1
|
Higgins K, Nyabashi V, Anderson S. Conservation of imprinted expression across genotypes is correlated with consistency of imprinting across endosperm development in maize. G3 (BETHESDA, MD.) 2025; 15:jkaf028. [PMID: 39948030 PMCID: PMC12005164 DOI: 10.1093/g3journal/jkaf028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 01/28/2025] [Indexed: 04/18/2025]
Abstract
Imprinted expression is an essential process for seed viability affecting hundreds of genes in Zea mays endosperm; however, most studies have examined just one time point for analysis. The focus on single time points can limit our ability to identify imprinted genes and our ability to draw conclusions for the role of imprinting in endosperm. In this study, we examine imprinted expression across 4 time points ranging from the transition to endoreduplication from mitotic division through the beginning of programmed cell death. Additionally, we assessed imprinting variation across 8 diverse maize lines, 6 of which have never before been assessed for imprinting. Through this analysis, we identify over 700 imprinted genes with varying consistency across time points including 255 genes imprinted at every time point and 105 genes displaying transient imprinting. We find a correlation between high consistency of imprinting across time and high conservation of parental bias across 8 diverse maize lines reciprocally crossed with B73. Additionally, we identify evidence of imprinting for 3 zein genes that are critical for nutrient accumulation in the endosperm, suggesting that imprinting may play a more important role in seed composition than previously thought. Taken together, this study provides a more holistic view of imprinting variation across time and across genotypes in maize and enables us to more thoroughly investigate the complex imprinting landscape.
Collapse
Affiliation(s)
- Kaitlin Higgins
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50010, USA
| | - Vital Nyabashi
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50010, USA
| | - Sarah Anderson
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50010, USA
| |
Collapse
|
2
|
Khouider S, Gehring M. Parental dialectic: Epigenetic conversations in endosperm. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102591. [PMID: 38944896 PMCID: PMC11392645 DOI: 10.1016/j.pbi.2024.102591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 07/02/2024]
Abstract
Endosperm is a major evolutionary innovation of flowering plants, and its proper development critically impacts seed growth and viability. Epigenetic regulators have a key function in parental control of endosperm development. Notably, epigenetic regulation of parental genome dosage is a major determinant of seed development success, and disruption of this balance can produce inviable seed, as observed in some interploidy and interspecific crosses. These postzygotic reproduction barriers are also a potent driver of speciation. The molecular machinery and regulatory architecture governing endosperm development is proposed to have evolved under parental conflict. In this review, we emphasize parental conflict as a dialectic conflict and discuss recent findings about the epigenetic molecular machinery that mediates parental conflict in the endosperm.
Collapse
Affiliation(s)
- Souraya Khouider
- Whitehead Institute for Biomedical Research, Cambridge MA 02142, USA
| | - Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02139, USA.
| |
Collapse
|
3
|
Muthusamy M, Pandian S, Shin EK, An HK, Sohn SI. Unveiling the imprinted dance: how parental genomes orchestrate seed development and hybrid success. FRONTIERS IN PLANT SCIENCE 2024; 15:1455685. [PMID: 39399543 PMCID: PMC11466797 DOI: 10.3389/fpls.2024.1455685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
Parental epigenetic asymmetries, which contribute to the monoallelic expression of genes known as imprints, play a critical role in seed development in flowering plants. Primarily, differential DNA methylation patterns and histone modifications on parental alleles form the molecular basis of gene imprinting. Plants predominantly exhibit this non-Mendelian inheritance phenomenon in the endosperm and the early embryo of developing seeds. Imprinting is crucial for regulating nutrient allocation, maintaining seed development, resolving parental conflict, and facilitating evolutionary adaptation. Disruptions in imprinted gene expression, mediated by epigenetic regulators and parental ploidy levels, can lead to endosperm-based hybridization barriers and hybrid dysfunction, ultimately reducing genetic diversity in plant populations. Conversely, imprinting helps maintain genetic stability within plant populations. Imprinted genes likely influence seed development in various ways, including ensuring proper endosperm development, influencing seed dormancy, and regulating seed size. However, the functions of most imprinted genes, the evolutionary significance of imprinting, and the long-term consequences of imprinting disruptions on plant development and adaptation need further exploration. Thus, it is clear that research on imprinting has immense potential for improving our understanding of plant development and ultimately enhancing key agronomic traits. This review decodes the possible genetic and epigenetic regulatory factors underpinning genomic imprinting and their positive and negative consequences on seed development. This study also forecasts the potential implications of exploiting gene imprinting for crop improvement programs.
Collapse
Affiliation(s)
| | | | | | | | - Soo-In Sohn
- Biosafety Division, Department of Agricultural Biotechnology, National Institute of
Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| |
Collapse
|
4
|
Han B, Li Y, Wu D, Li DZ, Liu A, Xu W. Dynamics of imprinted genes and their epigenetic mechanisms in castor bean seed with persistent endosperm. THE NEW PHYTOLOGIST 2023; 240:1868-1882. [PMID: 37717216 DOI: 10.1111/nph.19265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/25/2023] [Indexed: 09/19/2023]
Abstract
Genomic imprinting refers to parent-of-origin-dependent gene expression and primarily occurs in the endosperm of flowering plants, but its functions and epigenetic mechanisms remain to be elucidated in eudicots. Castor bean, a eudicot with large and persistent endosperm, provides an excellent system for studying the imprinting. Here, we identified 131 imprinted genes in developing endosperms and endosperm at seed germination phase of castor bean, involving into the endosperm development, accumulation of storage compounds and specially seed germination. Our results showed that the transcriptional repression of maternal allele of DNA METHYLTRANSFERASE 1 (MET1) may be required for maternal genome demethylation in the endosperm. DNA methylation analysis showed that only a small fraction of imprinted genes was associated with allele-specific DNA methylation, and most of them were closely associated with constitutively unmethylated regions (UMRs), suggesting a limited role for DNA methylation in controlling genomic imprinting. Instead, histone modifications can be asymmetrically deposited in maternal and paternal genomes in a DNA methylation-independent manner to control expression of most imprinted genes. These results expanded our understanding of the occurrence and biological functions of imprinted genes and showed the evolutionary flexibility of the imprinting machinery and mechanisms in plants.
Collapse
Affiliation(s)
- Bing Han
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Yelan Li
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Di Wu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Aizhong Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Wei Xu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| |
Collapse
|
5
|
Dong X, Luo H, Bi W, Chen H, Yu S, Zhang X, Dai Y, Cheng X, Xing Y, Fan X, Zhu Y, Guo Y, Meng D. Transcriptome-wide identification and characterization of genes exhibit allele-specific imprinting in maize embryo and endosperm. BMC PLANT BIOLOGY 2023; 23:470. [PMID: 37803280 PMCID: PMC10557216 DOI: 10.1186/s12870-023-04473-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Genomic imprinting refers to a subset of genes that are expressed from only one parental allele during seed development in plants. Studies on genomic imprinting have revealed that intraspecific variations in genomic imprinting expression exist in naturally genetic varieties. However, there have been few studies on the functional analysis of allele-specific imprinted genes. RESULTS Here, we generated three reciprocal crosses among the B73, Mo17 and CAU5 inbred lines. Based on the transcriptome-wide analysis of allele-specific expression using RNA sequencing technology, 305 allele-specific imprinting genes (ASIGs) were identified in embryos, and 655 ASIGs were identified in endosperms from three maize F1 hybrids. Of these ASIGs, most did not show consistent maternal or paternal bias between the same tissue from different hybrids or different tissues from one hybrid cross. By gene ontology (GO) analysis, five and eight categories of GO exhibited significantly higher functional enrichments for ASIGs identified in embryo and endosperm, respectively. These functional categories indicated that ASIGs are involved in intercellular nutrient transport, signaling pathways, and transcriptional regulation of kernel development. Finally, the mutation and overexpression of one ASIG (Zm305) affected the length and width of the kernel. CONCLUSION In this study, our data will be helpful in gaining further knowledge of genes exhibiting allele-specific imprinting patterns in seeds. The gain- and loss-of-function phenotypes of ASIGs associated with agronomically important seed traits provide compelling evidence for ASIGs as crucial targets to optimize seed traits in crop plants.
Collapse
Affiliation(s)
- Xiaomei Dong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Haishan Luo
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Wenjing Bi
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Hanyu Chen
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Shuai Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Xiaoyu Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yuxin Dai
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Xipeng Cheng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yupeng Xing
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Xiaoqin Fan
- Manas Agricultural Experimental Station of Xinjiang Academy of Agricultural Sciences, Changji, 832200, Xinjiang, China
| | - Yanbin Zhu
- National Key Laboratory of Maize Biological Breeding, Key Laboratory of Genetics and Breeding of Main Crops in Northeast Region, Ministry of Agriculture and Rural Affairs, Liaoning Dongya Seed Industry Co., Ltd, Shenyang, Liaoning, 110164, China
| | - Yanling Guo
- National Key Laboratory of Maize Biological Breeding, Key Laboratory of Genetics and Breeding of Main Crops in Northeast Region, Ministry of Agriculture and Rural Affairs, Liaoning Dongya Seed Industry Co., Ltd, Shenyang, Liaoning, 110164, China
| | - Dexuan Meng
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| |
Collapse
|
6
|
Jia Z, Gao P, Yin F, Quilichini TD, Sheng H, Song J, Yang H, Gao J, Chen T, Yang B, Kochian LV, Zou J, Patterson N, Yang Q, Gillmor CS, Datla R, Li Q, Xiang D. Asymmetric gene expression in grain development of reciprocal crosses between tetraploid and hexaploid wheats. Commun Biol 2022; 5:1412. [PMID: 36564439 PMCID: PMC9789062 DOI: 10.1038/s42003-022-04374-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Production of viable progeny from interploid crosses requires precise regulation of gene expression from maternal and paternal chromosomes, yet the transcripts contributed to hybrid seeds from polyploid parent species have rarely been explored. To investigate the genome-wide maternal and paternal contributions to polyploid grain development, we analyzed the transcriptomes of developing embryos, from zygote to maturity, alongside endosperm in two stages of development, using reciprocal crosses between tetraploid and hexaploid wheats. Reciprocal crosses between species with varied levels of ploidy displayed broad impacts on gene expression, including shifts in alternative splicing events in select crosses, as illustrated by active splicing events, enhanced protein synthesis and chromatin remodeling. Homoeologous gene expression was repressed on the univalent D genome in pentaploids, but this suppression was attenuated in crosses with a higher ploidy maternal parent. Imprinted genes were identified in endosperm and early embryo tissues, supporting predominant maternal effects on early embryogenesis. By systematically investigating the complex transcriptional networks in reciprocal-cross hybrids, this study presents a framework for understanding the genomic incompatibility and transcriptome shock that results from interspecific hybridization and uncovers the transcriptional impacts on hybrid seeds created from agriculturally-relevant polyploid species.
