1
|
Xue Y, Xue C, Song W. Emerging roles of deubiquitinating enzymes in actin cytoskeleton and tumor metastasis. Cell Oncol (Dordr) 2024; 47:1071-1089. [PMID: 38324230 DOI: 10.1007/s13402-024-00923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Metastasis accounts for the majority of cancer-related deaths. Actin dynamics and actin-based cell migration and invasion are important factors in cancer metastasis. Metastasis is characterized by actin polymerization and depolymerization, which are precisely regulated by molecular changes involving a plethora of actin regulators, including actin-binding proteins (ABPs) and signalling pathways, that enable cancer cell dissemination from the primary tumour. Research on deubiquitinating enzymes (DUBs) has revealed their vital roles in actin dynamics and actin-based migration and invasion during cancer metastasis. CONCLUSION Here, we review how DUBs drive tumour metastasis by participating in actin rearrangement and actin-based migration and invasion. We summarize the well-characterized and essential actin cytoskeleton signalling molecules related to DUBs, including Rho GTPases, Src kinases, and ABPs such as cofilin and cortactin. Other DUBs that modulate actin-based migration signalling pathways are also discussed. Finally, we discuss and address therapeutic opportunities and ongoing challenges related to DUBs with respect to actin dynamics.
Collapse
Affiliation(s)
- Ying Xue
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China.
| | - Cong Xue
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Wei Song
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China.
| |
Collapse
|
2
|
Sala-Gaston J, Pérez-Villegas EM, Armengol JA, Rawlins LE, Baple EL, Crosby AH, Ventura F, Rosa JL. Autophagy dysregulation via the USP20-ULK1 axis in the HERC2-related neurodevelopmental disorder. Cell Death Discov 2024; 10:163. [PMID: 38570483 PMCID: PMC10991529 DOI: 10.1038/s41420-024-01931-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024] Open
Abstract
Sequence variants in the HERC2 gene are associated with a significant reduction in HERC2 protein levels and cause a neurodevelopmental disorder known as the HERC2-related disorder, which shares clinical features with Angelman syndrome, including global developmental delay, intellectual disability, autism, and movement disorders. Remarkably, the HERC2 gene is commonly deleted in individuals with Angelman syndrome, suggesting a potential contribution of HERC2 to the pathophysiology of this disease. Given the known critical role of autophagy in brain development and its implication in neurodevelopmental diseases, we undertook different experimental approaches to monitor autophagy in fibroblasts derived from individuals affected by the HERC2-related disorder. Our findings reveal alterations in the levels of the autophagy-related protein LC3. Furthermore, experiments with lysosomal inhibitors provide confirmation of an upregulation of the autophagy pathway in these patient-derived cells. Mechanistically, we corroborate an interaction between HERC2 and the deubiquitylating enzyme USP20; and demonstrate that HERC2 deficiency leads to increased USP20 protein levels. Notably, USP20 upregulation correlates with enhanced stability of the autophagy initiating kinase ULK1, highlighting the role of HERC2 as an autophagy regulator factor through the USP20-ULK1 axis. Moreover, we show that p38 acts as a modulator of this pathway, since p38 activation disrupts HERC2-USP20 interaction, leading to increased USP20 and LC3-II protein levels. Together, these findings uncover a previously unknown role for HERC2 in autophagy regulation and provide insights into the pathomolecular mechanisms underlying the HERC2-related disorder and Angelman syndrome.
Collapse
Affiliation(s)
- Joan Sala-Gaston
- Department of Physiological Sciences, University of Barcelona (UB), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Eva M Pérez-Villegas
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, 41013, Seville, Spain
| | - José A Armengol
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, 41013, Seville, Spain
| | - Lettie E Rawlins
- RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford) NHS Foundation Trust, University of Exeter Medical School, Exeter, UK
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Exeter, UK
| | - Emma L Baple
- RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford) NHS Foundation Trust, University of Exeter Medical School, Exeter, UK
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Exeter, UK
| | - Andrew H Crosby
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Exeter, UK
| | - Francesc Ventura
- Department of Physiological Sciences, University of Barcelona (UB), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Jose Luis Rosa
- Department of Physiological Sciences, University of Barcelona (UB), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
3
|
Bolhuis DL, Emanuele MJ, Brown NG. Friend or foe? Reciprocal regulation between E3 ubiquitin ligases and deubiquitinases. Biochem Soc Trans 2024; 52:241-267. [PMID: 38414432 PMCID: PMC11349938 DOI: 10.1042/bst20230454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
Protein ubiquitination is a post-translational modification that entails the covalent attachment of the small protein ubiquitin (Ub), which acts as a signal to direct protein stability, localization, or interactions. The Ub code is written by a family of enzymes called E3 Ub ligases (∼600 members in humans), which can catalyze the transfer of either a single ubiquitin or the formation of a diverse array of polyubiquitin chains. This code can be edited or erased by a different set of enzymes termed deubiquitinases (DUBs; ∼100 members in humans). While enzymes from these distinct families have seemingly opposing activities, certain E3-DUB pairings can also synergize to regulate vital cellular processes like gene expression, autophagy, innate immunity, and cell proliferation. In this review, we highlight recent studies describing Ub ligase-DUB interactions and focus on their relationships.
Collapse
Affiliation(s)
- Derek L Bolhuis
- Department of Biochemistry and Biophysics, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| | - Michael J Emanuele
- Department of Pharmacology and Lineberger Comprehensive Care Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Care Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| |
Collapse
|
4
|
Ren J, Yu P, Liu S, Li R, Niu X, Chen Y, Zhang Z, Zhou F, Zhang L. Deubiquitylating Enzymes in Cancer and Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303807. [PMID: 37888853 PMCID: PMC10754134 DOI: 10.1002/advs.202303807] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/30/2023] [Indexed: 10/28/2023]
Abstract
Deubiquitylating enzymes (DUBs) maintain relative homeostasis of the cellular ubiquitome by removing the post-translational modification ubiquitin moiety from substrates. Numerous DUBs have been demonstrated specificity for cleaving a certain type of ubiquitin linkage or positions within ubiquitin chains. Moreover, several DUBs perform functions through specific protein-protein interactions in a catalytically independent manner, which further expands the versatility and complexity of DUBs' functions. Dysregulation of DUBs disrupts the dynamic equilibrium of ubiquitome and causes various diseases, especially cancer and immune disorders. This review summarizes the Janus-faced roles of DUBs in cancer including proteasomal degradation, DNA repair, apoptosis, and tumor metastasis, as well as in immunity involving innate immune receptor signaling and inflammatory and autoimmune disorders. The prospects and challenges for the clinical development of DUB inhibitors are further discussed. The review provides a comprehensive understanding of the multi-faced roles of DUBs in cancer and immunity.
Collapse
Affiliation(s)
- Jiang Ren
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Peng Yu
- Zhongshan Institute for Drug DiscoveryShanghai Institute of Materia MedicaChinese Academy of SciencesZhongshanGuangdongP. R. China
| | - Sijia Liu
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310058China
| | - Ran Li
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Xin Niu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Yan Chen
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Zhenyu Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450003P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| |
Collapse
|
5
|
Tang J, Long G, Xiao D, Liu S, Xiao L, Zhou L, Tao Y. ATR-dependent ubiquitin-specific protease 20 phosphorylation confers oxaliplatin and ferroptosis resistance. MedComm (Beijing) 2023; 4:e463. [PMID: 38124786 PMCID: PMC10732327 DOI: 10.1002/mco2.463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Oxaliplatin (OXA) resistance is a major clinic challenge in hepatocellular carcinoma (HCC). Ferroptosis is a kind of iron-dependent cell death. Triggering ferroptosis is considered to restore sensitivity to chemotherapy. In the present study, we found that USP20 was overexpressed in OXA-resistant HCC cells. High expression of USP20 in HCC was associated with poor prognosis. USP20 contributes OXA resistance and suppress ferroptosis in HCC. Pharmacological inhibition or knockdown of USP20 triggered ferroptosis and increased the sensitivity of HCC cells to OXA both in vitro and in vivo. Coimmunoprecipitation results revealed that the UCH domain of USP20 interacted with the N terminal of SLC7A11. USP20 stabilized SLC7A11 via removing K48-linked polyubiquitination of SLC7A11 protein at K30 and K37. Most importantly, DNA damage-induced ATR activation was required for Ser132 and Ser368 phosphorylation of USP20. USP20 phosphorylation at Ser132 and Ser368 enhanced its stability and thus conferred OXA and ferroptosis resistance of HCC cells. Our study reveals a previously undiscovered association between OXA and ferroptosis and provides new insight into mechanisms regarding how DNA damage therapies always lead to therapeutic resistance. Therefore, targeting USP20 may mitigate the development of drug resistance and promote ferroptosis of HCC in patients receiving chemotherapy.
Collapse
Affiliation(s)
- Jianing Tang
- Department of Liver SurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Guo Long
- Department of Liver SurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Desheng Xiao
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Shuang Liu
- Department of OncologyInstitute of Medical SciencesNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Liang Xiao
- Department of Liver SurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Ledu Zhou
- Department of Liver SurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yongguang Tao
- Department of PathologyKey Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education)Xiangya HospitalCentral South UniversityHunanChina
- Cancer Research Institute and School of Basic MedicineNHC Key Laboratory of Carcinogenesis (Central South University)Central South UniversityChangshaHunanChina
- Department of Thoracic SurgeryHunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer and Hunan Key Laboratory of Tumor Models and Individualized MedicineSecond Xiangya HospitalCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunanChina
| |
Collapse
|
6
|
Zhang L, Wu JH, Jean-Charles PY, Murali P, Zhang W, Jazic A, Kaur S, Nepliouev I, Stiber JA, Snow K, Freedman NJ, Shenoy SK. Phosphorylation of USP20 on Ser334 by IRAK1 promotes IL-1β-evoked signaling in vascular smooth muscle cells and vascular inflammation. J Biol Chem 2023; 299:104911. [PMID: 37311534 PMCID: PMC10362797 DOI: 10.1016/j.jbc.2023.104911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/11/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023] Open
Abstract
Reversible lysine-63 (K63) polyubiquitination regulates proinflammatory signaling in vascular smooth muscle cells (SMCs) and plays an integral role in atherosclerosis. Ubiquitin-specific peptidase 20 (USP20) reduces NFκB activation triggered by proinflammatory stimuli, and USP20 activity attenuates atherosclerosis in mice. The association of USP20 with its substrates triggers deubiquitinase activity; this association is regulated by phosphorylation of USP20 on Ser334 (mouse) or Ser333 (human). USP20 Ser333 phosphorylation was greater in SMCs of atherosclerotic segments of human arteries as compared with nonatherosclerotic segments. To determine whether USP20 Ser334 phosphorylation regulates proinflammatory signaling, we created USP20-S334A mice using CRISPR/Cas9-mediated gene editing. USP20-S334A mice developed ∼50% less neointimal hyperplasia than congenic WT mice after carotid endothelial denudation. WT carotid SMCs showed substantial phosphorylation of USP20 Ser334, and WT carotids demonstrated greater NFκB activation, VCAM-1 expression, and SMC proliferation than USP20-S334A carotids. Concordantly, USP20-S334A primary SMCs in vitro proliferated and migrated less than WT SMCs in response to IL-1β. An active site ubiquitin probe bound to USP20-S334A and USP20-WT equivalently, but USP20-S334A associated more avidly with TRAF6 than USP20-WT. IL-1β induced less K63-linked polyubiquitination of TRAF6 and less downstream NFκB activity in USP20-S334A than in WT SMCs. Using in vitro phosphorylation with purified IRAK1 and siRNA-mediated gene silencing of IRAK1 in SMCs, we identified IRAK1 as a novel kinase for IL-1β-induced USP20 Ser334 phosphorylation. Our findings reveal novel mechanisms regulating IL-1β-induced proinflammatory signaling: by phosphorylating USP20 Ser334, IRAK1 diminishes the association of USP20 with TRAF6 and thus augments NFκB activation, SMC inflammation, and neointimal hyperplasia.
