1
|
Zhang Q, Xu Z, Han R, Wang Y, Ye Z, Zhu J, Cai Y, Zhang F, Zhao J, Yao B, Qin Z, Qiao N, Huang R, Feng J, Wang Y, Rui W, He F, Zhao Y, Ding C. Proteogenomic characterization of skull-base chordoma. Nat Commun 2024; 15:8338. [PMID: 39333076 PMCID: PMC11436687 DOI: 10.1038/s41467-024-52285-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/29/2024] [Indexed: 09/29/2024] Open
Abstract
Skull-base chordoma is a rare, aggressive bone cancer with a high recurrence rate. Despite advances in genomic studies, its molecular characteristics and effective therapies remain unknown. Here, we conduct integrative genomics, transcriptomics, proteomics, and phosphoproteomics analyses of 187 skull-base chordoma tumors. In our study, chromosome instability is identified as a prognostic predictor and potential therapeutic target. Multi-omics data reveals downstream effects of chromosome instability, with RPRD1B as a putative target for radiotherapy-resistant patients. Chromosome 1q gain, associated with chromosome instability and upregulated mitochondrial functions, lead to poorer clinical outcomes. Immune subtyping identify an immune cold subtype linked to chromosome 9p/10q loss and immune evasion. Proteomics-based classification reveals subtypes (P-II and P-III) with high chromosome instability and immune cold features, with P-II tumors showing increased invasiveness. These findings, confirmed in 17 paired samples, provide insights into the biology and treatment of skull-base chordoma.
Collapse
Affiliation(s)
- Qilin Zhang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ziyan Xu
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Rui Han
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yunzhi Wang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Zhen Ye
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiajun Zhu
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Yixin Cai
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fan Zhang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Jiangyan Zhao
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Boyuan Yao
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhaoyu Qin
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Nidan Qiao
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruofan Huang
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Jinwen Feng
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Yongfei Wang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenting Rui
- Department of Radiology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fuchu He
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China.
- Research Unit of Proteomics Driven Cancer Precision Medicine. Chinese Academy of Medical Sciences, Beijing, 102206, China.
| | - Yao Zhao
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Chen Ding
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China.
- Departments of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Translational Biomedical Engineering, Urumqi, 830000, China.
| |
Collapse
|
2
|
Viera T, Abfalterer Q, Neal A, Trujillo R, Patidar PL. Molecular Basis of XRN2-Deficient Cancer Cell Sensitivity to Poly(ADP-ribose) Polymerase Inhibition. Cancers (Basel) 2024; 16:595. [PMID: 38339346 PMCID: PMC10854503 DOI: 10.3390/cancers16030595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
R-loops (RNA-DNA hybrids with displaced single-stranded DNA) have emerged as a potent source of DNA damage and genomic instability. The termination of defective RNA polymerase II (RNAPII) is one of the major sources of R-loop formation. 5'-3'-exoribonuclease 2 (XRN2) promotes genome-wide efficient RNAPII termination, and XRN2-deficient cells exhibit increased DNA damage emanating from elevated R-loops. Recently, we showed that DNA damage instigated by XRN2 depletion in human fibroblast cells resulted in enhanced poly(ADP-ribose) polymerase 1 (PARP1) activity. Additionally, we established a synthetic lethal relationship between XRN2 and PARP1. However, the underlying cellular stress response promoting this synthetic lethality remains elusive. Here, we delineate the molecular consequences leading to the synthetic lethality of XRN2-deficient cancer cells induced by PARP inhibition. We found that XRN2-deficient lung and breast cancer cells display sensitivity to two clinically relevant PARP inhibitors, Rucaparib and Olaparib. At a mechanistic level, PARP inhibition combined with XRN2 deficiency exacerbates R-loop and DNA double-strand break formation in cancer cells. Consistent with our previous findings using several different siRNAs, we also show that XRN2 deficiency in cancer cells hyperactivates PARP1. Furthermore, we observed enhanced replication stress in XRN2-deficient cancer cells treated with PARP inhibitors. Finally, the enhanced stress response instigated by compromised PARP1 catalytic function in XRN2-deficient cells activates caspase-3 to initiate cell death. Collectively, these findings provide mechanistic insights into the sensitivity of XRN2-deficient cancer cells to PARP inhibition and strengthen the underlying translational implications for targeted therapy.
Collapse
Affiliation(s)
| | | | | | | | - Praveen L. Patidar
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA
| |
Collapse
|
3
|
Ye T, Lin A, Qiu Z, Hu S, Zhou C, Liu Z, Cheng Q, Zhang J, Luo P. Microsatellite instability states serve as predictive biomarkers for tumors chemotherapy sensitivity. iScience 2023; 26:107045. [PMID: 37448561 PMCID: PMC10336167 DOI: 10.1016/j.isci.2023.107045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/17/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023] Open
Abstract
There is an urgent need for markers to predict the efficacy of different chemotherapy drugs. Herein, we examined whether microsatellite instability (MSI) status can predict tumor multidrug sensitivity and explored the underlying mechanisms. We downloaded data from several public databases. Drug sensitivity was compared between the high microsatellite instability (MSI-H) and microsatellite-stable/low microsatellite instability (MSS/MSI-L) groups. In addition, we performed pathway enrichment analysis and cellular chemosensitivity assays to explore the mechanisms by which MSI status may affect drug sensitivity and assessed the differences between drug-treated and control cell lines. We found that multiple MSI-H tumors were more sensitive to a variety of chemotherapy drugs than MSS/MSI-L tumors, and especially for CRC, chemosensitivity is enhanced through the downregulation of DDR pathways such as NHEJ. Additional DNA damage caused by chemotherapeutic drugs results in further downregulation of DDR pathways and enhances drug sensitivity, forming a cycle of increasing drug sensitivity.
