1
|
Jaiswal LK, Singh RK, Nayak T, Kakkar A, Kandwal G, Singh VS, Gupta A. A comparative analysis of mycobacterial ribonucleases: Towards a therapeutic novel drug target. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105645. [PMID: 39067582 DOI: 10.1016/j.meegid.2024.105645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/18/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
Bacterial responses to continuously changing environments are addressed through modulation of gene expression at the level of transcription initiation, RNA processing and/or decay. Ribonucleases (RNases) are hydrolytic or phosphorolytic enzymes involved in a majority of RNA metabolism reactions. RNases play a crucial role in RNA degradation, either independently or in collaboration with various trans-acting regulatory factors. The genus Mycobacterium consists of five subgenera: Mycobacteroides, Mycolicibacterium, Mycobacterium, Mycolicibacter and Mycolicibacillus, which include 63 fully sequenced species (pathogenic/non-pathogenic) to date. These include 13 different RNases, among which 5 are exonucleases (RNase PH, PNPase, RNase D, nano-RNases and RNase AS) and 8 are endonucleases (RNase J, RNase H, RNase P, RNase III, RNase BN, RNase Z, RNase G and RNase E), although RNase J and RNase BN were later identified to have exoribonuclease functions also. Here, we provide a detailed comparative insight into the Escherichia coli and mycobacterial RNases with respect to their types, phylogeny, structure, function, regulation and mechanism of action, with the main emphasis on RNase E. Among these 13 different mycobacterial RNases, 10 are essential for cell survival and have diverse structures hence, they are promising drug targets. RNase E is also an essential endonuclease that is abundant in many bacteria, forms an RNA degradosome complex that controls central RNA processing/degradation and has a conserved 5' sensor domain/DNase-I like region in its RNase domain. The essential mycobacterial RNases especially RNase E provide a potential repertoire of drug targets that can be exploited for inhibitor/modulator screening against many deadly mycobacterial diseases.
Collapse
Affiliation(s)
- Lav Kumar Jaiswal
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi U.P.-221005, India
| | - Rakesh Kumar Singh
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi U.P.-221005, India
| | - Tanmayee Nayak
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi U.P.-221005, India
| | - Anuja Kakkar
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi U.P.-221005, India
| | - Garima Kandwal
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi U.P.-221005, India
| | - Vijay Shankar Singh
- Department of Microbiology, School of life Sciences, Sikkim University, Gangtok 737102, Sikkim, India
| | - Ankush Gupta
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi U.P.-221005, India.
| |
Collapse
|
2
|
Radhakrishnan A, Gangopadhyay R, Sharma C, Kapardar RK, Sharma NK, Srivastav R. Unwinding Helicase MCM Functionality for Diagnosis and Therapeutics of Replication Abnormalities Associated with Cancer: A Review. Mol Diagn Ther 2024; 28:249-264. [PMID: 38530633 DOI: 10.1007/s40291-024-00701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
The minichromosome maintenance (MCM) protein is a component of an active helicase that is essential for the initiation of DNA replication. Dysregulation of MCM functions contribute to abnormal cell proliferation and genomic instability. The interactions of MCM with cellular factors, including Cdc45 and GINS, determine the formation of active helicase and functioning of helicase. The functioning of MCM determines the fate of DNA replication and, thus, genomic integrity. This complex is upregulated in precancerous cells and can act as an important tool for diagnostic applications. The MCM protein complex can be an important broad-spectrum therapeutic target in various cancers. Investigations have supported the potential and applications of MCM in cancer diagnosis and its therapeutics. In this article, we discuss the physiological roles of MCM and its associated factors in DNA replication and cancer pathogenesis.
Collapse
Affiliation(s)
| | - Ritwik Gangopadhyay
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | | | | | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. DY Patil Biotechnology and Bioinformatics Institute, Dr. DY Patil Vidyapeeth, Pune, Maharashtra, India
| | - Rajpal Srivastav
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India.
- Department of Science and Technology, Ministry of Science and Technology, New Delhi, India.
| |
Collapse
|
3
|
Radhakrishnan A, Sharma C, Malviya VN, Srivastav R. Deciphering the molecular functionality of Cdc45 in replisomal complex. Biochem Biophys Rep 2024; 37:101643. [PMID: 38298211 PMCID: PMC10828582 DOI: 10.1016/j.bbrep.2024.101643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
The members of DHH superfamily have been reported with diverse substrate spectrum and play pivotal roles in replication, repair, and RNA metabolism. This family comprises phosphatases, phosphoesterase and bifunctional enzymes having nanoRNase and phosphatase activities. Cell cycle factor Cdc45, a member of this superfamily, is crucial for movement of the replication fork during DNA replication and an important component of the replisome. The specific protein-protein interactions of Cdc45 with other factors along with helicase moderate the faithful DNA replication process. However, the exact biochemical functions of this factor are still unknown and need further investigation. Here, we studied the biochemical roles of Cdc45 and its molecular interactions within the replisomal complex. The alteration in the level of protein, observed when DNA damage is induced in-vivo, suggests its association with DNA replication stress. We analyzed protein Cdc45, providing new insights about the molecular and biochemical functionality of this replisomal factor.
