1
|
Izquierdo-Fiallo K, Muñoz-Villagrán C, Orellana O, Sjoberg R, Levicán G. Comparative genomics of the proteostasis network in extreme acidophiles. PLoS One 2023; 18:e0291164. [PMID: 37682893 PMCID: PMC10490939 DOI: 10.1371/journal.pone.0291164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Extreme acidophiles thrive in harsh environments characterized by acidic pH, high concentrations of dissolved metals and high osmolarity. Most of these microorganisms are chemolithoautotrophs that obtain energy from low redox potential sources, such as the oxidation of ferrous ions. Under these conditions, the mechanisms that maintain homeostasis of proteins (proteostasis), as the main organic components of the cells, are of utmost importance. Thus, the analysis of protein chaperones is critical for understanding how these organisms deal with proteostasis under such environmental conditions. In this work, using a bioinformatics approach, we performed a comparative genomic analysis of the genes encoding classical, periplasmic and stress chaperones, and the protease systems. The analysis included 35 genomes from iron- or sulfur-oxidizing autotrophic, heterotrophic, and mixotrophic acidophilic bacteria. The results showed that classical ATP-dependent chaperones, mostly folding chaperones, are widely distributed, although they are sub-represented in some groups. Acidophilic bacteria showed redundancy of genes coding for the ATP-independent holdase chaperones RidA and Hsp20. In addition, a systematically high redundancy of genes encoding periplasmic chaperones like HtrA and YidC was also detected. In the same way, the proteolytic ATPase complexes ClpPX and Lon presented redundancy and broad distribution. The presence of genes that encoded protein variants was noticeable. In addition, genes for chaperones and protease systems were clustered within the genomes, suggesting common regulation of these activities. Finally, some genes were differentially distributed between bacteria as a function of the autotrophic or heterotrophic character of their metabolism. These results suggest that acidophiles possess an abundant and flexible proteostasis network that protects proteins in organisms living in energy-limiting and extreme environmental conditions. Therefore, our results provide a means for understanding the diversity and significance of proteostasis mechanisms in extreme acidophilic bacteria.
Collapse
Affiliation(s)
- Katherin Izquierdo-Fiallo
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Claudia Muñoz-Villagrán
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Omar Orellana
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Rachid Sjoberg
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Gloria Levicán
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago, Chile
| |
Collapse
|
2
|
Replication stalling activates SSB for recruitment of DNA damage tolerance factors. Proc Natl Acad Sci U S A 2022; 119:e2208875119. [PMID: 36191223 PMCID: PMC9565051 DOI: 10.1073/pnas.2208875119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Translesion synthesis (TLS) polymerases bypass DNA lesions that block replicative polymerases, allowing cells to tolerate DNA damage encountered during replication. It is well known that most bacterial TLS polymerases must interact with the sliding-clamp processivity factor to carry out TLS, but recent work in Escherichia coli has revealed that single-stranded DNA-binding protein (SSB) plays a key role in enriching the TLS polymerase Pol IV at stalled replication forks in the presence of DNA damage. It remains unclear how this interaction with SSB enriches Pol IV in a stalling-dependent manner given that SSB is always present at the replication fork. In this study, we use single-molecule imaging in live E. coli cells to investigate this SSB-dependent enrichment of Pol IV. We find that Pol IV is enriched through its interaction with SSB in response to a range of different replication stresses and that changes in SSB dynamics at stalled forks may explain this conditional Pol IV enrichment. Finally, we show that other SSB-interacting proteins are likewise selectively enriched in response to replication perturbations, suggesting that this mechanism is likely a general one for enrichment of repair factors near stalled replication forks.