Collapse
Affiliation(s)
- Zhen Jia
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Peng Gao
- grid.25152.310000 0001 2154 235XGlobal Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8 Canada
| | - Feifan Yin
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China ,grid.35155.370000 0004 1790 4137Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, 430070 Wuhan, China
| | - Teagen D. Quilichini
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Huajin Sheng
- grid.25152.310000 0001 2154 235XGlobal Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8 Canada
| | - Jingpu Song
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Hui Yang
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Jie Gao
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Ting Chen
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Bo Yang
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Leon V. Kochian
- grid.25152.310000 0001 2154 235XGlobal Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8 Canada
| | - Jitao Zou
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Nii Patterson
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Qingyong Yang
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China ,grid.35155.370000 0004 1790 4137Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, 430070 Wuhan, China
| | - C. Stewart Gillmor
- grid.512574.0Langebio, Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV-IPN), Irapuato, Guanajuato, 36821 México
| | - Raju Datla
- grid.25152.310000 0001 2154 235XGlobal Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8 Canada
| | - Qiang Li
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Daoquan Xiang
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| |
Collapse
|
7
|
Conservation Study of Imprinted Genes in Maize Triparental Heterozygotic Kernels. Int J Mol Sci 2022; 23:ijms232315424. [PMID: 36499766 PMCID: PMC9735609 DOI: 10.3390/ijms232315424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Genomic imprinting is a classic epigenetic phenomenon related to the uniparental expression of genes. Imprinting variability exists in seeds and can contribute to observed parent-of-origin effects on seed development. Here, we conducted allelic expression of the embryo and endosperm from four crosses at 11 days after pollination (DAP). First, the F1 progeny of B73(♀) × Mo17(♂) and the inducer line CAU5 were used as parents to obtain reciprocal crosses of BM-C/C-BM. Additionally, the F1 progeny of Mo17(♀) × B73(♂) and CAU5 were used as parents to obtain reciprocal crosses of MB-C/C-MB. In total, 192 and 181 imprinted genes were identified in the BM-C/C-BM and MB-C/C-MB crosses, respectively. Then, by comparing the allelic expression of these imprinted genes in the reciprocal crosses of B73 and CAU5 (BC/CB), fifty-one Mo17-added non-conserved genes were identified as exhibiting imprinting variability. Fifty-one B73-added non-conserved genes were also identified by comparing the allelic expression of imprinted genes identified in BM-C/C-BM, MB-C/C-MB and MC/CM crosses. Specific Gene Ontology (GO) terms were not enriched in B73-added/Mo17-added non-conserved genes. Interestingly, the imprinting status of these genes was less conserved across other species. The cis-element distribution, tissue expression and subcellular location were similar between the B73-added/Mo17-added conserved and B73-added/Mo17-added non-conserved imprinted genes. Finally, genotypic and phenotypic analysis of one non-conserved gene showed that the mutation and overexpression of this gene may affect embryo and kernel size, which indicates that these non-conserved genes may also play an important role in kernel development. The findings of this study will be helpful for elucidating the imprinting mechanism of genes involved in maize kernel development.
Collapse
|
8
|
Dai D, Mudunkothge JS, Galli M, Char SN, Davenport R, Zhou X, Gustin JL, Spielbauer G, Zhang J, Barbazuk WB, Yang B, Gallavotti A, Settles AM. Paternal imprinting of dosage-effect defective1 contributes to seed weight xenia in maize. Nat Commun 2022; 13:5366. [PMID: 36100609 PMCID: PMC9470594 DOI: 10.1038/s41467-022-33055-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Historically, xenia effects were hypothesized to be unique genetic contributions of pollen to seed phenotype, but most examples represent standard complementation of Mendelian traits. We identified the imprinted dosage-effect defective1 (ded1) locus in maize (Zea mays) as a paternal regulator of seed size and development. Hypomorphic alleles show a 5–10% seed weight reduction when ded1 is transmitted through the male, while homozygous mutants are defective with a 70–90% seed weight reduction. Ded1 encodes an R2R3-MYB transcription factor expressed specifically during early endosperm development with paternal allele bias. DED1 directly activates early endosperm genes and endosperm adjacent to scutellum cell layer genes, while directly repressing late grain-fill genes. These results demonstrate xenia as originally defined: Imprinting of Ded1 causes the paternal allele to set the pace of endosperm development thereby influencing grain set and size. Xenia effects describe the genetic contribution of pollen to seed phenotypes. Here the authors show that paternal imprinting of Ded1 contributes to the xenia effect in maize by setting the pace of endosperm development.
Collapse
Affiliation(s)
- Dawei Dai
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Janaki S Mudunkothge
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Mary Galli
- Waksman Institute, Rutgers University, Piscataway, NJ, 08854, USA
| | - Si Nian Char
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Ruth Davenport
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Xiaojin Zhou
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jeffery L Gustin
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA.,United States Department of Agriculture, Urbana, IL, 61801, USA
| | - Gertraud Spielbauer
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Junya Zhang
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - W Brad Barbazuk
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Bing Yang
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.,Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Andrea Gallavotti
- Waksman Institute, Rutgers University, Piscataway, NJ, 08854, USA.,Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - A Mark Settles
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA. .,Bioengineering Branch, NASA Ames Research Center, Moffett Field, CA, 94035, USA.
| |
Collapse
|
9
|
Chen L, Zhu Y, Ren X, Yao D, Song Y, Fan S, Li X, Zhang Z, Yang S, Zhang J, Zhang J. Heterosis and Differential DNA Methylation in Soybean Hybrids and Their Parental Lines. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091136. [PMID: 35567137 PMCID: PMC9102035 DOI: 10.3390/plants11091136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 05/26/2023]
Abstract
Heterosis is an important biological phenomenon and is widely applied to increase agricultural productivity. However, the underlying molecular mechanisms of heterosis are still unclear. Here we constructed three combinations of reciprocal hybrids of soybean, and subsequently used MethylRAD-seq to detect CCGG and CCWGG (W = A or T) methylation in the whole genome of these hybrids and their parents at the middle development period of contemporary seed. We were able to prove that changes in DNA methylation patterns occurred in immature hybrid seeds and the parental variation was to some degree responsible for differential expression between the reciprocal hybrids. Non-additive differential methylation sites (DMSs) were also identified in large numbers in hybrids. Interestingly, most of these DMSs were hyper-methylated and were more concentrated in gene regions than the natural distribution of the methylated sites. Further analysis of the non-additive DMSs located in gene regions exhibited their participation in various biological processes, especially those related to transcriptional regulation and hormonal function. These results revealed DNA methylation reprogramming pattern in the hybrid soybean, which is associated with phenotypic variation and heterosis initiation.
Collapse
Affiliation(s)
- Liangyu Chen
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
| | - Yanyu Zhu
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
| | - Xiaobo Ren
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
| | - Dan Yao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China;
| | - Yang Song
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
| | - Sujie Fan
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
| | - Xueying Li
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
| | - Zhuo Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
| | - Songnan Yang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
| | - Jian Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
- National Crop Variety Approval and Characteristic Identification Station, Jilin Agricultural University, Changchun 130118, China
- Department Biology, University of British Columbia, Okanagan, Kelowna, BC V1V 1V7, Canada
| | - Jun Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
- National Crop Variety Approval and Characteristic Identification Station, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
10
|
Han B, Wu D, Zhang Y, Li DZ, Xu W, Liu A. Epigenetic regulation of seed-specific gene expression by DNA methylation valleys in castor bean. BMC Biol 2022; 20:57. [PMID: 35227267 PMCID: PMC8886767 DOI: 10.1186/s12915-022-01259-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/18/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Understanding the processes governing angiosperm seed growth and development is essential both for fundamental plant biology and for agronomic purposes. Master regulators of angiosperm seed development are expressed in a seed-specific manner. However, it is unclear how this seed specificity of transcription is established. In some vertebrates, DNA methylation valleys (DMVs) are highly conserved and strongly associated with key developmental genes, but comparable studies in plants are limited to Arabidopsis and soybean. Castor bean (Ricinus communis) is a valuable model system for the study of seed biology in dicots and source of economically important castor oil. Unlike other dicots such as Arabidopsis and soybean, castor bean seeds have a relatively large and persistent endosperm throughout seed development, representing substantial structural differences in mature seeds. Here, we performed an integrated analysis of RNA-seq, whole-genome bisulfite sequencing, and ChIP-seq for various histone marks in the castor bean. RESULTS We present a gene expression atlas covering 16 representative tissues and identified 1162 seed-specific genes in castor bean (Ricinus communis), a valuable model for the study of seed biology in dicots. Upon whole-genome DNA methylation analyses, we detected 32,567 DMVs across five tissues, covering ~33% of the castor bean genome. These DMVs are highly hypomethylated during development and conserved across plant species. We found that DMVs have the potential to activate transcription, especially that of tissue-specific genes. Focusing on seed development, we found that many key developmental regulators of seed/endosperm development, including AGL61, AGL62, LEC1, LEC2, ABI3, and WRI1, were located within DMVs. ChIP-seq for five histone modifications in leaves and seeds clearly showed that the vast majority of histone modification peaks were enriched within DMVs, and their remodeling within DMVs has a critical role in the regulation of seed-specific gene expression. Importantly, further experiment analysis revealed that distal DMVs may act as cis-regulatory elements, like enhancers, to activate downstream gene expression. CONCLUSIONS Our results point to the importance of DMVs and special distal DMVs behaving like enhancers, in the regulation of seed-specific genes, via the reprogramming of histone modifications within DMVs. Furthermore, these results provide a comprehensive understanding of the epigenetic regulator roles in seed development in castor bean and other important crops.
Collapse
Affiliation(s)
- Bing Han
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Di Wu
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyu Zhang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Wei Xu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - Aizhong Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China.
| |
Collapse
|
11
|
Matilla AJ. Exploring Breakthroughs in Three Traits Belonging to Seed Life. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040490. [PMID: 35214823 PMCID: PMC8875957 DOI: 10.3390/plants11040490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 05/06/2023]
Abstract
Based on prior knowledge and with the support of new methodology, solid progress in the understanding of seed life has taken place over the few last years. This update reflects recent advances in three key traits of seed life (i.e., preharvest sprouting, genomic imprinting, and stored-mRNA). The first breakthrough refers to cloning of the mitogen-activated protein kinase-kinase 3 (MKK3) gene in barley and wheat. MKK3, in cooperation with ABA signaling, controls seed dormancy. This advance has been determinant in producing improved varieties that are resistant to preharvest sprouting. The second advance concerns to uniparental gene expression (i.e., imprinting). Genomic imprinting primarily occurs in the endosperm. Although great advances have taken place in the last decade, there is still a long way to go to complete the puzzle regarding the role of genomic imprinting in seed development. This trait is probably one of the most important epigenetic facets of developing endosperm. An example of imprinting regulation is polycomb repressive complex 2 (PRC2). The mechanism of PRC2 recruitment to target endosperm with specific genes is, at present, robustly studied. Further progress in the knowledge of recruitment of PRC2 epigenetic machinery is considered in this review. The third breakthrough referred to in this update involves stored mRNA. The role of the population of this mRNA in germination is far from known. Its relations to seed aging, processing bodies (P bodies), and RNA binding proteins (RBPs), and how the stored mRNA is targeted to monosomes, are aspects considered here. Perhaps this third trait is the one that will require greater experimental dedication in the future. In order to make progress, herein are included some questions that are needed to be answered.
Collapse
Affiliation(s)
- Angel J Matilla
- Departamento de Biología Funcional (Área Fisiología Vegetal), Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
12
|
Qiu Y, Köhler C. Endosperm Evolution by Duplicated and Neofunctionalized Type I MADS-Box Transcription Factors. Mol Biol Evol 2022; 39:msab355. [PMID: 34897514 PMCID: PMC8788222 DOI: 10.1093/molbev/msab355] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MADS-box transcription factors (TFs) are present in nearly all major eukaryotic groups. They are divided into Type I and Type II that differ in domain structure, functional roles, and rates of evolution. In flowering plants, major evolutionary innovations like flowers, ovules, and fruits have been closely connected to Type II MADS-box TFs. The role of Type I MADS-box TFs in angiosperm evolution remains to be identified. Here, we show that the formation of angiosperm-specific Type I MADS-box clades of Mγ and Mγ-interacting Mα genes (Mα*) can be tracked back to the ancestor of all angiosperms. Angiosperm-specific Mγ and Mα* genes were preferentially expressed in the endosperm, consistent with their proposed function as heterodimers in the angiosperm-specific embryo nourishing endosperm tissue. We propose that duplication and diversification of Type I MADS genes underpin the evolution of the endosperm, a developmental innovation closely connected to the origin and success of angiosperms.
Collapse
Affiliation(s)
- Yichun Qiu
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala, Sweden
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala, Sweden
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| |
Collapse
|
13
|
Zhang Z, Yu S, Li J, Zhu Y, Jiang S, Xia H, Zhou Y, Sun D, Liu M, Li C, Zhu Y, Ruan Y, Dong X. Epigenetic modifications potentially controlling the allelic expression of imprinted genes in sunflower endosperm. BMC PLANT BIOLOGY 2021; 21:570. [PMID: 34863098 PMCID: PMC8642925 DOI: 10.1186/s12870-021-03344-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/26/2021] [Indexed: 06/02/2023]
Abstract
BACKGROUND Genomic imprinting is an epigenetic phenomenon mainly occurs in endosperm of flowering plants. Genome-wide identification of imprinted genes have been completed in several dicot Cruciferous plant and monocot crops. RESULTS Here, we analyzed global patterns of allelic gene expression in developing endosperm of sunflower which belongs to the composite family. Totally, 691 imprinted loci candidates were identified in 12 day-after-pollination sunflower endosperm including 79 maternally expressed genes (MEG) and 596 paternally expressed genes (PEG), 6 maternally expressed noncoding RNAs (MNC) and 10 paternally expressed noncoding RNAs (PNC). And a clear clustering of imprinted genes throughout the rapeseed genome was identified. Generally, imprinting in sunflower is conserved within a species, but intraspecific variation also was detected. Limited loci in sunflower are imprinted in other several different species. The DNA methylation pattern around imprinted genes were investigated in embryo and endosperm tissues. In CG context, the imprinted genes were significantly associated with differential methylated regions exhibiting hypomethylation in endosperm and hypermethylation in embryo, which indicated that the maternal demethylation in CG context potentially induce the genomic imprinting in endosperm. CONCLUSION Our study would be helpful for understanding of genomic imprinting in plants and provide potential basis for further research in imprinting in sunflower.
