)
- Ling Zhang
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang W Rd, Suzhou, 215600, China
| | - Hui Xu
- Department of Thoracic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang W Rd, Suzhou, 215600, China
| | - Chunping Ma
- Department of Thoracic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang W Rd, Suzhou, 215600, China
| | - Jieru Zhang
- Department of Respiratory & Critical Care Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang W Rd, Suzhou, 215600, China
| | - Yuanjie Zhao
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang W Rd, Suzhou, 215600, China
| | - Xiaomei Yang
- Department of Emergency, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang W Rd, Suzhou, 215600, China
| | - Shusheng Wang
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang W Rd, Suzhou, 215600, China
| | - Dawei Li
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang W Rd, Suzhou, 215600, China
| |
Collapse
|
38
|
TIRR: a potential front runner in HDR race−hypotheses and perspectives. Mol Biol Rep 2020; 47:2371-2379. [DOI: 10.1007/s11033-020-05285-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/27/2020] [Indexed: 01/01/2023]
|
39
|
RAP80 and BRCA1 PARsylation protect chromosome integrity by preventing retention of BRCA1-B/C complexes in DNA repair foci. Proc Natl Acad Sci U S A 2020; 117:2084-2091. [PMID: 31932421 PMCID: PMC6995001 DOI: 10.1073/pnas.1908003117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Normally, BRCA1 promotes physiological, error-free homologous recombination repair (HRR) of damaged DNA and genome stability. In contrast, excessive, deregulated HRR can lead to genome instability. The BRCA1-binding protein RAP80 restricts HRR amplitude and genome instability, at least in part by manifesting polyubiquitin and poly-ADP-ribose binding activities in postdamage nuclear foci. Although how these processes operate in detail remains unknown, we find that simultaneous defects in RAP80/BRCA1 complex formation and in BRCA1 poly-ADP-ribosylation result in the persistent accumulation of BRCA1-containing complexes in nuclear foci that also contain CtIP and BACH1. These effects lead to excessive HRR, chromosomal hyper-recombination, and gross chromosomal abnormalities. BRCA1 promotes error-free, homologous recombination-mediated repair (HRR) of DNA double-stranded breaks (DSBs). When excessive and uncontrolled, BRCA1 HRR activity promotes illegitimate recombination and genome disorder. We and others have observed that the BRCA1-associated protein RAP80 recruits BRCA1 to postdamage nuclear foci, and these chromatin structures then restrict the amplitude of BRCA1-driven HRR. What remains unclear is how this process is regulated. Here we report that both BRCA1 poly-ADP ribosylation (PARsylation) and the presence of BRCA1-bound RAP80 are critical for the normal interaction of BRCA1 with some of its partners (e.g., CtIP and BACH1) that are also known components of the aforementioned focal structures. Surprisingly, the simultaneous loss of RAP80 and failure therein of BRCA1 PARsylation results in the dysregulated accumulation in these foci of BRCA1 complexes. This in turn is associated with the intracellular development of a state of hyper-recombination and gross chromosomal disorder. Thus, physiological RAP80-BRCA1 complex formation and BRCA1 PARsylation contribute to the kinetics by which BRCA1 HRR-sustaining complexes normally concentrate in nuclear foci. These events likely contribute to aneuploidy suppression.
Collapse
|
40
|
Garvin AJ. Beyond reversal: ubiquitin and ubiquitin-like proteases and the orchestration of the DNA double strand break repair response. Biochem Soc Trans 2019; 47:1881-1893. [PMID: 31769469 PMCID: PMC6925521 DOI: 10.1042/bst20190534] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022]
Abstract
The cellular response to genotoxic DNA double strand breaks (DSBs) uses a multitude of post-translational modifications to localise, modulate and ultimately clear DNA repair factors in a timely and accurate manner. Ubiquitination is well established as vital to the DSB response, with a carefully co-ordinated pathway of histone ubiquitination events being a central component of DSB signalling. Other ubiquitin-like modifiers (Ubl) including SUMO and NEDD8 have since been identified as playing important roles in DSB repair. In the last five years ∼20 additional Ub/Ubl proteases have been implicated in the DSB response. The number of proteases identified highlights the complexity of the Ub/Ubl signal present at DSBs. Ub/Ubl proteases regulate turnover, activity and protein-protein interactions of DSB repair factors both catalytically and non-catalytically. This not only ensures efficient repair of breaks but has a role in channelling repair into the correct DSB repair sub-pathways. Ultimately Ub/Ubl proteases have essential roles in maintaining genomic stability. Given that deficiencies in many Ub/Ubl proteases promotes sensitivity to DNA damaging chemotherapies, they could be attractive targets for cancer treatment.
