1
|
Xiong J, Huang J, Xu H, Wu Q, Zhao J, Chen Y, Fan G, Guan H, Xiao R, He Z, Wu S, Ouyang W, Wang S, Zhang L, Xia P, Zhang W, Wu M. CpG-Based Nanovaccines Enhance Ovarian Cancer Immune Response by Gbp2-Mediated Remodeling of Tumor-Associated Macrophages. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412881. [PMID: 39985265 PMCID: PMC12005807 DOI: 10.1002/advs.202412881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/13/2025] [Indexed: 02/24/2025]
Abstract
CpG oligodeoxynucleotides (CpG), as an immunoadjuvant, can facilitate the transformation of tumor-associated macrophages (TAMs)into tumoricidal M1 macrophages. However, the accumulation of free CpG in tumor tissues remains a substantial challenge. To address this, a nanovaccine (PLGA-CpG@ID8-M) is engineered by encapsulating CpG within PLGA using ID8 ovarian cancer cell membranes (ID8-M). This nanovaccine demonstrates remarkable efficacy in reprogramming TAMs in ovarian cancer and significantly extends survival in ID8-bearing mice. Notably, these findings indicate that the nanovaccine can also mitigate chemotherapy-induced immunosuppression by increasing the proportion of M1-like TAMs and reducing the expression of CD47 on tumor cells, thereby achieving a synergistic effect in tumor immunotherapy. Mechanistically, through transcriptome sequencing (RNA-seq), single-cell RNA sequencing (scRNA-seq), and mass spectrometry-based proteomics, it is elucidated that the nanovaccine enhances the expression of Gbp2 and promotes the recruitment of Pin1, which activates the NFκB signaling pathway, leading to the M1 polarization of TAMs. Furthermore, macrophages with elevated Gbp2 expression significantly inhibit tumor growth in both ID8 ovarian cancer and 4T1 breast cancer models. Conversely, targeting Gbp2 diminishes the antitumor efficacy of the nanovaccine in vivo. This study offers an innovative approach to immunotherapy and elucidates a novel mechanism (Gbp2-Pin1-NFκB pathway) for remodeling TAMs.
Collapse
Affiliation(s)
- Jiaqiang Xiong
- Department of Obstetrics and GynecologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Juyuan Huang
- Department of Obstetrics and GynecologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Hanxiao Xu
- Department of Gastrointestinal OncologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Qiuji Wu
- Department of Radiation and Medical OncologyHubei Key Laboratory of Tumor Biological BehaviorHubei Provincial Clinical Research Center for CancerZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Jiahui Zhao
- Department of Obstetrics and GynecologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Yurou Chen
- Department of Obstetrics and GynecologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Guanlan Fan
- Department of Obstetrics and GynecologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Haotong Guan
- Department of Obstetrics and GynecologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Rourou Xiao
- Department of Obstetrics and GynecologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Zhaojin He
- The Second Clinical College of Wuhan UniversityWuhan430071China
| | - Siqi Wu
- The Second Clinical College of Wuhan UniversityWuhan430071China
| | - Wenliang Ouyang
- The Second Clinical College of Wuhan UniversityWuhan430071China
| | - Shixuan Wang
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430032China
| | - Lu Zhang
- Hubei Key Laboratory of Radiation Chemistry and Functional MaterialsSchool of Nuclear Technology and Chemistry & BiologyHubei University of Science and TechnologyXianning437100China
| | - Peng Xia
- Department of Hepatobiliary & Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Wei Zhang
- Department of Obstetrics and GynecologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Meng Wu
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430032China
| |
Collapse
|
2
|
Querl L, Krebber H. Defenders of the Transcriptome: Guard Protein-Mediated mRNA Quality Control in Saccharomyces cerevisiae. Int J Mol Sci 2024; 25:10241. [PMID: 39408571 PMCID: PMC11476243 DOI: 10.3390/ijms251910241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Cell survival depends on precise gene expression, which is controlled sequentially. The guard proteins surveil mRNAs from their synthesis in the nucleus to their translation in the cytoplasm. Although the proteins within this group share many similarities, they play distinct roles in controlling nuclear mRNA maturation and cytoplasmic translation by supporting the degradation of faulty transcripts. Notably, this group is continuously expanding, currently including the RNA-binding proteins Npl3, Gbp2, Hrb1, Hrp1, and Nab2 in Saccharomyces cerevisiae. Some of the human serine-arginine (SR) splicing factors (SRSFs) show remarkable similarities to the yeast guard proteins and may be considered as functional homologues. Here, we provide a comprehensive summary of their crucial mRNA surveillance functions and their implications for cellular health.