Collapse
Affiliation(s)
- Zhichao Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Shuai Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Jing Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanbin Zhu
- State Key Laboratory of Maize Bio-Breeding, Shenyang, China
- State Key Laboratory of the Northeast Crop Genetics and Breeding, Shenyang, China
| | - Siqi Jiang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Haoran Xia
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yue Zhou
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Daqiu Sun
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Meiling Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Cong Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yanshu Zhu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yanye Ruan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Xiaomei Dong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China.
- State Key Laboratory of Maize Bio-Breeding, Shenyang, China.
| |
Collapse
|
14
|
Jiang H, Guo D, Ye J, Gao Y, Liu H, Wang Y, Xue M, Yan Q, Chen J, Duan L, Li G, Li X, Xie L. Genome-wide analysis of genomic imprinting in the endosperm and allelic variation in flax. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1697-1710. [PMID: 34228847 DOI: 10.1111/tpj.15411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Genomic imprinting is an epigenetic phenomenon that causes biased expression of maternally and paternally inherited alleles. In flowering plants, genomic imprinting predominantly occurs in the triploid endosperm and plays a vital role in seed development. In this study, we identified 248 candidate imprinted genes including 114 maternally expressed imprinted genes (MEGs) and 134 paternally expressed imprinted genes (PEGs) in flax (Linum usitatissimum L.) endosperm using deep RNA sequencing. These imprinted genes were neither clustered in specific chromosomal regions nor well conserved among flax and other plant species. MEGs tended to be expressed specifically in the endosperm, whereas the expression of PEGs was not tissue-specific. Imprinted single nucleotide polymorphisms differentiated 200 flax cultivars into the oil flax, oil-fiber dual purpose flax and fiber flax subgroups, suggesting that genomic imprinting contributed to intraspecific variation in flax. The nucleotide diversity of imprinted genes in the oil flax subgroup was significantly higher than that in the fiber flax subgroup, indicating that some imprinted genes underwent positive selection during flax domestication from oil flax to fiber flax. Moreover, imprinted genes that underwent positive selection were related to flax functions. Thirteen imprinted genes related to flax seed size and weight were identified using a candidate gene-based association study. Therefore, our study provides information for further exploration of the function and genomic variation of imprinted genes in the flax population.
Collapse
Affiliation(s)
- Haixia Jiang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Dongliang Guo
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Jiali Ye
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanfang Gao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Huiqing Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Yue Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Min Xue
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Qingcheng Yan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Jiaxun Chen
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Lepeng Duan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Gongze Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Xiao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Liqiong Xie
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| |
Collapse
|
15
|
Xu W, Wu D, Yang T, Sun C, Wang Z, Han B, Wu S, Yu A, Chapman MA, Muraguri S, Tan Q, Wang W, Bao Z, Liu A, Li DZ. Genomic insights into the origin, domestication and genetic basis of agronomic traits of castor bean. Genome Biol 2021; 22:113. [PMID: 33874982 PMCID: PMC8056531 DOI: 10.1186/s13059-021-02333-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/29/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Castor bean (Ricinus communis L.) is an important oil crop, which belongs to the Euphorbiaceae family. The seed oil of castor bean is currently the only commercial source of ricinoleic acid that can be used for producing about 2000 industrial products. However, it remains largely unknown regarding the origin, domestication, and the genetic basis of key traits of castor bean. RESULTS Here we perform a de novo chromosome-level genome assembly of the wild progenitor of castor bean. By resequencing and analyzing 505 worldwide accessions, we reveal that the accessions from East Africa are the extant wild progenitors of castor bean, and the domestication occurs ~ 3200 years ago. We demonstrate that significant genetic differentiation between wild populations in Kenya and Ethiopia is associated with past climate fluctuation in the Turkana depression ~ 7000 years ago. This dramatic change in climate may have caused the genetic bottleneck in wild castor bean populations. By a genome-wide association study, combined with quantitative trait locus analysis, we identify important candidate genes associated with plant architecture and seed size. CONCLUSIONS This study provides novel insights of domestication and genome evolution of castor bean, which facilitates genomics-based breeding of this important oilseed crop and potentially other tree-like crops in future.
Collapse
Affiliation(s)
- Wei Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Di Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Tianquan Yang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Chao Sun
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zaiqing Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Bing Han
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Shibo Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Anmin Yu
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Mark A Chapman
- Biological Sciences and Centre for Underutilised Crops, University of Southampton, Southampton, SO17 1BJ, UK
| | - Sammy Muraguri
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Qing Tan
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Wenbo Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhigui Bao
- Shanghai OE Biotech Co., Ltd, Shanghai, 201114, China
| | - Aizhong Liu
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China.
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
16
|
Rong H, Yang W, Zhu H, Jiang B, Jiang J, Wang Y. Genomic imprinted genes in reciprocal hybrid endosperm of Brassica napus. BMC PLANT BIOLOGY 2021; 21:140. [PMID: 33726676 PMCID: PMC7968328 DOI: 10.1186/s12870-021-02908-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 02/28/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Genomic imprinting results in the expression of parent-of-origin-specific alleles in the offspring. Brassica napus is an oil crop with research values in polyploidization. Identification of imprinted genes in B. napus will enrich the knowledge of genomic imprinting in dicotyledon plants. RESULTS In this study, we performed reciprocal crosses between B. napus L. cultivars Yangyou 6 (Y6) and Zhongshuang 11 (ZS11) to collect endosperm at 20 and 25 days after pollination (DAP) for RNA-seq. In total, we identified 297 imprinted genes, including 283 maternal expressed genes (MEGs) and 14 paternal expressed genes (PEGs) according to the SNPs between Y6 and ZS11. Only 36 genes (35 MEGs and 1 PEG) were continuously imprinted in 20 and 25 DAP endosperm. We found 15, 2, 5, 3, 10, and 25 imprinted genes in this study were also imprinted in Arabidopsis, rice, castor bean, maize, B. rapa, and other B. napus lines, respectively. Only 26 imprinted genes were specifically expressed in endosperm, while other genes were also expressed in root, stem, leaf and flower bud of B. napus. A total of 109 imprinted genes were clustered on rapeseed chromosomes. We found the LTR/Copia transposable elements (TEs) were most enriched in both upstream and downstream of the imprinted genes, and the TEs enriched around imprinted genes were more than non-imprinted genes. Moreover, the expression of 5 AGLs and 6 pectin-related genes in hybrid endosperm were significantly changed comparing with that in parent endosperm. CONCLUSION This research provided a comprehensive identification of imprinted genes in B. napus, and enriched the gene imprinting in dicotyledon plants, which would be useful in further researches on how gene imprinting regulates seed development.
Collapse
Affiliation(s)
- Hao Rong
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Wenjing Yang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Haotian Zhu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Bo Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Jinjin Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Youping Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou, 225009 China
| |
Collapse
|
17
|
Liu Y, Jing X, Zhang H, Xiong J, Qiao Y. Identification of Imprinted Genes Based on Homology: An Example of Fragaria vesca. Genes (Basel) 2021; 12:genes12030380. [PMID: 33800118 PMCID: PMC7999015 DOI: 10.3390/genes12030380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 01/04/2023] Open
Abstract
Genomic imprinting has drawn increasing attention in plant biology in recent years. At present, hundreds of imprinted genes have been identified in various plants, and some of them have been reported to be evolutionarily conserved in plant species. In this research, 17 candidate genes in Fragaria vesca were obtained based on the homologous imprinted genes in Arabidopsis thaliana and other species. We further constructed reciprocal crosses of diploid strawberry (F. vesca) using the varieties 10-41 and 18-86 as the parents to investigate the conservation of these imprinted genes. Potentially informative single nucleotide polymorphisms (SNPs) were used as molecular markers of two parents obtained from candidate imprinted genes which have been cloned and sequenced. Meanwhile, we analyzed the SNP site variation ratios and parent-of-origin expression patterns of candidate imprinted genes at 10 days after pollination (DAP) endosperm and embryo for the hybrids of reciprocal cross, respectively. A total of five maternally expressed genes (MEGs), i.e., FvARI8, FvKHDP-2, FvDRIP2, FvBRO1, and FvLTP3, were identified in the endosperm, which did not show imprinting in the embryo. Finally, tissues expression analysis indicated that the five imprinted genes excluding FvDRIP2 mainly expressed in the endosperm. This is the first report on imprinted genes of Fragaria, and we provide a simple and rapid method based on homologous conservation to screen imprinted genes. The present study will provide a basis for further study of function and mechanism of genomic imprinting in F. vesca.
Collapse
|
18
|
Abstract
In this review, Batista and Köhler revisit the current models explaining imprinting regulation in plants, and discuss novel regulatory mechanisms that could function independently of parental DNA methylation asymmetries in the establishment of imprinting. Genomic imprinting is an epigenetic phenomenon leading to parentally biased gene expression. Throughout the years, extensive efforts have been made to characterize the epigenetic marks underlying imprinting in animals and plants. As a result, DNA methylation asymmetries between parental genomes emerged as the primary factor controlling the imprinting status of many genes. Nevertheless, the data accumulated so far suggest that this process cannot solely explain the imprinting of all genes. In this review, we revisit the current models explaining imprinting regulation in plants, and discuss novel regulatory mechanisms that could function independently of parental DNA methylation asymmetries in the establishment of imprinting.
Collapse
Affiliation(s)
- Rita A Batista
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala SE-750 07, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala SE-750 07, Sweden
| |
Collapse
|
19
|
Han B, Xu H, Feng Y, Xu W, Cui Q, Liu A. Genomic Characterization and Expressional Profiles of Autophagy-Related Genes ( ATGs) in Oilseed Crop Castor Bean ( Ricinus communis L.). Int J Mol Sci 2020; 21:E562. [PMID: 31952322 PMCID: PMC7013546 DOI: 10.3390/ijms21020562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 12/20/2022] Open
Abstract
Cellular autophagy is a widely-occurring conserved process for turning over damaged organelles or recycling cytoplasmic contents in cells. Although autophagy-related genes (ATGs) have been broadly identified from many plants, little is known about the potential function of autophagy in mediating plant growth and development, particularly in recycling cytoplasmic contents during seed development and germination. Castor bean (Ricinus communis) is one of the most important inedible oilseed crops. Its mature seed has a persistent and large endosperm with a hard and lignified seed coat, and is considered a model system for studying seed biology. Here, a total of 34 RcATG genes were identified in the castor bean genome and their sequence structures were characterized. The expressional profiles of these RcATGs were examined using RNA-seq and real-time PCR in a variety of tissues. In particular, we found that most RcATGs were significantly up-regulated in the later stage of seed coat development, tightly associated with the lignification of cell wall tissues. During seed germination, the expression patterns of most RcATGs were associated with the decomposition of storage oils. Furthermore, we observed by electron microscopy that the lipid droplets were directly swallowed by the vacuoles, suggesting that autophagy directly participates in mediating the decomposition of lipid droplets via the microlipophagy pathway in germinating castor bean seeds. This study provides novel insights into understanding the potential function of autophagy in mediating seed development and germination.