Collapse
|
3
|
Barakate A, Keir E, Oakey H, Halpin C. Stimulation of homologous recombination in plants expressing heterologous recombinases. BMC PLANT BIOLOGY 2020; 20:336. [PMID: 32677892 PMCID: PMC7364528 DOI: 10.1186/s12870-020-02545-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 07/08/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND Current excitement about the opportunities for gene editing in plants have been prompted by advances in CRISPR/Cas and TALEN technologies. CRISPR/Cas is widely used to knock-out or modify genes by inducing targeted double-strand breaks (DSBs) which are repaired predominantly by error-prone non-homologous end-joining or microhomology-mediated end joining resulting in mutations that may alter or abolish gene function. Although such mutations are random, they occur at sufficient frequency to allow useful mutations to be routinely identified by screening. By contrast, gene knock-ins to replace entire genes with alternative alleles or copies with specific characterised modifications, is not yet routinely possible. Gene replacement (or gene targeting) by homology directed repair occurs at extremely low frequency in higher plants making screening for useful events unfeasible. Homology directed repair might be increased by inhibiting non-homologous end-joining and/or stimulating homologous recombination (HR). Here we pave the way to increasing gene replacement efficiency by evaluating the effect of expression of multiple heterologous recombinases on intrachromosomal homologous recombination (ICR) in Nicotiana tabacum plants. RESULTS We expressed several bacterial and human recombinases in different combinations in a tobacco transgenic line containing a highly sensitive β-glucuronidase (GUS)-based ICR substrate. Coordinated simultaneous expression of multiple recombinases was achieved using the viral 2A translational recoding system. We found that most recombinases increased ICR dramatically in pollen, where HR will be facilitated by the programmed DSBs that occur during meiosis. DMC1 expression produced the greatest stimulation of ICR in primary transformants, with one plant showing a 1000-fold increase in ICR frequency. Evaluation of ICR in homozygous T2 plant lines revealed increases in ICR of between 2-fold and 380-fold depending on recombinase(s) expressed. By comparison, ICR was only moderately increased in vegetative tissues and constitutive expression of heterologous recombinases also reduced plant fertility. CONCLUSION Expression of heterologous recombinases can greatly increase the frequency of HR in plant reproductive tissues. Combining such recombinase expression with the use of CRISPR/Cas9 to induce DSBs could be a route to radically improving gene replacement efficiency in plants.
Collapse
Affiliation(s)
- Abdellah Barakate
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the JHI, Invergowrie, Dundee, DD2 5DA, Scotland
- Current address: Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Ewan Keir
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the JHI, Invergowrie, Dundee, DD2 5DA, Scotland
| | - Helena Oakey
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the JHI, Invergowrie, Dundee, DD2 5DA, Scotland
| | - Claire Halpin
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the JHI, Invergowrie, Dundee, DD2 5DA, Scotland.
| |
Collapse
|
4
|
Syeda AH, Dimude JU, Skovgaard O, Rudolph CJ. Too Much of a Good Thing: How Ectopic DNA Replication Affects Bacterial Replication Dynamics. Front Microbiol 2020; 11:534. [PMID: 32351461 PMCID: PMC7174701 DOI: 10.3389/fmicb.2020.00534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/12/2020] [Indexed: 12/15/2022] Open
Abstract
Each cell division requires the complete and accurate duplication of the entire genome. In bacteria, the duplication process of the often-circular chromosomes is initiated at a single origin per chromosome, resulting in two replication forks that traverse the chromosome in opposite directions. DNA synthesis is completed once the two forks fuse in a region diametrically opposite the origin. In some bacteria, such as Escherichia coli, the region where forks fuse forms a specialized termination area. Polar replication fork pause sites flanking this area can pause the progression of replication forks, thereby allowing forks to enter but not to leave. Transcription of all required genes has to take place simultaneously with genome duplication. As both of these genome trafficking processes share the same template, conflicts are unavoidable. In this review, we focus on recent attempts to add additional origins into various ectopic chromosomal locations of the E. coli chromosome. As ectopic origins disturb the native replichore arrangements, the problems resulting from such perturbations can give important insights into how genome trafficking processes are coordinated and the problems that arise if this coordination is disturbed. The data from these studies highlight that head-on replication–transcription conflicts are indeed highly problematic and multiple repair pathways are required to restart replication forks arrested at obstacles. In addition, the existing data also demonstrate that the replication fork trap in E. coli imposes significant constraints to genome duplication if ectopic origins are active. We describe the current models of how replication fork fusion events can cause serious problems for genome duplication, as well as models of how such problems might be alleviated both by a number of repair pathways as well as the replication fork trap system. Considering the problems associated both with head-on replication-transcription conflicts as well as head-on replication fork fusion events might provide clues of how these genome trafficking issues have contributed to shape the distinct architecture of bacterial chromosomes.