Collapse
Affiliation(s)
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, 37077 Göttingen, Germany;
| |
Collapse
|
3
|
Rodríguez-Piña AL, Castaño de la Serna E, Jiménez-Bremont JF. The serine-arginine (SR) protein UmRrm75 from Ustilago maydis is a functional ortholog of yeast ScHrb1. Int Microbiol 2024; 27:819-830. [PMID: 37776379 DOI: 10.1007/s10123-023-00432-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/09/2023] [Accepted: 09/16/2023] [Indexed: 10/02/2023]
Abstract
The Basidiomycete fungus Ustilago maydis is a biotrophic pathogen of maize. The U. maydis UmRrm75 gene encodes an RNA-binding protein (RBP). In a previous study, we reported that ΔUmRrm75 null mutant strains accumulate H2O2, exhibit slow growth, and have decreased virulence in maize. Herein, we describe UmRrm75 as an ortholog of the ScHrb1, a serine-arginine (SR) protein identified in the yeast Saccharomyces cerevisiae, which plays a role in nuclear quality control, specifically in mRNA splicing and export processes. The yeast ScHrb1 mutant (ΔScHrb1) exhibits an increased sensitivity to elevated levels of boron. We noticed that the ΔScHrb1 displayed sensitivity to H2O2, which is consistent with previous findings in the ΔUmRrm75 mutant. We reversed the sensitivity phenotypes of boron and H2O2 by introducing the UmRrm75 gene into the ΔScHrb1 mutant. Furthermore, we generated complementary strains of U. maydis by expressing UmRrm75-GFP under its native promoter in the ∆UmRrm75 mutants. The UmRrm75-GFP/∆UmRrm75 complementary strains successfully recovered their growth capability under stressors, H2O2 and boron, resembling the parental strains FB2 and AB33. The subcellular localization experiments conducted in U. maydis revealed that the UmRrm75 protein is localized within the nucleus of both yeast and hyphae. The nuclear localization of the UmRrm75 protein remains unaltered even under conditions of heat or oxidative stress. This suggests that UmRrm75 might perform its RBP activity in the nucleus, as previously reported for ScHrb1. Our data contribute to understanding the role of the nuclear RBP UmRrm75 from the corn smut fungus U. maydis.
Collapse
Affiliation(s)
- Alma Laura Rodríguez-Piña
- Laboratorio de Biotecnología Molecular Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosi, San Luis Potosi, Mexico
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán A.C., Merida, Yucatan, Mexico
| | - Enrique Castaño de la Serna
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán A.C., Merida, Yucatan, Mexico
| | - Juan Francisco Jiménez-Bremont
- Laboratorio de Biotecnología Molecular Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosi, San Luis Potosi, Mexico.
| |
Collapse
|
4
|
Korn SM, Von Ehr J, Dhamotharan K, Tants JN, Abele R, Schlundt A. Insight into the Structural Basis for Dual Nucleic Acid-Recognition by the Scaffold Attachment Factor B2 Protein. Int J Mol Sci 2023; 24:ijms24043286. [PMID: 36834708 PMCID: PMC9958909 DOI: 10.3390/ijms24043286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
The family of scaffold attachment factor B (SAFB) proteins comprises three members and was first identified as binders of the nuclear matrix/scaffold. Over the past two decades, SAFBs were shown to act in DNA repair, mRNA/(l)ncRNA processing and as part of protein complexes with chromatin-modifying enzymes. SAFB proteins are approximately 100 kDa-sized dual nucleic acid-binding proteins with dedicated domains in an otherwise largely unstructured context, but whether and how they discriminate DNA and RNA binding has remained enigmatic. We here provide the SAFB2 DNA- and RNA-binding SAP and RRM domains in their functional boundaries and use solution NMR spectroscopy to ascribe DNA- and RNA-binding functions. We give insight into their target nucleic acid preferences and map the interfaces with respective nucleic acids on sparse data-derived SAP and RRM domain structures. Further, we provide evidence that the SAP domain exhibits intra-domain dynamics and a potential tendency to dimerize, which may expand its specifically targeted DNA sequence range. Our data provide a first molecular basis of and a starting point towards deciphering DNA- and RNA-binding functions of SAFB2 on the molecular level and serve a basis for understanding its localization to specific regions of chromatin and its involvement in the processing of specific RNA species.
Collapse
Affiliation(s)
- Sophie M. Korn
- Institute for Molecular Biosciences, Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Julian Von Ehr
- Institute for Molecular Biosciences, Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
- IMPRS on Cellular Biophysics, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Karthikeyan Dhamotharan
- Institute for Molecular Biosciences, Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Jan-Niklas Tants
- Institute for Molecular Biosciences, Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Rupert Abele
- Institute for Biochemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences, Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
- Correspondence:
| |
Collapse
|
5
|
James SW, Palmer J, Keller NP, Brown ML, Dunworth MR, Francisco SG, Watson KG, Titchen B, Achimovich A, Mahoney A, Artemiou JP, Buettner KG, Class M, Sydenstricker AL, Anglin SL. A reciprocal translocation involving Aspergillus nidulans snxAHrb1/Gbp2 and gyfA uncovers a new regulator of the G2-M transition and reveals a role in transcriptional repression for the setBSet2 histone H3-lysine-36 methyltransferase. Genetics 2022; 222:iyac130. [PMID: 36005881 PMCID: PMC9526064 DOI: 10.1093/genetics/iyac130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022] Open
Abstract
Aspergillus nidulans snxA, an ortholog of Saccharomyces cerevisiae Hrb1/Gbp2 messenger RNA shuttle proteins, is-in contrast to budding yeast-involved in cell cycle regulation, in which snxA1 and snxA2 mutations as well as a snxA deletion specifically suppress the heat sensitivity of mutations in regulators of the CDK1 mitotic induction pathway. snxA mutations are strongly cold sensitive, and at permissive temperature snxA mRNA and protein expression are strongly repressed. Initial attempts to identify the causative snxA mutations revealed no defects in the SNXA protein. Here, we show that snxA1/A2 mutations resulted from an identical chromosome I-II reciprocal translocation with breakpoints in the snxA first intron and the fourth exon of a GYF-domain gene, gyfA. Surprisingly, a gyfA deletion and a reconstructed gyfA translocation allele suppressed the heat sensitivity of CDK1 pathway mutants in a snxA+ background, demonstrating that 2 unrelated genes, snxA and gyfA, act through the CDK1-CyclinB axis to restrain the G2-M transition, and for the first time identifying a role in G2-M regulation for a GYF-domain protein. To better understand snxA1/A2-reduced expression, we generated suppressors of snxA cold sensitivity in 2 genes: (1) loss of the abundant nucleolar protein Nsr1/nucleolin bypassed the requirement for snxA and (2) loss of the Set2 histone H3 lysine36 (H3K36) methyltransferase or a nonmethylatable histone H3K36L mutant rescued hypomorphic snxA mutants by restoring full transcriptional proficiency, indicating that methylation of H3K36 acts normally to repress snxA transcription. These observations are in line with known Set2 functions in preventing excessive and cryptic transcription of active genes.