Collapse
Affiliation(s)
- Bing Han
- Department of Economic Plants and Biotechnology, and Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; (B.H.); (W.X.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Xu
- College of Life Sciences, Yunnan University, Kunming 650091, China; (H.X.); (Y.F.)
| | - Yingting Feng
- College of Life Sciences, Yunnan University, Kunming 650091, China; (H.X.); (Y.F.)
| | - Wei Xu
- Department of Economic Plants and Biotechnology, and Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; (B.H.); (W.X.)
| | - Qinghua Cui
- College of Life Sciences, Yunnan University, Kunming 650091, China; (H.X.); (Y.F.)
| | - Aizhong Liu
- Key Laboratory for Forest Resources Conservation and Utilization in Southwest Mountains of China, College of Forestry, Southwest Forestry University, Kunming 650201, China
| |
Collapse
|
20
|
Abstract
Genomic imprinting is a phenomenon that occurs in flowering plants and mammals, whereby a gene is expressed in a parent-of-origin-specific manner. Although imprinting has now been examined genome-wide in a number of species using RNA-seq, the analyses used to assess imprinting vary between studies, making consistent comparisons between species difficult. Here we present a simple, easy-to-use bioinformatic pipeline for imprinting analyses suitable for any tissue, including plant endosperm. All relevant scripts can be downloaded. As an illustrative example, we reanalyze published data from A. thaliana and Z. mays endosperm using the pipeline and then demonstrate how to use the results to assess the conservation of imprinting between these species. We also introduce the Plant Imprinting Database, a repository for published imprinting datasets in plants that can be used to view, compare, and download data.
Collapse
Affiliation(s)
- Colette L Picard
- Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Mary Gehring
- Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
21
|
Flores-Vergara MA, Oneal E, Costa M, Villarino G, Roberts C, De Luis Balaguer MA, Coimbra S, Willis J, Franks RG. Developmental Analysis of Mimulus Seed Transcriptomes Reveals Functional Gene Expression Clusters and Four Imprinted, Endosperm-Expressed Genes. FRONTIERS IN PLANT SCIENCE 2020; 11:132. [PMID: 32161609 PMCID: PMC7052496 DOI: 10.3389/fpls.2020.00132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/28/2020] [Indexed: 05/15/2023]
Abstract
The double fertilization of the female gametophyte initiates embryogenesis and endosperm development in seeds via the activation of genes involved in cell differentiation, organ patterning, and growth. A subset of genes expressed in endosperm exhibit imprinted expression, and the correct balance of gene expression between parental alleles is critical for proper endosperm and seed development. We use a transcriptional time series analysis to identify genes that are associated with key shifts in seed development, including genes associated with secondary cell wall synthesis, mitotic cell cycle, chromatin organization, auxin synthesis, fatty acid metabolism, and seed maturation. We relate these genes to morphological changes in Mimulus seeds. We also identify four endosperm-expressed transcripts that display imprinted (paternal) expression bias. The imprinted status of these four genes is conserved in other flowering plants, suggesting that they are functionally important in endosperm development. Our study explores gene regulatory dynamics in a species with ab initio cellular endosperm development, broadening the taxonomic focus of the literature on gene expression in seeds. Moreover, it is the first to validate genes with imprinted endosperm expression in Mimulus guttatus, and will inform future studies on the genetic causes of seed failure in this model system.
Collapse
Affiliation(s)
- Miguel A. Flores-Vergara
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Elen Oneal
- Department of Biology, Duke University, Durham, NC, United States
- *Correspondence: Elen Oneal,
| | - Mario Costa
- GreenUPorto, Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Gonzalo Villarino
- Biology Department, San Diego State University, San Diego, CA, United States
| | - Caitlyn Roberts
- Department of Biology, Berea College, Berea, KY, United States
| | | | - Sílvia Coimbra
- GreenUPorto, Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences, University of Porto, Porto, Portugal
| | - John Willis
- Department of Biology, Duke University, Durham, NC, United States
| | - Robert G. Franks
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
22
|
Xu W, Yang T, Qiu L, Chapman MA, Li D, Liu A. Genomic analysis reveals rich genetic variation and potential targets of selection during domestication of castor bean from perennial woody tree to annual semi-woody crop. PLANT DIRECT 2019; 3:e00173. [PMID: 31641699 PMCID: PMC6802463 DOI: 10.1002/pld3.173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Relatively, little is known about the genetic variation of woody trees during domestication. Castor bean (Ricinus communis L. Euphorbiaceae) is a commercially important nonedible annual oilseed crop and differs from its wild progenitors that have a perennial woody habit. Although castor bean is one of the oldest cultivated crops, its domestication origin, genomic variation, and potential targets of selection underlying domestication traits remain unknown. Here, we performed a phylogenetic analysis, which suggests that the wild accessions were distinctively separated from the cultivated accessions. Genome sequencing of three accessions (one each wild, landrace, and cultivar) showed a large number of genetic variants between wild and cultivated castor bean (ZB306 or Hale), and relatively few variants between cultivar ZB306 and Hale. Comparative genome analysis revealed many candidate genes of selection and key pathways potentially involved in the transition from a perennial woody tree to annual crop. Interestingly, among 16 oil-related genes only three showed evidence of selection and the remainder showed low genetic variation at the population level, suggesting strong purifying selection in both the wild and domesticated gene pools. These results extend our understanding of the origin, genomic variation, and domestication, and provide a valuable resource for future gene-trait associations and castor bean breeding.
Collapse
Affiliation(s)
- Wei Xu
- Department of Economic Plants and BiotechnologyYunnan Key Laboratory for Wild Plant ResourcesKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Tianquan Yang
- Germplasm Bank of Wild SpeciesKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Lijun Qiu
- Department of Economic Plants and BiotechnologyYunnan Key Laboratory for Wild Plant ResourcesKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Mark A. Chapman
- Biological Sciences and Centre for Underutilised CropsUniversity of SouthamptonSouthamptonUK
| | - De‐Zhu Li
- Germplasm Bank of Wild SpeciesKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Aizhong Liu
- Department of Economic Plants and BiotechnologyYunnan Key Laboratory for Wild Plant ResourcesKunming Institute of BotanyChinese Academy of SciencesKunmingChina
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of ChinaMinistry of EducationSouthwest Forestry UniversityKunmingChina
| |
Collapse
|
23
|
Yu A, Wang Z, Zhang Y, Li F, Liu A. Global Gene Expression of Seed Coat Tissues Reveals a Potential Mechanism of Regulating Seed Size Formation in Castor Bean. Int J Mol Sci 2019; 20:E1282. [PMID: 30875738 PMCID: PMC6471003 DOI: 10.3390/ijms20061282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 01/19/2023] Open
Abstract
The physiological and molecular basis of seed size formation is complex, and the development of seed coat (derived from integument cells) might be a critical factor that determines seed size formation for many endospermic seeds. Castor bean (Ricinus communis L.), a model system of studying seed biology, has large and persistent endosperm with a hard seed coat at maturity. Here, we investigated the potential molecular mechanisms underlying seed size formation in castor bean by comparing the difference between global gene expression within developing seed coat tissues between the large-seed ZB107 and small-seed ZB306. First, we observed the cell size of seed coat and concluded that the large seed coat area of ZB107 resulted from more cell numbers (rather than cell size). Furthermore, we found that the lignin proportion of seed coat was higher in ZB306. An investigation into global gene expression of developing seed coat tissues revealed that 815 genes were up-regulated and 813 were down-regulated in ZB306 relative to ZB107. Interestingly, we found that many genes involved in regulating cell division were up-regulated in ZB107, whereas many genes involved in regulating lignin biosynthesis (including several NAC members, as well as MYB46/83 and MYB58/63) and in mediating programmed cell death (such as CysEP1 and βVPE) were up-regulated in ZB306. Furthermore, the expression patterns of the genes mentioned above indicated that the lignification of seed coat tissues was enhanced and occurred earlier in the developing seeds of ZB306. Taken together, we tentatively proposed a potential scenario for explaining the molecular mechanisms of seed coat governing seed size formation in castor bean by increasing the cell number and delaying the onset of lignification in seed coat tissues in large-seed ZB107. This study not only presents new information for possible modulation of seed coat related genes to improve castor seed yield, but also provides new insights into understanding the molecular basis of seed size formation in endospermic seeds with hard seed coat.
Collapse
Affiliation(s)
- Anmin Yu
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
- University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Zaiqing Wang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
- University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Yang Zhang
- Jiangxi Province Key Laboratory of Oil Crops Biology, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China.
| | - Fei Li
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Aizhong Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
24
|
Liu J, Li J, Liu HF, Fan SH, Singh S, Zhou XR, Hu ZY, Wang HZ, Hua W. Genome-wide screening and analysis of imprinted genes in rapeseed (Brassica napus L.) endosperm. DNA Res 2019; 25:629-640. [PMID: 30272113 PMCID: PMC6289790 DOI: 10.1093/dnares/dsy030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/09/2018] [Indexed: 12/28/2022] Open
Abstract
Species-specific genomic imprinting is an epigenetic phenomenon leading to parent-of-origin-specific differential expression of maternally and paternally inherited alleles. To date, no studies of imprinting have been reported in rapeseed, a tetraploid species. Here, we analysed global patterns of allelic gene expression in developing rapeseed endosperms from reciprocal crosses between inbred lines YN171 and 93275. A total of 183 imprinted genes, consisting of 167 maternal expressed genes (MEGs) and 16 paternal expressed genes (PEGs), were identified from 14,394 genes found to harbour diagnostic SNPs between the parental lines. Some imprinted genes were validated in different endosperm stages and other parental combinations by RT-PCR analysis. A clear clustering of imprinted genes throughout the rapeseed genome was identified, which was different from most other plants. Methylation analysis of 104 out of the 183 imprinted genes showed that 11 genes (7 MEGs and 4 PEGs) harboured differentially methylated regions (DMRs). Unexpectedly, only 1 MEG out of these 11 genes had a DMR that exhibited high CG methylation rate in paternal allele and had big difference between parent alleles. These results extend our understanding of gene imprinting in plants and provide potential avenues for further research in imprinted genes.
Collapse
Affiliation(s)
- Jing Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| | - Jun Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| | - Hong-Fang Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| | - Shi-Hang Fan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| | - Surinder Singh
- Agriculture and Food Commonwealth Scientific and Industrial Research Organization, Canberra, ACT, Australia
| | - Xue-Rong Zhou
- Agriculture and Food Commonwealth Scientific and Industrial Research Organization, Canberra, ACT, Australia
| | - Zhi-Yong Hu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| | - Han-Zhong Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| | - Wei Hua
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| |
Collapse
|
25
|
Blunk I, Mayer M, Hamann H, Reinsch N. Scanning the genomes of parents for imprinted loci acting in their un-genotyped progeny. Sci Rep 2019; 9:654. [PMID: 30679576 PMCID: PMC6345920 DOI: 10.1038/s41598-018-36939-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/23/2018] [Indexed: 11/09/2022] Open
Abstract
Depending on their parental origin, alleles at imprinted loci are fully or partially inactivated through epigenetic mechanisms. Their effects contribute to the broader class of parent-of-origin effects. Standard methodology for mapping imprinted quantitative trait loci in association studies requires phenotypes and parental origin of marker alleles (ordered genotypes) to be simultaneously known for each individual. As such, many phenotypes are known from un-genotyped offspring in ongoing breeding programmes (e.g. meat animals), while their parents have known genotypes but no phenotypes. By theoretical considerations and simulations, we showed that the limitations of standard methodology can be overcome in such situations. This is achieved by first estimating parent-of-origin effects, which then serve as dependent variables in association analyses, in which only imprinted loci give a signal. As a theoretical foundation, the regression of parent-of-origin effects on the number of B-alleles at a biallelic locus — representing the un-ordered genotype — equals the imprinting effect. The applicability to real data was demonstrated for about 1800 genotyped Brown Swiss bulls and their un-genotyped fattening progeny. Thus, this approach unlocks vast data resources in various species for imprinting analyses and offers valuable clues as to what extent imprinted loci contribute to genetic variability.