Collapse
Affiliation(s)
- Taojun Ye
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengang Qiu
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Shulu Hu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Chaozheng Zhou
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Zaoqu Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Quan Cheng
- Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Jia Y, Yan Q, Zheng Y, Li L, Zhang B, Chang Z, Wang Z, Tang H, Qin Y, Guan XY. Long non-coding RNA NEAT1 mediated RPRD1B stability facilitates fatty acid metabolism and lymph node metastasis via c-Jun/c-Fos/SREBP1 axis in gastric cancer. J Exp Clin Cancer Res 2022; 41:287. [PMID: 36171622 PMCID: PMC9520879 DOI: 10.1186/s13046-022-02449-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022] Open
Abstract
Background Lymph node metastasis is one of most common determinants of the stage and prognosis of gastric cancer (GC). However, the key molecular events and mechanisms mediating lymph node metastasis remain elusive. Methods RNA sequencing was used to identify driver genes responsible for lymph node metastasis in four cases of gastric primary tumors, metastatic lesions of lymph nodes and matched normal gastric epithelial tissue. qRT–PCR and IHC were applied to examine RPRD1B expression. Metastatic functions were evaluated in vitro and in vivo. RNA-seq was used to identify target genes. ChIP, EMSA and dual luciferase reporter assays were conducted to identify the binding sites of target genes. Co-IP, RIP, MeRIP, RNA-FISH and ubiquitin assays were applied to explore the underlying mechanisms. Results The top 8 target genes (RPRD1B, MAP4K4, MCM2, TOPBP1, FRMD8, KBTBD2, ADAM10 and CXCR4) that were significantly upregulated in metastatic lymph nodes of individuals with GC were screened. The transcriptional cofactor RPRD1B (regulation of nuclear pre-mRNA domain containing 1B) was selected for further characterization. The clinical analysis showed that RPRD1B was significantly overexpressed in metastatic lymph nodes and associated with poor outcomes in patients with GC. The Mettl3-induced m6A modification was involved in the upregulation of RPRD1B. Functionally, RPRD1B promoted lymph node metastasis capabilities in vitro and in vivo. Mechanistic studies indicated that RPRD1B increased fatty acid uptake and synthesis by transcriptionally upregulating c-Jun/c-Fos and activating the c-Jun/c-Fos/SREBP1 axis. In addition, NEAT1 was upregulated significantly by c-Jun/c-Fos in RPRD1B-overexpressing cells. NEAT1, in turn, increased the stability of the RPRD1B mRNA by recruiting the m6A “reader” protein hnRNPA2B1 and reduced the degradation of the RPRD1B protein by inhibiting TRIM25-mediated ubiquitination. Notably, this functional circuitry was disrupted by an inhibitor of c-Jun/c-Fos/AP1 proteins (SR11302) and small interfering RNAs targeting NEAT1, leading to a preferential impairment of lymph node metastasis. Conclusions Based on these findings, RPRD1B facilitated FA metabolism and assisted primary tumor implantation in lymph nodes via the c-Jun/c-Fos/SREBP1 axis, which was enhanced by a NEAT1-mediated positive feedback loop, serving as a potential therapeutic target for GC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02449-4.
Collapse
|
5
|
Zhai W, Ye X, Wang Y, Feng Y, Wang Y, Lin Y, Ding L, Yang L, Wang X, Kuang Y, Fu X, Eugene Chin Y, Jia B, Zhu B, Ren F, Chang Z. CREPT/RPRD1B promotes tumorigenesis through STAT3-driven gene transcription in a p300-dependent manner. Br J Cancer 2021; 124:1437-1448. [PMID: 33531691 PMCID: PMC8039031 DOI: 10.1038/s41416-021-01269-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 11/14/2020] [Accepted: 01/05/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Signal transducer and activator of transcription 3 (STAT3) has been shown to upregulate gene transcription during tumorigenesis. However, how STAT3 initiates transcription remains to be exploited. This study is to reveal the role of CREPT (cell cycle-related and elevated-expression protein in tumours, or RPRD1B) in promoting STAT3 transcriptional activity. METHODS BALB/c nude mice, CREPT overexpression or deletion cells were employed for the assay of tumour formation, chromatin immunoprecipitation, assay for transposase-accessible chromatin using sequencing. RESULTS We demonstrate that CREPT, a recently identified oncoprotein, enhances STAT3 transcriptional activity to promote tumorigenesis. CREPT expression is positively correlated with activation of STAT3 signalling in tumours. Deletion of CREPT led to a decrease, but overexpression of CREPT resulted in an increase, in STAT3-initiated tumour cell proliferation, colony formation and tumour growth. Mechanistically, CREPT interacts with phosphorylated STAT3 (p-STAT3) and facilitates p-STAT3 to recruit p300 to occupy at the promoters of STAT3-targeted genes. Therefore, CREPT and STAT3 coordinately facilitate p300-mediated acetylation of histone 3 (H3K18ac and H3K27ac), further augmenting RNA polymerase II recruitment. Accordingly, depletion of p300 abolished CREPT-enhanced STAT3 transcriptional activity. CONCLUSIONS We propose that CREPT is a co-activator of STAT3 for recruiting p300. Our study provides an alternative strategy for the therapy of cancers related to STAT3.