Collapse
Affiliation(s)
- Lisheng Zhang
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, USA
| | - Jiao-Hui Wu
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, USA
| | - Pierre-Yves Jean-Charles
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, USA
| | - Pavitra Murali
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, USA
| | - Wenli Zhang
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, USA
| | - Aeva Jazic
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, USA
| | - Suneet Kaur
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, USA
| | - Igor Nepliouev
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, USA
| | - Jonathan A Stiber
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, USA
| | - Kamie Snow
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, USA
| | - Neil J Freedman
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, USA; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.
| | - Sudha K Shenoy
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, USA; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
7
|
Choi DJ, Armstrong G, Lozzi B, Vijayaraghavan P, Plon SE, Wong TC, Boerwinkle E, Muzny DM, Chen HC, Gibbs RA, Ostrom QT, Melin B, Deneen B, Bondy ML, The Gliogene Consortium, Genomics England Research Consortium, Bainbridge MN. The genomic landscape of familial glioma. SCIENCE ADVANCES 2023; 9:eade2675. [PMID: 37115922 PMCID: PMC10146888 DOI: 10.1126/sciadv.ade2675] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Glioma is a rare brain tumor with a poor prognosis. Familial glioma is a subset of glioma with a strong genetic predisposition that accounts for approximately 5% of glioma cases. We performed whole-genome sequencing on an exploratory cohort of 203 individuals from 189 families with a history of familial glioma and an additional validation cohort of 122 individuals from 115 families. We found significant enrichment of rare deleterious variants of seven genes in both cohorts, and the most significantly enriched gene was HERC2 (P = 0.0006). Furthermore, we identified rare noncoding variants in both cohorts that were predicted to affect transcription factor binding sites or cause cryptic splicing. Last, we selected a subset of discovered genes for validation by CRISPR knockdown screening and found that DMBT1, HP1BP3, and ZCH7B3 have profound impacts on proliferation. This study performs comprehensive surveillance of the genomic landscape of familial glioma.
Collapse
Affiliation(s)
- Dong-Joo Choi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Georgina Armstrong
- Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Brittney Lozzi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | | | - Sharon E. Plon
- Department of Pediatrics/Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Terence C. Wong
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, USA
| | - Eric Boerwinkle
- The University of Texas Health Science Center School of Public Health, Houston, TX, USA
| | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Hsiao-Chi Chen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Quinn T. Ostrom
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Beatrice Melin
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Melissa L. Bondy
- Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - The Gliogene Consortium
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, USA
- Department of Pediatrics/Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
- The University of Texas Health Science Center School of Public Health, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Genomics England Research Consortium
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, USA
- Department of Pediatrics/Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
- The University of Texas Health Science Center School of Public Health, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | | |
Collapse
|
8
|
An T, Lu Y, Gong Z, Wang Y, Su C, Tang G, Hou J. Research Progress for Targeting Deubiquitinases in Gastric Cancers. Cancers (Basel) 2022; 14:cancers14235831. [PMID: 36497313 PMCID: PMC9735992 DOI: 10.3390/cancers14235831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Gastric cancers (GCs) are malignant tumors with a high incidence that threaten global public health. Despite advances in GC diagnosis and treatment, the prognosis remains poor. Therefore, the mechanisms underlying GC progression need to be identified to develop prognostic biomarkers and therapeutic targets. Ubiquitination, a post-translational modification that regulates the stability, activity, localization, and interactions of target proteins, can be reversed by deubiquitinases (DUBs), which can remove ubiquitin monomers or polymers from modified proteins. The dysfunction of DUBs has been closely linked to tumorigenesis in various cancer types, and targeting certain DUBs may provide a potential option for cancer therapy. Multiple DUBs have been demonstrated to function as oncogenes or tumor suppressors in GC. In this review, we summarize the DUBs involved in GC and their associated upstream regulation and downstream mechanisms and present the benefits of targeting DUBs for GC treatment, which could provide new insights for GC diagnosis and therapy.
Collapse
Affiliation(s)
- Tao An
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yanting Lu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250353, China
| | - Zhaoqi Gong
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yongtao Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Chen Su
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Guimei Tang
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Correspondence: (G.T.); (J.H.)
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361005, China
- Correspondence: (G.T.); (J.H.)
| |
Collapse
|
9
|
Qin B, Zhou L, Wang F, Wang Y. Ubiquitin-specific protease 20 in human disease: emerging role and therapeutic implications. Biochem Pharmacol 2022; 206:115352. [DOI: 10.1016/j.bcp.2022.115352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/06/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
|
10
|
Sala-Gaston J, Pedrazza L, Ramirez J, Martinez-Martinez A, Rawlins LE, Baple EL, Crosby AH, Mayor U, Ventura F, Rosa JL. HERC2 deficiency activates C-RAF/MKK3/p38 signalling pathway altering the cellular response to oxidative stress. Cell Mol Life Sci 2022; 79:548. [PMID: 36241744 PMCID: PMC9568463 DOI: 10.1007/s00018-022-04586-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/03/2022]
Abstract
HERC2 gene encodes an E3 ubiquitin ligase involved in several cellular processes by regulating the ubiquitylation of different protein substrates. Biallelic pathogenic sequence variants in the HERC2 gene are associated with HERC2 Angelman-like syndrome. In pathogenic HERC2 variants, complete absence or marked reduction in HERC2 protein levels are observed. The most common pathological variant, c.1781C > T (p.Pro594Leu), encodes an unstable HERC2 protein. A better understanding of how pathologic HERC2 variants affect intracellular signalling may aid definition of potential new therapies for these disorders. For this purpose, we studied patient-derived cells with the HERC2 Pro594Leu variant. We observed alteration of mitogen-activated protein kinase signalling pathways, reflected by increased levels of C-RAF protein and p38 phosphorylation. HERC2 knockdown experiments reproduced the same effects in other human and mouse cells. Moreover, we demonstrated that HERC2 and RAF proteins form molecular complexes, pull-down and proteomic experiments showed that HERC2 regulates C-RAF ubiquitylation and we found out that the p38 activation due to HERC2 depletion occurs in a RAF/MKK3-dependent manner. The displayed cellular response was that patient-derived and other human cells with HERC2 deficiency showed higher resistance to oxidative stress with an increase in the master regulator of the antioxidant response NRF2 and its target genes. This resistance was independent of p53 and abolished by RAF or p38 inhibitors. Altogether, these findings identify the activation of C-RAF/MKK3/p38 signalling pathway in HERC2 Angelman-like syndrome and highlight the inhibition of RAF activity as a potential therapeutic option for individuals affected with these rare diseases.
Collapse
Affiliation(s)
- Joan Sala-Gaston
- Department of Physiological Sciences, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona (UB), C/ Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Spain
| | - Leonardo Pedrazza
- Department of Physiological Sciences, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona (UB), C/ Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Spain
| | - Juanma Ramirez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, UPV/EHU, Leioa, Bizkaia, Spain
| | - Arturo Martinez-Martinez
- Department of Physiological Sciences, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona (UB), C/ Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Spain
| | - Lettie E Rawlins
- RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford) NHS Foundation Trust, University of Exeter Medical School, Exeter, UK.,Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Exeter, UK
| | - Emma L Baple
- RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford) NHS Foundation Trust, University of Exeter Medical School, Exeter, UK.,Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Exeter, UK
| | - Andrew H Crosby
- RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford) NHS Foundation Trust, University of Exeter Medical School, Exeter, UK
| | - Ugo Mayor
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, UPV/EHU, Leioa, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Francesc Ventura
- Department of Physiological Sciences, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona (UB), C/ Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Spain
| | - Jose Luis Rosa
- Department of Physiological Sciences, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona (UB), C/ Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
11
|
Regulation of ATR-CHK1 signaling by ubiquitination of CLASPIN. Biochem Soc Trans 2022; 50:1471-1480. [PMID: 36196914 DOI: 10.1042/bst20220729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
DNA replication forks are frequently forced into stalling by persistent DNA aberrations generated from endogenous or exogenous insults. Stalled replication forks are catastrophic for genome integrity and cell survival if not immediately stabilized. The ataxia-telangiectasia and RAD3-related kinase (ATR)-CLASPIN-checkpoint kinase 1 (CHK1) signaling cascade is a pivotal mechanism that initiates cell-cycle checkpoints and stabilizes stalled replication forks, assuring the faithful duplication of genomic information before entry into mitosis. The timely recovery of checkpoints after stressors are resolved is also crucial for normal cell proliferation. The precise activation and inactivation of ATR-CHK1 signaling are usually efficiently regulated by turnover and the cellular re-localization of the adaptor protein CLASPIN. The ubiquitination-proteasome-mediated degradation of CLASPIN, driven by APC/CCDH1 and SCFβTrCP, results in a cell-cycle-dependent fluctuation pattern of CLASPIN levels, with peak levels seen in S/G2 phase when it functions in the DNA replisome or as an adaptor protein in ATR-CHK1 signaling under replication stress. Deubiquitination mediated by a series of ubiquitin-specific protease family proteins releases CLASPIN from proteasome-dependent destruction and activates the ATR-CHK1 checkpoint to overcome replication stress. Moreover, the non-proteolytic ubiquitination of CLASPIN also affects CHK1 activation by regulating CLASPIN localization. In this review, we discuss the functions of CLASPIN ubiquitination with specific linkage types in the regulation of the ATR-CHK1 signaling pathway. Research in this area is progressing at pace and provides promising chemotherapeutic targets.
Collapse
|
12
|
Zhu X, Xue J, Jiang X, Gong Y, Gao C, Cao T, Li Q, Bai L, Li Y, Xu G, Peng B, Xu X. TRIM21 suppresses CHK1 activation by preferentially targeting CLASPIN for K63-linked ubiquitination. Nucleic Acids Res 2022; 50:1517-1530. [PMID: 35048968 PMCID: PMC8860585 DOI: 10.1093/nar/gkac011] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 12/17/2022] Open
Abstract
Expression of the E3 ligase TRIM21 is increased in a broad spectrum of cancers; however, the functionally relevant molecular pathway targeted by TRIM21 overexpression remains largely unknown. Here, we show that TRIM21 directly interacts with and ubiquitinates CLASPIN, a mediator for ATR-dependent CHK1 activation. TRIM21-mediated K63-linked ubiquitination of CLASPIN counteracts the K6-linked ubiquitination of CLASPIN which is essential for its interaction with TIPIN and subsequent chromatin loading. We further show that overexpression of TRIM21, but not a TRIM21 catalytically inactive mutant, compromises CHK1 activation, leading to replication fork instability and tumorigenesis. Our findings demonstrate that TRIM21 suppresses CHK1 activation by preferentially targeting CLASPIN for K63-linked ubiquitination, providing a potential target for cancer therapy.