Collapse
Affiliation(s)
- Aisha H Syeda
- Department of Biology, University of York, York, United Kingdom
| | - Juachi U Dimude
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Ole Skovgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Christian J Rudolph
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
5
|
Midgley-Smith SL, Dimude JU, Taylor T, Forrester NM, Upton AL, Lloyd RG, Rudolph CJ. Chromosomal over-replication in Escherichia coli recG cells is triggered by replication fork fusion and amplified if replichore symmetry is disturbed. Nucleic Acids Res 2019; 46:7701-7715. [PMID: 29982635 PMCID: PMC6125675 DOI: 10.1093/nar/gky566] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/13/2018] [Indexed: 01/04/2023] Open
Abstract
Chromosome duplication initiates via the assembly of replication forks at defined origins. Forks proceed in opposite directions until they fuse with a converging fork. Recent work highlights that fork fusions are highly choreographed both in pro- and eukaryotic cells. The circular Escherichia coli chromosome is replicated from a single origin (oriC), and a single fork fusion takes place in a specialised termination area opposite oriC that establishes a fork trap mediated by Tus protein bound at ter sequences that allows forks to enter but not leave. Here we further define the molecular details of fork fusions and the role of RecG helicase in replication termination. Our data support the idea that fork fusions have the potential to trigger local re-replication of the already replicated DNA. In ΔrecG cells this potential is realised in a substantial fraction of cells and is dramatically elevated when one fork is trapped for some time before the converging fork arrives. They also support the idea that the termination area evolved to contain such over-replication and we propose that the stable arrest of replication forks at ter/Tus complexes is an important feature that limits the likelihood of problems arising as replication terminates.
Collapse
Affiliation(s)
- Sarah L Midgley-Smith
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Juachi U Dimude
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Toni Taylor
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Nicole M Forrester
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Amy L Upton
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Robert G Lloyd
- Medical School, Queen's Medical Centre, Nottingham University, Nottingham NG7 2UH, UK
| | - Christian J Rudolph
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| |
Collapse
|
6
|
Sun Z, Hashemi M, Warren G, Bianco PR, Lyubchenko YL. Dynamics of the Interaction of RecG Protein with Stalled Replication Forks. Biochemistry 2018; 57:1967-1976. [PMID: 29432678 DOI: 10.1021/acs.biochem.7b01235] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
As a guardian of the bacterial genome, the RecG DNA helicase repairs DNA replication and rescues stalled replication. We applied atomic force microscopy (AFM) to directly visualize dynamics of RecG upon the interaction with replication fork substrates in the presence and absence of SSB using high-speed AFM. We directly visualized that RecG moves back and forth over dozens of base pairs in the presence of SSB. There is no RecG translocation in the absence of SSB. Computational modeling was performed to build models of Escherichia coli RecG in a free state and in complex with the fork. The simulations revealed the formation of complexes of RecG with the fork and identified conformational transitions that may be responsible for RecG remodeling that can facilitate RecG translocation along the DNA duplex. Such complexes do not form with the DNA duplex, which is in line with experimental data. Overall, our results provide mechanistic insights into the modes of interaction of RecG with the replication fork, suggesting a novel role of RecG in the repair of stalled DNA replication forks.