Collapse
Affiliation(s)
- Steven W James
- Department of Biology, Gettysburg College, Gettysburg, PA 17325, USA
| | - Jonathan Palmer
- Data Analytics, Genencor Technology Center, IFF, Palo Alto, CA, 94306, USA
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI 53726, USA
| | - Morgan L Brown
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R Dunworth
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21218, USA
| | - Sarah G Francisco
- Department of Otolaryngology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Katherine G Watson
- School of Medicine, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA
| | - Breanna Titchen
- Department of Biological and Biomedical Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Alecia Achimovich
- Department of Chemistry, Gettysburg College, Gettysburg, PA 17325, USA
| | - Andrew Mahoney
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | | | - Kyra G Buettner
- School of Medicine, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Madelyn Class
- School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
6
|
Tang H, Shao C, Wang X, Cao Y, Li Z, Luo X, Yang X, Zhang Y. 6-Gingerol attenuates subarachnoid hemorrhage-induced early brain injury via GBP2/PI3K/AKT pathway in the rat model. Front Pharmacol 2022; 13:882121. [PMID: 36091803 PMCID: PMC9453877 DOI: 10.3389/fphar.2022.882121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Numerous studies have elucidated the neuroprotective effect of 6-gingerol in central nervous system diseases. However, the potential role and mechanism of 6-gingerol on early brain injury (EBI) after subarachnoid hemorrhage (SAH) remains poorly understood. Here, we report that 6-gingerol exerts a neuroprotective effect on SAH-induced EBI through the GBP2/PI3K/AKT pathway. A SAH rat model was established by injecting femoral artery blood into the cisterna magna. 6-gingerol or vehicle was injected intraperitoneally 1 hour post-SAH induction. We found that the neurological function score and brain edema of SAH rats were significantly improved after 6-gingerol treatment, as well as neuronal apoptosis was attenuated in SAH rats by Nissl staining assay and TUNEL assay. To further explore potential molecular mechanisms associated with 6-gingerol, RNA sequencing was implemented to investigate the differences in transcriptomes between SAH rats with and without 6-gingerol treatment; and found that the expression of guanylate-binding protein 2 (GBP2) evidently was suppressed with 6-gingerol treatment compared to vehicle group. In addition, dual immunofluorescence was also employed to investigate changes in neurons, astrocytes, and microglia after 6-gingerol treatment. The results showed that GBP2 was expressed in neurons but not astrocytes or microglia. Western blotting analysis results demonstrated that the PI3K/AKT pathway was activated in the SAH rats treated with 6-gingerol. Furthermore, recombinant GBP2 protein and LY294002 (PI3K inhibitor) treatment reversed the effects of 6-gingerol treatment in SAH rats. These results indicate that 6-gingerol suppressed the expression of GBP2 to activate the PI3K/AKT pathway, improve neurologic outcomes, reduce brain edema and neuronal apoptosis. In summary, our findings suggest that 6-gingerol could attenuate EBI post-SAH in rats, and 6-gingerol may serve as a novel candidate neuroprotective drug for SAH-induced EBI.