Collapse
Affiliation(s)
- Xuefei Zhu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center and Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Jingwei Xue
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center and Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Xing Jiang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center and Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Yamin Gong
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center and Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China.,Shenzhen University-Friedrich Schiller Universität Jena Joint PhD Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Congwen Gao
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center and Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Ting Cao
- Capital Normal University College of Life Science, Beijing 100048, China
| | - Qian Li
- Capital Normal University College of Life Science, Beijing 100048, China
| | - Lulu Bai
- Capital Normal University College of Life Science, Beijing 100048, China
| | - Yuwei Li
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center and Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Gaixia Xu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Bin Peng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center and Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center and Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China.,Shenzhen University-Friedrich Schiller Universität Jena Joint PhD Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| |
Collapse
|
13
|
Sahay O, Barik GK, Sharma T, Pillai AD, Rapole S, Santra MK. Damsel in distress calling on her knights: Illuminating the pioneering role of E3 ubiquitin ligases in guarding the genome integrity. DNA Repair (Amst) 2021; 109:103261. [PMID: 34920250 DOI: 10.1016/j.dnarep.2021.103261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 11/03/2022]
Abstract
The maintenance of genomic integrity is of utmost importance for the organisms to survive and to accurately inherit traits to their progenies. Any kind of DNA damage either due to defect in DNA duplication and/ or uncontrolled cell division or intracellular insults or environment radiation can result in gene mutation, chromosomal aberration and ultimately genomic instability, which may cause several diseases including cancers. Therefore, cells have evolved machineries for the surveillance of genomic integrity. Enormous exciting studies in the past indicate that ubiquitination (a posttranslational modification of proteins) plays a crucial role in maintaining the genomic integrity by diverse ways. In fact, various E3 ubiquitin ligases catalyse ubiquitination of key proteins to control their central role during cell cycle, DNA damage response (DDR) and DNA repair. Some E3 ligases promote genomic instability while others prevent it, deregulation of both of which leads to several malignancies. In this review, we consolidate the recent findings wherein the role of ubiquitination in conferring genome integrity is highlighted. We also discuss the latest discoveries on the mechanisms utilized by various E3 ligases to preserve genomic stability, with a focus on their actions during cell cycle progression and different types of DNA damage response as well as repair pathways.
Collapse
Affiliation(s)
- Osheen Sahay
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, S.P. Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Ganesh Kumar Barik
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, S.P. Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Tanisha Sharma
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, S.P. Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Ajay D Pillai
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Srikanth Rapole
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Manas Kumar Santra
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India.
| |
Collapse
|
14
|
Stromberg BR, Singh M, Torres AE, Burrows AC, Pal D, Insinna C, Rhee Y, Dickson AS, Westlake CJ, Summers MK. The deubiquitinating enzyme USP37 enhances CHK1 activity to promote the cellular response to replication stress. J Biol Chem 2021; 297:101184. [PMID: 34509474 PMCID: PMC8487067 DOI: 10.1016/j.jbc.2021.101184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/29/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
The deubiquitinating enzyme USP37 is known to contribute to timely onset of S phase and progression of mitosis. However, it is not clear if USP37 is required beyond S-phase entry despite expression and activity of USP37 peaking within S phase. We have utilized flow cytometry and microscopy to analyze populations of replicating cells labeled with thymidine analogs and monitored mitotic entry in synchronized cells to determine that USP37-depleted cells exhibited altered S-phase kinetics. Further analysis revealed that cells depleted of USP37 harbored increased levels of the replication stress and DNA damage markers γH2AX and 53BP1 in response to perturbed replication. Depletion of USP37 also reduced cellular proliferation and led to increased sensitivity to agents that induce replication stress. Underlying the increased sensitivity, we found that the checkpoint kinase 1 is destabilized in the absence of USP37, attenuating its function. We further demonstrated that USP37 deubiquitinates checkpoint kinase 1, promoting its stability. Together, our results establish that USP37 is required beyond S-phase entry to promote the efficiency and fidelity of replication. These data further define the role of USP37 in the regulation of cell proliferation and contribute to an evolving understanding of USP37 as a multifaceted regulator of genome stability.
Collapse
Affiliation(s)
- Benjamin R Stromberg
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA; Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Mayank Singh
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Adrian E Torres
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Amy C Burrows
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Debjani Pal
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Christine Insinna
- NCI-Frederick National Laboratory, Laboratory of Cellular and Developmental Signaling, Frederick, Maryland, USA
| | - Yosup Rhee
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Andrew S Dickson
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Christopher J Westlake
- NCI-Frederick National Laboratory, Laboratory of Cellular and Developmental Signaling, Frederick, Maryland, USA
| | - Matthew K Summers
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
15
|
Circadian Rhythm of NER and ATR Pathways. Biomolecules 2021; 11:biom11050715. [PMID: 34064641 PMCID: PMC8150605 DOI: 10.3390/biom11050715] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022] Open
Abstract
Genomic integrity is constantly insulted by solar ultraviolet (UV) radiation. Adaptative cellular mechanisms called DNA damage responses comprising DNA repair, cell cycle checkpoint, and apoptosis, are believed to be evolved to limit genomic instability according to the photoperiod during a day. As seen in many other key cellular metabolisms, genome surveillance mechanisms against genotoxic UV radiation are under the control of circadian clock systems, thereby exhibiting daily oscillations in their catalytic activities. Indeed, it has been demonstrated that nucleotide excision repair (NER), the sole DNA repair mechanism correcting UV-induced DNA photolesions, and ataxia–telangiectasia-mutated and Rad3-related (ATR)-mediated cell cycle checkpoint kinase are subjected to the robust control of the circadian clock. The molecular foundation for the circadian rhythm of UV-induced DNA damage responses in mammalian cells will be discussed.
Collapse
|
16
|
Mathieu NA, Levin RH, Spratt DE. Exploring the Roles of HERC2 and the NEDD4L HECT E3 Ubiquitin Ligase Subfamily in p53 Signaling and the DNA Damage Response. Front Oncol 2021; 11:659049. [PMID: 33869064 PMCID: PMC8044464 DOI: 10.3389/fonc.2021.659049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/16/2021] [Indexed: 12/27/2022] Open
Abstract
Cellular homeostasis is governed by the precise expression of genes that control the translation, localization, and termination of proteins. Oftentimes, environmental and biological factors can introduce mutations into the genetic framework of cells during their growth and division, and these genetic abnormalities can result in malignant transformations caused by protein malfunction. For example, p53 is a prominent tumor suppressor protein that is capable of undergoing more than 300 posttranslational modifications (PTMs) and is involved with controlling apoptotic signaling, transcription, and the DNA damage response (DDR). In this review, we focus on the molecular mechanisms and interactions that occur between p53, the HECT E3 ubiquitin ligases WWP1, SMURF1, HECW1 and HERC2, and other oncogenic proteins in the cell to explore how irregular HECT-p53 interactions can induce tumorigenesis.
Collapse
Affiliation(s)
- Nicholas A Mathieu
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, United States
| | - Rafael H Levin
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, United States
| | - Donald E Spratt
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, United States
| |
Collapse
|
17
|
Wang H, Xing J, Wang W, Lv G, He H, Lu Y, Sun M, Chen H, Li X. Molecular Characterization of the Oncogene BTF3 and Its Targets in Colorectal Cancer. Front Cell Dev Biol 2021; 8:601502. [PMID: 33644029 PMCID: PMC7905040 DOI: 10.3389/fcell.2020.601502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/26/2020] [Indexed: 01/12/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed and leading causes of cancer mortality worldwide, and the prognosis of patients with CRC remains unsatisfactory. Basic transcription factor 3 (BTF3) is an oncogene and hazardous prognosticator in CRC. Although two distinct functional mechanisms of BTF3 in different cancer types have been reported, its role in CRC is still unclear. In this study, we aimed to molecularly characterize the oncogene BTF3 and its targets in CRC. Here, we first identified the transcriptional targets of BTF3 by applying combined RNA-Seq and ChIP-Seq analysis, identifying CHD1L as a transcriptional target of BTF3. Thereafter, we conducted immunoprecipitation (IP)-MS and E3 ubiquitin ligase analysis to identify potential interacting targets of BTF3 as a subunit of the nascent-polypeptide-associated complex (NAC). The analysis revealed that BTF3 might also inhibit E3 ubiquitin ligase HERC2-mediated p53 degradation. Finally, miRNAs targeting BTF3 were predicted and validated. Decreased miR-497-5p expression is responsible for higher levels of BTF3 post-transcriptionally. Collectively, we concluded that BTF3 is an oncogene, and there may exist a transcription factor and NAC-related proteolysis mechanism in CRC. This study provides a comprehensive basis for understanding the oncogenic mechanisms of BTF3 in CRC.
Collapse
Affiliation(s)
- Hantao Wang
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Junjie Xing
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Wei Wang
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Guifen Lv
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Haiyan He
- Department of Digestive Endoscopy, Changhai Hospital, Shanghai, China
| | - Yeqing Lu
- Department of Anesthesiology, Changhai Hospital, Shanghai, China
| | - Mei Sun
- Department of Anesthesiology, Changhai Hospital, Shanghai, China
| | - Haiyan Chen
- Department of Endocrinology, Changzheng Hospital, Shanghai, China
| | - Xu Li
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| |
Collapse
|
18
|
Kaushal K, Ramakrishna S. Deubiquitinating Enzyme-Mediated Signaling Networks in Cancer Stem Cells. Cancers (Basel) 2020; 12:E3253. [PMID: 33158118 PMCID: PMC7694198 DOI: 10.3390/cancers12113253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs) have both the capacity for self-renewal and the potential to differentiate and contribute to multiple tumor properties, such as recurrence, metastasis, heterogeneity, multidrug resistance, and radiation resistance. Thus, CSCs are considered to be promising therapeutic targets for cancer therapy. The function of CSCs can be regulated by ubiquitination and deubiquitination of proteins related to the specific stemness of the cells executing various stem cell fate choices. To regulate the balance between ubiquitination and deubiquitination processes, the disassembly of ubiquitin chains from specific substrates by deubiquitinating enzymes (DUBs) is crucial. Several key developmental and signaling pathways have been shown to play essential roles in this regulation. Growing evidence suggests that overactive or abnormal signaling within and among these pathways may contribute to the survival of CSCs. These signaling pathways have been experimentally shown to mediate various stem cell properties, such as self-renewal, cell fate decisions, survival, proliferation, and differentiation. In this review, we focus on the DUBs involved in CSCs signaling pathways, which are vital in regulating their stem-cell fate determination.
Collapse
Affiliation(s)
- Kamini Kaushal
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea;
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea;
- College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
19
|
Li W, Shen M, Jiang YZ, Zhang R, Zheng H, Wei Y, Shao ZM, Kang Y. Deubiquitinase USP20 promotes breast cancer metastasis by stabilizing SNAI2. Genes Dev 2020; 34:1310-1315. [PMID: 32943575 PMCID: PMC7528704 DOI: 10.1101/gad.339804.120] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
In this study, Li et al. conducted comprehensive gain- and loss-of-function screens using a human DUB cDNA library of 65 genes and an siRNA library of 98 genes, and identified USP20 as a deubiquitinase (DUB) that regulates a metastasis-promoting transcription factor, SNAI2, ubiquitination, and stability. SNAI2/SLUG, a metastasis-promoting transcription factor, is a labile protein that is degraded through the ubiquitin proteasome degradation system. Here, we conducted comprehensive gain- and loss-of-function screens using a human DUB cDNA library of 65 genes and an siRNA library of 98 genes, and identified USP20 as a deubiquitinase (DUB) that regulates SNAI2 ubiquitination and stability. Further investigation of USP20 demonstrated its function in promoting migration, invasion, and metastasis of breast cancer. USP20 positively correlates with SNAI2 protein level in breast tumor samples, and higher USP20 expression is associated with poor prognosis in ER− breast cancer patients.