Collapse
Affiliation(s)
- Alexander J. Garvin
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, U.K
| |
Collapse
|
41
|
Densham RM, Morris JR. Moving Mountains-The BRCA1 Promotion of DNA Resection. Front Mol Biosci 2019; 6:79. [PMID: 31552267 PMCID: PMC6733915 DOI: 10.3389/fmolb.2019.00079] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/20/2019] [Indexed: 12/26/2022] Open
Abstract
DNA double-strand breaks (DSBs) occur in our cells in the context of chromatin. This type of lesion is toxic, entirely preventing genome continuity and causing cell death or terminal arrest. Several repair mechanisms can act on DNA surrounding a DSB, only some of which carry a low risk of mutation, so that which repair process is utilized is critical to the stability of genetic material of cells. A key component of repair outcome is the degree of DNA resection directed to either side of the break site. This in turn determines the subsequent forms of repair in which DNA homology plays a part. Here we will focus on chromatin and chromatin-bound complexes which constitute the "mountains" that block resection, with a particular focus on how the breast and ovarian cancer predisposition protein-1 (BRCA1) contributes to repair outcomes through overcoming these blocks.
Collapse
Affiliation(s)
| | - Joanna R. Morris
- Birmingham Centre for Genome Biology, Institute of Cancer and Genomic Sciences, Medical and Dental Schools, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
42
|
Rabl J, Bunker RD, Schenk AD, Cavadini S, Gill ME, Abdulrahman W, Andrés-Pons A, Luijsterburg MS, Ibrahim AFM, Branigan E, Aguirre JD, Marceau AH, Guérillon C, Bouwmeester T, Hassiepen U, Peters AHFM, Renatus M, Gelman L, Rubin SM, Mailand N, van Attikum H, Hay RT, Thomä NH. Structural Basis of BRCC36 Function in DNA Repair and Immune Regulation. Mol Cell 2019; 75:483-497.e9. [PMID: 31253574 PMCID: PMC6695476 DOI: 10.1016/j.molcel.2019.06.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/30/2019] [Accepted: 05/31/2019] [Indexed: 01/03/2023]
Abstract
In mammals, ∼100 deubiquitinases act on ∼20,000 intracellular ubiquitination sites. Deubiquitinases are commonly regarded as constitutively active, with limited regulatory and targeting capacity. The BRCA1-A and BRISC complexes serve in DNA double-strand break repair and immune signaling and contain the lysine-63 linkage-specific BRCC36 subunit that is functionalized by scaffold subunits ABRAXAS and ABRO1, respectively. The molecular basis underlying BRCA1-A and BRISC function is currently unknown. Here we show that in the BRCA1-A complex structure, ABRAXAS integrates the DNA repair protein RAP80 and provides a high-affinity binding site that sequesters the tumor suppressor BRCA1 away from the break site. In the BRISC structure, ABRO1 binds SHMT2α, a metabolic enzyme enabling cancer growth in hypoxic environments, which we find prevents BRCC36 from binding and cleaving ubiquitin chains. Our work explains modularity in the BRCC36 DUB family, with different adaptor subunits conferring diversified targeting and regulatory functions.
Collapse
Affiliation(s)
- Julius Rabl
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Richard D Bunker
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Andreas D Schenk
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Simone Cavadini
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Mark E Gill
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Wassim Abdulrahman
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Amparo Andrés-Pons
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Martijn S Luijsterburg
- Leiden University Medical Center, Department of Human Genetics, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Adel F M Ibrahim
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Emma Branigan
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Jacob D Aguirre
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Aimee H Marceau
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Claire Guérillon
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen N, Denmark
| | - Tewis Bouwmeester
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Ulrich Hassiepen
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Martin Renatus
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Laurent Gelman
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Niels Mailand
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen N, Denmark
| | - Haico van Attikum
- Leiden University Medical Center, Department of Human Genetics, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland.