Collapse
Affiliation(s)
- Hui Tang
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, SC, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, SC, China
| | - Chuan Shao
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, SC, China
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Xiaoya Wang
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, SC, China
| | - Yi Cao
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, SC, China
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhou Li
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, SC, China
| | - Xiaoquan Luo
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, SC, China
- Department of Neurosurgery, Chengdu Second People’s Hospital, Chengdu, SC, China
| | - Xiang Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, SC, China
| | - Yuekang Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, SC, China
- *Correspondence: Yuekang Zhang,
| |
Collapse
|
7
|
Edwards-Smallbone J, Jensen AL, Roberts LE, Totañes FIG, Hart SR, Merrick CJ. Plasmodium falciparum GBP2 Is a Telomere-Associated Protein That Binds to G-Quadruplex DNA and RNA. Front Cell Infect Microbiol 2022; 12:782537. [PMID: 35273922 PMCID: PMC8902816 DOI: 10.3389/fcimb.2022.782537] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/24/2022] [Indexed: 02/02/2023] Open
Abstract
In the early-diverging protozoan parasite Plasmodium, few telomere-binding proteins have been identified and several are unique. Plasmodium telomeres, like those of most eukaryotes, contain guanine-rich repeats that can form G-quadruplex structures. In model systems, quadruplex-binding drugs can disrupt telomere maintenance and some quadruplex-binding drugs are potent anti-plasmodial agents. Therefore, telomere-interacting and quadruplex-interacting proteins may offer new targets for anti-malarial therapy. Here, we report that P. falciparum GBP2 is such a protein. It was identified via 'Proteomics of Isolated Chromatin fragments', applied here for the first time in Plasmodium. In vitro, PfGBP2 binds specifically to G-rich telomere repeats in quadruplex form and it can also bind to G-rich RNA. In vivo, PfGBP2 partially colocalises with the known telomeric protein HP1 but is also found in the cytoplasm, probably due to its affinity for RNA. Consistently, its interactome includes numerous RNA-associated proteins. PfGBP2 is evidently a multifunctional DNA/RNA-binding factor in Plasmodium.
Collapse
Affiliation(s)
- James Edwards-Smallbone
- Centre for Applied Entomology and Parasitology, Faculty of Natural Sciences, Keele University, Staffordshire, United Kingdom
| | - Anders L. Jensen
- Department of Pathology, Cambridge University, Cambridge, United Kingdom
| | - Lydia E. Roberts
- Department of Pathology, Cambridge University, Cambridge, United Kingdom
| | | | - Sarah R. Hart
- School of Medicine, Faculty of Medicine and Health Sciences, Keele University, Staffordshire, United Kingdom
| | - Catherine J. Merrick
- Department of Pathology, Cambridge University, Cambridge, United Kingdom,*Correspondence: Catherine J. Merrick,
| |
Collapse
|
8
|
Niikura M, Fukutomi T, Mitobe J, Kobayashi F. Roles and Cellular Localization of GBP2 and NAB2 During the Blood Stage of Malaria Parasites. Front Cell Infect Microbiol 2021; 11:737457. [PMID: 34604117 PMCID: PMC8479154 DOI: 10.3389/fcimb.2021.737457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/24/2021] [Indexed: 12/03/2022] Open
Abstract
The quality control and export of mRNA by RNA-binding proteins are necessary for the survival of malaria parasites, which have complex life cycles. Nuclear poly(A) binding protein 2 (NAB2), THO complex subunit 4 (THO4), nucleolar protein 3 (NPL3), G-strand binding protein 2 (GBP2) and serine/arginine-rich splicing factor 1 (SR1) are involved in nuclear mRNA export in malaria parasites. However, their roles in asexual and sexual development, and in cellular localization, are not fully understood. In this study using the rodent malaria parasite, Plasmodium berghei, we found that NAB2 and SR1, but not THO4, NPL3 or GBP2, played essential roles in the asexual development of malaria parasites. By contrast, GBP2 but not NPL3 was involved in male and female gametocyte production. THO4 was involved in female gametocyte production, but had a lower impact than GBP2. In this study, we focused on GBP2 and NAB2, which play important roles in the sexual and asexual development of malaria parasites, respectively, and examined their cellular localization. GBP2 localized to both the nucleus and cytoplasm of malaria parasites. Using immunoprecipitation coupled to mass spectrometry (IP-MS), GBP2 interacted with the proteins ALBA4, DOZI, and CITH, which play roles in translational repression. IP-MS also revealed that phosphorylated adapter RNA export protein (PHAX) domain-containing protein, an adaptor protein for exportin-1, also interacted with GBP2, implying that mRNA export occurs via the PHAX domain-containing protein pathway in malaria parasites. Live-cell fluorescence imaging revealed that NAB2 localized at the nuclear periphery. Moreover, IP-MS indicated that NAB2 interacted with transportin. RNA immunoprecipitation coupled to RNA sequencing revealed that NAB2 bound directly to 143 mRNAs, including those encoding 40S and 60S ribosomal proteins. Our findings imply that malaria parasites use an evolutionarily ancient mechanism conserved throughout eukaryotic evolution.