Collapse
Affiliation(s)
| | - Chandresh Sharma
- Translational Health Science and Technology Institute, Haryana, India
| | - Viveka Nand Malviya
- Department of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Gottingen, Germany
| | - Rajpal Srivastav
- Amity Institute of Biotechnology, Amity University Uttar Pardesh, Noida, India
- Department of Science & Technology, Ministry of Science & Technology, New Delhi, India
| |
Collapse
|
4
|
Weiss CA, Myers TM, Wu CH, Jenkins C, Sondermann H, Lee V, Winkler WC. NrnA is a 5'-3' exonuclease that processes short RNA substrates in vivo and in vitro. Nucleic Acids Res 2022; 50:12369-12388. [PMID: 36478094 PMCID: PMC9757072 DOI: 10.1093/nar/gkac1091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/25/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Bacterial RNases process RNAs until only short oligomers (2-5 nucleotides) remain, which are then processed by one or more specialized enzymes until only nucleoside monophosphates remain. Oligoribonuclease (Orn) is an essential enzyme that acts in this capacity. However, many bacteria do not encode for Orn and instead encode for NanoRNase A (NrnA). Yet, the catalytic mechanism, cellular roles and physiologically relevant substrates have not been fully resolved for NrnA proteins. We herein utilized a common set of reaction assays to directly compare substrate preferences exhibited by NrnA-like proteins from Bacillus subtilis, Enterococcus faecalis, Streptococcus pyogenes and Mycobacterium tuberculosis. While the M. tuberculosis protein specifically cleaved cyclic di-adenosine monophosphate, the B. subtilis, E. faecalis and S. pyogenes NrnA-like proteins uniformly exhibited striking preference for short RNAs between 2-4 nucleotides in length, all of which were processed from their 5' terminus. Correspondingly, deletion of B. subtilis nrnA led to accumulation of RNAs between 2 and 4 nucleotides in length in cellular extracts. Together, these data suggest that many Firmicutes NrnA-like proteins are likely to resemble B. subtilis NrnA to act as a housekeeping enzyme for processing of RNAs between 2 and 4 nucleotides in length.
Collapse
Affiliation(s)
| | | | - Chih Hao Wu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Conor Jenkins
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Holger Sondermann
- CSSB – Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg, Germany,Christian-Albrechts-Universität, 24118 Kiel, Germany
| | - Vincent T Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Wade C Winkler
- To whom correspondence should be addressed. Tel: +1 301 405 7780;
| |
Collapse
|
5
|
Badhwar P, Khan SH, Taneja B. Three-dimensional structure of a mycobacterial oligoribonuclease reveals a unique C-terminal tail that stabilizes the homodimer. J Biol Chem 2022; 298:102595. [PMID: 36244449 PMCID: PMC9676404 DOI: 10.1016/j.jbc.2022.102595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/01/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Oligoribonucleases (Orns) are highly conserved DnaQ-fold 3'-5' exoribonucleases that have been found to carry out the last step of cyclic-di-GMP (c-di-GMP) degradation, that is, pGpG to GMP in several bacteria. Removal of pGpG is critical for c-di-GMP homeostasis, as excess uncleaved pGpG can have feedback inhibition on phosphodiesterases, thereby perturbing cellular signaling pathways regulated by c-di-GMP. Perturbation of c-di-GMP levels not only affects survival under hypoxic, reductive stress, or nutrient-limiting conditions but also affects pathogenicity in infection models as well as antibiotic response in mycobacteria. Here, we have determined the crystal structure of MSMEG_4724, the Orn of Mycobacterium smegmatis (Ms_orn) to 1.87 Å resolution to investigate the function of its extended C-terminal tail that is unique among bacterial Orns. Ms_orn is a homodimer with the canonical RNase-H fold of exoribonucleases and conserved catalytic residues in the active site. Further examination of the substrate-binding site with a modeled pGpG emphasized the role of a phosphate cap and "3'OH cap" in constricting a 2-mer substrate in the active site. The unique C-terminal tail of Ms_orn aids dimerization by forming a handshake-like flap over the second protomer of the dimer. Our thermal and denaturant-induced unfolding experiments suggest that it helps in higher stability of Ms_orn as compared with Escherichia coli Orn or a C-terminal deletion mutant. We also show that the C-terminal tail is required for modulating response to stress agents in vivo. These results will help in further evaluating the role of signaling and regulation by c-di-GMP in mycobacteria.
Collapse
Affiliation(s)
- Pooja Badhwar
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sabab Hasan Khan
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Bhupesh Taneja
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,For correspondence: Bhupesh Taneja
| |
Collapse
|
6
|
Lu Y, Ning H, Kang J, Bai G, Zhou L, Kang Y, Wu Z, Tian M, Zhao J, Ma Y, Bai Y. Cyclic-di-AMP Phosphodiesterase Elicits Protective Immune Responses Against Mycobacterium tuberculosis H37Ra Infection in Mice. Front Cell Infect Microbiol 2022; 12:871135. [PMID: 35811674 PMCID: PMC9256937 DOI: 10.3389/fcimb.2022.871135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Many antigens from Mycobacterium tuberculosis (M. tuberculosis) have been demonstrated as strong immunogens and proved to have application potential as vaccine candidate antigens. Cyclic di-AMP (c-di-AMP) as a bacterial second messenger regulates various bacterial processes as well as the host immune responses. Rv2837c, the c-di-AMP phosphodiesterase (CnpB), was found to be relative to virulence of M. tuberculosis and interference with host innate immune response. In this study, recombinant CnpB was administered subcutaneously to mice. We found that CnpB had strong immunogenicity and induced high levels of humoral response and lung mucosal immunity after M. tuberculosis intranasally infection. CnpB immunization stimulated splenocyte proliferation and the increasing number of activated NK cells but had little effects on Th1/Th2 cellular immune responses in spleens. However, CnpB induced significant Th1/Th2 cellular immune responses with a decreased number of T and B cells in the lungs, and significantly recruits of CD4+ and CD8+ T cells after M. tuberculosis attenuated strain H37Ra infection. Besides, we first reported that CnpB could stimulate IFN-β expression transitorily and inhibit the autophagy of macrophages in vitro. In mice intranasally infection model, CnpB immunization alleviated pathological changes and reduced M. tuberculosis H37Ra loads in the lungs. Thus, our results suggested that CnpB interferes with host innate and adaptive immune responses and confers protection against M. tuberculosis respiratory infection, which should be considered in vaccine development as well as a drug target.