| |
Collapse
|
43
|
Bergstrand S, O'Brien EM, Farnebo M. The Cajal Body Protein WRAP53β Prepares the Scene for Repair of DNA Double-Strand Breaks by Regulating Local Ubiquitination. Front Mol Biosci 2019; 6:51. [PMID: 31334247 PMCID: PMC6624377 DOI: 10.3389/fmolb.2019.00051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/20/2019] [Indexed: 12/27/2022] Open
Abstract
Proper repair of DNA double-strand breaks is critical for maintaining genome integrity and avoiding disease. Modification of damaged chromatin has profound consequences for the initial signaling and regulation of repair. One such modification involves ubiquitination by E3 ligases RNF8 and RNF168 within minutes after DNA double-strand break formation, altering chromatin structure and recruiting factors such as 53BP1 and BRCA1 for repair via non-homologous end-joining (NHEJ) and homologous recombination (HR), respectively. The WD40 protein WRAP53β plays an essential role in localizing RNF8 to DNA breaks by scaffolding its interaction with the upstream factor MDC1. Loss of WRAP53β impairs ubiquitination at DNA lesions and reduces downstream repair by both NHEJ and HR. Intriguingly, WRAP53β depletion attenuates repair of DNA double-strand breaks more than depletion of RNF8, indicating functions other than RNF8-mediated ubiquitination. WRAP53β plays key roles with respect to the nuclear organelles Cajal bodies, including organizing the genome to promote associated transcription and collecting factors involved in maturation of the spliceosome and telomere elongation within these organelles. It is possible that similar functions may aid also in DNA repair. Here we describe the involvement of WRAP53β in Cajal bodies and DNA double-strand break repair in detail and explore whether and how these processes may be linked. We also discuss the possibility that the overexpression of WRAP53β detected in several cancer types may reflect its normal participation in the DNA damage response rather than oncogenic properties.
Collapse
Affiliation(s)
- Sofie Bergstrand
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Eleanor M O'Brien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Marianne Farnebo
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
44
|
Kalesh K, Lukauskas S, Borg AJ, Snijders AP, Ayyappan V, Leung AKL, Haskard DO, DiMaggio PA. An Integrated Chemical Proteomics Approach for Quantitative Profiling of Intracellular ADP-Ribosylation. Sci Rep 2019; 9:6655. [PMID: 31040352 PMCID: PMC6491589 DOI: 10.1038/s41598-019-43154-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/11/2019] [Indexed: 01/01/2023] Open
Abstract
ADP-ribosylation is integral to a diverse range of cellular processes such as DNA repair, chromatin regulation and RNA processing. However, proteome-wide investigation of its cellular functions has been limited due to numerous technical challenges including the complexity of the poly(ADP-ribose) (PAR) chains, low abundance of the modification and lack of sensitive enrichment methods. We herein show that an adenosine analogue with a terminal alkyne functionality at position 2 of the adenine (2-alkyne adenosine or 2YnAd) is suitable for selective enrichment, fluorescence detection and mass spectrometry proteomics analysis of the candidate ADP-ribosylome in mammalian cells. Although similar labelling profiles were observed via fluorescence imaging for 2YnAd and 6YnAd, a previously reported clickable NAD+ precursor, quantitative mass spectrometry analysis of the two probes in MDA-MB-231 breast cancer cells revealed a significant increase in protein coverage of the 2YnAd probe. To facilitate global enrichment of ADP-ribosylated proteins, we developed a dual metabolic labelling approach that involves simultaneous treatment of live cells with both 2YnAd and 6YnAd. By combining this dual metabolic labelling strategy with highly sensitive tandem mass tag (TMT) isobaric mass spectrometry and hierarchical Bayesian analysis, we have quantified the responses of thousands of endogenous proteins to clinical PARP inhibitors Olaparib and Rucaparib.
Collapse
Affiliation(s)
- Karunakaran Kalesh
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.,Department of Chemistry, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Saulius Lukauskas
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.,Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Aaron J Borg
- Mass Spectrometry Proteomics Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Ambrosius P Snijders
- Mass Spectrometry Proteomics Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Vinay Ayyappan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, 21205, USA
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, 21205, USA
| | - Dorian O Haskard
- Faculty of Medicine, National Heart & Lung Institute, Vascular Science Section, Hammersmith Campus, London, UK
| | - Peter A DiMaggio
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
45
|
Chromatin control in double strand break repair. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019. [PMID: 30798938 DOI: 10.1016/bs.apcsb.2018.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
DNA double strand breaks (DSB) are the most deleterious type of damage inflicted on DNA by various environmental factors and as consequences of normal cellular metabolism. The multistep nature of DSB repair and the need to assemble large protein complexes at repair sites necessitate multiple chromatin changes there. This review focuses on the key findings of how chromatin regulators exert temporal and spatial control on DSB repair. These mechanisms coordinate repair with cell cycle progression, lead to DSB repair pathway choice, provide accessibility of repair machinery to damaged sites and move the lesions to nuclear environments permissive for repair.