Collapse
Affiliation(s)
- Mamoru Niikura
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| | - Toshiyuki Fukutomi
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Tokyo, Japan
| | - Jiro Mitobe
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| | - Fumie Kobayashi
- Department of Environmental Science, School of Life and Environmental Science, Azabu University, Kanagawa, Japan
| |
Collapse
|
9
|
Poornima G, Srivastava G, Roy B, Kuttanda IA, Kurbah I, Rajyaguru PI. RGG-motif containing mRNA export factor Gbp2 acts as a translation repressor. RNA Biol 2021; 18:2342-2353. [PMID: 33910495 DOI: 10.1080/15476286.2021.1910403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Complex cascades of RNA-binding proteins regulate the mRNA metabolism and influence gene expression. Several distinct proteins act at different stages of mRNA life cycle. SR family proteins in yeast are implicated in mRNA processing and nuclear export. In this report, we uncover the role of an SR/RGG-motif containing mRNA export factor Gbp2 in mRNA translation regulation. We demonstrate that Gbp2 localizes to cytoplasmic granules upon heat shock and oxidative stress. Our pull-down assays demonstrate that Gbp2 directly binds to the conserved translation factor eIF4G1 via its RGG motif. We further mapped the region on eIF4G1 to which Gbp2 binds and observed that the binding region overlaps with another translation repressor Sbp1. We found that the RGG-motif deletion mutant is defective in localizing to polysome fractions. Upon tethering Gbp2 to a GFP reporter mRNA in vivo, translation of GFP reporter decreased significantly indicating that Gbp2 acts as a translation repressor. Consistent with these results, we show that Gbp2 can directly repress mRNA translation in the in vitro translation systems in an RGG-motif dependent manner. Taken together, our results establish that the mRNA export factor Gbp2 has a vital role in repressing translation of mRNA. We propose that Gbp2 is a multifaceted RGG-motif protein responsible for translational repression without affecting mRNA levels.
Collapse
Affiliation(s)
| | - Gaurav Srivastava
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Brinta Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Iladeiti Kurbah
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
10
|
Xie Y, Clarke BP, Kim YJ, Ivey AL, Hill PS, Shi Y, Ren Y. Cryo-EM structure of the yeast TREX complex and coordination with the SR-like protein Gbp2. eLife 2021; 10:e65699. [PMID: 33787496 PMCID: PMC8043747 DOI: 10.7554/elife.65699] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/30/2021] [Indexed: 12/21/2022] Open
Abstract
The evolutionarily conserved TRanscript-EXport (TREX) complex plays central roles during mRNP (messenger ribonucleoprotein) maturation and export from the nucleus to the cytoplasm. In yeast, TREX is composed of the THO sub-complex (Tho2, Hpr1, Tex1, Mft1, and Thp2), the DEAD box ATPase Sub2, and Yra1. Here we present a 3.7 Å cryo-EM structure of the yeast THO•Sub2 complex. The structure reveals the intimate assembly of THO revolving around its largest subunit Tho2. THO stabilizes a semi-open conformation of the Sub2 ATPase via interactions with Tho2. We show that THO interacts with the serine-arginine (SR)-like protein Gbp2 through both the RS domain and RRM domains of Gbp2. Cross-linking mass spectrometry analysis supports the extensive interactions between THO and Gbp2, further revealing that RRM domains of Gbp2 are in close proximity to the C-terminal domain of Tho2. We propose that THO serves as a landing pad to configure Gbp2 to facilitate its loading onto mRNP.
Collapse
Affiliation(s)
- Yihu Xie
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| | - Bradley P Clarke
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| | - Yong Joon Kim
- Department of Cell Biology, University of PittsburghPittsburghUnited States
- Medical Scientist Training Program, University of Pittsburgh and Carnegie Mellon UniversityPittsburghUnited States
| | - Austin L Ivey
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| | - Pate S Hill
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| | - Yi Shi
- Department of Cell Biology, University of PittsburghPittsburghUnited States
- Medical Scientist Training Program, University of Pittsburgh and Carnegie Mellon UniversityPittsburghUnited States
| | - Yi Ren
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| |
Collapse
|
11
|
Niikura M, Fukutomi T, Fukui K, Inoue SI, Asahi H, Kobayashi F. G-strand binding protein 2 is involved in asexual and sexual development of Plasmodium berghei. Parasitol Int 2020; 76:102059. [PMID: 31958569 DOI: 10.1016/j.parint.2020.102059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 01/06/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Abstract
G-strand binding protein 2 (GBP2) is a Ser/Arg-rich (SR) protein involved in mRNA surveillance and nuclear mRNA quality control in yeast. However, the roles of GBP2 in virulence and sexual development in Plasmodium parasites are unclear, although GBP2 is involved in the asexual development of Plasmodium berghei, the rodent malaria parasite. In this study, we investigated the role of GBP2 in virulence and sexual development of P. berghei using gbp2-deleted P. berghei (Δgbp2 parasites). Then, to identify factors affected by gbp2 deletion, we performed a comparative proteomic analysis of the Δgbp2 parasites. We found that GBP2 was not associated with the development of experimental cerebral malaria during infection with P. berghei, but asexual development of the parasite was delayed with deletion of gbp2. However, the development of P. berghei gametocytes was significantly reduced with deletion of gbp2. Comparative proteomic analysis revealed that the levels of adenosine deaminase (ADA), purine nucleoside phosphorylase (PNP), and hypoxanthine-guanine phosphoribosyltransferase (HGPRT) in Δgbp2 parasites were significantly higher than those in wild-type (WT) parasites, suggesting that biosynthesis of purine nucleotides may be involved in function of GBP2. Therefore, we investigated the effect of purine starvation on the sexual development and proteome. In nt1-deleted P. berghei (Δnt1 parasites), the production of male and female gametocytes was significantly reduced compared to that in WT parasites. Moreover, we found that protein levels of GBP2 in Δnt1 parasites were markedly lower than in WT parasites. These findings suggest that GBP2 is primarily involved in the sexual development of malaria parasites, and its function may be suppressed by purine starvation.