Collapse
Affiliation(s)
- Wanli Zhai
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Science, Tsinghua University, Beijing, China
| | - Xiongjun Ye
- Urology and Lithotripsy Center, Peking University People's Hospital, Beijing, China
| | - Yinyin Wang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Yarui Feng
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Ying Wang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Yuting Lin
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Science, Tsinghua University, Beijing, China
| | - Lidan Ding
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Liu Yang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Xuning Wang
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Yanshen Kuang
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Xinyuan Fu
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Beijing, China
| | - Y Eugene Chin
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Baoqing Jia
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Bingtao Zhu
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China.
| | - Fangli Ren
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China.
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
6
|
Yang L, Yang H, Chu Y, Song Y, Ding L, Zhu B, Zhai W, Wang X, Kuang Y, Ren F, Jia B, Wu W, Ye X, Wang Y, Chang Z. CREPT is required for murine stem cell maintenance during intestinal regeneration. Nat Commun 2021; 12:270. [PMID: 33431892 PMCID: PMC7801528 DOI: 10.1038/s41467-020-20636-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
Intestinal stem cells (ISCs) residing in the crypts are critical for the continual self-renewal and rapid recovery of the intestinal epithelium. The regulatory mechanism of ISCs is not fully understood. Here we report that CREPT, a recently identified tumor-promoting protein, is required for the maintenance of murine ISCs. CREPT is preferably expressed in the crypts but not in the villi. Deletion of CREPT in the intestinal epithelium of mice (Vil-CREPTKO) results in lower body weight and slow migration of epithelial cells in the intestine. Vil-CREPTKO intestine fails to regenerate after X-ray irradiation and dextran sulfate sodium (DSS) treatment. Accordingly, the deletion of CREPT decreases the expression of genes related to the proliferation and differentiation of ISCs and reduces Lgr5+ cell numbers at homeostasis. We identify that CREPT deficiency downregulates Wnt signaling by impairing β-catenin accumulation in the nucleus of the crypt cells during regeneration. Our study provides a previously undefined regulator of ISCs.
Collapse
Affiliation(s)
- Liu Yang
- State Key Laboratory of Membrane Biology, School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China
| | - Haiyan Yang
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Yunxiang Chu
- Department of Gastroenterology, Emergency General Hospital, 100028, Beijing, China
| | - Yunhao Song
- State Key Laboratory of Membrane Biology, School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China
| | - Lidan Ding
- State Key Laboratory of Membrane Biology, School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China
| | - Bingtao Zhu
- State Key Laboratory of Membrane Biology, School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China
| | - Wanli Zhai
- State Key Laboratory of Membrane Biology, School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China
| | - Xuning Wang
- Department of Gastroenterology, Chinese PLA General Hospital, 100700, Beijing, China
| | - Yanshen Kuang
- Department of Gastroenterology, Chinese PLA General Hospital, 100700, Beijing, China
| | - Fangli Ren
- State Key Laboratory of Membrane Biology, School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China
| | - Baoqing Jia
- Department of Gastroenterology, Chinese PLA General Hospital, 100700, Beijing, China
| | - Wei Wu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xiongjun Ye
- Urology and Lithotripsy Center, Peking University People's Hospital, 100034, Beijing, China.
| | - Yinyin Wang
- State Key Laboratory of Membrane Biology, School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China.
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
7
|
Yang L, Yang H, Chu Y, Song Y, Ding L, Zhu B, Zhai W, Wang X, Kuang Y, Ren F, Jia B, Wu W, Ye X, Wang Y, Chang Z. CREPT is required for murine stem cell maintenance during intestinal regeneration. Nat Commun 2021. [DOI: 10.1038/s41467-020-20636-9 order by 38439--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
AbstractIntestinal stem cells (ISCs) residing in the crypts are critical for the continual self-renewal and rapid recovery of the intestinal epithelium. The regulatory mechanism of ISCs is not fully understood. Here we report that CREPT, a recently identified tumor-promoting protein, is required for the maintenance of murine ISCs. CREPT is preferably expressed in the crypts but not in the villi. Deletion of CREPT in the intestinal epithelium of mice (Vil-CREPTKO) results in lower body weight and slow migration of epithelial cells in the intestine. Vil-CREPTKO intestine fails to regenerate after X-ray irradiation and dextran sulfate sodium (DSS) treatment. Accordingly, the deletion of CREPT decreases the expression of genes related to the proliferation and differentiation of ISCs and reduces Lgr5+ cell numbers at homeostasis. We identify that CREPT deficiency downregulates Wnt signaling by impairing β-catenin accumulation in the nucleus of the crypt cells during regeneration. Our study provides a previously undefined regulator of ISCs.