Collapse
Affiliation(s)
- Yanzhi Lu
- Department of Microbiology and Pathogen Biology, Basic Medical School, Air Force Medical University, Xi’an, China
| | - Huanhuan Ning
- Department of Microbiology and Pathogen Biology, Basic Medical School, Air Force Medical University, Xi’an, China
| | - Jian Kang
- Department of Microbiology and Pathogen Biology, Basic Medical School, Air Force Medical University, Xi’an, China
| | - Guangchun Bai
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Lei Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital, Air Force Medical University, Xi’an, China
| | - Yali Kang
- Department of Physiology, Basic Medical School, Ningxia Medical University, Yinchuan, China
| | - Zhengfeng Wu
- Student Brigade, Basic Medical School, Air Force Medical University, Xi’an, China
| | - Maolin Tian
- Student Brigade, Basic Medical School, Air Force Medical University, Xi’an, China
| | - Junhao Zhao
- Student Brigade, Basic Medical School, Air Force Medical University, Xi’an, China
| | - Yueyun Ma
- Department of Clinical Laboratory, The First Affiliated Hospital, Air Force Medical University, Xi’an, China
- Department of Clinical Laboratory, Air Force Medical Center, Air Force Medical University, Beijing, China
- *Correspondence: Yinlan Bai, ; Yueyun Ma,
| | - Yinlan Bai
- Department of Microbiology and Pathogen Biology, Basic Medical School, Air Force Medical University, Xi’an, China
- *Correspondence: Yinlan Bai, ; Yueyun Ma,
| |
Collapse
|
7
|
Heo K, Lee JW, Jang Y, Kwon S, Lee J, Seok C, Ha NC, Seok YJ. A pGpG-specific phosphodiesterase regulates cyclic di-GMP signaling in Vibrio cholerae. J Biol Chem 2022; 298:101626. [PMID: 35074425 PMCID: PMC8861645 DOI: 10.1016/j.jbc.2022.101626] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/10/2022] Open
Abstract
The bacterial second messenger bis-(3′-5′)-cyclic diguanylate monophosphate (c-di-GMP) controls various cellular processes, including motility, toxin production, and biofilm formation. c-di-GMP is enzymatically synthesized by GGDEF domain–containing diguanylate cyclases and degraded by HD-GYP domain–containing phosphodiesterases (PDEs) to 2 GMP or by EAL domain–containing PDE-As to 5ʹ-phosphoguanylyl-(3ʹ,5ʹ)-guanosine (pGpG). Since excess pGpG feedback inhibits PDE-A activity and thereby can lead to the uncontrolled accumulation of c-di-GMP, a PDE that degrades pGpG to 2 GMP (PDE-B) has been presumed to exist. To date, the only enzyme known to hydrolyze pGpG is oligoribonuclease Orn, which degrades all kinds of oligoribonucleotides. Here, we identified a pGpG-specific PDE, which we named PggH, using biochemical approaches in the gram-negative bacteria Vibrio cholerae. Biochemical experiments revealed that PggH exhibited specific PDE activity only toward pGpG, thus differing from the previously reported Orn. Furthermore, the high-resolution structure of PggH revealed the basis for its PDE activity and narrow substrate specificity. Finally, we propose that PggH could modulate the activities of PDE-As and the intracellular concentration of c-di-GMP, resulting in phenotypic changes including in biofilm formation.
Collapse
Affiliation(s)
- Kyoo Heo
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Jae-Woo Lee
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Yongdae Jang
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Sohee Kwon
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Jaehun Lee
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea.
| | - Yeong-Jae Seok
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Zhu X, Baranowski E, Dong Y, Li X, Hao Z, Zhao G, Zhang H, Lu D, A. Rasheed M, Chen Y, Hu C, Chen H, Sagné E, Citti C, Guo A. An emerging role for cyclic dinucleotide phosphodiesterase and nanoRNase activities in Mycoplasma bovis: Securing survival in cell culture. PLoS Pathog 2020; 16:e1008661. [PMID: 32598377 PMCID: PMC7373297 DOI: 10.1371/journal.ppat.1008661] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/21/2020] [Accepted: 05/27/2020] [Indexed: 12/26/2022] Open
Abstract
Mycoplasmas are host-restricted prokaryotes with a nearly minimal genome. To overcome their metabolic limitations, these wall-less bacteria establish intimate interactions with epithelial cells at mucosal surfaces. The alarming rate of antimicrobial resistance among pathogenic species is of particular concern in the medical and veterinary fields. Taking advantage of the reduced mycoplasma genome, random transposon mutagenesis was combined with high-throughput screening in order to identify key determinants of mycoplasma survival in the host-cell environment and potential targets for drug development. With the use of the ruminant pathogen Mycoplasma bovis as a model, three phosphodiesterases of the DHH superfamily were identified as essential for the proliferation of this species under cell culture conditions, while dispensable for axenic growth. Despite a similar domain architecture, recombinant Mbov_0327 and Mbov_0328 products displayed different substrate specificities. While rMbovP328 protein exhibited activity towards cyclic dinucleotides and nanoRNAs, rMbovP327 protein was only able to degrade nanoRNAs. The Mbov_0276 product was identified as a member of the membrane-associated GdpP family of phosphodiesterases that was found to participate in cyclic dinucleotide and nanoRNA degradation, an activity which might therefore be redundant in the genome-reduced M. bovis. Remarkably, all these enzymes were able to convert their substrates into mononucleotides, and medium supplementation with nucleoside monophosphates or nucleosides fully restored the capacity of a Mbov_0328/0327 knock-out mutant to grow under cell culture conditions. Since mycoplasmas are unable to synthesize DNA/RNA precursors de novo, cyclic dinucleotide and nanoRNA degradation are likely contributing to the survival of M. bovis by securing the recycling of purines and pyrimidines. These results point toward proteins of the DHH superfamily as promising targets for the development of new antimicrobials against multidrug-resistant pathogenic mycoplasma species.