Collapse
Affiliation(s)
- Mamoru Niikura
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan.
| | - Toshiyuki Fukutomi
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Tokyo, Japan
| | - Kana Fukui
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| | - Shin-Ichi Inoue
- Division of Immunology, Department of Molecular Microbiology and Immunology, Nagasaki University, Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroko Asahi
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| | - Fumie Kobayashi
- Department of Environmental Science, School of Life and Environmental Science, Azabu University, Japan
| |
Collapse
|
12
|
Martín‐Expósito M, Gas M, Mohamad N, Nuño‐Cabanes C, Tejada‐Colón A, Pascual‐García P, de la Fuente L, Chaves‐Arquero B, Merran J, Corden J, Conesa A, Pérez‐Cañadillas JM, Bravo J, Rodríguez‐Navarro S. Mip6 binds directly to the Mex67 UBA domain to maintain low levels of Msn2/4 stress-dependent mRNAs. EMBO Rep 2019; 20:e47964. [PMID: 31680439 PMCID: PMC6893359 DOI: 10.15252/embr.201947964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/30/2019] [Accepted: 09/11/2019] [Indexed: 11/09/2022] Open
Abstract
RNA-binding proteins (RBPs) participate in all steps of gene expression, underscoring their potential as regulators of RNA homeostasis. We structurally and functionally characterize Mip6, a four-RNA recognition motif (RRM)-containing RBP, as a functional and physical interactor of the export factor Mex67. Mip6-RRM4 directly interacts with the ubiquitin-associated (UBA) domain of Mex67 through a loop containing tryptophan 442. Mip6 shuttles between the nucleus and the cytoplasm in a Mex67-dependent manner and concentrates in cytoplasmic foci under stress. Photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation experiments show preferential binding of Mip6 to mRNAs regulated by the stress-response Msn2/4 transcription factors. Consistent with this binding, MIP6 deletion affects their export and expression levels. Additionally, Mip6 interacts physically and/or functionally with proteins with a role in mRNA metabolism and transcription such as Rrp6, Xrn1, Sgf73, and Rpb1. These results reveal a novel role for Mip6 in the homeostasis of Msn2/4-dependent transcripts through its direct interaction with the Mex67 UBA domain.
Collapse
Grants
- BFU2014-57636 Ministerio de Economía, Industria y Competitividad, Gobierno de España (MINECO)
- BFU2015-71978 Ministerio de Economía, Industria y Competitividad, Gobierno de España (MINECO)
- SAF2015-67077-R Ministerio de Economía, Industria y Competitividad, Gobierno de España (MINECO)
- SAF2017-89901-R Ministerio de Economía, Industria y Competitividad, Gobierno de España (MINECO)
- CTQ2018-84371 Ministerio de Economía, Industria y Competitividad, Gobierno de España (MINECO)
- PGC2018-099872-B-I00 Ministerio de Ciencia, Innovación y Universidades (Ministry of Science, Innovation and Universities)
- PROM/2012/061 Generalitat Valenciana (Regional Government of Valencia)
- PROMETEO 2016/093 Generalitat Valenciana (Regional Government of Valencia)
- ACOMP2014/061 Generalitat Valenciana (Regional Government of Valencia)
- B2017/BMD-3770 Comunidad de Madrid (Madrid Autonomous Community)
- Ministerio de Economía, Industria y Competitividad, Gobierno de España (MINECO)
- Comunidad de Madrid (Madrid Autonomous Community)
Collapse
Affiliation(s)
- Manuel Martín‐Expósito
- Gene Expression and RNA Metabolism LaboratoryInstituto de Biomedicina de Valencia (CSIC)ValenciaSpain
- Gene Expression and RNA Metabolism LaboratoryCentro de Investigación Príncipe Felipe (CIPF)ValenciaSpain
| | - Maria‐Eugenia Gas
- Gene Expression and RNA Metabolism LaboratoryCentro de Investigación Príncipe Felipe (CIPF)ValenciaSpain
| | - Nada Mohamad
- Signal Transduction LaboratoryInstituto de Biomedicina de Valencia (CSIC)ValenciaSpain
| | - Carme Nuño‐Cabanes
- Gene Expression and RNA Metabolism LaboratoryInstituto de Biomedicina de Valencia (CSIC)ValenciaSpain
- Gene Expression and RNA Metabolism LaboratoryCentro de Investigación Príncipe Felipe (CIPF)ValenciaSpain
| | - Ana Tejada‐Colón
- Gene Expression and RNA Metabolism LaboratoryInstituto de Biomedicina de Valencia (CSIC)ValenciaSpain
| | - Pau Pascual‐García
- Gene Expression and RNA Metabolism LaboratoryCentro de Investigación Príncipe Felipe (CIPF)ValenciaSpain
- Present address:
Department of Cell and Developmental BiologyEpigenetics InstitutePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Lorena de la Fuente
- Genomics of Gene Expression LaboratoryCentro de Investigación Príncipe Felipe (CIPF)ValenciaSpain
| | - Belén Chaves‐Arquero
- Department of Biological Physical ChemistryInstitute of Physical‐Chemistry “Rocasolano” (CSIC)MadridSpain
| | - Jonathan Merran
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Jeffry Corden
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Ana Conesa
- Genetics InstituteUniversity of FloridaGainesvilleFLUSA
- Microbiology and Cell Science DepartmentInstitute for Food and Agricultural ResearchUniversity of FloridaGainesvilleFLUSA
| | | | - Jerónimo Bravo
- Signal Transduction LaboratoryInstituto de Biomedicina de Valencia (CSIC)ValenciaSpain
| | - Susana Rodríguez‐Navarro
- Gene Expression and RNA Metabolism LaboratoryInstituto de Biomedicina de Valencia (CSIC)ValenciaSpain
- Gene Expression and RNA Metabolism LaboratoryCentro de Investigación Príncipe Felipe (CIPF)ValenciaSpain
| |
Collapse
|
13
|
Oroz J, Laurents DV. RNA binding proteins: Diversity from microsurgeons to cowboys. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194398. [PMID: 31271896 DOI: 10.1016/j.bbagrm.2019.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 01/21/2023]
Abstract