Collapse
Affiliation(s)
- Wenyang Li
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Minhong Shen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ruina Zhang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Hanqiu Zheng
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Yong Wei
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
20
|
Sala-Gaston J, Martinez-Martinez A, Pedrazza L, Lorenzo-Martín LF, Caloto R, Bustelo XR, Ventura F, Rosa JL. HERC Ubiquitin Ligases in Cancer. Cancers (Basel) 2020; 12:cancers12061653. [PMID: 32580485 PMCID: PMC7352365 DOI: 10.3390/cancers12061653] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/12/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
HERC proteins are ubiquitin E3 ligases of the HECT family. The HERC subfamily is composed of six members classified by size into large (HERC1 and HERC2) and small (HERC3-HERC6). HERC family ubiquitin ligases regulate important cellular processes, such as neurodevelopment, DNA damage response, cell proliferation, cell migration, and immune responses. Accumulating evidence also shows that this family plays critical roles in cancer. In this review, we provide an integrated view of the role of these ligases in cancer, highlighting their bivalent functions as either oncogenes or tumor suppressors, depending on the tumor type. We include a discussion of both the molecular mechanisms involved and the potential therapeutic strategies.
Collapse
Affiliation(s)
- Joan Sala-Gaston
- Departament de Ciències Fisiològiques, Institut d’Investigació de Bellvitge (IDIBELL), Universitat de Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.S.-G.); (A.M.-M.); (L.P.); (F.V.)
| | - Arturo Martinez-Martinez
- Departament de Ciències Fisiològiques, Institut d’Investigació de Bellvitge (IDIBELL), Universitat de Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.S.-G.); (A.M.-M.); (L.P.); (F.V.)
| | - Leonardo Pedrazza
- Departament de Ciències Fisiològiques, Institut d’Investigació de Bellvitge (IDIBELL), Universitat de Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.S.-G.); (A.M.-M.); (L.P.); (F.V.)
| | - L. Francisco Lorenzo-Martín
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer and CIBERONC, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain; (L.F.L.-M.); (R.C.); (X.R.B.)
| | - Rubén Caloto
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer and CIBERONC, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain; (L.F.L.-M.); (R.C.); (X.R.B.)
| | - Xosé R. Bustelo
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer and CIBERONC, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain; (L.F.L.-M.); (R.C.); (X.R.B.)
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, Institut d’Investigació de Bellvitge (IDIBELL), Universitat de Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.S.-G.); (A.M.-M.); (L.P.); (F.V.)
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques, Institut d’Investigació de Bellvitge (IDIBELL), Universitat de Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.S.-G.); (A.M.-M.); (L.P.); (F.V.)
- Correspondence:
| |
Collapse
|
21
|
Posttranscriptional control of the replication stress response via TTP-mediated Claspin mRNA stabilization. Oncogene 2020; 39:3245-3257. [PMID: 32086441 DOI: 10.1038/s41388-020-1220-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 11/08/2022]
Abstract
ATR and CHK1 play key roles in the protection and recovery of the stalled replication forks. Claspin, an adaptor for CHK1 activation, is essential for DNA damage signaling and efficient replication fork progression. Here, we show that tristetraprolin (TTP), an mRNA-binding protein, can modulate the replication stress response via stabilization of Claspin mRNA. TTP depletion compromised specifically in the phosphorylation of CHK1, but not p53 or H2AX among other ATR substrates, and produced CHK1-defective replication phenotypes including accumulation of stalled replication forks. Importantly, the expression of siRNA-resistant TTP in TTP-deficient cells restored CHK1 phosphorylation and reduced the number of stalled replication forks as close to the control cells. Besides, we found that TTP was required for efficient replication fork progression even in the absence of exogenous DNA damage in a Claspin-dependent manner. Mechanistically, TTP was able to bind to the 3'-untranslated region of Claspin mRNA to increase the stability of Claspin mRNA which eventually contributed to the subsequent ATR-CHK1 activation upon DNA damage. Taken together, our results revealed an intimate link between TTP-dependent Claspin mRNA stability and ATR-CHK1-dependent replication fork stability to maintain replication fork integrity and chromosomal stability.
Collapse
|
22
|
Tu Y, Chen Z, Zhao P, Sun G, Bao Z, Chao H, Fan L, Li C, You Y, Qu Y, Chen Y, Ji J. Smoothened Promotes Glioblastoma Radiation Resistance Via Activating USP3-Mediated Claspin Deubiquitination. Clin Cancer Res 2020; 26:1749-1762. [PMID: 31900278 DOI: 10.1158/1078-0432.ccr-19-1515] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/28/2019] [Accepted: 12/23/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Glioblastoma (GBM) is one of the most aggressive and lethal cancer types in humans. The standard treatment approach is surgery followed by chemoradiation. However, the molecular mechanisms of innate tumor radioresistance remain poorly understood. EXPERIMENTAL DESIGN We tested the expression of Smoothened (Smo) in primary and recurrent GBM tissues and cells. Then, we determined radiation effectiveness against primary and recurrent GBM cells. Lastly, the functional role of Smo in GBM radioresistance was further confirmed by in vitro and in vivo experiments. RESULTS We reported that Smo was significantly upregulated in recurrent GBM cell lines and tumor tissues following radiation treatment. Higher Smo expression indicated poor prognosis of GBM patients after radiation treatment. Smo had radioresistance effects in both GBM cells and human tumor xenografts. The mechanisms underlying these effects involved the attenuation of DNA damage repair caused by IR. Importantly, we found that the effect of Smo on radioresistance was mediated by Claspin polyubiquitination and proteasomal degradation, leading to the regulation of ATR-Chk1 signaling. Moreover, we found that Smo reduced Claspin polyubiquitination and proteasomal degradation by promoting USP3 transcription. Furthermore, we demonstrated that the Smo inhibitor GDC-0449 induced radiosensitivity to GBM. CONCLUSIONS These data suggest that Smo confers radiation resistance in GBM by promoting USP3 transcription, leading to the activation of Claspin-dependent ATR-Chk1 signaling. These findings identify a potential mechanism of GBM resistance to radiation and suggest a potential therapeutic target for radiation resistance in GBM.
Collapse
Affiliation(s)
- Yiming Tu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhenyao Chen
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengzhan Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guangchi Sun
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhongyuan Bao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Honglu Chao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liang Fan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chong Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, China. .,Neurosurgical Clinical Research Center of Shanxi Province, P.R. China
| | - Yun Chen
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China. .,Department of Immunology, Key Lab of Immune Microenvironment and Disease, Nanjing Medical University, Nanjing, China.,Research Center for Clinical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Jing Ji
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Garvin AJ. Beyond reversal: ubiquitin and ubiquitin-like proteases and the orchestration of the DNA double strand break repair response. Biochem Soc Trans 2019; 47:1881-1893. [PMID: 31769469 PMCID: PMC6925521 DOI: 10.1042/bst20190534] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022]
Abstract
The cellular response to genotoxic DNA double strand breaks (DSBs) uses a multitude of post-translational modifications to localise, modulate and ultimately clear DNA repair factors in a timely and accurate manner. Ubiquitination is well established as vital to the DSB response, with a carefully co-ordinated pathway of histone ubiquitination events being a central component of DSB signalling. Other ubiquitin-like modifiers (Ubl) including SUMO and NEDD8 have since been identified as playing important roles in DSB repair. In the last five years ∼20 additional Ub/Ubl proteases have been implicated in the DSB response. The number of proteases identified highlights the complexity of the Ub/Ubl signal present at DSBs. Ub/Ubl proteases regulate turnover, activity and protein-protein interactions of DSB repair factors both catalytically and non-catalytically. This not only ensures efficient repair of breaks but has a role in channelling repair into the correct DSB repair sub-pathways. Ultimately Ub/Ubl proteases have essential roles in maintaining genomic stability. Given that deficiencies in many Ub/Ubl proteases promotes sensitivity to DNA damaging chemotherapies, they could be attractive targets for cancer treatment.
Collapse
Affiliation(s)
- Alexander J. Garvin
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, U.K
| |
Collapse
|
24
|
Functional analysis of deubiquitylating enzymes in tumorigenesis and development. Biochim Biophys Acta Rev Cancer 2019; 1872:188312. [DOI: 10.1016/j.bbcan.2019.188312] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
|
25
|
Lai Y, Zhu M, Wu W, Rokutanda N, Togashi Y, Liang W, Ohta T. HERC2 regulates RPA2 by mediating ATR-induced Ser33 phosphorylation and ubiquitin-dependent degradation. Sci Rep 2019; 9:14257. [PMID: 31582797 PMCID: PMC6776656 DOI: 10.1038/s41598-019-50812-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/19/2019] [Indexed: 01/26/2023] Open
Abstract
Replication protein A (RPA) binds to and stabilizes single-stranded DNA and is essential for the genome stability. We reported that an E3 ubiquitin ligase, HERC2, suppresses G-quadruplex (G4) DNA by regulating RPA-helicase complexes. However, the precise mechanism of HERC2 on RPA is as yet largely unknown. Here, we show essential roles for HERC2 on RPA2 status: induction of phosphorylation and degradation of the modified form. HERC2 interacted with RPA through the C-terminal HECT domain. Ubiquitination of RPA2 was inhibited by HERC2 depletion and rescued by reintroduction of the C-terminal fragment of HERC2. ATR-mediated phosphorylation of RPA2 at Ser33 induced by low-level replication stress was inhibited by depletion of HERC2. Contrary, cells lacking HERC2 catalytic residues constitutively expressed an increased level of Ser33-phosphorylated RPA2. HERC2-mediated ubiquitination of RPA2 was abolished by an ATR inhibitor, supporting a hypothesis that the ubiquitinated RPA2 is a phosphorylated subset. Functionally, HERC2 E3 activity has an epistatic relationship with RPA in the suppression of G4 when judged with siRNA knockdown experiments. Together, these results suggest that HERC2 fine-tunes ATR-phosphorylated RPA2 levels through induction and degradation, a mechanism that could be critical for the suppression of secondary DNA structures during cell proliferation.
Collapse
Affiliation(s)
- Yongqiang Lai
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan.,Department of General Surgery, The People's Hospital of Gaoming District of Foshan City, Foshan city, Guangdong province, China
| | - Mingzhang Zhu
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan.,Department of General Surgery, The People's Hospital of Gaoming District of Foshan City, Foshan city, Guangdong province, China
| | - Wenwen Wu
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Nana Rokutanda
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan.,Oncology TA Division/Research & Development, AstraZeneca Japan, Osaka, Japan
| | - Yukiko Togashi
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Weixin Liang
- Department of General Surgery, The People's Hospital of Gaoming District of Foshan City, Foshan city, Guangdong province, China
| | - Tomohiko Ohta
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan.
| |
Collapse
|
26
|
García-Cano J, Martinez-Martinez A, Sala-Gaston J, Pedrazza L, Rosa JL. HERCing: Structural and Functional Relevance of the Large HERC Ubiquitin Ligases. Front Physiol 2019; 10:1014. [PMID: 31447701 PMCID: PMC6692442 DOI: 10.3389/fphys.2019.01014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
Homologous to the E6AP carboxyl terminus (HECT) and regulator of chromosome condensation 1 (RCC1)-like domain-containing proteins (HERCs) belong to the superfamily of ubiquitin ligases. HERC proteins are divided into two subfamilies, Large and Small HERCs. Despite their similarities in terms of both structure and domains, these subfamilies are evolutionarily very distant and result from a convergence phenomenon rather than from a common origin. Large HERC genes, HERC1 and HERC2, are present in most metazoan taxa. They encode very large proteins (approximately 5,000 amino acid residues in a single polypeptide chain) that contain more than one RCC1-like domain as a structural characteristic. Accumulating evidences show that these unusually large proteins play key roles in a wide range of cellular functions which include neurodevelopment, DNA damage repair, and cell proliferation. To better understand the origin, evolution, and function of the Large HERC family, this minireview provides with an integrated overview of their structure and function and details their physiological implications. This study also highlights and discusses how dysregulation of these proteins is associated with severe human diseases such as neurological disorders and cancer.