Collapse
Affiliation(s)
- Zhiqiang Sun
- Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198-6025 , United States
| | - Mohtadin Hashemi
- Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198-6025 , United States
| | - Galina Warren
- Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198-6025 , United States
| | - Piero R Bianco
- Department of Microbiology and Immunology , University at Buffalo, State University of New York , Buffalo , New York 14214 , United States
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198-6025 , United States
| |
Collapse
|
7
|
Bianco PR, Lyubchenko YL. SSB and the RecG DNA helicase: an intimate association to rescue a stalled replication fork. Protein Sci 2017; 26:638-649. [PMID: 28078722 DOI: 10.1002/pro.3114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 12/26/2016] [Accepted: 12/28/2016] [Indexed: 12/27/2022]
Abstract
In E. coli, the regression of stalled DNA replication forks is catalyzed by the DNA helicase RecG. One means of gaining access to the fork is by binding to the single strand binding protein or SSB. This interaction occurs via the wedge domain of RecG and the intrinsically disordered linker (IDL) of SSB, in a manner similar to that of SH3 domains binding to PXXP motif-containing ligands in eukaryotic cells. During loading, SSB remodels the wedge domain so that the helicase domains bind to the parental, duplex DNA, permitting the helicase to translocate using thermal energy. This translocation may be used to clear the fork of obstacles, prior to the initiation of fork regression.
Collapse
Affiliation(s)
- Piero R Bianco
- SUNY Microbiology and Immunology, Center for Single Molecule Biophysics, University at Buffalo, 321 Cary Hall, 3435 Main St, Buffalo, New York 14214.,Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York.,Department of Biochemistry, University at Buffalo, Buffalo, New York
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, 68198-6025
| |
Collapse
|
8
|
Ivančić-Baće I, Cass SD, Wearne SJ, Bolt EL. Different genome stability proteins underpin primed and naïve adaptation in E. coli CRISPR-Cas immunity. Nucleic Acids Res 2015; 43:10821-30. [PMID: 26578567 PMCID: PMC4678826 DOI: 10.1093/nar/gkv1213] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 10/28/2015] [Indexed: 12/18/2022] Open
Abstract
CRISPR-Cas is a prokaryotic immune system built from capture and integration of invader DNA into CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) loci, termed 'Adaptation', which is dependent on Cas1 and Cas2 proteins. In Escherichia coli, Cascade-Cas3 degrades invader DNA to effect immunity, termed 'Interference'. Adaptation can interact with interference ('primed'), or is independent of it ('naïve'). We demonstrate that primed adaptation requires the RecG helicase and PriA protein to be present. Genetic analysis of mutant phenotypes suggests that RecG is needed to dissipate R-loops at blocked replication forks. Additionally, we identify that DNA polymerase I is important for both primed and naive adaptation, and that RecB is needed for naïve adaptation. Purified Cas1-Cas2 protein shows specificity for binding to and nicking forked DNA within single strand gaps, and collapsing forks into DNA duplexes. The data suggest that different genome stability systems interact with primed or naïve adaptation when responding to blocked or collapsed invader DNA replication. In this model, RecG and Cas3 proteins respond to invader DNA replication forks that are blocked by Cascade interference, enabling DNA capture. RecBCD targets DNA ends at collapsed forks, enabling DNA capture without interference. DNA polymerase I is proposed to fill DNA gaps during spacer integration.