Collapse
Affiliation(s)
- Xifang Zhu
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, International Research Center for Animal Disease of Ministry of Science and Technology of China, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Key Laboratory of Ruminant Bio-products, Ministry of Agriculture and Rural Affairs of China, Wuhan, China
| | | | - Yaqi Dong
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xixi Li
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhiyu Hao
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Gang Zhao
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hui Zhang
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Doukun Lu
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Muhammad A. Rasheed
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yingyu Chen
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changmin Hu
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, International Research Center for Animal Disease of Ministry of Science and Technology of China, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Key Laboratory of Ruminant Bio-products, Ministry of Agriculture and Rural Affairs of China, Wuhan, China
| | - Eveline Sagné
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, International Research Center for Animal Disease of Ministry of Science and Technology of China, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Key Laboratory of Ruminant Bio-products, Ministry of Agriculture and Rural Affairs of China, Wuhan, China
| |
Collapse
|
9
|
Wang W, Ma L, Wang L, Zheng L, Zheng M. RecJ from Bacillus halodurans possesses endonuclease activity at moderate temperature. FEBS Lett 2020; 594:2303-2310. [PMID: 32394489 DOI: 10.1002/1873-3468.13809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 11/11/2022]
Abstract
RecJ homologs, which occur in virtually all prokaryotes and eukaryotes, play key roles in DNA damage repair and recombination. Current evidence shows that RecJ family proteins exhibit exonuclease activity, degrading single-stranded nucleic acids. Here, we report a novel RecJ isolated from Bacillus halodurans, which utilizes double-stranded DNA as a substrate and functions as an endonuclease. Bacillus halodurans RecJ (BhRecJ) cleaves supercoiled plasmids into open circular and linear forms. Besides the typical domains of DHH, DHHA1, and oligonucleotide-binding-fold, BhRecJ possesses a C-terminal domain with unknown function, which might form the core of the endonuclease activity. Using mutational analysis, we mapped several essential residues for BhRecJ endonuclease activity. Our findings suggest that BhRecJ may be involved in biological processes not typically associated with RecJ proteins.
Collapse
Affiliation(s)
- Wen Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China.,Marine Bioresources and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Liya Ma
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China.,Marine Bioresources and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Ling Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Li Zheng
- Marine Bioresources and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Minggang Zheng
- Marine Bioresources and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| |
Collapse
|
10
|
Feng L, Chang CC, Song D, Jiang C, Song Y, Wang CF, Deng W, Zou YJ, Chen HF, Xiao X, Wang FP, Liu XP. The trimeric Hef-associated nuclease HAN is a 3'→5' exonuclease and is probably involved in DNA repair. Nucleic Acids Res 2019; 46:9027-9043. [PMID: 30102394 PMCID: PMC6158738 DOI: 10.1093/nar/gky707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 08/01/2018] [Indexed: 12/26/2022] Open
Abstract
Nucleases play important roles in nucleic acid metabolism. Some archaea encode a conserved protein known as Hef-associated nuclease (HAN). In addition to its C-terminal DHH nuclease domain, HAN also has three N-terminal domains, including a DnaJ-Zinc-finger, ribosomal protein S1-like, and oligonucleotide/oligosaccharide-binding fold. To further understand HAN’s function, we biochemically characterized the enzymatic properties of HAN from Pyrococcus furiosus (PfuHAN), solved the crystal structure of its DHH nuclease domain, and examined its role in DNA repair. Our results show that PfuHAN is a Mn2+-dependent 3′-exonuclease specific to ssDNA and ssRNA with no activity on blunt and 3′-recessive double-stranded DNA. Domain truncation confirmed that the intrinsic nuclease activity is dependent on the C-terminal DHH nuclease domain. The crystal structure of the DHH nuclease domain adopts a trimeric topology, with each subunit adopting a classical DHH phosphoesterase fold. Yeast two hybrid assay confirmed that the DHH domain interacts with the IDR peptide of Hef nuclease. Knockout of the han gene or its C-terminal DHH nuclease domain in Haloferax volcanii resulted in increased sensitivity to the DNA damage reagent MMS. Our results imply that HAN nuclease might be involved in repairing stalled replication forks in archaea.