Collapse
Affiliation(s)
- Jesús García-Cano
- Ubiquitylation and Cell Signalling Lab, IDIBELL, Departament de Ciències Fisiològiques, Universitat de Barcelona, Barcelona, Spain
| | - Arturo Martinez-Martinez
- Ubiquitylation and Cell Signalling Lab, IDIBELL, Departament de Ciències Fisiològiques, Universitat de Barcelona, Barcelona, Spain
| | - Joan Sala-Gaston
- Ubiquitylation and Cell Signalling Lab, IDIBELL, Departament de Ciències Fisiològiques, Universitat de Barcelona, Barcelona, Spain
| | - Leonardo Pedrazza
- Ubiquitylation and Cell Signalling Lab, IDIBELL, Departament de Ciències Fisiològiques, Universitat de Barcelona, Barcelona, Spain
| | - Jose Luis Rosa
- Ubiquitylation and Cell Signalling Lab, IDIBELL, Departament de Ciències Fisiològiques, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
27
|
Cabrera E, Raninga P, Khanna KK, Freire R. GSK3-β Stimulates Claspin Degradation via β-TrCP Ubiquitin Ligase and Alters Cancer Cell Survival. Cancers (Basel) 2019; 11:cancers11081073. [PMID: 31362447 PMCID: PMC6721324 DOI: 10.3390/cancers11081073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 11/16/2022] Open
Abstract
Claspin is essential for activating the DNA damage checkpoint effector kinase Chk1, a target in oncotherapy. Claspin functions are tightly correlated to Claspin protein stability, regulated by ubiquitin-dependent proteasomal degradation. Here we identify Glycogen Synthase Kinase 3-β (GSK3-β) as a new regulator of Claspin stability. Interestingly, as Chk1, GSK3-β is a therapeutic target in cancer. GSK3-β inhibition or knockdown stabilizes Claspin, whereas a GSK3-β constitutively active form reduces Claspin protein levels by ubiquitination and proteasome-mediated degradation. Our results also suggest that GSK3-β modulates the interaction of Claspin with β-TrCP, a critical E3 ubiquitin ligase that regulates Claspin stability. Importantly, GSK3-β knock down increases Chk1 activation in response to DNA damage in a Claspin-dependent manner. Therefore, Chk1 activation could be a pro-survival mechanism that becomes activated upon GSK3-β inhibition. Importantly, treating triple negative breast cancer cell lines with Chk1 or GSK3-β inhibitors alone or in combination, demonstrates that Chk1/GSK3-β double inhibition restrains cell growth and triggers more apoptosis compared to individual treatments, thereby revealing novel possibilities for a combination therapy for cancer.
Collapse
Affiliation(s)
- Elisa Cabrera
- Unidad de Investigación, Hospital Universitario de Canarias, Ofra s/n, La Cuesta, 38320 La Laguna, Tenerife, Spain.
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Spain.
| | - Prahlad Raninga
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Ofra s/n, La Cuesta, 38320 La Laguna, Tenerife, Spain.
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Spain.
- Universidad Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
28
|
Wang Z, Gong Y, Peng B, Shi R, Fan D, Zhao H, Zhu M, Zhang H, Lou Z, Zhou J, Zhu WG, Cong YS, Xu X. MRE11 UFMylation promotes ATM activation. Nucleic Acids Res 2019; 47:4124-4135. [PMID: 30783677 PMCID: PMC6486557 DOI: 10.1093/nar/gkz110] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 02/02/2019] [Accepted: 02/11/2019] [Indexed: 02/06/2023] Open
Abstract
A proper DNA damage response (DDR) is essential to maintain genome integrity and prevent tumorigenesis. DNA double-strand breaks (DSBs) are the most toxic DNA lesion and their repair is orchestrated by the ATM kinase. ATM is activated via the MRE11-RAD50-NBS1 (MRN) complex along with its autophosphorylation at S1981 and acetylation at K3106. Activated ATM rapidly phosphorylates a vast number of substrates in local chromatin, providing a scaffold for the assembly of higher-order complexes that can repair damaged DNA. While reversible ubiquitination has an important role in the DSB response, modification of the newly identified ubiquitin-like protein ubiquitin-fold modifier 1 and the function of UFMylation in the DDR is largely unknown. Here, we found that MRE11 is UFMylated on K282 and this UFMylation is required for the MRN complex formation under unperturbed conditions and DSB-induced optimal ATM activation, homologous recombination-mediated repair and genome integrity. A pathogenic mutation MRE11(G285C) identified in uterine endometrioid carcinoma exhibited a similar cellular phenotype as the UFMylation-defective mutant MRE11(K282R). Taken together, MRE11 UFMylation promotes ATM activation, DSB repair and genome stability, and potentially serves as a therapeutic target.
Collapse
Affiliation(s)
- Zhifeng Wang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yamin Gong
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
- Shenzhen University-Friedrich Schiller Universität Jena Joint PhD Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Bin Peng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Ruifeng Shi
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
- Shenzhen University-Friedrich Schiller Universität Jena Joint PhD Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Dan Fan
- College of Life Sciences, Capital Normal University, Beijing 100080, China
| | - Hongchang Zhao
- College of Life Sciences, Capital Normal University, Beijing 100080, China
| | - Min Zhu
- College of Life Sciences, Capital Normal University, Beijing 100080, China
| | - Haoxing Zhang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
- College of Life Sciences & Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester MN 55905, USA
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Yu-Sheng Cong
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
- Shenzhen University-Friedrich Schiller Universität Jena Joint PhD Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| |
Collapse
|
29
|
Zhang MX, Cai Z, Zhang M, Wang XM, Wang Y, Zhao F, Zhou J, Luo MH, Zhu Q, Xu Z, Zeng WB, Zhong B, Lin D. USP20 Promotes Cellular Antiviral Responses via Deconjugating K48-Linked Ubiquitination of MITA. THE JOURNAL OF IMMUNOLOGY 2019; 202:2397-2406. [PMID: 30814308 DOI: 10.4049/jimmunol.1801447] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/04/2019] [Indexed: 12/31/2022]
Abstract
Mediator of IRF3 activation ([MITA] also known as STING) is a direct sensor of cyclic dinucleotide and critically mediates cytoplasmic DNA--triggered innate immune signaling. The activity of MITA is extensively regulated by ubiquitination and deubiquitination. In this study, we report that USP20 interacts with and removes K48-linked ubiquitin chains from MITA after HSV-1 infection, thereby stabilizing MITA and promoting cellular antiviral responses. Deletion of USP20 accelerates HSV-1-induced degradation of MITA and impairs phosphorylation of IRF3 and IκBα as well as subsequent induction of type I IFNs and proinflammatory cytokines after HSV-1 infection or cytoplasmic DNA challenge. Consistently, Usp20 -/- mice produce decreased type I IFNs and proinflammatory cytokines, exhibit increased susceptibility to lethal HSV-1 infection, and aggravated HSV-1 replication compared with Usp20 +/+ mice. In addition, complement of MITA into Usp20 -/- cells fully restores HSV-1-triggered signaling and inhibits HSV-1 infection. These findings suggest a crucial role of USP20 in maintaining the stability of MITA and promoting innate antiviral signaling.
Collapse
Affiliation(s)
- Meng-Xin Zhang
- College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Zeng Cai
- College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Man Zhang
- College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Xiao-Meng Wang
- College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Yaqin Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fei Zhao
- State Key Laboratory of Virology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jing Zhou
- State Key Laboratory of Virology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Min-Hua Luo
- State Key Laboratory of Virology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qiyun Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Zhigao Xu
- Department of Pathology, Center for Pathology and Molecular Diagnostics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; and
| | - Wen-Bo Zeng
- State Key Laboratory of Virology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China;
| | - Bo Zhong
- College of Life Sciences, Wuhan University, Wuhan 430072, China; .,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Dandan Lin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
30
|
Zhang L, Wang Z, Shi R, Zhu X, Zhou J, Peng B, Xu X. RNF126 Quenches RNF168 Function in the DNA Damage Response. GENOMICS PROTEOMICS & BIOINFORMATICS 2018; 16:428-438. [PMID: 30529286 PMCID: PMC6411902 DOI: 10.1016/j.gpb.2018.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 01/31/2023]
Abstract
DNA damage response (DDR) is essential for maintaining genome stability and protecting cells from tumorigenesis. Ubiquitin and ubiquitin-like modifications play an important role in DDR, from signaling DNA damage to mediating DNA repair. In this report, we found that the E3 ligase ring finger protein 126 (RNF126) was recruited to UV laser micro-irradiation-induced stripes in a RNF8-dependent manner. RNF126 directly interacted with and ubiquitinated another E3 ligase, RNF168. Overexpression of wild type RNF126, but not catalytically-inactive mutant RNF126 (CC229/232AA), diminished ubiquitination of H2A histone family member X (H2AX), and subsequent bleomycin-induced focus formation of total ubiquitin FK2, TP53-binding protein 1 (53BP1), and receptor-associated protein 80 (RAP80). Interestingly, both RNF126 overexpression and RNF126 downregulation compromised homologous recombination (HR)-mediated repair of DNA double-strand breaks (DSBs). Taken together, our findings demonstrate that RNF126 negatively regulates RNF168 function in DDR and its appropriate cellular expression levels are essential for HR-mediated DSB repair.
Collapse
Affiliation(s)
- Lianzhong Zhang
- College of Life Sciences, Capital Normal University, Beijing 100048, China; Faculty of Life Sciences, Tangshan Normal College, Tangshan 063000, China
| | - Zhenzhen Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ruifeng Shi
- College of Life Sciences, Capital Normal University, Beijing 100048, China; Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Xuefei Zhu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Jiahui Zhou
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Bin Peng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Xingzhi Xu
- College of Life Sciences, Capital Normal University, Beijing 100048, China; Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University Health Science Center, Shenzhen 518060, China.
| |
Collapse
|
31
|
Wu C, Luo K, Zhao F, Yin P, Song Y, Deng M, Huang J, Chen Y, Li L, Lee S, Kim J, Zhou Q, Tu X, Nowsheen S, Luo Q, Gao X, Lou Z, Liu Z, Yuan J. USP20 positively regulates tumorigenesis and chemoresistance through β-catenin stabilization. Cell Death Differ 2018; 25:1855-1869. [PMID: 29867130 PMCID: PMC6180113 DOI: 10.1038/s41418-018-0138-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/09/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022] Open
Abstract
β-catenin is a major transcriptional activator of the canonical Wnt/β-catenin signaling pathway. It is important for a series of biological processes including tissue homeostasis, and embryonic development and is involved in various human diseases. Elevated oncogenic activity of β-catenin is frequently observed in cancers, which contributes to survival, metastasis and chemo-resistance of cancer cells. However, the mechanism of β-catenin overexpression in cancers is not well defined. Here we demonstrate that the deubiquitination enzyme USP20 is a new regulator of the Wnt/β-catenin signaling pathway. Mechanistically, USP20 regulates the deubiquitination of β-catenin to control its stability, thereby inducing proliferation, invasion and migration of cancer cells. High expression of USP20 correlates with increased β-catenin protein level in multiple cancer cell lines and patient samples. Moreover, knockdown of USP20 increases β-catenin polyubiquitination, which enhances β-catenin turnover and cell sensitivity to chemotherapy. Collectively, our results establish the USP20-β-catenin axis as a critical regulatory mechanism of canonical Wnt/β-catenin signaling pathway with an important role in tumorigenesis and chemo response in human cancers.