The conformation and mechanism of proteins that degrade and bind RNA, which has provided key insights into post-transcriptional gene regulation, is explored here. During the twentieth century's last decades, the characterization of ribonucleases and RNA binding domains revealed the diversity of their reaction mechanisms and modes of RNA recognition, and the bases of protein folding, substrate specificity and binding affinity. More recent research showed how these domains combine through oligomerization or genetic recombination to create larger proteins with highly specific and readily programmable ribonucleolytic activity. In the last 15 years, the study of the capacity of proteins, usually disordered, to pool RNAs into discrete, non-aqueous microdroplets to facilitate their transport, modification and degradation - analogous to cowboys herding cattle - has advanced our comprehension of gene expression. Finally, the current uses of RNA binding proteins and the future applications of protein/RNA microdroplets are highlighted.
Collapse
Affiliation(s)
- Javier Oroz
- "Rocasolano" Institute of Physical Chemistry, Spanish National Research Council, Serrano 119, Madrid 28006, Spain
| | - Douglas V Laurents
- "Rocasolano" Institute of Physical Chemistry, Spanish National Research Council, Serrano 119, Madrid 28006, Spain.
| |
Collapse
|
14
|
Pi B, He X, Ruan Y, Jang JC, Huang Y. Genome-wide analysis and stress-responsive expression of CCCH zinc finger family genes in Brassica rapa. BMC PLANT BIOLOGY 2018; 18:373. [PMID: 30587139 PMCID: PMC6307296 DOI: 10.1186/s12870-018-1608-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/17/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND Ubiquitous CCCH nucleic acid-binding motif is found in a wide-variety of organisms. CCCH genes are involved in plant developmental processes and biotic and abiotic stress responses. Brassica rapa is a vital economic crop and classical model plant of polyploidy evolution, but the functions of CCCH genes in B. rapa are unclear. RESULTS In this study, 103 CCCH genes in B. rapa were identified. A comparative analysis of the chromosomal position, gene structure, domain organization and duplication event between B. rapa and Arabidopsis thaliana were performed. Results showed that CCCH genes could be divided into 18 subfamilies, and segmental duplication might mainly contribute to this family expansion. C-X7/8-C-X5-C3-H was the most commonly found motif, but some novel CCCH motifs were also found, along with some loses of typical CCCH motifs widespread in other plant species. The multifarious gene structures and domain organizations implicated functional diversity of CCCH genes in B. rapa. Evidence also suggested functional redundancy in at least one subfamily due to high conservation between members. Finally, the expression profiles of subfamily-IX genes indicated that they are likely involved in various stress responses. CONCLUSION This study provides the first genome-wide characterization of the CCCH genes in B. rapa. The results suggest that B. rapa CCCH genes are likely functionally divergent, but mostly involved in plant development and stress response. These results are expected to facilitate future functional characterization of this potential RNA-binding protein family in Brassica crops.
Collapse
Affiliation(s)
- Boyi Pi
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 China
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha, 410128 China
- Key Laboratory of Plant Genetics and Molecular Biology of Education Department in Hunan Province, Changsha, 410128 China
| | - Xinghui He
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 China
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha, 410128 China
- Key Laboratory of Plant Genetics and Molecular Biology of Education Department in Hunan Province, Changsha, 410128 China
| | - Ying Ruan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 China
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha, 410128 China
- Key Laboratory of Plant Genetics and Molecular Biology of Education Department in Hunan Province, Changsha, 410128 China
| | - Jyan-Chyun Jang
- Department of Horticulture and Crop Science, Molecular Genetics, and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210 USA
| | - Yong Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 China
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha, 410128 China
- Key Laboratory of Plant Genetics and Molecular Biology of Education Department in Hunan Province, Changsha, 410128 China
| |
Collapse
|
15
|
Franco-Echevarría E, González-Polo N, Zorrilla S, Martínez-Lumbreras S, Santiveri CM, Campos-Olivas R, Sánchez M, Calvo O, González B, Pérez-Cañadillas JM. The structure of transcription termination factor Nrd1 reveals an original mode for GUAA recognition. Nucleic Acids Res 2017; 45:10293-10305. [PMID: 28973465 PMCID: PMC5737872 DOI: 10.1093/nar/gkx685] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022] Open
Abstract
Transcription termination of non-coding RNAs is regulated in yeast by a complex of three RNA binding proteins: Nrd1, Nab3 and Sen1. Nrd1 is central in this process by interacting with Rbp1 of RNA polymerase II, Trf4 of TRAMP and GUAA/G terminator sequences. We lack structural data for the last of these binding events. We determined the structures of Nrd1 RNA binding domain and its complexes with three GUAA-containing RNAs, characterized RNA binding energetics and tested rationally designed mutants in vivo. The Nrd1 structure shows an RRM domain fused with a second α/β domain that we name split domain (SD), because it is formed by two non-consecutive segments at each side of the RRM. The GUAA interacts with both domains and with a pocket of water molecules, trapped between the two stacking adenines and the SD. Comprehensive binding studies demonstrate for the first time that Nrd1 has a slight preference for GUAA over GUAG and genetic and functional studies suggest that Nrd1 RNA binding domain might play further roles in non-coding RNAs transcription termination.