Collapse
Affiliation(s)
- Lei Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Chen-Chen Chang
- Institute of Precision Medicine,The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Dong Song
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Chuang Jiang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Yang Song
- Institute of Precision Medicine,The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Chao-Fan Wang
- Institute of Precision Medicine,The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Wei Deng
- Institute of Precision Medicine,The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Ya-Juan Zou
- Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.,State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Feng-Ping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.,State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Xi-Peng Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.,State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| |
Collapse
|
11
|
Role of DHH superfamily proteins in nucleic acids metabolism and stress tolerance in prokaryotes and eukaryotes. Int J Biol Macromol 2018; 127:66-75. [PMID: 30578903 DOI: 10.1016/j.ijbiomac.2018.12.123] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/14/2018] [Indexed: 01/05/2023]
Abstract
DHH superfamily proteins play pivotal roles in various cellular processes like replication, recombination, repair and nucleic acids metabolism. These proteins are important for homeostasis maintenance and stress tolerance in prokaryotes and eukaryotes. The prominent members of DHH superfamily include single-strand specific exonuclease RecJ, nanoRNases, polyphosphatase PPX1, pyrophosphatase, prune phosphodiesterase and cell cycle protein Cdc45. The mutations of genes coding for DHH superfamily proteins lead to severe growth defects and in some cases, may be lethal. The members of superfamily have a wide substrate spectrum. The spectrum of substrate for DHH superfamily members ranges from smaller molecules like pyrophosphate and cyclic nucleotides to longer single-stranded DNA molecule. Several genetic, structural and biochemical studies have provided interesting insights about roles of DHH superfamily members. However, there are still various unexplored members in both prokaryotes and eukaryotes. Many aspects of this superfamily associated with homeostasis maintenance and stress tolerance are still not clearly understood. A comprehensive understanding is pre-requisite to decipher the physiological significance of members of DHH superfamily. This article provides the current understanding of DHH superfamily members and their significance in nucleic acids metabolism and stress tolerance across diverse forms of life.
Collapse
|
12
|
Regulation of the CRISPR-Associated Genes by Rv2837c (CnpB) via an Orn-Like Activity in Tuberculosis Complex Mycobacteria. J Bacteriol 2018; 200:JB.00743-17. [PMID: 29378893 DOI: 10.1128/jb.00743-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/25/2018] [Indexed: 12/14/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated proteins (Cas) provide bacteria and archaea with adaptive immunity to specific DNA invaders. Mycobacterium tuberculosis encodes a type III CRISPR-Cas system that has not been experimentally explored. In this study, we found that the CRISPR-Cas systems of both M. tuberculosis and Mycobacterium bovis BCG were highly upregulated by deletion of Rv2837c (cnpB), which encodes a multifunctional protein that hydrolyzes cyclic di-AMP (c-di-AMP), cyclic di-GMP (c-di-GMP), and nanoRNAs (short oligonucleotides of 5 or fewer residues). By using genetic and biochemical approaches, we demonstrated that the CnpB-controlled transcriptional regulation of the CRISPR-Cas system is mediated by an Orn-like activity rather than by hydrolyzing the cyclic dinucleotides. Additionally, our results revealed that tuberculosis (TB) complex mycobacteria are functional in processing CRISPR RNAs (crRNAs), which are also more abundant in the ΔcnpB strain than in the parent strain. The elevated crRNA levels in the ΔcnpB strain could be partially reduced by expressing Escherichia coli orn Our findings provide new insight into transcriptional regulation of bacterial CRISPR-Cas systems.IMPORTANCE Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated proteins (Cas) provide adaptive immunity to specific DNA invaders. M. tuberculosis encodes a type III CRISPR-Cas system that has not been experimentally explored. In this study, we first demonstrated that the CRISPR-Cas systems in tuberculosis (TB) complex mycobacteria are functional in processing CRISPR RNAs (crRNAs). We also showed that Rv2837c (CnpB) controls the expression of the CRISPR-Cas systems in TB complex mycobacteria through an oligoribonuclease (Orn)-like activity, which is very likely mediated by nanoRNA. Since little is known about regulation of CRISPR-Cas systems, our findings provide new insight into transcriptional regulation of bacterial CRISPR-Cas systems.
Collapse
|
13
|
The special existences: nanoRNA and nanoRNase. Microbiol Res 2017; 207:134-139. [PMID: 29458847 DOI: 10.1016/j.micres.2017.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/23/2017] [Accepted: 11/25/2017] [Indexed: 12/21/2022]
Abstract
To adapt to a wide range of nutritional and environmental changes, cells must adjust their gene expression profiles. This process is completed by the frequent transcription and rapid degradation of mRNA. mRNA decay is initiated by a series of endo- and exoribonucleases. These enzymes leave behind 2- to 5-nt-long oligoribonucleotides termed "nanoRNAs" that are degraded by specific nanoRNases; the degradation of nanoRNA is essential because nanoRNA can mediate the priming of transcription initiation that is harmful for the cell via an unknown mechanism. Identified nanoRNases include Orn in E. coli, NrnA and NrnB in B. subtilis, and NrnC in Bartonella. Even though these nanoRNases can degrade nanoRNA specifically into mononucleotides, the biochemical features, structural features and functional mechanisms of these enzymes are different. Sequence analysis has identified homologs of these nanoRNases in different bacteria, including Gammaproteobacteria, Betaproteobacteria, Alphaproteobacteria, Firmicutes and Cyanobacteria. However, there are several bacteria, such as those belonging to the class Thermolithobacteria, that do not have homologs of these nanoRNases. In this paper, the source of nanoRNA, the features of different kinds of nanoRNases and the distribution of these enzymes in prokaryotes are described in detail.