Collapse
|
8
|
Current understanding of CREPT and p15RS, carboxy-terminal domain (CTD)-interacting proteins, in human cancers. Oncogene 2020; 40:705-716. [PMID: 33239754 DOI: 10.1038/s41388-020-01544-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 12/27/2022]
Abstract
CREPT and p15RS, also named RPRD1B and RPRD1A, are RPRD (regulation of nuclear pre-mRNA-domain-containing) proteins containing C-terminal domain (CTD)-interacting domain (CID), which mediates the binding to the CTD of Rpb1, the largest subunit of RNA polymerase II (RNAPII). CREPT and p15RS are highly conserved, with a common yeast orthologue Rtt103. Intriguingly, human CREPT and p15RS possess opposite functions in the regulation of cell proliferation and tumorigenesis. While p15RS inhibits cell proliferation, CREPT promotes cell cycle and tumor growth. Aberrant expression of both CREPT and p15RS was found in numerous types of cancers. At the molecular level, both CREPT and p15RS were reported to regulate gene transcription by interacting with RNAPII. However, CREPT also exerts a key function in the processes linked to DNA damage repairs. In this review, we summarized the recent studies regarding the biological roles of CREPT and p15RS, as well as the molecular mechanisms underlying their activities. Fully revealing the mechanisms of CREPT and p15RS functions will not only provide new insights into understanding gene transcription and maintenance of DNA stability in tumors, but also promote new approach development for tumor diagnosis and therapy.
Collapse
|
9
|
XRN2 interactome reveals its synthetic lethal relationship with PARP1 inhibition. Sci Rep 2020; 10:14253. [PMID: 32859985 PMCID: PMC7455564 DOI: 10.1038/s41598-020-71203-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
Persistent R-loops (RNA-DNA hybrids with a displaced single-stranded DNA) create DNA damage and lead to genomic instability. The 5'-3'-exoribonuclease 2 (XRN2) degrades RNA to resolve R-loops and promotes transcription termination. Previously, XRN2 was implicated in DNA double strand break (DSB) repair and in resolving replication stress. Here, using tandem affinity purification-mass spectrometry, bioinformatics, and biochemical approaches, we found that XRN2 associates with proteins involved in DNA repair/replication (Ku70-Ku80, DNA-PKcs, PARP1, MCM2-7, PCNA, RPA1) and RNA metabolism (RNA helicases, PRP19, p54(nrb), splicing factors). Novel major pathways linked to XRN2 include cell cycle control of chromosomal replication and DSB repair by non-homologous end joining. Investigating the biological implications of these interactions led us to discover that XRN2 depletion compromised cell survival after additional knockdown of specific DNA repair proteins, including PARP1. XRN2-deficient cells also showed enhanced PARP1 activity. Consistent with concurrent depletion of XRN2 and PARP1 promoting cell death, XRN2-deficient fibroblast and lung cancer cells also demonstrated sensitivity to PARP1 inhibition. XRN2 alterations (mutations, copy number/expression changes) are frequent in cancers. Thus, PARP1 inhibition could target cancers exhibiting XRN2 functional loss. Collectively, our data suggest XRN2's association with novel protein partners and unravel synthetic lethality between XRN2 depletion and PARP1 inhibition.
Collapse
|
10
|
Ma D, Zou Y, Chu Y, Liu Z, Liu G, Chu J, Li M, Wang J, Sun SY, Chang Z. A cell-permeable peptide-based PROTAC against the oncoprotein CREPT proficiently inhibits pancreatic cancer. Theranostics 2020; 10:3708-3721. [PMID: 32206117 PMCID: PMC7069095 DOI: 10.7150/thno.41677] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/31/2020] [Indexed: 02/07/2023] Open
Abstract
Cancers remain a threat to human health due to the lack of effective therapeutic strategies. Great effort has been devoted to the discovery of drug targets to treat cancers, but novel oncoproteins still need to be unveiled for efficient therapy. Methods: We show that CREPT is highly expressed in pancreatic cancer and is associated with poor disease-free survival. CREPT overexpression promotes but CREPT deletion blocks colony formation and proliferation of pancreatic cancer cells. To provide a proof of concept for CREPT as a new target for the inhibition of pancreatic cancer, we designed a cell-permeable peptide-based proteolysis targeting chimera (PROTAC), named PRTC, based on the homodimerized leucine-zipper-like motif in the C-terminus domain of CREPT to induce its degradation in vivo. Results: PRTC has high affinity for CREPT, with Kd = 0.34 +/- 0.11 μM and is able to permeate into cells because of the attached membrane-transportable peptide RRRRK. PRTC effectively induces CREPT degradation in a proteasome-dependent manner. Intriguingly, PRTC inhibits colony formation, cell proliferation, and motility in pancreatic cancer cells and ultimately impairs xenograft tumor growth, comparable to the effect of CREPT deletion. Conclusions: PRTC-induced degradation of CREPT leads to inhibition of tumor growth, which is promising for the development of new drugs against pancreatic cancer. In addition, using an interacting motif based on the dimerized structure of proteins may be a new way to design a PROTAC aiming at degrading any protein without known interacting small molecules or peptides.