Collapse
|
46
|
Role of deubiquitinases in DNA damage response. DNA Repair (Amst) 2019; 76:89-98. [PMID: 30831436 DOI: 10.1016/j.dnarep.2019.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 12/13/2022]
Abstract
DNA damage response (DDR) serves as an integrated cellular network to detect cellular stress and react by activating pathways responsible for halting cell cycle progression, stimulating DNA damage repair, and initiating apoptosis. Efficient DDR protects cells from genomic instability while defective DDR can allow DNA lesions to go unrepaired, causing permanent mutations that will affect future generations of cells and possibly cause disease conditions such as cancer. Therefore, DDR mechanisms must be tightly regulated in order to ensure organismal health and viability. One major way of DDR regulation is ubiquitination, which has been long known to control DDR protein localization, activity, and stability. The reversal of this process, deubiquitination, has more recently come to the forefront of DDR research as an important new angle in ubiquitin-mediated regulation of DDR. As such, deubiquitinases have emerged as key factors in DDR. Importantly, deubiquitinases are attractive small-molecule drug targets due to their well-defined catalytic residues that provide a promising avenue for developing new cancer therapeutics. This review focuses on the emerging roles of deubiquitinases in various DNA repair pathways.
Collapse
|
47
|
Shibata A, Jeggo P. A historical reflection on our understanding of radiation-induced DNA double strand break repair in somatic mammalian cells; interfacing the past with the present. Int J Radiat Biol 2019; 95:945-956. [PMID: 30608893 DOI: 10.1080/09553002.2018.1564083] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Purpose: The International Journal of Radiation Biology (IJRB) is celebrating 60 years of publishing in 2019. IJRB has made an enormous contribution to publishing papers that have enhanced our understanding of the DNA damage response (DDR) activated following exposure to ionizing radiation (IR). The IR-induced DDR field has a rich history but many outstanding papers pass unread by young scientists overwhelmed by the current literature. We provide a historical reflection on key advances in the DDR field and interface them with current knowledge. Conclusions: DNA double strand breaks (DSBs) were identified as the major biological lesion induced by IR. But early studies on cells from IR-sensitive ataxia telangiectasia patients showed that DSB repair was not sufficient to prevent IR hypersensitivity. Subsequently, the ATM-dependent signal transduction process was revealed, with the breadth of the response being slowly unearthed. Early studies demonstrated at least two processes of DSB repair and revealed that mis-repair causes translocation formation. Recent studies, however, are unraveling more complexity in the repair process, including the specific processing of DSBs within transcriptionally active regions, and the significance of the chromatin environment. Despite the quality of these early and current studies, many questions remain to be addressed.
Collapse
Affiliation(s)
- Atsushi Shibata
- a Education and Research Support Center , Gunma University Graduate School of Medicine , Gunma , Maebashi , Japan
| | - Penny Jeggo
- b Genome Damage and Stability Centre, School of Life Sciences , University of Sussex , Brighton , UK
| |
Collapse
|
48
|
Smirnikhina SA, Anuchina AA, Lavrov AV. Ways of improving precise knock-in by genome-editing technologies. Hum Genet 2018; 138:1-19. [DOI: 10.1007/s00439-018-1953-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023]
|
49
|
Human Rad52 Promotes XPG-Mediated R-loop Processing to Initiate Transcription-Associated Homologous Recombination Repair. Cell 2018; 175:558-570.e11. [DOI: 10.1016/j.cell.2018.08.056] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/02/2018] [Accepted: 08/22/2018] [Indexed: 12/22/2022]
|
50
|
Kim D, Liu Y, Oberly S, Freire R, Smolka MB. ATR-mediated proteome remodeling is a major determinant of homologous recombination capacity in cancer cells. Nucleic Acids Res 2018; 46:8311-8325. [PMID: 30010936 PMCID: PMC6144784 DOI: 10.1093/nar/gky625] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/28/2018] [Indexed: 12/20/2022] Open
Abstract
The ATR kinase is crucial for genome maintenance, but the mechanisms by which ATR controls the DNA repair machinery are not fully understood. Here, we find that long-term chronic inhibition of ATR signaling severely impairs the ability of cells to utilize homologous recombination (HR)-mediated DNA repair. Proteomic analysis shows that chronic ATR inhibition depletes the abundance of key HR factors, suggesting that spontaneous ATR signaling enhances the capacity of cells to use HR-mediated repair by controlling the abundance of the HR machinery. Notably, ATR controls the abundance of HR factors largely via CHK1-dependent transcription, and can also promote stabilization of specific HR proteins. Cancer cells exhibit a strong dependency on ATR signaling for maintaining elevated levels of HR factors, and we propose that increased constitutive ATR signaling caused by augmented replication stress in cancer cells drives the enhanced HR capacity observed in certain tumor types. Overall, these findings define a major pro-HR function for ATR and have important implications for therapy by providing rationale for sensitizing HR-proficient cancer cells to PARP inhibitors.
Collapse
Affiliation(s)
- Dongsung Kim
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Yi Liu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Susannah Oberly
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologias Biomedicas, 38320 Tenerife, Spain
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- To whom correspondence should be addressed. Tel: +1 607 255 0274; Fax: +1 607 255 5961;
| |
Collapse
|