Collapse
|
14
|
Drexler DJ, Müller M, Rojas-Cordova CA, Bandera AM, Witte G. Structural and Biophysical Analysis of the Soluble DHH/DHHA1-Type Phosphodiesterase TM1595 from Thermotoga maritima. Structure 2017; 25:1887-1897.e4. [PMID: 29107484 DOI: 10.1016/j.str.2017.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/07/2017] [Accepted: 09/29/2017] [Indexed: 11/26/2022]
Abstract
The concentration of messenger molecules in bacterial cells needs to be tightly regulated. This can be achieved by either controlling the synthesis rate, degradation, or export by specific transporters, respectively. The regulation of the essential second messenger c-di-AMP is achieved by modulation of the diadenylate cyclase activity as well as by specific phosphodiesterases that hydrolyze c-di-AMP in the cell. We provide here structural and biochemical data on the DHH-type phosphodiesterase TmPDE (TM1595) from Thermotoga maritima. Our analysis shows that TmPDE is preferentially degrading linear dinucleotides, such as 5'-pApA, 5'-pGpG, and 5'-pApG, compared with cyclic dinucleotide substrates. The high-resolution structural data provided here describe all steps of the PDE reaction: the ligand-free enzyme, two substrate-bound states, and three post-reaction states. We can furthermore show that Pde2 from Streptococcus pneumoniae shares both structural features and substrate specificity based on small-angle X-ray scattering data and biochemical assays.
Collapse
Affiliation(s)
- David Jan Drexler
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Martina Müller
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Carlos Alberto Rojas-Cordova
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Adrian Maurice Bandera
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Gregor Witte
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany.
| |
Collapse
|
15
|
Structural Basis for the Bidirectional Activity of Bacillus nanoRNase NrnA. Sci Rep 2017; 7:11085. [PMID: 28894100 PMCID: PMC5593865 DOI: 10.1038/s41598-017-09403-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/24/2017] [Indexed: 12/21/2022] Open
Abstract
NanoRNAs are RNA fragments 2 to 5 nucleotides in length that are generated as byproducts of RNA degradation and abortive transcription initiation. Cells have specialized enzymes to degrade nanoRNAs, such as the DHH phosphoesterase family member NanoRNase A (NrnA). This enzyme was originally identified as a 3′ → 5′ exonuclease, but we show here that NrnA is bidirectional, degrading 2–5 nucleotide long RNA oligomers from the 3′ end, and longer RNA substrates from the 5′ end. The crystal structure of Bacillus subtilis NrnA reveals a dynamic bi-lobal architecture, with the catalytic N-terminal DHH domain linked to the substrate binding C-terminal DHHA1 domain via an extended linker. Whereas this arrangement is similar to the structure of RecJ, a 5′ → 3′ DHH family DNase and other DHH family nanoRNases, Bacillus NrnA has gained an extended substrate-binding patch that we posit is responsible for its 3′ → 5′ activity.
Collapse
|
16
|
The DNA Repair Repertoire of Mycobacterium smegmatis FenA Includes the Incision of DNA 5' Flaps and the Removal of 5' Adenylylated Products of Aborted Nick Ligation. J Bacteriol 2017. [PMID: 28630124 DOI: 10.1128/jb.00304-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We characterize Mycobacterium smegmatis FenA as a manganese-dependent 5'-flap endonuclease homologous to the 5'-exonuclease of DNA polymerase I. FenA incises a nicked 5' flap between the first and second nucleotides of the duplex segment to yield a 1-nucleotide gapped DNA, which is then further resected in dinucleotide steps. Initial FenA cleavage at a Y-flap or nick occurs between the first and second nucleotides of the duplex. However, when the template 3' single strand is eliminated to create a 5'-tailed duplex, FenA incision shifts to between the second and third nucleotides. A double-flap substrate with a mobile junction (mimicking limited strand displacement synthesis during gap repair) is preferentially incised as the 1-nucleotide 3'-flap isomer, with the scissile phosphodiester shifted by one nucleotide versus a static double flap. FenA efficiently removes the 5' App(dN) terminus of an aborted nick ligation reaction intermediate, thereby highlighting FenA as an agent of repair of such lesions, which are formed under a variety of circumstances by bacterial NAD+-dependent DNA ligases and especially by mycobacterial DNA ligases D and C.IMPORTANCE Structure-specific DNA endonucleases are implicated in bacterial DNA replication, repair, and recombination, yet there is scant knowledge of the roster and catalytic repertoire of such nucleases in Mycobacteria This study identifies M. smegmatis FenA as a stand-alone endonuclease homologous to the 5'-exonuclease domain of mycobacterial DNA polymerase 1. FenA incises 5' flaps, 5' nicks, and 5' App(dN) intermediates of aborted nick ligation. The isolated N-terminal domain of M. smegmatis Pol1 is also shown to be a flap endonuclease.
Collapse
|
17
|
Inhibition of innate immune cytosolic surveillance by an M. tuberculosis phosphodiesterase. Nat Chem Biol 2016; 13:210-217. [PMID: 28106876 DOI: 10.1038/nchembio.2254] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 10/05/2016] [Indexed: 12/18/2022]
Abstract
Mycobacterium tuberculosis infection leads to cytosolic release of the bacterial cyclic dinucleotide (CDN) c-di-AMP and a host-generated CDN, cGAMP, both of which trigger type I interferon (IFN) expression in a STING-dependent manner. Here we report that M. tuberculosis has developed a mechanism to inhibit STING activation and the type I IFN response via the bacterial phosphodiesterase (PDE) CdnP, which mediates hydrolysis of both bacterial-derived c-di-AMP and host-derived cGAMP. Mutation of cdnP attenuates M. tuberculosis virulence, as does loss of a host CDN PDE known as ENPP1. CdnP is inhibited by both US Food and Drug Administration (FDA)-approved PDE inhibitors and nonhydrolyzable dinucleotide mimetics specifically designed to target the enzyme. These findings reveal a crucial role of CDN homeostasis in governing the outcome of M. tuberculosis infection as well as a unique mechanism of subversion of the host's cytosolic surveillance pathway (CSP) by a bacterial PDE that may serve as an attractive antimicrobial target.