Collapse
Affiliation(s)
- Danhui Ma
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
| | - Yutian Zou
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
- College of Letters and Science, University of California, Berkeley, 101 Durant Hall, Berkeley, CA 94720
| | - Yunxiang Chu
- Department of Gastroenterology, Emergency General Hospital, Beijing 100028, China
| | - Zhengsheng Liu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Gaochao Liu
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, 100084 China
| | - Jun Chu
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
| | - Mengdi Li
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
| | - Jiayu Wang
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
| | - Shi-yong Sun
- Department of Hematology and Medical Oncology, School of Medicine and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Ali I, Ruiz DG, Ni Z, Johnson JR, Zhang H, Li PC, Khalid MM, Conrad RJ, Guo X, Min J, Greenblatt J, Jacobson M, Krogan NJ, Ott M. Crosstalk between RNA Pol II C-Terminal Domain Acetylation and Phosphorylation via RPRD Proteins. Mol Cell 2019; 74:1164-1174.e4. [PMID: 31054975 DOI: 10.1016/j.molcel.2019.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/26/2019] [Accepted: 03/30/2019] [Indexed: 01/01/2023]
Abstract
Post-translational modifications of the RNA polymerase II C-terminal domain (CTD) coordinate the transcription cycle. Crosstalk between different modifications is poorly understood. Here, we show how acetylation of lysine residues at position 7 of characteristic heptad repeats (K7ac)-only found in higher eukaryotes-regulates phosphorylation of serines at position 5 (S5p), a conserved mark of polymerases initiating transcription. We identified the regulator of pre-mRNA-domain-containing (RPRD) proteins as reader proteins of K7ac. K7ac enhanced CTD peptide binding to the CTD-interacting domain (CID) of RPRD1A and RPRD1B proteins in isothermal calorimetry and molecular modeling experiments. Deacetylase inhibitors increased K7ac- and decreased S5-phosphorylated polymerases, consistent with acetylation-dependent S5 dephosphorylation by an RPRD-associated S5 phosphatase. Consistent with this model, RPRD1B knockdown increased S5p but enhanced K7ac, indicating that RPRD proteins recruit K7 deacetylases, including HDAC1. We also report autoregulatory crosstalk between K7ac and S5p via RPRD proteins and their interactions with acetyl- and phospho-eraser proteins.
Collapse
Affiliation(s)
- Ibraheem Ali
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Diego Garrido Ruiz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Zuyao Ni
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | | | - Heng Zhang
- Structural Genomics Consortium, University of Toronto, ON, Canada
| | - Pao-Chen Li
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Mir M Khalid
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ryan J Conrad
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Xinghua Guo
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, ON, Canada
| | | | - Matthew Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA; California Institute for Quantitative Biosciences (QBC), University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nevan J Krogan
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences (QBC), University of California, San Francisco, San Francisco, CA 94143, USA
| | - Melanie Ott
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
12
|
Morton LM, Kerns SL, Dolan ME. Role of Germline Genetics in Identifying Survivors at Risk for Adverse Effects of Cancer Treatment. Am Soc Clin Oncol Educ Book 2018; 38:775-786. [PMID: 30231410 DOI: 10.1200/edbk_201391] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The growing population of cancer survivors often faces adverse effects of treatment, which have a substantial impact on morbidity and mortality. Although certain adverse effects are thought to have a significant heritable component, much work remains to be done to understand the role of germline genetic factors in the development of treatment-related toxicities. In this article, we review current understanding of genetic susceptibility to a range of adverse outcomes among cancer survivors (e.g., fibrosis, urinary and rectal toxicities, ototoxicity, chemotherapy-induced peripheral neuropathy, subsequent malignancies). Most previous research has been narrowly focused, investigating variation in candidate genes and pathways such as drug metabolism, DNA damage and repair, and inflammation. Few of the findings from these earlier candidate gene studies have been replicated in independent populations. Advances in understanding of the genome, improvements in technology, and reduction in laboratory costs have led to recent genome-wide studies, which agnostically interrogate common and/or rare variants across the entire genome. Larger cohorts of patients with homogeneous treatment exposures and systematic ascertainment of well-defined outcomes as well as replication in independent study populations are essential aspects of the study design and are increasingly leading to the discovery of variants associated with each of the adverse outcomes considered in this review. In the long-term, validated germline genetic associations hold tremendous promise for more precisely identifying patients at highest risk for developing adverse treatment effects, with implications for frontline therapy decision-making, personalization of long-term follow-up guidelines, and potential identification of targets for prevention or treatment of the toxicity.
Collapse
Affiliation(s)
- Lindsay M Morton
- From the Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute at the National Institutes of Health, Bethesda, MD; Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY; Department of Medicine, University of Chicago, Chicago, IL
| | - Sarah L Kerns
- From the Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute at the National Institutes of Health, Bethesda, MD; Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY; Department of Medicine, University of Chicago, Chicago, IL
| | - M Eileen Dolan
- From the Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute at the National Institutes of Health, Bethesda, MD; Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY; Department of Medicine, University of Chicago, Chicago, IL
| |
Collapse
|
13
|
Li J, Smith AR, Marquez RT, Li J, Li K, Lan L, Wu X, Zhao L, Ren F, Wang Y, Wang Y, Jia B, Xu L, Chang Z. MicroRNA-383 acts as a tumor suppressor in colorectal cancer by modulating CREPT/RPRD1B expression. Mol Carcinog 2018; 57:1408-1420. [PMID: 29938829 PMCID: PMC6324535 DOI: 10.1002/mc.22866] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/21/2022]
Abstract
CREPT (Cell-cycle-related and expression-elevated protein in tumor)/RPRD1B, a novel protein that enhances the transcription of Cyclin D1 to promote cell proliferation during tumorigenesis, was demonstrated highly expressed in most of tumors. However, it remains unclear how CREPT is regulated in colorectal cancers. In this study, we report that miR-383 negatively regulates CREPT expression. We observed that CREPT was up-regulated but the expression of miR-383 was down regulated in both colon cancer cell lines and colon tumor tissues. Intriguingly, we found that enforced expression of miR-383 inhibited the expression of CREPT at both the mRNA and protein level. Using a luciferase reporter, we showed that miR-383 targeted the 3'-UTR of CREPT mRNA directly. Consistently we observed that over expression of miR-383 shortened the half-life of CREPT mRNA in varieties of colorectal cancer cells. Furthermore, restoration of miR-383 inhibited cell growth and colony formation of colon cancer cells accompanied by inhibition of expression of CREPT and related downstream genes. Finally, we demonstrated that stable over expression of miR-383 in colon cancer cells decreased the growth of the tumors. Our results revealed that the abundant expression of CREPT in colorectal cancers is attributed to the decreased level of miR-383. This study shed a new light on the potential therapeutic therapy strategy for colorectal cancers using introduced miRNA.