Collapse
Affiliation(s)
- Inga Blunk
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig-Weg 6, 18059, Rostock, Germany.,Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Manfred Mayer
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Henning Hamann
- State-Office for Geo-Information and Rural Development, Geodata-Center, Stuttgarter Straße 161, 70806, Kornwestheim, Germany
| | - Norbert Reinsch
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
26
|
Yoshida T, Kawanabe T, Bo Y, Fujimoto R, Kawabe A. Genome-Wide Analysis of Parent-of-Origin Allelic Expression in Endosperms of Brassicaceae Species, Brassica rapa. PLANT & CELL PHYSIOLOGY 2018; 59:2590-2601. [PMID: 30165552 DOI: 10.1093/pcp/pcy178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/24/2018] [Indexed: 05/06/2023]
Abstract
Uniparental gene expression, observed in both animals and plants, is termed genomic imprinting. Genomic imprinting is a well-known epigenetic phenomenon regulated through epigenetic modifications such as DNA methylation and histone modifications. Recent genome-wide studies of endosperm transcription have revealed the rapid change of imprinted genes between species, suggesting the flexibility of this phenomenon. Although the functional significance and evolutionary trends of imprinted genes are still obscure, it can be clarified by inter-species comparisons. In this study, we analyzed the pattern of genomic imprinting in Brassica rapa, a species related to Arabidopsis thaliana. Compared with the ancient karyotype of A. thaliana and B. rapa, B. rapa has a triplicated genome. Many imprinted genes, beyond the estimated number previously reported in other species, were observed. Several imprinted genes have been conserved among species in Brassicaceae. We also observed rapid molecular evolution of imprinted genes compared to non-imprinted genes in B. rapa. Especially, imprinted gene overlapping between species showed more rapid molecular evolution and preferential expression in endosperms. It may imply that a small number of imprinted genes have retained functional roles among diverged species and have been the target of natural selection.
Collapse
Affiliation(s)
| | - Takahiro Kawanabe
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Yina Bo
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Ryo Fujimoto
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Akira Kawabe
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| |
Collapse
|
27
|
Castelli S, Mascheretti I, Cosentino C, Lazzari B, Pirona R, Ceriotti A, Viotti A, Lauria M. Uniparental and transgressive expression of α-zeins in maize endosperm of o2 hybrid lines. PLoS One 2018; 13:e0206993. [PMID: 30439980 PMCID: PMC6237297 DOI: 10.1371/journal.pone.0206993] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/23/2018] [Indexed: 11/18/2022] Open
Abstract
The α-zein gene family encodes the most abundant storage proteins of maize (Zea mays) endosperm. Members of this family are expressed in a parent-of-origin manner. To characterize this phenomenon further, we investigated the expression of a subset of α-zein polypeptides in reciprocal crosses between o2 lines that were characterized by a simplified α-zein pattern. Maize lines that suppressed the expression of α-zeins when used as female parents were identified. The suppression was cross-specific, occurring only when specific genetic backgrounds were combined. Four α-zein sequences that were sensitive to uniparental expression were isolated. Molecular characterization of these α-zeins confirmed that their expression or suppression depended on the genetic proprieties of the endosperm tissue instead of their parental origin. DNA methylation analysis of both maternally and paternally expressed α-zeins revealed no clear correlation between this epigenetic marker and parent-of-origin allelic expression, suggesting that an additional factor(s) is involved in this process. Genetic analyses revealed that the ability of certain lines to suppress α-zein expression was unstable after one round of heterozygosity with non-suppressing lines. Interestingly, α-zeins also showed a transgressive expression pattern because unexpressed isoforms were reactivated in both F2 and backcross plants. Collectively, our results suggest that parent-of-origin expression of specific α-zein alleles depends on a complex interaction between genotypes in a manner that is reminiscent of paramutation-like phenomena.
Collapse
Affiliation(s)
- Silvana Castelli
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
| | - Iride Mascheretti
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
| | - Cristian Cosentino
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
| | - Barbara Lazzari
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
| | - Raul Pirona
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
| | - Aldo Ceriotti
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
| | - Angelo Viotti
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
- * E-mail: (AV); (ML)
| | - Massimiliano Lauria
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
- * E-mail: (AV); (ML)
| |
Collapse
|
28
|
Roth M, Florez-Rueda AM, Paris M, Städler T. Wild tomato endosperm transcriptomes reveal common roles of genomic imprinting in both nuclear and cellular endosperm. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:1084-1101. [PMID: 29953688 DOI: 10.1111/tpj.14012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/01/2018] [Accepted: 06/20/2018] [Indexed: 05/06/2023]
Abstract
Genomic imprinting is a conspicuous feature of the endosperm, a triploid tissue nurturing the embryo and synchronizing angiosperm seed development. An unknown subset of imprinted genes (IGs) is critical for successful seed development and should have highly conserved functions. Recent genome-wide studies have found limited conservation of IGs among distantly related species, but there is a paucity of data from closely related lineages. Moreover, most studies focused on model plants with nuclear endosperm development, and comparisons with properties of IGs in cellular-type endosperm development are lacking. Using laser-assisted microdissection, we characterized parent-specific expression in the cellular endosperm of three wild tomato lineages (Solanum section Lycopersicon). We identified 1025 candidate IGs and 167 with putative homologs previously identified as imprinted in distantly related taxa with nuclear-type endosperm. Forty-two maternally expressed genes (MEGs) and 17 paternally expressed genes (PEGs) exhibited conserved imprinting status across all three lineages, but differences in power to assess imprinted expression imply that the actual degree of conservation might be higher than that directly estimated (20.7% for PEGs and 10.4% for MEGs). Regardless, the level of shared imprinting status was higher for PEGs than for MEGs, indicating dissimilar evolutionary trajectories. Expression-level data suggest distinct epigenetic modulation of MEGs and PEGs, and gene ontology analyses revealed MEGs and PEGs to be enriched for different functions. Importantly, our data provide evidence that MEGs and PEGs interact in modulating both gene expression and the endosperm cell cycle, and uncovered conserved cellular functions of IGs uniting taxa with cellular- and nuclear-type endosperm.
Collapse
Affiliation(s)
- Morgane Roth
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| | - Ana M Florez-Rueda
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| | - Margot Paris
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| | - Thomas Städler
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| |
Collapse
|
29
|
Chen C, Li T, Zhu S, Liu Z, Shi Z, Zheng X, Chen R, Huang J, Shen Y, Luo S, Wang L, Liu QQ, E Z. Characterization of Imprinted Genes in Rice Reveals Conservation of Regulation and Imprinting with Other Plant Species. PLANT PHYSIOLOGY 2018; 177:1754-1771. [PMID: 29914891 PMCID: PMC6084669 DOI: 10.1104/pp.17.01621] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 06/07/2018] [Indexed: 05/08/2023]
Abstract
Genomic imprinting is an epigenetic phenomenon by which certain genes display differential expression in a parent-of-origin-dependent manner. Hundreds of imprinted genes have been identified from several plant species. Here, we identified, with a high level of confidence, 208 imprinted gene candidates from rice (Oryza sativa). Imprinted genes of rice showed limited association with the transposable elements, which contrasts with findings from Arabidopsis (Arabidopsis thaliana). Generally, imprinting in rice is conserved within a species, but intraspecific variation also was detected. The imprinted rice genes do not show signatures of selection, which suggests that domestication has had a limited evolutionary consequence on genomic imprinting. Although conservation of imprinting in plants is limited, we show that some loci are imprinted in several different species. Moreover, our results suggest that different types of epigenetic regulation can be established either before or after fertilization. Imprinted 24-nucleotide small RNAs and their neighboring genes tend to express alleles from different parents. This association was not observed between 21-nucleotide small RNAs and their neighboring genes. Together, our findings suggest that the regulation of imprinting can be diverse, and genomic imprinting has evolutionary and biological significance.
Collapse
Affiliation(s)
- Chen Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China, 225009
| | - Tingting Li
- China National Rice Research Institute, Hangzhou, China, 311401
| | - Shan Zhu
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China, 330200
| | - Zehou Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China, 610041
| | - Zhenyuan Shi
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China, 225009
| | - Xiaoming Zheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Key Facilities for Crop Gene Resources and Genetic Improvement, Beijing, China, 100081
| | - Rui Chen
- Tianjin Institute of Agricultural Quality Standard and Testing Technology, Tianjin Academy of Agricultural Sciences, Tianjin, China, 300381
| | - Jianfeng Huang
- Shanghai Biotechnology Corporation, Shanghai, China, 201203
| | - Yi Shen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China, 210014
| | - Shiyou Luo
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China, 330200
| | - Lei Wang
- China National Rice Research Institute, Hangzhou, China, 311401
| | - Qiao-Quan Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China, 225009
| | - Zhiguo E
- China National Rice Research Institute, Hangzhou, China, 311401
| |
Collapse
|
30
|
Xu W, Yang T, Wang B, Han B, Zhou H, Wang Y, Li DZ, Liu A. Differential expression networks and inheritance patterns of long non-coding RNAs in castor bean seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:324-340. [PMID: 29738104 DOI: 10.1111/tpj.13953] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/19/2018] [Accepted: 04/25/2018] [Indexed: 05/24/2023]
Abstract
Long non-coding RNAs (lncRNAs) serve as versatile regulators of plant growth and development. The potential functions and inheritance patterns of lncRNAs, as well as the epigenetic regulation of lncRNA itself, remain largely uncharacterized in plant seeds, especially in the persistent endosperm of the dicotyledons. In this study, we investigated diverse RNA-seq data and catalogued 5356 lncRNAs in castor bean seeds. A small fraction of lncRNAs were transcribed from the same direction as the promoters of protein-coding genes (PCgenes) and exhibited strongly coordinated expression with the nearby PCgene. Co-expression analysis with weighted gene co-expression network analysis (WGCNA) showed these lncRNAs to be involved in differential transcription networks between the embryo and endosperm in the early developing seed. Genomic DNA methylation analyses revealed that the expression level of lncRNAs was tightly linked to DNA methylation and that endosperm hypomethylation could promote the expression of linked lncRNAs. Intriguingly, upon hybridization, most lncRNAs with divergent genome sequences between two parents could be reconciled and were expressed according to their parental genome contribution; however, some deviation in the expression of allelic lncRNAs was observed and found to be partially dependent on parental effects. In triploid endosperm, the expression of most lncRNAs was not dosage sensitive, as only 20 lncRNAs had balanced dosage. Our findings not only demonstrate that lncRNAs play potential roles in regulating the development of castor bean endosperm and embryo, but also provide novel insights into the parental effects, allelic expression and epigenetic regulation of lncRNAs in dicotyledonous seeds.
Collapse
Affiliation(s)
- Wei Xu
- Department of Economic Plants and Biotechnology, and Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Tianquan Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Bin Wang
- Department of Economic Plants and Biotechnology, and Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
- Graduate University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing Han
- Department of Economic Plants and Biotechnology, and Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
- Graduate University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Huangkai Zhou
- Guangzhou Gene denovo Biotechnology, Guangzhou, 510006, China
| | - Yue Wang
- Department of Economic Plants and Biotechnology, and Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Aizhong Liu
- Department of Economic Plants and Biotechnology, and Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| |
Collapse
|
31
|
Dong X, Chen J, Li T, Li E, Zhang X, Zhang M, Song W, Zhao H, Lai J. Parent-of-origin-dependent nucleosome organization correlates with genomic imprinting in maize. Genome Res 2018; 28:1020-1028. [PMID: 29903724 PMCID: PMC6028132 DOI: 10.1101/gr.230201.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 05/31/2018] [Indexed: 12/23/2022]
Abstract
Genomic imprinting refers to allele-specific expression of genes depending on their parental origin. Nucleosomes, the fundamental units of chromatin, play a critical role in gene transcriptional regulation. However, it remains unknown whether differential nucleosome organization is related to the allele-specific expression of imprinted genes. Here, we generated a genome-wide map of allele-specific nucleosome occupancy in maize endosperm and presented an integrated analysis of its relationship with parent-of-origin-dependent gene expression and DNA methylation. We found that ∼2.3% of nucleosomes showed significant parental bias in maize endosperm. The parent-of-origin-dependent nucleosomes mostly exist as single isolated nucleosomes. Parent-of-origin-dependent nucleosomes were significantly associated with the allele-specific expression of imprinted genes, with nucleosomes positioned preferentially in the promoter of nonexpressed alleles of imprinted genes. Furthermore, we found that most of the paternal specifically positioned nucleosomes (pat-nucleosomes) were associated with parent-of-origin-dependent differential methylated regions, suggesting a functional link between the maternal demethylation and the occurrence of pat-nucleosome. Maternal specifically positioned nucleosomes (mat-nucleosomes) were independent of allele-specific DNA methylation but seem to be associated with allele-specific histone modification. Our study provides the first genome-wide map of allele-specific nucleosome occupancy in plants and suggests a mechanistic connection between chromatin organization and genomic imprinting.