Collapse
|
18
|
Gupta R, Unciuleac MC, Shuman S, Glickman MS. Homologous recombination mediated by the mycobacterial AdnAB helicase without end resection by the AdnAB nucleases. Nucleic Acids Res 2016; 45:762-774. [PMID: 27899634 PMCID: PMC5314763 DOI: 10.1093/nar/gkw1130] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/26/2016] [Accepted: 10/29/2016] [Indexed: 01/31/2023] Open
Abstract
Current models of bacterial homologous recombination (HR) posit that extensive resection of a DNA double-strand break (DSB) by a multisubunit helicase–nuclease machine (e.g. RecBCD, AddAB or AdnAB) generates the requisite 3′ single-strand DNA substrate for RecA-mediated strand invasion. AdnAB, the helicase–nuclease implicated in mycobacterial HR, consists of two subunits, AdnA and AdnB, each composed of an N-terminal ATPase domain and a C-terminal nuclease domain. DSB unwinding by AdnAB in vitro is stringently dependent on the ATPase activity of the ‘lead’ AdnB motor translocating on the 3′ ssDNA strand, but not on the putative ‘lagging’ AdnA ATPase. Here, we queried genetically which activities of AdnAB are pertinent to its role in HR and DNA damage repair in vivo by inactivating each of the four catalytic domains. Complete nuclease-dead AdnAB enzyme can sustain recombination in vivo, as long as its AdnB motor is intact and RecO and RecR are available. We conclude that AdnAB's processive DSB unwinding activity suffices for AdnAB function in HR. Albeit not excluding the agency of a backup nuclease, our findings suggest that mycobacterial HR can proceed via DSB unwinding and protein capture of the displaced 3′-OH single strand, without a need for extensive end-resection.
Collapse
Affiliation(s)
- Richa Gupta
- Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Mihaela-Carmen Unciuleac
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Michael S Glickman
- Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA .,Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
19
|
Cheng K, Xu H, Chen X, Wang L, Tian B, Zhao Y, Hua Y. Structural basis for DNA 5´-end resection by RecJ. eLife 2016; 5:e14294. [PMID: 27058167 PMCID: PMC4846377 DOI: 10.7554/elife.14294] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/07/2016] [Indexed: 12/18/2022] Open
Abstract
The resection of DNA strand with a 5´ end at double-strand breaks is an essential step in recombinational DNA repair. RecJ, a member of DHH family proteins, is the only 5´ nuclease involved in the RecF recombination pathway. Here, we report the crystal structures of Deinococcus radiodurans RecJ in complex with deoxythymidine monophosphate (dTMP), ssDNA, the C-terminal region of single-stranded DNA-binding protein (SSB-Ct) and a mechanistic insight into the RecF pathway. A terminal 5´-phosphate-binding pocket above the active site determines the 5´-3´ polarity of the deoxy-exonuclease of RecJ; a helical gateway at the entrance to the active site admits ssDNA only; and the continuous stacking interactions between protein and nine nucleotides ensure the processive end resection. The active site of RecJ in the N-terminal domain contains two divalent cations that coordinate the nucleophilic water. The ssDNA makes a 180° turn at the scissile phosphate. The C-terminal domain of RecJ binds the SSB-Ct, which explains how RecJ and SSB work together to efficiently process broken DNA ends for homologous recombination.
Collapse
Affiliation(s)
- Kaiying Cheng
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Hong Xu
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Xuanyi Chen
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Liangyan Wang
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Bing Tian
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Ye Zhao
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Yuejin Hua
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Huynh TN, Woodward JJ. Too much of a good thing: regulated depletion of c-di-AMP in the bacterial cytoplasm. Curr Opin Microbiol 2016; 30:22-29. [PMID: 26773214 DOI: 10.1016/j.mib.2015.12.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 01/11/2023]
Abstract
Bacteria that synthesize c-di-AMP also encode several mechanisms for controlling c-di-AMP levels within the cytoplasm. One major class of phosphodiesterases comprises GdpP and DhhP homologs, which degrade c-di-AMP into the linear molecule 5'-pApA or AMP by the DHH-DHHA1 domain. The other major class comprises PgpH homologs, which degrade c-di-AMP by the HD domain. Both GdpP and PgpH harbor sensory domains, likely to regulate c-di-AMP hydrolysis activity in response to signal input. As another possible mechanism for controlling cytoplasmic c-di-AMP levels, bacteria also secrete c-di-AMP via multidrug resistance transporters, as demonstrated for Listeria monocytogenes. Mutants that accumulate high c-di-AMP levels, by deletion of phosphodiesterases or multidrug resistance transporters, exhibit aberrant physiology, growth defects, and attenuated virulence in infection.