Collapse
Affiliation(s)
- Jian Li
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province, China
| | - Amber R. Smith
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Rebecca T. Marquez
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Jun Li
- Institute of Immunology, Medical School, Third Military Medical University, Chongqing, China
| | - Kun Li
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province, China
| | - Lan Lan
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Xiaoqing Wu
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Linxi Zhao
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for anti-tumor Therapeutics, Tsinghua University, Beijing, China
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana
| | - Fangli Ren
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for anti-tumor Therapeutics, Tsinghua University, Beijing, China
| | - Yi Wang
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for anti-tumor Therapeutics, Tsinghua University, Beijing, China
| | - Yinyin Wang
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for anti-tumor Therapeutics, Tsinghua University, Beijing, China
| | - Baoqing Jia
- Department of General Surgery and Pathology, Chinese PLA General Hospital, Beijing, China
| | - Liang Xu
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for anti-tumor Therapeutics, Tsinghua University, Beijing, China
| |
Collapse
|
14
|
Peripheral neuropathy in children and adolescents treated for cancer. THE LANCET CHILD & ADOLESCENT HEALTH 2018; 2:744-754. [PMID: 30236383 DOI: 10.1016/s2352-4642(18)30236-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/02/2018] [Accepted: 07/11/2018] [Indexed: 12/22/2022]
Abstract
Peripheral neuropathy is a well recognised treatment-related toxicity in children with cancer, associated with exposure to neurotoxic chemotherapy agents. Acute damage can occur in sensory, motor, or autonomic neurons, with symptoms that are rarely life threatening, but often severe enough to interfere with function during therapy and after treatment ends. The type of neuropathy and specific symptoms are associated with multiple factors including age at time of therapy, genetic predisposition, chemotherapy type and cumulative dose, and exposure to other agents during therapy. In this Review, we describe the peripheral neuropathy phenotype in children during cancer therapy and among survivors who have completed therapy, to summarise genetic and treatment-related risk factors for neuropathy, and to outline strategies to monitor and detect neuropathy during and after therapy. Additionally, we outline strategies for medical management of neuropathy during treatment and potential rehabilitation interventions to prevent or remediate functional loss.
Collapse
|
15
|
Motea EA, Fattah FJ, Xiao L, Girard L, Rommel A, Morales JC, Patidar P, Zhou Y, Porter A, Xie Y, Minna JD, Boothman DA. Kub5-Hera RPRD1B Deficiency Promotes "BRCAness" and Vulnerability to PARP Inhibition in BRCA-proficient Breast Cancers. Clin Cancer Res 2018; 24:6459-6470. [PMID: 30108102 DOI: 10.1158/1078-0432.ccr-17-1118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 11/05/2017] [Accepted: 08/09/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE Identification of novel strategies to expand the use of PARP inhibitors beyond BRCA deficiency is of great interest in personalized medicine. Here, we investigated the unannotated role of Kub5-HeraRPRD1B (K-H) in homologous recombination (HR) repair and its potential clinical significance in targeted cancer therapy. EXPERIMENTAL DESIGN Functional characterization of K-H alterations on HR repair of double-strand breaks (DSB) were assessed by targeted gene silencing, plasmid reporter assays, immunofluorescence, and Western blots. Cell survival with PARP inhibitors was evaluated through colony-forming assays and statistically analyzed for correlation with K-H expression in various BRCA1/2 nonmutated breast cancers. Gene expression microarray/qPCR analyses, chromatin immunoprecipitation, and rescue experiments were used to investigate molecular mechanisms of action. RESULTS K-H expression loss correlates with rucaparib LD50 values in a panel of BRCA1/2 nonmutated breast cancers. Mechanistically, K-H depletion promotes BRCAness, where extensive upregulation of PARP1 activity was required for the survival of breast cancer cells. PARP inhibition in these cells led to synthetic lethality that was rescued by wild-type K-H reexpression, but not by a mutant K-H (p.R106A) that weakly binds RNAPII. K-H mediates HR by facilitating recruitment of RNAPII to the promoter region of a critical DNA damage response and repair effector, cyclin-dependent kinase 1 (CDK1). CONCLUSIONS Cancer cells with low K-H expression may have exploitable BRCAness properties that greatly expand the use of PARP inhibitors beyond BRCA mutations. Our results suggest that aberrant K-H alterations may have vital translational implications in cellular responses/survival to DNA damage, carcinogenesis, and personalized medicine.