Collapse
Affiliation(s)
- Xiaomei Dong
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jian Chen
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Tong Li
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - En Li
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xiangbo Zhang
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Mei Zhang
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China.,Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Weibin Song
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Haiming Zhao
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jinsheng Lai
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China.,Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| |
Collapse
|
32
|
Zhang M, Lv R, Yang W, Fu T, Liu B. Imprinted gene expression in maize starchy endosperm and aleurone tissues of reciprocal F1 hybrids at a defined developmental stage. Genes Genomics 2018; 40:99-107. [PMID: 29892900 DOI: 10.1007/s13258-017-0613-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 09/10/2017] [Indexed: 10/18/2022]
Abstract
Imprinted gene expression in flowering plants predominantly occurs in the triploid endosperm of developing seed. However, endosperm is composed of distinct tissue types. For example, the maize (Zea mays) endosperm is constituted by two major tissues, starchy endosperm and aleurone. Previous studies in imprinted gene expression have generally assumed that the different tissues constituting endosperm would behavior the same, and hence have not examined them separately. Here, to examine parental-specific expression of imprinted genes in different parts of the seed, eight previously reported maize protein-coding imprinted genes were selected, and analyzed by cleaved amplified polymorphic sequence (CAPS) coupled with Sanger sequencing for transcripts from the various seed tissues collected at 18 days after pollination (DAP). The studied tissues included seed coat, embryo, starchy endosperm and aleurone, which were collected from a pair of reciprocal F1 hybrids produced by crossing inbred lines B73 and Mo17. Six of these eight analyzed imprinted genes showed the same imprinted expression pattern between the starchy endosperm and aleurone, but two showed imprinted expression only in the starchy endosperm. Comparison of the expression pattern of 20 selected imprinted genes in multiple seed tissues and vegetative tissues indicated that the majority (~ 75%) of these imprinted genes exhibited seed-specific or endosperm-specific expression. Our results also uncovered that imprinted genes have a high propensity to be alternatively spliced via intron retention in the developing embryo compared with the other tissues.
Collapse
Affiliation(s)
- Meishan Zhang
- Department of Agronomy, Jilin Agricultural University, Changchun, 130118, People's Republic of China.
| | - Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Wei Yang
- Department of Agronomy, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Tiansi Fu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China.
| |
Collapse
|
33
|
Zhang S, Wang D, Zhang H, Skaggs MI, Lloyd A, Ran D, An L, Schumaker KS, Drews GN, Yadegari R. FERTILIZATION-INDEPENDENT SEED-Polycomb Repressive Complex 2 Plays a Dual Role in Regulating Type I MADS-Box Genes in Early Endosperm Development. PLANT PHYSIOLOGY 2018; 177. [PMID: 29523711 PMCID: PMC5933120 DOI: 10.1104/pp.17.00534] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Early endosperm development presents a unique system in which to uncover epigenetic regulatory mechanisms because the contributing maternal and paternal genomes possess differential epigenetic modifications. In Arabidopsis (Arabidopsis thaliana), the initiation of endosperm coenocytic growth upon fertilization and the transition to endosperm cellularization are regulated by the FERTILIZATION-INDEPENDENT SEED (FIS)-Polycomb Repressive Complex 2 (PRC2), a putative H3K27 methyltransferase. Here, we address the possible role of the FIS-PRC2 complex in regulating the type I MADS-box gene family, which has been shown previously to regulate early endosperm development. We show that a subclass of type I MADS-box genes (C2 genes) was expressed in distinct domains of the coenocytic endosperm in wild-type seeds. Furthermore, the C2 genes were mostly up-regulated biallelically during the extended coenocytic phase of endosperm development in the FIS-PRC2 mutant background. Using allele-specific expression analysis, we also identified a small subset of C2 genes subjected to FIS-PRC2-dependent maternal or FIS-PRC2-independent paternal imprinting. Our data support a dual role for the FIS-PRC2 complex in the regulation of C2 type I MADS-box genes, as evidenced by a generalized role in the repression of gene expression at both alleles associated with endosperm cellularization and a specialized role in silencing the maternal allele of imprinted genes.
Collapse
Affiliation(s)
- Shanshan Zhang
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Dongfang Wang
- Biology Department, Spelman College, Atlanta, Georgia 30314
| | - Huajian Zhang
- Department of Biology, University of Utah, Salt Lake City, Utah 84112
| | - Megan I Skaggs
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Alan Lloyd
- Department of Biology, University of Utah, Salt Lake City, Utah 84112
| | - Di Ran
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
- Division of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona 85724
| | - Lingling An
- Division of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona 85724
- Department of Agricultural and Biosystems Engineering, University of Arizona, Tucson, Arizona 85721
| | - Karen S Schumaker
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Gary N Drews
- Department of Biology, University of Utah, Salt Lake City, Utah 84112
| | - Ramin Yadegari
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
34
|
Meng D, Zhao J, Zhao C, Luo H, Xie M, Liu R, Lai J, Zhang X, Jin W. Sequential gene activation and gene imprinting during early embryo development in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:445-459. [PMID: 29172230 DOI: 10.1111/tpj.13786] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 05/05/2023]
Abstract
Gene imprinting is a widely observed epigenetic phenomenon in maize endosperm; however, whether it also occurs in the maize embryo remains controversial. Here, we used high-throughput RNA sequencing on laser capture microdissected and manually dissected maize embryos from reciprocal crosses between inbred lines B73 and Mo17 at six time points (3-13 days after pollination, DAP) to analyze allelic gene expression patterns. Co-expression analysis revealed sequential gene activation during maize embryo development. Gene imprinting was observed in maize embryos, and a greater number of imprinted genes were identified at early embryo stages. Sixty-four strongly imprinted genes were identified (at the threshold of 9:1) on manually dissected embryos 5-13 DAP (more imprinted genes at 5 DAP). Forty-one strongly imprinted genes were identified from laser capture microdissected embryos at 3 and 5 DAP (more imprinted genes at 3 DAP). Furthermore, of the 56 genes that were completely imprinted (at the threshold of 99:1), 36 were not previously identified as imprinted genes in endosperm or embryos. In situ hybridization demonstrated that most of the imprinted genes were expressed abundantly in maize embryonic tissue. Our results shed lights on early maize embryo development and provide evidence to support that gene imprinting occurs in maize embryos.
Collapse
Affiliation(s)
- Dexuan Meng
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), China Agricultural University, Beijing, 100193, China
| | - Jianyu Zhao
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Cheng Zhao
- Shanghai Centre for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haishan Luo
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), China Agricultural University, Beijing, 100193, China
| | - Mujiao Xie
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), China Agricultural University, Beijing, 100193, China
| | - Renyi Liu
- Shanghai Centre for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Jinsheng Lai
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), China Agricultural University, Beijing, 100193, China
| | - Xiaolan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Weiwei Jin
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), China Agricultural University, Beijing, 100193, China
| |
Collapse
|
35
|
Zou Z, Huang Q, Xie G, Yang L. Genome-wide comparative analysis of papain-like cysteine protease family genes in castor bean and physic nut. Sci Rep 2018; 8:331. [PMID: 29321580 PMCID: PMC5762910 DOI: 10.1038/s41598-017-18760-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 12/18/2017] [Indexed: 11/09/2022] Open
Abstract
Papain-like cysteine proteases (PLCPs) are a class of proteolytic enzymes involved in many plant processes. Compared with the extensive research in Arabidopsis thaliana, little is known in castor bean (Ricinus communis) and physic nut (Jatropha curcas), two Euphorbiaceous plants without any recent whole-genome duplication. In this study, a total of 26 or 23 PLCP genes were identified from the genomes of castor bean and physic nut respectively, which can be divided into nine subfamilies based on the phylogenetic analysis: RD21, CEP, XCP, XBCP3, THI, SAG12, RD19, ALP and CTB. Although most of them harbor orthologs in Arabidopsis, several members in subfamilies RD21, CEP, XBCP3 and SAG12 form new groups or subgroups as observed in other species, suggesting specific gene loss occurred in Arabidopsis. Recent gene duplicates were also identified in these two species, but they are limited to the SAG12 subfamily and were all derived from local duplication. Expression profiling revealed diverse patterns of different family members over various tissues. Furthermore, the evolution characteristics of PLCP genes were also compared and discussed. Our findings provide a useful reference to characterize PLCP genes and investigate the family evolution in Euphorbiaceae and species beyond.
Collapse
Affiliation(s)
- Zhi Zou
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Baodaoxincun, Danzhou, 571737, Hainan Province, China.
| | - Qixing Huang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 570100, Hainan Province, China
| | - Guishui Xie
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Baodaoxincun, Danzhou, 571737, Hainan Province, China
| | - Lifu Yang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Baodaoxincun, Danzhou, 571737, Hainan Province, China
| |
Collapse
|
36
|
Yang G, Liu Z, Gao L, Yu K, Feng M, Yao Y, Peng H, Hu Z, Sun Q, Ni Z, Xin M. Genomic Imprinting Was Evolutionarily Conserved during Wheat Polyploidization. THE PLANT CELL 2018; 30:37-47. [PMID: 29298834 PMCID: PMC5810578 DOI: 10.1105/tpc.17.00837] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/11/2017] [Accepted: 01/02/2018] [Indexed: 05/06/2023]
Abstract
Genomic imprinting is an epigenetic phenomenon that causes genes to be differentially expressed depending on their parent of origin. To evaluate the evolutionary conservation of genomic imprinting and the effects of ploidy on this process, we investigated parent-of-origin-specific gene expression patterns in the endosperm of diploid (Aegilops spp), tetraploid, and hexaploid wheat (Triticum spp) at various stages of development via high-throughput transcriptome sequencing. We identified 91, 135, and 146 maternally or paternally expressed genes (MEGs or PEGs, respectively) in diploid, tetraploid, and hexaploid wheat, respectively, 52.7% of which exhibited dynamic expression patterns at different developmental stages. Gene Ontology enrichment analysis suggested that MEGs and PEGs were involved in metabolic processes and DNA-dependent transcription, respectively. Nearly half of the imprinted genes exhibited conserved expression patterns during wheat hexaploidization. In addition, 40% of the homoeolog pairs originating from whole-genome duplication were consistently maternally or paternally biased in the different subgenomes of hexaploid wheat. Furthermore, imprinted expression was found for 41.2% and 50.0% of homolog pairs that evolved by tandem duplication after genome duplication in tetraploid and hexaploid wheat, respectively. These results suggest that genomic imprinting was evolutionarily conserved between closely related Triticum and Aegilops species and in the face of polyploid hybridization between species in these genera.
Collapse
Affiliation(s)
- Guanghui Yang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhenshan Liu
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lulu Gao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Kuohai Yu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Man Feng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| |
Collapse
|
37
|
Castroverde CDM, Xu X, Blaya Fernández J, Nazar RN, Robb J. Epistatic influence in tomato Ve1-mediated resistance. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:843-847. [PMID: 28544492 DOI: 10.1111/plb.12582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
Resistance to Verticillium wilt disease is associated with the tomato Ve-locus; however, the individual functional roles of Ve1 and Ve2 in host plants remain controversial. As a first step towards Ve mutational analyses in planta, the Ve1 coding region from a resistant tomato near-isoline (cv. Craigella GCR218) was introduced into a susceptible near-isoline (cv. Craigella GCR26). 35S:Ve1 plants segregated into two distinct classes; roughly half were resistant and half were susceptible. Ve1 transcript levels were up-regulated in both classes compared to wild-type plants, showing stable transgenic expression. Expression analysis of Ve2 revealed that mRNA levels were similar between 35S:Ve1 and wild-type tomatoes, demonstrating that Ve1 transgene introduction does not alter endogenous Ve2 expression. Overall, the results of this study confirm the functional role of Ve1 protein in resistance to the vascular fungal pathogen V. dahliae race 1 (Vd1), but suggest that a yet undefined factor exerts an epistatic influence on the Ve1 gene.