Collapse
Affiliation(s)
- TuAnh Ngoc Huynh
- Department of Microbiology, University of Washington, Seattle, WA, United States
| | - Joshua J Woodward
- Department of Microbiology, University of Washington, Seattle, WA, United States.
| |
Collapse
|
21
|
He Q, Wang F, Liu S, Zhu D, Cong H, Gao F, Li B, Wang H, Lin Z, Liao J, Gu L. Structural and Biochemical Insight into the Mechanism of Rv2837c from Mycobacterium tuberculosis as a c-di-NMP Phosphodiesterase. J Biol Chem 2015; 291:3668-81. [PMID: 26668313 DOI: 10.1074/jbc.m115.699801] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Indexed: 12/18/2022] Open
Abstract
The intracellular infections of Mycobacterium tuberculosis, which is the causative agent of tuberculosis, are regulated by many cyclic dinucleotide signaling. Rv2837c from M. tuberculosis is a soluble, stand-alone DHH-DHHA1 domain phosphodiesterase that down-regulates c-di-AMP through catalytic degradation and plays an important role in M. tuberculosis infections. Here, we report the crystal structure of Rv2837c (2.0 Å), and its complex with hydrolysis intermediate 5'-pApA (2.35 Å). Our structures indicate that both DHH and DHHA1 domains are essential for c-di-AMP degradation. Further structural analysis shows that Rv2837c does not distinguish adenine from guanine, which explains why Rv2837c hydrolyzes all linear dinucleotides with almost the same efficiency. We observed that Rv2837c degraded other c-di-NMPs at a lower rate than it did on c-di-AMP. Nevertheless, our data also showed that Rv2837c significantly decreases concentrations of both c-di-AMP and c-di-GMP in vivo. Our results suggest that beside its major role in c-di-AMP degradation Rv2837c could also regulate c-di-GMP signaling pathways in bacterial cell.
Collapse
Affiliation(s)
- Qing He
- From the State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Feng Wang
- From the State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Shiheng Liu
- From the State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Deyu Zhu
- From the State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Hengjiang Cong
- From the State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Fei Gao
- From the State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Bingqing Li
- From the State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Hongwei Wang
- From the State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Zong Lin
- the Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang 314006, China, and
| | - Jun Liao
- the School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Lichuan Gu
- From the State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China,
| |
Collapse
|
22
|
Tang Q, Luo Y, Zheng C, Yin K, Ali MK, Li X, He J. Functional Analysis of a c-di-AMP-specific Phosphodiesterase MsPDE from Mycobacterium smegmatis. Int J Biol Sci 2015; 11:813-24. [PMID: 26078723 PMCID: PMC4466462 DOI: 10.7150/ijbs.11797] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/04/2015] [Indexed: 12/21/2022] Open
Abstract
Cyclic di‑AMP (c-di-AMP) is a second signaling molecule involved in the regulation of bacterial physiological processes and interaction between pathogen and host. However, the regulatory network mediated by c-di-AMP in Mycobacterium remains obscure. In M. smegmatis, a diadenylate cyclase (DAC) was reported recently, but there is still no investigation on c-di-AMP phosphodiesterase (PDE). Here, we provide a systematic study on signaling mechanism of c-di-AMP PDE in M. smegmatis. Based on our enzymatic analysis, MsPDE (MSMEG_2630), which contained a DHH-DHHA1 domain, displayed a 200-fold higher hydrolytic efficiency (kcat/Km) to c-di-AMP than to c-di-GMP. MsPDE was capable of converting c-di-AMP to pApA and AMP, and hydrolyzing pApA to AMP. Site-directed mutations in DHH and DHHA1 revealed that DHH domain was critical for the phosphodiesterase activity. To explore the regulatory role of c-di-AMP in vivo, we constructed the mspde mutant (Δmspde) and found that deficiency of MsPDE significantly enhanced intracellular C12-C20 fatty acid accumulation. Deficiency of DAC in many bacteria results in cell death. However, we acquired the M. smegmatis strain with DAC gene disrupted (ΔmsdisA) by homologous recombination approach. Deletion of msdisA reduced bacterial C12-C20 fatty acids production but scarcely affected bacterial survival. We also provided evidences that superfluous c-di-AMP in M. smegmatis could lead to abnormal colonial morphology. Collectively, our results indicate that MsPDE is a functional c-di-AMP-specific phosphodiesterase both in vitro and in vivo. Our study also expands the regulatory network mediated by c-di-AMP in M. smegmatis.
Collapse
Affiliation(s)
- Qing Tang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yunchao Luo
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Cao Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Kang Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Maria Kanwal Ali
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xinfeng Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
23
|
Intracellular Concentrations of Borrelia burgdorferi Cyclic Di-AMP Are Not Changed by Altered Expression of the CdaA Synthase. PLoS One 2015; 10:e0125440. [PMID: 25906393 PMCID: PMC4408052 DOI: 10.1371/journal.pone.0125440] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/12/2015] [Indexed: 01/10/2023] Open
Abstract
The second messenger nucleotide cyclic diadenylate monophosphate (c-di-AMP) has been identified in several species of Gram positive bacteria and Chlamydia trachomatis. This molecule has been associated with bacterial cell division, cell wall biosynthesis and phosphate metabolism, and with induction of type I interferon responses by host cells. We demonstrate that B. burgdorferi produces a c-di-AMP synthase, which we designated CdaA. Both CdaA and c-di-AMP levels are very low in cultured B. burgdorferi, and no conditions were identified under which cdaA mRNA was differentially expressed. A mutant B. burgdorferi was produced that expresses high levels of CdaA, yet steady state borrelial c-di-AMP levels did not change, apparently due to degradation by the native DhhP phosphodiesterase. The function(s) of c-di-AMP in the Lyme disease spirochete remains enigmatic.
Collapse
|