Collapse
Affiliation(s)
- Elsa Franco-Echevarría
- Departament of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano", CSIC, C/ Serrano 119, 28006 Madrid, Spain
| | | | - Silvia Zorrilla
- Department of Cellular and Molecular Biology, Biological Research Center, CSIC
| | - Santiago Martínez-Lumbreras
- Department of Chemistry, King's College London.,Department of Biological Physical Chemistry, Institute of Physical-Chemistry "Rocasolano", CSIC, C/ Serrano 119, 28006 Madrid, Spain
| | - Clara M Santiveri
- Spectroscopy and Nuclear Magnetic Resonance Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre
| | - Ramón Campos-Olivas
- Spectroscopy and Nuclear Magnetic Resonance Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre
| | - Mar Sánchez
- Instituto de Biología Funcional y Genómica, IBFG-CSIC, Universidad de Salamanca
| | - Olga Calvo
- Instituto de Biología Funcional y Genómica, IBFG-CSIC, Universidad de Salamanca
| | - Beatriz González
- Departament of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano", CSIC, C/ Serrano 119, 28006 Madrid, Spain
| | - José Manuel Pérez-Cañadillas
- Department of Biological Physical Chemistry, Institute of Physical-Chemistry "Rocasolano", CSIC, C/ Serrano 119, 28006 Madrid, Spain
| |
Collapse
|
16
|
Abstract
TRanscription and EXport (TREX) is a conserved multisubunit complex essential for embryogenesis, organogenesis and cellular differentiation throughout life. By linking transcription, mRNA processing and export together, it exerts a physiologically vital role in the gene expression pathway. In addition, this complex prevents DNA damage and regulates the cell cycle by ensuring optimal gene expression. As the extent of TREX activity in viral infections, amyotrophic lateral sclerosis and cancer emerges, the need for a greater understanding of TREX function becomes evident. A complete elucidation of the composition, function and interactions of the complex will provide the framework for understanding the molecular basis for a variety of diseases. This review details the known composition of TREX, how it is regulated and its cellular functions with an emphasis on mammalian systems.
Collapse
|
17
|
Eichhorn CD, Chug R, Feigon J. hLARP7 C-terminal domain contains an xRRM that binds the 3' hairpin of 7SK RNA. Nucleic Acids Res 2016; 44:9977-9989. [PMID: 27679474 PMCID: PMC5175362 DOI: 10.1093/nar/gkw833] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/02/2016] [Accepted: 09/10/2016] [Indexed: 12/21/2022] Open
Abstract
The 7SK small nuclear ribonucleoprotein (snRNP) sequesters and inactivates the positive transcription elongation factor b (P-TEFb), an essential eukaryotic mRNA transcription factor. The human La-related protein group 7 (hLARP7) is a constitutive component of the 7SK snRNP and localizes to the 3' terminus of the 7SK long noncoding RNA. hLARP7, and in particular its C-terminal domain (CTD), is essential for 7SK RNA stability and assembly with P-TEFb. The hLARP7 N-terminal La module binds and protects the 3' end from degradation, but the structural and functional role of its CTD is unclear. We report the solution NMR structure of the hLARP7 CTD and show that this domain contains an xRRM, a class of atypical RRM first identified in the Tetrahymena thermophila telomerase LARP7 protein p65. The xRRM binds the 3' end of 7SK RNA at the top of stem-loop 4 (SL4) and interacts with both unpaired and base-paired nucleotides. This study confirms that the xRRM is general to the LARP7 family of proteins and defines the binding site for hLARP7 on the 7SK RNA, providing insight into function.
Collapse
Affiliation(s)
- Catherine D Eichhorn
- Department of Chemistry and Biochemistry, P.O. Box 951569, University of California, Los Angeles, CA 90095-1569, USA
| | - Rahul Chug
- Department of Chemistry and Biochemistry, P.O. Box 951569, University of California, Los Angeles, CA 90095-1569, USA
| | - Juli Feigon
- Department of Chemistry and Biochemistry, P.O. Box 951569, University of California, Los Angeles, CA 90095-1569, USA
| |
Collapse
|