Collapse
Affiliation(s)
- C D M Castroverde
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - X Xu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - J Blaya Fernández
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - R N Nazar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - J Robb
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
38
|
Lauria M, Echegoyen-Nava RA, Rodríguez-Ríos D, Zaina S, Lund G. Inter-individual variation in DNA methylation is largely restricted to tissue-specific differentially methylated regions in maize. BMC PLANT BIOLOGY 2017; 17:52. [PMID: 28231765 PMCID: PMC5324254 DOI: 10.1186/s12870-017-0997-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/08/2017] [Indexed: 05/26/2023]
Abstract
BACKGROUND Variation in DNA methylation across distinct genetic populations, or in response to specific biotic or abiotic stimuli, has typically been studied in leaf DNA from pooled individuals using either reduced representation bisulfite sequencing, whole genome bisulfite sequencing (WGBS) or methylation sensitive amplified polymorphism (MSAP). The latter represents a useful alterative when sample size is large, or when analysing methylation changes in genomes that have yet to be sequenced. In this study we compared variation in methylation across ten individual leaf and endosperm samples from maize hybrid and inbred lines using MSAP. We also addressed the methodological implications of analysing methylation variation using pooled versus individual DNA samples, in addition to the validity of MSAP compared to WGBS. Finally, we analysed a subset of variable and non-variable fragments with respect to genomic location, vicinity to repetitive elements and expression patterns across leaf and endosperm tissues. RESULTS On average, 30% of individuals showed inter-individual methylation variation, mostly of leaf and endosperm-specific differentially methylated DNA regions. With the exception of low frequency demethylation events, the bulk of inter-individual methylation variation (84 and 80% in leaf and endosperm, respectively) was effectively captured in DNA from pooled individuals. Furthermore, available genome-wide methylation data largely confirmed MSAP leaf methylation profiles. Most variable methylation that mapped within genes was associated with CG methylation, and many of such genes showed tissue-specific expression profiles. Finally, we found that the hAT DNA transposon was the most common class II transposable element found in close proximity to variable DNA regions. CONCLUSIONS The relevance of our results with respect to future studies of methylation variation is the following: firstly, the finding that inter-individual methylation variation is largely restricted to tissue-specific differentially methylated DNA regions, underlines the importance of tissue-type when analysing the methylation response to a defined stimulus. Secondly, we show that pooled sample-based MSAP studies are methodologically appropriate to study methylation variation. Thirdly, we confirm that MSAP is a powerful tool when WGBS is not required or feasible, for example in plant species that have yet to be sequenced.
Collapse
Affiliation(s)
- Massimiliano Lauria
- Consiglio Nazionale delle Ricerche, Istituto di Biologia e Biotecnologia Agraria, I-20133 Milan, Italy
| | - Rodrigo Antonio Echegoyen-Nava
- Gertrud Lund, Department of Genetic Engineering, CINVESTAV - Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-Leon, Apdo. Postal 629, C. P. 36500 Irapuato, GTO Mexico
| | - Dalia Rodríguez-Ríos
- Gertrud Lund, Department of Genetic Engineering, CINVESTAV - Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-Leon, Apdo. Postal 629, C. P. 36500 Irapuato, GTO Mexico
| | - Silvio Zaina
- Department of Medical Sciences, Division of Health Sciences, León Campus, University of Guanajuato, Guanajuato, Mexico
| | - Gertrud Lund
- Gertrud Lund, Department of Genetic Engineering, CINVESTAV - Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-Leon, Apdo. Postal 629, C. P. 36500 Irapuato, GTO Mexico
| |
Collapse
|
39
|
Satyaki PRV, Gehring M. DNA methylation and imprinting in plants: machinery and mechanisms. Crit Rev Biochem Mol Biol 2017; 52:163-175. [PMID: 28118754 DOI: 10.1080/10409238.2017.1279119] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Imprinting is an epigenetic phenomenon in which genes are expressed selectively from either the maternal or paternal alleles. In plants, imprinted gene expression is found in a tissue called the endosperm. Imprinting is often set by a unique epigenomic configuration in which the maternal chromosomes are less DNA methylated than their paternal counterparts. In this review, we synthesize studies that paint a detailed molecular portrait of the distinctive endosperm methylome. We will also discuss the molecular machinery that shapes and modifies this methylome, and the role of DNA methylation in imprinting.
Collapse
Affiliation(s)
- P R V Satyaki
- a Whitehead Institute for Biomedical Research , Cambridge , MA , USA
| | - Mary Gehring
- a Whitehead Institute for Biomedical Research , Cambridge , MA , USA.,b Department of Biology , Massachusetts Institute of Technology , Cambridge , MA , USA
| |
Collapse
|
40
|
Gehring M, Satyaki PR. Endosperm and Imprinting, Inextricably Linked. PLANT PHYSIOLOGY 2017; 173:143-154. [PMID: 27895206 PMCID: PMC5210735 DOI: 10.1104/pp.16.01353] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/22/2016] [Indexed: 05/21/2023]
Abstract
Recent developments advance our understanding of imprinted gene expression in plants.
Collapse
Affiliation(s)
- Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142 (M.G., P.R.S.); and
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (M.G.)
| | - P R Satyaki
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142 (M.G., P.R.S.); and
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (M.G.)
| |
Collapse
|
41
|
Hatorangan MR, Laenen B, Steige KA, Slotte T, Köhler C. Rapid Evolution of Genomic Imprinting in Two Species of the Brassicaceae. THE PLANT CELL 2016; 28:1815-27. [PMID: 27465027 PMCID: PMC5006707 DOI: 10.1105/tpc.16.00304] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/16/2016] [Accepted: 07/21/2016] [Indexed: 05/21/2023]
Abstract
Genomic imprinting is an epigenetic phenomenon occurring in mammals and flowering plants that causes genes to adopt a parent-of-origin-specific mode of expression. While the imprinting status of genes is well conserved in mammals, clear estimates for the degree of conservation were lacking in plants. We therefore analyzed the genome-wide imprinting status of Capsella rubella, which shared a common recent ancestor with Arabidopsis thaliana ∼10 to 14 million years ago. However, only ∼14% of maternally expressed genes (MEGs) and ∼29% of paternally expressed genes (PEGs) in C. rubella were commonly imprinted in both species, revealing that genomic imprinting is a rapidly evolving phenomenon in plants. Nevertheless, conserved PEGs exhibited signs of selection, suggesting that a subset of imprinted genes play an important functional role and are therefore maintained in plants. Like in Arabidopsis, PEGs in C. rubella are frequently associated with the presence of transposable elements that preferentially belong to helitron and MuDR families. Our data further reveal that MEGs and PEGs differ in their targeting by 24-nucleotide small RNAs and asymmetric DNA methylation, suggesting different mechanisms establishing DNA methylation at MEGs and PEGs.
Collapse
Affiliation(s)
- Marcelinus R Hatorangan
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 750 07 Uppsala, Sweden
| | - Benjamin Laenen
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, 114 18 Stockholm, Sweden
| | - Kim A Steige
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, 114 18 Stockholm, Sweden Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden
| | - Tanja Slotte
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, 114 18 Stockholm, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 750 07 Uppsala, Sweden
| |
Collapse
|
42
|
Xu W, Chen Z, Ahmed N, Han B, Cui Q, Liu A. Genome-Wide Identification, Evolutionary Analysis, and Stress Responses of the GRAS Gene Family in Castor Beans. Int J Mol Sci 2016; 17:ijms17071004. [PMID: 27347937 PMCID: PMC4964380 DOI: 10.3390/ijms17071004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 12/01/2022] Open
Abstract
Plant-specific GRAS transcription factors play important roles in regulating growth, development, and stress responses. Castor beans (Ricinus communis) are important non-edible oilseed plants, cultivated worldwide for its seed oils and its adaptability to growth conditions. In this study, we identified and characterized a total of 48 GRAS genes based on the castor bean genome. Combined with phylogenetic analysis, the castor bean GRAS members were divided into 13 distinct groups. Functional divergence analysis revealed the presence of mostly Type-I functional divergence. The gene structures and conserved motifs, both within and outside the GRAS domain, were characterized. Gene expression analysis, performed in various tissues and under a range of abiotic stress conditions, uncovered the potential functions of GRAS members in regulating plant growth development and stress responses. The results obtained from this study provide valuable information toward understanding the potential molecular mechanisms of GRAS proteins in castor beans. These findings also serve as a resource for identifying the genes that allow castor beans to grow in stressful conditions and to enable further breeding and genetic improvements in agriculture.
Collapse
Affiliation(s)
- Wei Xu
- College of Life Sciences, Yunnan University, Kunming 650091, China.
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China.
- University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Zexi Chen
- College of Life Sciences, Yunnan University, Kunming 650091, China.
| | - Naeem Ahmed
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China.
- Department of Botany, University of Karachi, Karachi-75270, Pakistan.
| | - Bing Han
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China.
- University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Qinghua Cui
- College of Life Sciences, Yunnan University, Kunming 650091, China.
| | - Aizhong Liu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China.
| |
Collapse
|
43
|
Xu W, Yang T, Dong X, Li DZ, Liu A. Genomic DNA Methylation Analyses Reveal the Distinct Profiles in Castor Bean Seeds with Persistent Endosperms. PLANT PHYSIOLOGY 2016; 171:1242-58. [PMID: 27208275 PMCID: PMC4902593 DOI: 10.1104/pp.16.00056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/27/2016] [Indexed: 05/21/2023]
Abstract
Investigations of genomic DNA methylation in seeds have been restricted to a few model plants. The endosperm genomic DNA hypomethylation has been identified in angiosperm, but it is difficult to dissect the mechanism of how this hypomethylation is established and maintained because endosperm is ephemeral and disappears with seed development in most dicots. Castor bean (Ricinus communis), unlike Arabidopsis (Arabidopsis thaliana), endosperm is persistent throughout seed development, providing an excellent model in which to dissect the mechanism of endosperm genomic hypomethylation in dicots. We characterized the DNA methylation-related genes encoding DNA methyltransferases and demethylases and analyzed their expression profiles in different tissues. We examined genomic methylation including CG, CHG, and CHH contexts in endosperm and embryo tissues using bisulfite sequencing and revealed that the CHH methylation extent in endosperm and embryo was, unexpectedly, substantially higher than in previously studied plants, irrespective of the CHH percentage in their genomes. In particular, we found that the endosperm exhibited a global reduction in CG and CHG methylation extents relative to the embryo, markedly switching global gene expression. However, CHH methylation occurring in endosperm did not exhibit a significant reduction. Combining with the expression of 24-nucleotide small interfering RNAs (siRNAs) mapped within transposable element (TE) regions and genes involved in the RNA-directed DNA methylation pathway, we demonstrate that the 24-nucleotide siRNAs played a critical role in maintaining CHH methylation and repressing the activation of TEs in persistent endosperm development. This study discovered a novel genomic DNA methylation pattern and proposes the potential mechanism occurring in dicot seeds with persistent endosperm.
Collapse
Affiliation(s)
- Wei Xu
- Department of Economic Plants and Biotechnology, and Yunnan Key Laboratory for Wild Plant Resources (W.X., X.D., A.L.), the Germplasm Bank of Wild Species (D.-Z.L.), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China;University of the Chinese Academy of Sciences, Beijing 100049, China (W.X., T.Y.);College of Life Sciences, Yunnan University, 650091 Kunming, China (W.X.); andKey Laboratory of Tropical Plant Resource Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China (T.Y.)
| | - Tianquan Yang
- Department of Economic Plants and Biotechnology, and Yunnan Key Laboratory for Wild Plant Resources (W.X., X.D., A.L.), the Germplasm Bank of Wild Species (D.-Z.L.), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China;University of the Chinese Academy of Sciences, Beijing 100049, China (W.X., T.Y.);College of Life Sciences, Yunnan University, 650091 Kunming, China (W.X.); andKey Laboratory of Tropical Plant Resource Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China (T.Y.)
| | - Xue Dong
- Department of Economic Plants and Biotechnology, and Yunnan Key Laboratory for Wild Plant Resources (W.X., X.D., A.L.), the Germplasm Bank of Wild Species (D.-Z.L.), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China;University of the Chinese Academy of Sciences, Beijing 100049, China (W.X., T.Y.);College of Life Sciences, Yunnan University, 650091 Kunming, China (W.X.); andKey Laboratory of Tropical Plant Resource Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China (T.Y.)
| | - De-Zhu Li
- Department of Economic Plants and Biotechnology, and Yunnan Key Laboratory for Wild Plant Resources (W.X., X.D., A.L.), the Germplasm Bank of Wild Species (D.-Z.L.), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China;University of the Chinese Academy of Sciences, Beijing 100049, China (W.X., T.Y.);College of Life Sciences, Yunnan University, 650091 Kunming, China (W.X.); andKey Laboratory of Tropical Plant Resource Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China (T.Y.)
| | - Aizhong Liu
- Department of Economic Plants and Biotechnology, and Yunnan Key Laboratory for Wild Plant Resources (W.X., X.D., A.L.), the Germplasm Bank of Wild Species (D.-Z.L.), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China;University of the Chinese Academy of Sciences, Beijing 100049, China (W.X., T.Y.);College of Life Sciences, Yunnan University, 650091 Kunming, China (W.X.); andKey Laboratory of Tropical Plant Resource Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China (T.Y.)
| |
Collapse
|
44
|
Abstract
Genomic imprinting, an inherently epigenetic phenomenon defined by parent of origin-dependent gene expression, is observed in mammals and flowering plants. Genome-scale surveys of imprinted expression and the underlying differential epigenetic marks have led to the discovery of hundreds of imprinted plant genes and confirmed DNA and histone methylation as key regulators of plant imprinting. However, the biological roles of the vast majority of imprinted plant genes are unknown, and the evolutionary forces shaping plant imprinting remain rather opaque. Here, we review the mechanisms of plant genomic imprinting and discuss theories of imprinting evolution and biological significance in light of recent findings.