Collapse
Affiliation(s)
- Ivana Ivančić-Baće
- Faculty of Science, Department of Molecular Biology, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Simon D Cass
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, NG72UH, UK
| | - Stephen J Wearne
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, NG72UH, UK
| | - Edward L Bolt
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, NG72UH, UK
| |
Collapse
|
9
|
The Consequences of Replicating in the Wrong Orientation: Bacterial Chromosome Duplication without an Active Replication Origin. mBio 2015; 6:e01294-15. [PMID: 26530381 PMCID: PMC4631800 DOI: 10.1128/mbio.01294-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Chromosome replication is regulated in all organisms at the assembly stage of the replication machinery at specific origins. In Escherichia coli, the DnaA initiator protein regulates the assembly of replication forks at oriC. This regulation can be undermined by defects in nucleic acid metabolism. In cells lacking RNase HI, replication initiates independently of DnaA and oriC, presumably at persisting R-loops. A similar mechanism was assumed for origin-independent synthesis in cells lacking RecG. However, recently we suggested that this synthesis initiates at intermediates resulting from replication fork fusions. Here we present data suggesting that in cells lacking RecG or RNase HI, origin-independent synthesis arises by different mechanisms, indicative of these two proteins having different roles in vivo. Our data support the idea that RNase HI processes R-loops, while RecG is required to process replication fork fusion intermediates. However, regardless of how origin-independent synthesis is initiated, a fraction of forks will proceed in an orientation opposite to normal. We show that the resulting head-on encounters with transcription threaten cell viability, especially if taking place in highly transcribed areas. Thus, despite their different functions, RecG and RNase HI are both important factors for maintaining replication control and orientation. Their absence causes severe replication problems, highlighting the advantages of the normal chromosome arrangement, which exploits a single origin to control the number of forks and their orientation relative to transcription, and a defined termination area to contain fork fusions. Any changes to this arrangement endanger cell cycle control, chromosome dynamics, and, ultimately, cell viability. IMPORTANCE Cell division requires unwinding of millions of DNA base pairs to generate the template for RNA transcripts as well as chromosome replication. As both processes use the same template, frequent clashes are unavoidable. To minimize the impact of these clashes, transcription and replication in bacteria follow the same directionality, thereby avoiding head-on collisions. This codirectionality is maintained by a strict regulation of where replication is started. We have used Escherichia coli as a model to investigate cells in which the defined location of replication initiation is compromised. In cells lacking either RNase HI or RecG, replication initiates away from the defined replication origin, and we discuss the different mechanisms by which this synthesis arises. In addition, the resulting forks proceed in a direction opposite to normal, thereby inducing head-on collisions between transcription and replication, and we show that the resulting consequences are severe enough to threaten the viability of cells.
Collapse
|
10
|
Are the SSB-Interacting Proteins RecO, RecG, PriA and the DnaB-Interacting Protein Rep Bound to Progressing Replication Forks in Escherichia coli? PLoS One 2015; 10:e0134892. [PMID: 26244508 PMCID: PMC4526528 DOI: 10.1371/journal.pone.0134892] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/15/2015] [Indexed: 11/19/2022] Open
Abstract
In all organisms several enzymes that are needed upon replication impediment are targeted to replication forks by interaction with a replication protein. In most cases these proteins interact with the polymerase clamp or with single-stranded DNA binding proteins (SSB). In Escherichia coli an accessory replicative helicase was also shown to interact with the DnaB replicative helicase. Here we have used cytological observation of Venus fluorescent fusion proteins expressed from their endogenous loci in live E. coli cells to determine whether DNA repair and replication restart proteins that interact with a replication protein travel with replication forks. A custom-made microscope that detects active replisome molecules provided that they are present in at least three copies was used. Neither the recombination proteins RecO and RecG, nor the replication accessory helicase Rep are detected specifically in replicating cells in our assay, indicating that either they are not present at progressing replication forks or they are present in less than three copies. The Venus-PriA fusion protein formed foci even in the absence of replication forks, which prevented us from reaching a conclusion.
Collapse
|
11
|
Bianco PR. I came to a fork in the DNA and there was RecG. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 117:166-173. [PMID: 25613916 PMCID: PMC4417463 DOI: 10.1016/j.pbiomolbio.2015.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 11/28/2022]
Abstract
RecG is a potent, atypical, monomeric DNA helicase. It simultaneously couples ATP hydrolysis to duplex unwinding and rewinding, and to the displacement of proteins bound to the DNA. A model is presented for the localization of the enzyme to the inner membrane via its binding to SSB. Upon fork stalling, SSB targets the enzyme to the fork where it can act. RecG displays a strong preference for processing the fork in the regression direction, that is, away from the site of damage that initially led to fork arrest. Regression is mediated by strong binding of the wedge domain to the fork arms as well as to parental duplex DNA by the helicase domains. Once RecG has regressed the fork, it will dissociate leaving the now relaxed, Holliday junction-like DNA, available for further processing by enzymes such as RuvAB.
Collapse
Affiliation(s)
- Piero R Bianco
- Department of Biochemistry, University at Buffalo, Buffalo, NY 14214, USA; Center for Single Molecule Biophysics, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|