Collapse
Affiliation(s)
- Chenming Wu
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Kuntian Luo
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Fei Zhao
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ping Yin
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ying Song
- Department of Pathology, East Hospital, Shanghai, 200120, China
| | - Min Deng
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jinzhou Huang
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yuping Chen
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Lei Li
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - SeungBaek Lee
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - JungJin Kim
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Qin Zhou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xinyi Tu
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Somaira Nowsheen
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic School of Medicine and Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Qifeng Luo
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University Shanghai, 200120, Shanghai, P. R. China
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 300193, Tianjin, China
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Zhongmin Liu
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Jian Yuan
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
32
|
Wu W, Rokutanda N, Takeuchi J, Lai Y, Maruyama R, Togashi Y, Nishikawa H, Arai N, Miyoshi Y, Suzuki N, Saeki Y, Tanaka K, Ohta T. HERC2 Facilitates BLM and WRN Helicase Complex Interaction with RPA to Suppress G-Quadruplex DNA. Cancer Res 2018; 78:6371-6385. [PMID: 30279242 DOI: 10.1158/0008-5472.can-18-1877] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/21/2018] [Accepted: 09/18/2018] [Indexed: 11/16/2022]
Abstract
BLM and WRN are RecQ DNA helicasesessential for genomic stability. Here, we demonstrate that HERC2, a HECT E3 ligase, is critical for their functions to suppress G-quadruplex (G4) DNA. HERC2 interacted with BLM, WRN, and replication protein A (RPA) complexes during the S-phase of the cell cycle. Depletion of HERC2 dissociated RPA from BLM and WRN complexes and significantly increased G4 formation. Triple depletion revealed that HERC2 has an epistatic relationship with BLM and WRN in their G4-suppressing function. In vitro, HERC2 released RPA onto single-stranded DNA (ssDNA) rather than anchoring onto RPA-coated ssDNA. CRISPR/Cas9-mediated deletion of the catalytic ubiquitin-binding site of HERC2 inhibited ubiquitination of RPA2, caused RPA accumulation in the helicase complexes, and increased G4, indicating an essential role for E3 activity in the suppression of G4. Both depletion of HERC2 and inactivation of E3 sensitized cells to the G4-interacting compounds telomestatin and pyridostatin. Overall, these results indicate that HERC2 is a master regulator of G4 suppression that affects the sensitivity of cells to G4 stabilizers. Given that HERC2 expression is frequently reduced in many types of cancers, G4 accumulation as a result of HERC2 deficiency may provide a therapeutic target for G4 stabilizers.Significance: HERC2 is revealed as a master regulator of G-quadruplex, a DNA secondary structure that triggers genomic instability and may serve as a potential molecular target in cancer therapy.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/22/6371/F1.large.jpg Cancer Res; 78(22); 6371-85. ©2018 AACR.
Collapse
Affiliation(s)
- Wenwen Wu
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Nana Rokutanda
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Jun Takeuchi
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan.,Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yongqiang Lai
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan.,Department of General Surgery, Gaoming People's Hospital in Foshan, Foshan City, Guangdong Province, China
| | - Reo Maruyama
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yukiko Togashi
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Hiroyuki Nishikawa
- Institute of Advanced Medical Science, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Naoko Arai
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yasuo Miyoshi
- Division of Breast and Endocrine Surgery, Department of Surgery, Hyogo College of Medicine, Hyogo, Japan
| | - Nao Suzuki
- Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yasushi Saeki
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tomohiko Ohta
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan.
| |
Collapse
|
33
|
Kobayashi G, Sentani K, Hattori T, Yamamoto Y, Imai T, Sakamoto N, Kuraoka K, Oue N, Sasaki N, Taniyama K, Yasui W. Clinicopathological significance of claspin overexpression and its association with spheroid formation in gastric cancer. Hum Pathol 2018; 84:8-17. [PMID: 30240769 DOI: 10.1016/j.humpath.2018.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/31/2018] [Accepted: 09/06/2018] [Indexed: 01/06/2023]
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related death worldwide. Spheroid colony formation is a useful method to identify cancer stem cells (CSCs). The aim of this study was to identify a novel prognostic marker or therapeutic target for GC using a method to identify CSCs. We analyzed the microarray data in spheroid body-forming and parental cells and focused on the CLSPN gene because it is overexpressed in the spheroid body-forming cells in both the GC cell lines MKN-45 and MKN-74. Quantitative reverse-transcription polymerase chain reaction analysis revealed that CLSPN messenger RNA expression was up-regulated in GC cell lines MKN-45, MKN-74, and TMK-1. Immunohistochemistry of claspin showed that 94 (47%) of 203 GC cases were positive. Claspin-positive GC cases were associated with higher T and N grades, tumor stage, lymphatic invasion, and poor prognosis. In addition, claspin expression was coexpressed with CD44, human epidermal growth factor receptor type 2, and p53. CLSPN small interfering RNA treatment decreased GC cell proliferation and invasion. These results indicate that the expression of claspin might be a key regulator in the progression of GC and might play an important role in CSCs of GC.
Collapse
Affiliation(s)
- Go Kobayashi
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551 Japan; Department of Pathology, Kure-Kyosai Hospital, Federation of National Public Service Personnel Mutual Aid Associations, Hiroshima, 737-8505 Japan
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551 Japan.
| | - Takuya Hattori
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551 Japan
| | - Yuji Yamamoto
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551 Japan
| | - Takeharu Imai
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, 501-1194 Japan
| | - Naoya Sakamoto
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551 Japan
| | - Kazuya Kuraoka
- Department of Pathology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure-City, Hiroshima, 737-0023 Japan
| | - Naohide Oue
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551 Japan
| | - Naomi Sasaki
- Department of Pathology, Kure-Kyosai Hospital, Federation of National Public Service Personnel Mutual Aid Associations, Hiroshima, 737-8505 Japan
| | - Kiyomi Taniyama
- Department of Pathology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure-City, Hiroshima, 737-0023 Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551 Japan
| |
Collapse
|
34
|
Smits VAJ, Cabrera E, Freire R, Gillespie DA. Claspin – checkpoint adaptor and
DNA
replication factor. FEBS J 2018; 286:441-455. [DOI: 10.1111/febs.14594] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/13/2018] [Accepted: 06/20/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Veronique A. J. Smits
- Hospital Universitario de Canarias Unidad de Investigación La Laguna Tenerife Spain
- Facultad de Medicina Instituto de Tecnologías Biomédicas Centro de Investigaciones Biomédicas de Canarias Universidad de La Laguna Tenerife Spain
| | - Elisa Cabrera
- Hospital Universitario de Canarias Unidad de Investigación La Laguna Tenerife Spain
- Facultad de Medicina Instituto de Tecnologías Biomédicas Centro de Investigaciones Biomédicas de Canarias Universidad de La Laguna Tenerife Spain
| | - Raimundo Freire
- Hospital Universitario de Canarias Unidad de Investigación La Laguna Tenerife Spain
- Facultad de Medicina Instituto de Tecnologías Biomédicas Centro de Investigaciones Biomédicas de Canarias Universidad de La Laguna Tenerife Spain
| | - David A. Gillespie
- Facultad de Medicina Instituto de Tecnologías Biomédicas Centro de Investigaciones Biomédicas de Canarias Universidad de La Laguna Tenerife Spain
| |
Collapse
|
35
|
Martínez-Noël G, Luck K, Kühnle S, Desbuleux A, Szajner P, Galligan JT, Rodriguez D, Zheng L, Boyland K, Leclere F, Zhong Q, Hill DE, Vidal M, Howley PM. Network Analysis of UBE3A/E6AP-Associated Proteins Provides Connections to Several Distinct Cellular Processes. J Mol Biol 2018; 430:1024-1050. [PMID: 29426014 PMCID: PMC5866790 DOI: 10.1016/j.jmb.2018.01.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 12/18/2022]
Abstract
Perturbations in activity and dosage of the UBE3A ubiquitin-ligase have been linked to Angelman syndrome and autism spectrum disorders. UBE3A was initially identified as the cellular protein hijacked by the human papillomavirus E6 protein to mediate the ubiquitylation of p53, a function critical to the oncogenic potential of these viruses. Although a number of substrates have been identified, the normal cellular functions and pathways affected by UBE3A are largely unknown. Previously, we showed that UBE3A associates with HERC2, NEURL4, and MAPK6/ERK3 in a high-molecular-weight complex of unknown function that we refer to as the HUN complex (HERC2, UBE3A, and NEURL4). In this study, the combination of two complementary proteomic approaches with a rigorous network analysis revealed cellular functions and pathways in which UBE3A and the HUN complex are involved. In addition to finding new UBE3A-associated proteins, such as MCM6, SUGT1, EIF3C, and ASPP2, network analysis revealed that UBE3A-associated proteins are connected to several fundamental cellular processes including translation, DNA replication, intracellular trafficking, and centrosome regulation. Our analysis suggests that UBE3A could be involved in the control and/or integration of these cellular processes, in some cases as a component of the HUN complex, and also provides evidence for crosstalk between the HUN complex and CAMKII interaction networks. This study contributes to a deeper understanding of the cellular functions of UBE3A and its potential role in pathways that may be affected in Angelman syndrome, UBE3A-associated autism spectrum disorders, and human papillomavirus-associated cancers.