Collapse
Affiliation(s)
- Jessica A Rodrigues
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Daniel Zilberman
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
45
|
Zou Z, Yang L, Wang D, Huang Q, Mo Y, Xie G. Gene Structures, Evolution and Transcriptional Profiling of the WRKY Gene Family in Castor Bean (Ricinus communis L.). PLoS One 2016; 11:e0148243. [PMID: 26849139 PMCID: PMC4743969 DOI: 10.1371/journal.pone.0148243] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 01/16/2016] [Indexed: 11/25/2022] Open
Abstract
WRKY proteins comprise one of the largest transcription factor families in plants and form key regulators of many plant processes. This study presents the characterization of 58 WRKY genes from the castor bean (Ricinus communis L., Euphorbiaceae) genome. Compared with the automatic genome annotation, one more WRKY-encoding locus was identified and 20 out of the 57 predicted gene models were manually corrected. All RcWRKY genes were shown to contain at least one intron in their coding sequences. According to the structural features of the present WRKY domains, the identified RcWRKY genes were assigned to three previously defined groups (I-III). Although castor bean underwent no recent whole-genome duplication event like physic nut (Jatropha curcas L., Euphorbiaceae), comparative genomics analysis indicated that one gene loss, one intron loss and one recent proximal duplication occurred in the RcWRKY gene family. The expression of all 58 RcWRKY genes was supported by ESTs and/or RNA sequencing reads derived from roots, leaves, flowers, seeds and endosperms. Further global expression profiles with RNA sequencing data revealed diverse expression patterns among various tissues. Results obtained from this study not only provide valuable information for future functional analysis and utilization of the castor bean WRKY genes, but also provide a useful reference to investigate the gene family expansion and evolution in Euphorbiaceus plants.
Collapse
Affiliation(s)
- Zhi Zou
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, P. R. China
| | - Lifu Yang
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, P. R. China
| | - Danhua Wang
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, P. R. China
| | - Qixing Huang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, P. R. China
| | - Yeyong Mo
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, P. R. China
| | - Guishui Xie
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, P. R. China
| |
Collapse
|
46
|
Zhang M, Li N, He W, Zhang H, Yang W, Liu B. Genome-wide screen of genes imprinted in sorghum endosperm, and the roles of allelic differential cytosine methylation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:424-36. [PMID: 26718755 DOI: 10.1111/tpj.13116] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/18/2015] [Accepted: 12/24/2015] [Indexed: 05/05/2023]
Abstract
Imprinting is an epigenetic phenomenon referring to allele-biased expression of certain genes depending on their parent of origin. Accumulated evidence suggests that, while imprinting is a conserved mechanism across kingdoms, the identities of the imprinted genes are largely species-specific. Using deep RNA sequencing of endosperm 14 days after pollination in sorghum, 5683 genes (29.27% of the total 19 418 expressed genes) were found to harbor diagnostic single nucleotide polymorphisms between two parental lines. The analysis of parent-of-origin expression patterns in the endosperm of a pair of reciprocal F1 hybrids between the two sorghum lines led to identification of 101 genes with ≥ fivefold allelic expression difference in both hybrids, including 85 maternal expressed genes (MEGs) and 16 paternal expressed genes (PEGs). Thirty of these genes were previously identified as imprinted in endosperm of maize (Zea mays), rice (Oryza sativa) or Arabidopsis, while the remaining 71 genes are sorghum-specific imprinted genes relative to these three plant species. Allele-biased expression of virtually all of the 14 tested imprinted genes (nine MEGs and five PEGs) was validated by pyrosequencing using independent sources of RNA from various developmental stages and dissected parts of endosperm. Forty-six imprinted genes (30 MEGs and 16 PEGs) were assayed by quantitative RT-PCR, and the majority of them showed endosperm-specific or preferential expression relative to embryo and other tissues. DNA methylation analysis of the 5' upstream region and gene body for seven imprinted genes indicated that, while three of the four PEGs were associated with hypomethylation of maternal alleles, no MEG was associated with allele-differential methylation.
Collapse
Affiliation(s)
- Meishan Zhang
- Department of Agronomy, Jilin Agricultural University, Changchun, 130118, China
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Wenan He
- Department of Agronomy, Jilin Agricultural University, Changchun, 130118, China
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Wei Yang
- Department of Agronomy, Jilin Agricultural University, Changchun, 130118, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
47
|
Over-expression of CYP78A98, a cytochrome P450 gene from Jatropha curcas L., increases seed size of transgenic tobacco. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2015.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
48
|
Zou Z, Gong J, Huang Q, Mo Y, Yang L, Xie G. Gene Structures, Evolution, Classification and Expression Profiles of the Aquaporin Gene Family in Castor Bean (Ricinus communis L.). PLoS One 2015; 10:e0141022. [PMID: 26509832 PMCID: PMC4625025 DOI: 10.1371/journal.pone.0141022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/02/2015] [Indexed: 01/13/2023] Open
Abstract
Aquaporins (AQPs) are a class of integral membrane proteins that facilitate the passive transport of water and other small solutes across biological membranes. Castor bean (Ricinus communis L., Euphobiaceae), an important non-edible oilseed crop, is widely cultivated for industrial, medicinal and cosmetic purposes. Its recently available genome provides an opportunity to analyze specific gene families. In this study, a total of 37 full-length AQP genes were identified from the castor bean genome, which were assigned to five subfamilies, including 10 plasma membrane intrinsic proteins (PIPs), 9 tonoplast intrinsic proteins (TIPs), 8 NOD26-like intrinsic proteins (NIPs), 6 X intrinsic proteins (XIPs) and 4 small basic intrinsic proteins (SIPs) on the basis of sequence similarities. Functional prediction based on the analysis of the aromatic/arginine (ar/R) selectivity filter, Froger's positions and specificity-determining positions (SDPs) showed a remarkable difference in substrate specificity among subfamilies. Homology analysis supported the expression of all 37 RcAQP genes in at least one of examined tissues, e.g., root, leaf, flower, seed and endosperm. Furthermore, global expression profiles with deep transcriptome sequencing data revealed diverse expression patterns among various tissues. The current study presents the first genome-wide analysis of the AQP gene family in castor bean. Results obtained from this study provide valuable information for future functional analysis and utilization.
Collapse
Affiliation(s)
- Zhi Zou
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, P. R. China
| | - Jun Gong
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, P. R. China
| | - Qixing Huang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, P. R. China
| | - Yeyong Mo
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, P. R. China
| | - Lifu Yang
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, P. R. China
| | - Guishui Xie
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, P. R. China
| |
Collapse
|
49
|
García-Aguilar M, Gillmor CS. Zygotic genome activation and imprinting: parent-of-origin gene regulation in plant embryogenesis. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:29-35. [PMID: 26051360 DOI: 10.1016/j.pbi.2015.05.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 05/05/2023]
Abstract
Parent-of-origin dependent gene expression refers to differential activity of alleles inherited from the egg and sperm. In plants, zygotic genome activation (ZGA) and gene imprinting are two examples of this phenomenon, both of which occur during seed development. As its name implies, ZGA is a genome-wide process that occurs in embryos during the first few days after fertilization. Evidence exists that maternal alleles initially predominate during ZGA, although most genes also show some paternal activity. By contrast, imprinting can be defined as a bias in gene expression that lasts beyond the first few days of seed development. Hundreds of imprinted genes have been discovered in the endosperm, and a few have been described in the embryo. This review discusses recent advances in our understanding of the phenomena and mechanisms of ZGA and imprinting in seeds, with an emphasis on embryo development. Important unanswered questions and areas for future research are highlighted.
Collapse
Affiliation(s)
- Marcelina García-Aguilar
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Irapuato, Guanajuato 36821, México
| | - C Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Irapuato, Guanajuato 36821, México.
| |
Collapse
|
50
|
Wolff P, Jiang H, Wang G, Santos-González J, Köhler C. Paternally expressed imprinted genes establish postzygotic hybridization barriers in Arabidopsis thaliana. eLife 2015; 4. [PMID: 26344545 PMCID: PMC4589659 DOI: 10.7554/elife.10074] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/05/2015] [Indexed: 12/18/2022] Open
Abstract
Genomic imprinting is an epigenetic phenomenon causing parent-of-origin specific differential expression of maternally and paternally inherited alleles. While many imprinted genes have been identified in plants, the functional roles of most of them are unknown. In this study, we systematically examine the functional requirement of paternally expressed imprinted genes (PEGs) during seed development in Arabidopsis thaliana. While none of the 15 analyzed peg mutants has qualitative or quantitative abnormalities of seed development, we identify three PEGs that establish postzygotic hybridization barriers in the endosperm, revealing that PEGs have a major role as speciation genes in plants. Our work reveals that a subset of PEGs maintains functional roles in the inbreeding plant Arabidopsis that become evident upon deregulated expression. DOI:http://dx.doi.org/10.7554/eLife.10074.001 When plants and animals reproduce sexually, their offspring inherit two copies of every gene, one from each parent, which are arranged in two sets of structures called chromosomes. In some tissues, one gene copy may be switched off—through a process called ‘genomic imprinting’—while the other copy remains active. In plants, genomic imprinting is vital for seeds to develop normally. It is particularly important in the tissue that provides nutrients for the growing embryo (the endosperm), in which one of the copies of many genes are switched off. Genes inherited from the male parent that have been imprinted are known as paternally expressed imprinted genes (PEGs). Unlike most animals, it is common for plants to have more than two sets of chromosomes. When plants with different numbers of chromosome sets cross-fertilize each other, their offspring may have three copies of every gene instead of two. These ‘triploid’ seeds often die because their endosperm fails to develop normally. This is due to the increased activity of imprinted genes, which causes changes in the activity of many other genes in the endosperm. Although it is known that genomic imprinting in the endosperm helps to establish this reproductive barrier, it is not clear what specific roles many of the imprinted genes play. Here, Wolff et al. switched off several different PEGs in the plant Arabidopsis to investigate how they affect seed development. The experiments show that in seeds that have the normal two copies of every gene, inactivating these imprinted genes does not affect seed development. However, in triploid seeds, inactivating three of the imprinted genes rescues seeds that would normally die. These genes encode proteins that activate pathways in the endosperm that promote the formation of cell walls, which is a crucial stage in seed development. Wolff et al.'s findings reveal how imprinted genes in the endosperm establish a barrier to reproduction by preventing seeds produced from crosses between plants with different numbers of chromosome sets from being able to survive. Reproductive barriers are a major obstacle in plant breeding, so understanding how these barriers form may open new avenues for developing new plant varieties. DOI:http://dx.doi.org/10.7554/eLife.10074.002
Collapse
Affiliation(s)
- Philip Wolff
- Department of Biology and Zurich-Basel Plant Science Center, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Hua Jiang
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Guifeng Wang
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Juan Santos-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|