Collapse
Affiliation(s)
- Edward A Motea
- Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.
| | - Farjana J Fattah
- Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ling Xiao
- Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Amy Rommel
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Julio C Morales
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Praveen Patidar
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, New Mexico
| | - Yunyun Zhou
- Department of Clinical Science, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Andrew Porter
- Center for Hematology, Imperial College, London, United Kingdom
| | - Yang Xie
- Department of Clinical Science, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - David A Boothman
- Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
16
|
Characterizing functional consequences of DNA copy number alterations in breast and ovarian tumors by spaceMap. J Genet Genomics 2018; 45:361-371. [PMID: 30057342 DOI: 10.1016/j.jgg.2018.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 01/18/2023]
Abstract
We propose a novel conditional graphical model - spaceMap - to construct gene regulatory networks from multiple types of high dimensional omic profiles. A motivating application is to characterize the perturbation of DNA copy number alterations (CNAs) on downstream protein levels in tumors. Through a penalized multivariate regression framework, spaceMap jointly models high dimensional protein levels as responses and high dimensional CNAs as predictors. In this setup, spaceMap infers an undirected network among proteins together with a directed network encoding how CNAs perturb the protein network. spaceMap can be applied to learn other types of regulatory relationships from high dimensional molecular profiles, especially those exhibiting hub structures. Simulation studies show spaceMap has greater power in detecting regulatory relationships over competing methods. Additionally, spaceMap includes a network analysis toolkit for biological interpretation of inferred networks. We applies spaceMap to the CNAs, gene expression and proteomics data sets from CPTAC-TCGA breast (n=77) and ovarian (n=174) cancer studies. Each cancer exhibits disruption of 'ion transmembrane transport' and 'regulation from RNA polymerase II promoter' by CNA events unique to each cancer. Moreover, using protein levels as a response yields a more functionally-enriched network than using RNA expressions in both cancer types. The network results also help to pinpoint crucial cancer genes and provide insights on the functional consequences of important CNA in breast and ovarian cancers. The R package spaceMap - including vignettes and documentation - is hosted on https://topherconley.github.io/spacemap.
Collapse
|
17
|
Jin PY, Lu HJ, Tang Y, Fan SH, Zhang ZF, Wang Y, Li XN, Wu DM, Lu J, Zheng YL. Retracted: The effect of DNA-PKcs gene silencing on proliferation, migration, invasion and apoptosis, and in vivo tumorigenicity of human osteosarcoma MG-63 cells. Biomed Pharmacother 2017; 96:1324-1334. [PMID: 29203385 DOI: 10.1016/j.biopha.2017.11.079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 11/14/2017] [Accepted: 11/14/2017] [Indexed: 12/22/2022] Open
Abstract
The purpose of this study was to explore the role by which the DNA-dependent protein kinase complex catalytic subunit (DNA-PKcs) influences osteosarcoma MG-63 cell apoptosis, proliferation, migration and invasion. Osteosarcoma tissues and adjacent normal tissues were obtained from 57 osteosarcoma patients. Human osteosarcoma MG-63 cells were assigned into designated groups including the blank, siRNA-negative control (NC) and siRNA-DNA-PKcs groups. RT-qPCR and Western blotting methods were employed to evaluate the mRNA and protein expressions of DNA-PKcs. A cell counting kit-8 (CCK-8) assay was performed to assess cell viability. The evaluation of cell migration and invasion were conducted by means of Scratch test and Transwell assay. Flow cytometry with PI and annexin V/PI double staining was applied for the analysis of the cell cycle and apoptosis. Twenty-Four Balb/c nude mice were recruited and randomly divided into the blank, siRNA-NC and siRNA-DNA-PKcs groups. Tumorigenicity of the Balb/c nude mice was conducted to evaluate the rate of tumor formation, as well as for the assessment of tumor size and weight, and confirm the number of lung metastatic nodules in the mice post transfection. Osteosarcoma tissues were found to possess greater expression of DNA-PKcs than that of the adjacent normal tissues. DNA-PKcs expression in osteosarcoma tissues were correlated with the clinical stage and metastasis. Compared with the blank and siRNA-NC groups, proliferation, miration, as well as the invasion abilities of the MG-63 cells increased. Furthermore, an increase in apoptosis and cells at the G1 stage in the MG-63 cells was observed, while there were reductions in the cells detected at the S stage. The mRNA and protein expressions of CyclinD1, PCNA, Bcl-2 decreased while those of Bax increased in the siRNA-DNA-PKcs group. The tumor formation rate, tumor diameter, weight and lung metastatic nodules among the nude mice in the siRNA-DNA-PKcs group were all lower than those in the blank and siRNA-NC groups. The observations and findings of the study suggested that the silencing of DNA-PKcs inhibits the proliferation, migration and invasion, while acting to promote cell apoptosis in MG-63 cells and osteosarcoma growth in nude mice.
Collapse
Affiliation(s)
- Pei-Ying Jin
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Hong-Jie Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Yao Tang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Shao-Hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Zi-Feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Yan Wang
- Department of Oncology, Beijing Hospital, Beijing 100730, PR China
| | - Xu-Ning Li
- Department of Oncology, Beijing Hospital, Beijing 100730, PR China
| | - Dong-Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China.