Collapse
Affiliation(s)
- Gustavo Martínez-Noël
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Katja Luck
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Simone Kühnle
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alice Desbuleux
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; GIGA-R, University of Liège, Liège 4000, Belgium
| | - Patricia Szajner
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey T Galligan
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Diana Rodriguez
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Leon Zheng
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Kathleen Boyland
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Flavian Leclere
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Quan Zhong
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - David E Hill
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Peter M Howley
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Fani Maleki A, Sekhavati MH. Application of phiC31 integrase system in stem cells biology and technology: a review. FRONTIERS IN LIFE SCIENCE 2018. [DOI: 10.1080/21553769.2018.1447516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Adham Fani Maleki
- Embryonic and Stem Cell Biology and Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Hadi Sekhavati
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
37
|
Wang D, Ma L, Wang B, Liu J, Wei W. E3 ubiquitin ligases in cancer and implications for therapies. Cancer Metastasis Rev 2017; 36:683-702. [DOI: 10.1007/s10555-017-9703-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Azenha D, Lopes MC, Martins TC. Claspin functions in cell homeostasis-A link to cancer? DNA Repair (Amst) 2017; 59:27-33. [PMID: 28942358 DOI: 10.1016/j.dnarep.2017.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
Abstract
Cancer remains one of the leading causes of mortality worldwide. Most cancers present high degrees of genomic instability. DNA damage and replication checkpoints function as barriers to halt cell cycle progression until damage is resolved, preventing the perpetuation of errors. Activation of these checkpoints is critically dependent on Claspin, an adaptor protein that mediates the phosphorylation of the effector kinase Chk1 by ATR. However, Claspin also performs other roles related to the protection and maintenance of cell and genome integrity. For instance, following DNA damage and checkpoint activation, Claspin bridges checkpoint responses to DNA repair or to apoptosis. During DNA replication, Claspin acts a sensor and couples DNA unwinding to strand polymerization, and may also indirectly regulate replication initiation at firing origins. As Claspin participates in several processes that are vital to maintenance of cell homeostasis, its function is tightly regulated at multiple levels. Nevertheless, little is known about its role in cancer. Accumulating evidence suggests that Claspin inactivation could be an essential event during carcinogenesis, indicating that Claspin may function as a tumour suppressor. In this review, we will examine the functions of Claspin and how its deregulation may contribute to cancer initiation and progression. To conclude, we will discuss means by which Claspin can be targeted for cancer therapy.
Collapse
Affiliation(s)
- Diana Azenha
- Faculdade de Farmácia da Universidade de Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Rua Larga, Faculdade de Medicina, Pólo I, 1º andar, 3004-504 Coimbra, Portugal; Instituto Português de Oncologia de Coimbra de Francisco Gentil, Av. Bissaya Barreto 98, Apartado 2005, 3000-651, Coimbra, Portugal.
| | - Maria Celeste Lopes
- Faculdade de Farmácia da Universidade de Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Rua Larga, Faculdade de Medicina, Pólo I, 1º andar, 3004-504 Coimbra, Portugal.
| | - Teresa C Martins
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Rua Larga, Faculdade de Medicina, Pólo I, 1º andar, 3004-504 Coimbra, Portugal; Instituto Português de Oncologia de Coimbra de Francisco Gentil, Av. Bissaya Barreto 98, Apartado 2005, 3000-651, Coimbra, Portugal.
| |
Collapse
|
39
|
Tu Y, Liu H, Zhu X, Shen H, Ma X, Wang F, Huang M, Gong J, Li X, Wang Y, Guo C, Tang TS. Ataxin-3 promotes genome integrity by stabilizing Chk1. Nucleic Acids Res 2017; 45:4532-4549. [PMID: 28180282 PMCID: PMC5416811 DOI: 10.1093/nar/gkx095] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/07/2017] [Indexed: 12/27/2022] Open
Abstract
The Chk1 protein is essential for genome integrity maintenance and cell survival in eukaryotic cells. After prolonged replication stress, Chk1 can be targeted for proteasomal degradation to terminate checkpoint signaling after DNA repair finishes. To ensure proper activation of DNA damage checkpoint and DNA repair signaling, a steady-state level of Chk1 needs to be retained under physiological conditions. Here, we report a dynamic signaling pathway that tightly regulates Chk1 stability. Under unperturbed conditions and upon DNA damage, ataxin-3 (ATX3) interacts with Chk1 and protects it from DDB1/CUL4A- and FBXO6/CUL1-mediated polyubiquitination and subsequent degradation, thereby promoting DNA repair and checkpoint signaling. Under prolonged replication stress, ATX3 dissociates from Chk1, concomitant with a stronger binding between Chk1 and its E3 ligase, which causes Chk1 proteasomal degradation. ATX3 deficiency results in pronounced reduction of Chk1 abundance, compromised DNA damage response, G2/M checkpoint defect and decreased cell survival after replication stress, which can all be rescued by ectopic expression of ATX3. Taken together, these findings reveal ATX3 to be a novel deubiquitinase of Chk1, providing a new mechanism of Chk1 stabilization in genome integrity maintenance.
Collapse
Affiliation(s)
- Yingfeng Tu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
- These authors contributed equally to the work as first authors
| | - Hongmei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
- These authors contributed equally to the work as first authors
| | - Xuefei Zhu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
- These authors contributed equally to the work as first authors
| | - Hongyan Shen
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaolu Ma
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Fengli Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Huang
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Juanjuan Gong
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoling Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Yun Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Caixia Guo
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
- To whom correspondence should be addressed. Tel: +86 10 64807296; Fax: +86 10 64807313; . Correspondence may also be addressed to Caixia Guo. Tel: +86 10 84097646; Fax: +86 10 84097720;
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
- To whom correspondence should be addressed. Tel: +86 10 64807296; Fax: +86 10 64807313; . Correspondence may also be addressed to Caixia Guo. Tel: +86 10 84097646; Fax: +86 10 84097720;
| |
Collapse
|
40
|
Cubillos-Rojas M, Schneider T, Bartrons R, Ventura F, Rosa JL. NEURL4 regulates the transcriptional activity of tumor suppressor protein p53 by modulating its oligomerization. Oncotarget 2017; 8:61824-61836. [PMID: 28977907 PMCID: PMC5617467 DOI: 10.18632/oncotarget.18699] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 05/22/2017] [Indexed: 01/23/2023] Open
Abstract
p53 is a transcription factor that regulates important cellular processes related to tumor suppression, including induction of senescence, apoptosis, and DNA repair as well as the inhibition of angiogenesis and cell migration. Therefore, it is critical to understand the molecular mechanism that regulates it. p53 tetramerization is a key step in its activation process and the regulation of this oligomerization, an important control point. The E3 ubiquitin ligase HERC2 controls the p53 transcriptional activity by regulation of its oligomerization state. HERC2-interacting proteins such as the adaptor-like protein with six neuralized domains NEURL4 are also candidates to regulate p53 activity. Here, we demonstrate the existence of an interaction network between NEURL4, HERC2 and p53 proteins. We report a functional interaction between NEURL4 and p53, involving the C-terminal region of p53 and the neuralized domains 3 and 4 of NEURL4. Through this interaction, NEURL4 regulates the transcriptional activity of p53. Thus, NEURL4 depletion reduced the transcriptional activity whereas NEURL4 overexpression increased it. In both cases, p53 stability was not affected. Although NEURL4 may interact with p53 independently of the E3 ubiquitin ligase HERC2, we observed that both proteins are needed to regulate the transcriptional activity of p53. Clonogenic assays confirmed the functional relevance of this interaction observing a decrease in cell growth by NEURL4 overexpression correlated to the increase of cellular cycle inhibitor p21 by p53 activation. Under these conditions, NEURL4 activated p53 oligomerization. All these findings identify NEURL4 as a novel regulator of the p53’s signaling.
Collapse
Affiliation(s)
- Monica Cubillos-Rojas
- Departament de Ciències Fisiològiques, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona E-08907, Spain
| | - Taiane Schneider
- Departament de Ciències Fisiològiques, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona E-08907, Spain
| | - Ramon Bartrons
- Departament de Ciències Fisiològiques, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona E-08907, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona E-08907, Spain
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona E-08907, Spain
| |
Collapse
|
41
|
Zheng Y, Li J, Pan C, Zhou G, Zhuge L, Jin L, Fang P. HERC4 Is Overexpressed in Hepatocellular Carcinoma and Contributes to the Proliferation and Migration of Hepatocellular Carcinoma Cells. DNA Cell Biol 2017; 36:490-500. [PMID: 28430527 DOI: 10.1089/dna.2016.3626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Recently, more and more evidences unveiled that ubiquitin-proteasome system (UPS) makes an important contribution to the occurrence and development of cancer. HERC4 is one identified Ubiqutin ligase E3, a member of UPS. Although some studies showed that HERC4 abnormally expresses in many cancer cells, till now, nothing has been reported about the function of HERC4 in the development of hepatoma carcinoma. To this end, in this study, we studied the function of HERC4 for the first time in hepatoma carcinoma cells. We detected the expression of HERC4 in tumor and normal tissues, and in hepatoma carcinoma cell lines by using qRT-PCR, Western blot, immunohistochemistry, and immunofluorescence. The data showed that tumor tissues expressed higher HERC4 than normal ones. HERC4 was expressed, although to a different extent, in hepatoma carcinoma cell lines. Colony formation assay, CCK-8 assay, EdU assay, wound healing assay, and FACS indicated that HERC4 plays a role in cell proliferative and migration ability. HERC4 overexpression increases the proliferative and migration ability and reduces apoptosis of hepatoma carcinoma cells; in contrast, knockdown of HERC4 decreases the proliferative and migration ability and increases the apoptosis rate of hepatoma carcinoma cells. Taken together, our findings showed that HERC4 has an effect on the occurrence and development of hepatoma carcinoma by promoting hepatoma carcinoma cell proliferation and migration, and by reducing cell apoptosis, further providing another therapeutic target for the intervention of related diseases.
Collapse
Affiliation(s)
- Yi Zheng
- 1 Department of Infectious Disease, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Jie Li
- 2 Department of Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou, People's Republic of China
| | - Chenwei Pan
- 2 Department of Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou, People's Republic of China
| | - Guangyao Zhou
- 2 Department of Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou, People's Republic of China
| | - Lu Zhuge
- 2 Department of Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou, People's Republic of China
| | - Lingxiang Jin
- 2 Department of Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou, People's Republic of China
| | - Peipei Fang
- 2 Department of Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou, People's Republic of China
| |
Collapse
|
42
|
Deubiquitinating Enzyme USP20 Regulates Extracellular Signal-Regulated Kinase 3 Stability and Biological Activity. Mol Cell Biol 2017; 37:MCB.00432-16. [PMID: 28167606 DOI: 10.1128/mcb.00432-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 02/01/2017] [Indexed: 01/17/2023] Open
Abstract
Extracellular signal-regulated kinase 3 (ERK3) is an atypical mitogen-activated protein kinase (MAPK) whose regulatory mechanisms and biological functions remain superficially understood. Contrary to most protein kinases, ERK3 is a highly unstable protein that is subject to dynamic regulation by the ubiquitin-proteasome system. However, the effectors that control ERK3 ubiquitination and degradation are unknown. In this study, we carried out an unbiased functional loss-of-function screen of the human deubiquitinating enzyme (DUB) family and identified ubiquitin-specific protease 20 (USP20) as a novel ERK3 regulator. USP20 interacts with and deubiquitinates ERK3 both in vitro and in intact cells. The overexpression of USP20 results in the stabilization and accumulation of the ERK3 protein, whereas USP20 depletion reduces the levels of ERK3. We found that the expression levels of ERK3 correlate with those of USP20 in various cellular contexts. Importantly, we show that USP20 regulates actin cytoskeleton organization and cell migration in a manner dependent on ERK3 expression. Our results identify USP20 as a bona fide regulator of ERK3 stability and physiological functions.