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China.
| | - Yuan-Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China.
| |
Collapse
|
18
|
Dolan ME, El Charif O, Wheeler HE, Gamazon ER, Ardeshir-Rouhani-Fard S, Monahan P, Feldman DR, Hamilton RJ, Vaughn DJ, Beard CJ, Fung C, Kim J, Fossa SD, Hertz DL, Mushiroda T, Kubo M, Einhorn LH, Cox NJ, Travis LB. Clinical and Genome-Wide Analysis of Cisplatin-Induced Peripheral Neuropathy in Survivors of Adult-Onset Cancer. Clin Cancer Res 2017; 23:5757-5768. [PMID: 28611204 PMCID: PMC5626588 DOI: 10.1158/1078-0432.ccr-16-3224] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/17/2017] [Accepted: 06/06/2017] [Indexed: 12/20/2022]
Abstract
Purpose: Our purpose was to characterize the clinical influences, genetic risk factors, and gene mechanisms contributing to persistent cisplatin-induced peripheral neuropathy (CisIPN) in testicular cancer survivors (TCSs).Experimental Design: TCS given cisplatin-based therapy completed the validated EORTC QLQ-CIPN20 questionnaire. An ordinal CisIPN phenotype was derived, and associations with age, smoking, excess drinking, hypertension, body mass index, diabetes, hypercholesterolemia, cumulative cisplatin dose, and self-reported health were examined for 680 TCS. Genotyping was performed on the Illumina HumanOmniExpressExome chip. Following quality control and imputation, 5.1 million SNPs in 680 genetically European TCS formed the input set. GWAS and PrediXcan were used to identify genetic variation and genetically determined gene expression traits, respectively, contributing to CisIPN. We evaluated two independent datasets for replication: Vanderbilt's electronic health database (BioVU) and the CALGB 90401 trial.Results: Eight sensory items formed a subscale with good internal consistency (Cronbach α = 0.88). Variables significantly associated with CisIPN included age at diagnosis (OR per year, 1.06; P = 2 × 10-9), smoking (OR, 1.54; P = 0.004), excess drinking (OR, 1.83; P = 0.007), and hypertension (OR, 1.61; P = 0.03). CisIPN was correlated with lower self-reported health (OR, 0.56; P = 2.6 × 10-9) and weight gain adjusted for years since treatment (OR per Δkg/m2, 1.05; P = 0.004). PrediXcan identified lower expressions of MIDN and RPRD1B, and higher THEM5 expression as associated with CisIPN (P value for each < 5 × 10-6) with replication of RPRD1B meeting significance criteria (Fisher combined P = 0.0089).Conclusions: CisIPN is associated with age, modifiable risk factors, and genetically determined expression level of RPRD1B Further study of implicated genes could elucidate the pathophysiologic underpinnings of CisIPN. Clin Cancer Res; 23(19); 5757-68. ©2017 AACR.
Collapse
Affiliation(s)
- M Eileen Dolan
- Department of Medicine, University of Chicago, Chicago, Illinois.
| | - Omar El Charif
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Heather E Wheeler
- Departments of Biology and Computer Science, Loyola University Chicago, Chicago, Illinois
| | - Eric R Gamazon
- Division of Genetic Medicine, Vanderbilt University, Nashville, Tennessee
| | | | - Patrick Monahan
- Department of Medical Oncology, Indiana University, Indianapolis, Indiana
| | - Darren R Feldman
- Department of Medical Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Robert J Hamilton
- Department of Surgical Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - David J Vaughn
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Clair J Beard
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Chunkit Fung
- J.P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Jeri Kim
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sophie D Fossa
- Department of Oncology, Oslo University Hospital, Radiumhospital, Oslo, Norway
| | - Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan
| | | | - Michiaki Kubo
- RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | - Lawrence H Einhorn
- Department of Medical Oncology, Indiana University, Indianapolis, Indiana
| | - Nancy J Cox
- Division of Genetic Medicine, Vanderbilt University, Nashville, Tennessee
| | - Lois B Travis
- Department of Medical Oncology, Indiana University, Indianapolis, Indiana
| |
Collapse
|
19
|
Itkonen HM, Kantelinen J, Vaara M, Parkkinen S, Schlott B, Grosse F, Nyström M, Syväoja JE, Pospiech H. Human DNA polymerase α interacts with mismatch repair proteins MSH2 and MSH6. FEBS Lett 2016; 590:4233-4241. [DOI: 10.1002/1873-3468.12475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/20/2016] [Accepted: 10/26/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Harri M. Itkonen
- Research group Biochemistry; Leibniz Institute on Aging - Fritz Lipmann Institute; Jena Germany
- Department of Biology; University of Eastern Finland; Joensuu Finland
- Prostate Cancer Research Group; Nordic EMBL Partnership; Centre for Molecular Medicine Norway; University of Oslo; Blindern Norway
| | - Jukka Kantelinen
- Department of Biosciences; Division of Genetics; University of Helsinki; Finland
| | - Markku Vaara
- Department of Biology; University of Eastern Finland; Joensuu Finland
| | - Sinikka Parkkinen
- Department of Biology; University of Eastern Finland; Joensuu Finland
| | - Bernhard Schlott
- Research group Biochemistry; Leibniz Institute on Aging - Fritz Lipmann Institute; Jena Germany
- Service group Proteomics; Leibniz Institute on Aging - Fritz Lipmann Institute; Jena Germany
| | - Frank Grosse
- Research group Biochemistry; Leibniz Institute on Aging - Fritz Lipmann Institute; Jena Germany
| | - Minna Nyström
- Department of Biosciences; Division of Genetics; University of Helsinki; Finland
| | - Juhani E. Syväoja
- Institute of Biomedicine; University of Eastern Finland; Kuopio Finland
| | - Helmut Pospiech
- Research group Biochemistry; Leibniz Institute on Aging - Fritz Lipmann Institute; Jena Germany
- Faculty of Biochemistry and Molecular Medicine; University of Oulu; Finland
| |
Collapse
|