Collapse
|
43
|
Qiu GZ, Sun W, Jin MZ, Lin J, Lu PG, Jin WL. The bad seed gardener: Deubiquitinases in the cancer stem-cell signaling network and therapeutic resistance. Pharmacol Ther 2017; 172:127-138. [DOI: 10.1016/j.pharmthera.2016.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
44
|
Wang C, Yang C, Ji J, Jiang J, Shi M, Cai Q, Yu Y, Zhu Z, Zhang J. Deubiquitinating enzyme USP20 is a positive regulator of Claspin and suppresses the malignant characteristics of gastric cancer cells. Int J Oncol 2017; 50:1136-1146. [PMID: 28350092 PMCID: PMC5363881 DOI: 10.3892/ijo.2017.3904] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/23/2017] [Indexed: 11/29/2022] Open
Abstract
The aim of the present study was to investigate the clinical significance, the biological function and the mechanisms of USP20 in gastric cancer. The expression of USP20 in 89 pairs of primary gastric cancer and peritumoral gastric tissues specimens were measured by immunohistochemistry. The correlation of USP20 expression with the survival and the clinicopathological characteristics of patients were analyzed. Moreover, the underlying mechanisms of ectopic USP20 expression and its impact on GC cells were also investigated. We found that the expression of USP20 is relatively low in GC tissues and negatively correlated with tumor size, tumor invasion and TNM staging. High expression of USP20 in GC predicted longer survival. Experimentally, small interfering RNA-mediated knockdown of USP20 expression significantly promoted cell proliferation, accelerated G1-S phase transition and attenuated the autophagy activity. Overexpression of USP20 led to the inhibition of proliferation, G1-S cell cycle transition delay and autophagy activation. Mechanistically, we confirmed that silencing the expression of USP20 in GC cells could reduce Claspin protein levels without altering Claspin mRNA levels, which is involved in the antitumor activity of USP20. Furthermore, the expression level of Claspin was relatively higher in peritumoral tissue than that of GC tissues and higher expression of Claspin in GC was also correlated with good prognosis of patients. Given its pivotal role in gastric tumorigenesis and progression, USP20 functioned as the tumor suppressor in GC and possessed promising value to be a therapeutic target for GC.
Collapse
Affiliation(s)
- Chao Wang
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025
| | - Chen Yang
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025
| | - Jun Ji
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Jinling Jiang
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025
| | - Min Shi
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025
| | - Qu Cai
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Yingyan Yu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Zhenggang Zhu
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025
| |
Collapse
|
45
|
Villa-Hernández S, Bueno A, Bermejo R. The Multiple Roles of Ubiquitylation in Regulating Challenged DNA Replication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:395-419. [PMID: 29357068 DOI: 10.1007/978-981-10-6955-0_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA replication is essential for the propagation of life and the development of complex organisms. However, replication is a risky process as it can lead to mutations and chromosomal alterations. Conditions challenging DNA synthesis by replicative polymerases or DNA helix unwinding, generally termed as replication stress, can halt replication fork progression. Stalled replication forks are unstable, and mechanisms exist to protect their integrity, which promote an efficient restart of DNA synthesis and counteract fork collapse characterized by the accumulation of DNA lesions and mutagenic events. DNA replication is a highly regulated process, and several mechanisms control replication timing and integrity both during unperturbed cell cycles and in response to replication stress. Work over the last two decades has revealed that key steps of DNA replication are controlled by conjugation of the small peptide ubiquitin. While ubiquitylation was traditionally linked to protein degradation, the complexity and flexibility of the ubiquitin system in regulating protein function have recently emerged. Here we review the multiple roles exerted by ubiquitin-conjugating enzymes and ubiquitin-specific proteases, as well as readers of ubiquitin chains, in the control of eukaryotic DNA replication and replication-coupled DNA damage tolerance and repair.
Collapse
Affiliation(s)
| | - Avelino Bueno
- Instituto de Biología Molecular y Celular del Cáncer (USAL/CSIC), Salamanca, Spain.,Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | | |
Collapse
|
46
|
Zhang M, Zhang MX, Zhang Q, Zhu GF, Yuan L, Zhang DE, Zhu Q, Yao J, Shu HB, Zhong B. USP18 recruits USP20 to promote innate antiviral response through deubiquitinating STING/MITA. Cell Res 2016; 26:1302-1319. [PMID: 27801882 DOI: 10.1038/cr.2016.125] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/11/2016] [Accepted: 09/14/2016] [Indexed: 01/24/2023] Open
Abstract
STING (also known as MITA) mediates the innate antiviral signaling and ubiquitination of STING is key to its function. However, the deubiquitination process of STING is unclear. Here we report that USP18 recruits USP20 to deconjugate K48-linked ubiquitination chains from STING and promotes the stability of STING and the expression of type I IFNs and proinflammatory cytokines after DNA virus infection. USP18 deficiency or knockdown of USP20 resulted in enhanced K48-linked ubiquitination and accelerated degradation of STING, and impaired activation of IRF3 and NF-κB as well as induction of downstream genes after infection with DNA virus HSV-1 or transfection of various DNA ligands. In addition, Usp18-/- mice were more susceptible to HSV-1 infection compared with the wild-type littermates. USP18 did not deubiquitinate STING in vitro but facilitated USP20 to catalyze deubiquitination of STING in a manner independent of the enzymatic activity of USP18. In addition, reconstitution of STING into Usp18-/- MEFs restored HSV-1-induced expression of downstream genes and cellular antiviral responses. Our findings thus uncover previously uncharacterized roles of USP18 and USP20 in mediating virus-triggered signaling and contribute to the understanding of the complicated regulatory system of the innate antiviral responses.
Collapse
Affiliation(s)
- Man Zhang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Meng-Xin Zhang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qiang Zhang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Gao-Feng Zhu
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lei Yuan
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Dong-Er Zhang
- Department of Pathology and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Qiyun Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Jing Yao
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hong-Bing Shu
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Bo Zhong
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| |
Collapse
|
47
|
Recovery from the DNA Replication Checkpoint. Genes (Basel) 2016; 7:genes7110094. [PMID: 27801838 PMCID: PMC5126780 DOI: 10.3390/genes7110094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/20/2016] [Accepted: 10/23/2016] [Indexed: 11/17/2022] Open
Abstract
Checkpoint recovery is integral to a successful checkpoint response. Checkpoint pathways monitor progress during cell division so that in the event of an error, the checkpoint is activated to block the cell cycle and activate repair pathways. Intrinsic to this process is that once repair has been achieved, the checkpoint signaling pathway is inactivated and cell cycle progression resumes. We use the term “checkpoint recovery” to describe the pathways responsible for the inactivation of checkpoint signaling and cell cycle re-entry after the initial stress has been alleviated. The DNA replication or S-phase checkpoint monitors the integrity of DNA synthesis. When replication stress is encountered, replication forks are stalled, and the checkpoint signaling pathway is activated. Central to recovery from the S-phase checkpoint is the restart of stalled replication forks. If checkpoint recovery fails, stalled forks may become unstable and lead to DNA breaks or unusual DNA structures that are difficult to resolve, causing genomic instability. Alternatively, if cell cycle resumption mechanisms become uncoupled from checkpoint inactivation, cells with under-replicated DNA might proceed through the cell cycle, also diminishing genomic stability. In this review, we discuss the molecular mechanisms that contribute to inactivation of the S-phase checkpoint signaling pathway and the restart of replication forks during recovery from replication stress.
Collapse
|
48
|
Pinto-Fernandez A, Kessler BM. DUBbing Cancer: Deubiquitylating Enzymes Involved in Epigenetics, DNA Damage and the Cell Cycle As Therapeutic Targets. Front Genet 2016; 7:133. [PMID: 27516771 PMCID: PMC4963401 DOI: 10.3389/fgene.2016.00133] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/12/2016] [Indexed: 12/21/2022] Open
Abstract
Controlling cell proliferation is one of the hallmarks of cancer. A number of critical checkpoints ascertain progression through the different stages of the cell cycle, which can be aborted when perturbed, for instance by errors in DNA replication and repair. These molecular checkpoints are regulated by a number of proteins that need to be present at the right time and quantity. The ubiquitin system has emerged as a central player controlling the fate and function of such molecules such as cyclins, oncogenes and components of the DNA repair machinery. In particular, proteases that cleave ubiquitin chains, referred to as deubiquitylating enzymes (DUBs), have attracted recent attention due to their accessibility to modulation by small molecules. In this review, we describe recent evidence of the critical role of DUBs in aspects of cell cycle checkpoint control, associated DNA repair mechanisms and regulation of transcription, representing pathways altered in cancer. Therefore, DUBs involved in these processes emerge as potentially critical targets for the treatment of not only hematological, but potentially also solid tumors.
Collapse
Affiliation(s)
- Adan Pinto-Fernandez
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Oxford, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Oxford, UK
| |
Collapse
|
49
|
Sánchez-Tena S, Cubillos-Rojas M, Schneider T, Rosa JL. Functional and pathological relevance of HERC family proteins: a decade later. Cell Mol Life Sci 2016; 73:1955-68. [PMID: 26801221 PMCID: PMC11108380 DOI: 10.1007/s00018-016-2139-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 12/22/2022]
Abstract
The HERC gene family encodes proteins with two characteristic domains in their sequence: the HECT domain and the RCC1-like domain (RLD). In humans, the HERC family comprises six members that can be divided into two groups based on their molecular mass and domain structure. Whereas large HERCs (HERC1 and HERC2) contain one HECT and more than one RLD, small HERCs (HERC3-6) possess single HECT and RLD domains. Accumulating evidence shows the HERC family proteins to be key components of a wide range of cellular functions, including neurodevelopment, DNA damage repair, cell growth and immune response. Considering the significant recent advances made regarding HERC functionality, an updated review summarizing the progress is greatly needed at 10 years since the last HERC review. We provide an integrated view of HERC function and go into detail about its implications for several human diseases such as cancer and neurological disorders.
Collapse
Affiliation(s)
- Susana Sánchez-Tena
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Monica Cubillos-Rojas
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Taiane Schneider
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, 08907, Barcelona, Spain.
| |
Collapse
|
50
|
McGarry E, Gaboriau D, Rainey MD, Restuccia U, Bachi A, Santocanale C. The Deubiquitinase USP9X Maintains DNA Replication Fork Stability and DNA Damage Checkpoint Responses by Regulating CLASPIN during S-Phase. Cancer Res 2016; 76:2384-93. [PMID: 26921344 DOI: 10.1158/0008-5472.can-15-2890] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/15/2016] [Indexed: 11/16/2022]
Abstract
Coordination of the multiple processes underlying DNA replication is key for maintaining genome stability and preventing tumorigenesis. CLASPIN, a critical player in replication fork stabilization and checkpoint responses, must be tightly regulated during the cell cycle to prevent the accumulation of DNA damage. In this study, we used a quantitative proteomics approach and identified USP9X as a novel CLASPIN-interacting protein. USP9X is a deubiquitinase involved in multiple signaling and survival pathways whose tumor suppressor or oncogenic activity is highly context dependent. We found that USP9X regulated the expression and stability of CLASPIN in an S-phase-specific manner. USP9X depletion profoundly impairs the progression of DNA replication forks, causing unscheduled termination events with a frequency similar to CLASPIN depletion, resulting in excessive endogenous DNA damage. Importantly, restoration of CLASPIN expression in USP9X-depleted cells partially suppressed the accumulation of DNA damage. Furthermore, USP9X depletion compromised CHK1 activation in response to hydroxyurea and UV, thus promoting hypersensitivity to drug-induced replication stress. Taken together, our results reveal a novel role for USP9X in the maintenance of genomic stability during DNA replication and provide potential mechanistic insights into its tumor suppressor role in certain malignancies. Cancer Res; 76(8); 2384-93. ©2016 AACR.
Collapse
Affiliation(s)
- Edel McGarry
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - David Gaboriau
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Michael D Rainey
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | | | - Angela Bachi
- IFOM-FIRC Institute of Molecular Oncology, Milan, Italy
| | - Corrado Santocanale
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|