1
|
Spangler RK, Braun K, Ashley GE, van der Does M, Wruck D, Coronado AR, Matthew Ragle J, Iesmantavicius V, Morales Moya LJ, Jonnalagadda K, Partch CL, Großhans H, Ward JD. A conserved chronobiological complex times C. elegans development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593322. [PMID: 38766223 PMCID: PMC11100808 DOI: 10.1101/2024.05.09.593322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The mammalian PAS-domain protein PERIOD (PER) and its C. elegans orthologue LIN-42 have been proposed to constitute an evolutionary link between two distinct, circadian and developmental, timing systems. However, while the function of PER in animal circadian rhythms is well understood molecularly and mechanistically, this is not true for LIN-42's function in timing rhythmic development. Here, using targeted deletions, we find that the LIN-42 PAS domains are dispensable for the protein's function in timing molts. Instead, we observe arrhythmic molts upon deletion of a distinct sequence element, conserved with PER. We show that this element, designated CK1δ-binding domain (CK1BD), mediates stable binding to KIN-20, the C. elegans CK1δ/ε orthologue. We demonstrate that CK1δ phosphorylates LIN-42 and define two conserved helical motifs in the CK1BD, CK1BD-A and CK1BD-B, that have distinct roles in controlling CK1δ-binding and kinase activity in vitro. KIN-20 and the LIN-42 CK1BD are required for proper molting timing in vivo, and loss of LIN-42 binding changes KIN-20 subcellular localization. The interactions mirror the central role of a stable circadian PER-CK1 complex in setting a robust ~24-hour period. Hence, our results establish LIN-42/PER - KIN-20/CK1δ/ε as a functionally conserved signaling module of two distinct chronobiological systems.
Collapse
Affiliation(s)
- Rebecca K Spangler
- Department of Chemistry and Biochemistry, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Kathrin Braun
- Friedrich Miescher Institute for Biomedical Research, 4056 Basel, Switzerland
| | - Guinevere E Ashley
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Marit van der Does
- Friedrich Miescher Institute for Biomedical Research, 4056 Basel, Switzerland
- University of Basel, 4002 Basel, Switzerland
| | - Daniel Wruck
- Department of Chemistry and Biochemistry, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Andrea Ramos Coronado
- Department of Chemistry and Biochemistry, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - James Matthew Ragle
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | - Keya Jonnalagadda
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
- Center for Circadian Biology, University of California-San Diego, La Jolla, CA 92093, USA
- Howard Hughes Medical Institute, University of California-Santa Cruz, Santa Cruz 95064, USA
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, 4056 Basel, Switzerland
- University of Basel, 4002 Basel, Switzerland
| | - Jordan D Ward
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
2
|
Jin H, Li C, Jia Y, Qi Y, Piao W. Revealing the hidden RBP-RNA interactions with RNA modification enzyme-based strategies. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1863. [PMID: 39392204 PMCID: PMC11469752 DOI: 10.1002/wrna.1863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 10/12/2024]
Abstract
RNA-binding proteins (RBPs) are powerful and versatile regulators in living creatures, playing fundamental roles in organismal development, metabolism, and various diseases by the regulation of gene expression at multiple levels. The requirements of deep research on RBP function have promoted the rapid development of RBP-RNA interplay detection methods. Recently, the detection method of fusing RNA modification enzymes (RME) with RBP of interest has become a hot topic. Here, we reviewed RNA modification enzymes in adenosine deaminases that act on RNA (ADAR), terminal nucleotidyl transferase (TENT), and activation-induced cytosine deaminase/ApoB mRNA editing enzyme catalytic polypeptide-like (AID/APOBEC) protein family, regarding the biological function, biochemical activity, and substrate specificity originated from enzyme selves, their domains and partner proteins. In addition, we discussed the RME activity screening system, and the RME mutations with engineered enzyme activity. Furthermore, we provided a systematic overview of the basic principles, advantages, disadvantages, and applications of the RME-based and cross-linking and immunopurification (CLIP)-based RBP target profiling strategies, including targets of RNA-binding proteins identified by editing (TRIBE), RNA tagging, surveying targets by APOBEC-mediated profiling (STAMP), CLIP-seq, and their derivative technology. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Hua Jin
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
- Advanced Technology Research Institute, Beijing Institute of TechnologyJinanPeople's Republic of China
| | - Chong Li
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
| | - Yunxiao Jia
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
| | - Yuxuan Qi
- Faculty of ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Weilan Piao
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
- Advanced Technology Research Institute, Beijing Institute of TechnologyJinanPeople's Republic of China
| |
Collapse
|
3
|
Taniue K, Oda T, Hayashi T, Kamoshida Y, Takeda Y, Sugawara A, Shimoura Y, Negishi L, Nagashima T, Okada-Hatakeyama M, Kawamura Y, Goshima N, Akimitsu N, Akiyama T. LncRNA ZNNT1 induces p53 degradation by interfering with the interaction between p53 and the SART3-USP15 complex. PNAS NEXUS 2023; 2:pgad220. [PMID: 37448957 PMCID: PMC10337854 DOI: 10.1093/pnasnexus/pgad220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/30/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
Mammalian genomes encode large number of long noncoding RNAs (lncRNAs) that play key roles in various biological processes, including proliferation, differentiation, and stem cell pluripotency. Recent studies have addressed that some lncRNAs are dysregulated in human cancers and may play crucial roles in tumor development and progression. Here, we show that the lncRNA ZNNT1 is required for the proliferation and tumorigenicity of colon cancer cells with wild-type p53. ZNNT1 knockdown leads to decreased ubiquitination and stabilization of p53 protein. Moreover, we demonstrate that ZNNT1 needs to interact with SART3 to destabilize p53 and to promote the proliferation and tumorigenicity of colon cancer cells. We further show that SART3 is associated with the ubiquitin-specific peptidase USP15 and that ZNNT1 may induce p53 destabilization by inhibiting this interaction. These results suggest that ZNNT1 interferes with the SART3-USP15 complex-mediated stabilization of p53 protein and thereby plays important roles in the proliferation and tumorigenicity of colon cancer cells. Our findings suggest that ZNNT1 may be a promising molecular target for the therapy of colon cancer.
Collapse
Affiliation(s)
- Kenzui Taniue
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Takeaki Oda
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Tomoatsu Hayashi
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yuki Kamoshida
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yasuko Takeda
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Anzu Sugawara
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yuki Shimoura
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Lumi Negishi
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Takeshi Nagashima
- Cellular Systems Biology Team, RIKEN Genome Sciences Center (GSC), Kanagawa 230-0045, Japan
- Present address: SCC Project Department, SRL Inc., Shizuoka 4111-8777, Japan
| | - Mariko Okada-Hatakeyama
- Cellular Systems Biology Team, RIKEN Genome Sciences Center (GSC), Kanagawa 230-0045, Japan
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Yoshifumi Kawamura
- Research and Development Department, Fukushima Translational Research Foundation, Tokyo 103-0023, Japan
| | - Naoki Goshima
- Department of Human Science, Musashino University, Tokyo 135-8181, Japan
| | | | | |
Collapse
|
4
|
Klimešová K, Petržílková H, Bařinka C, Staněk D. SART3 associates with a post-splicing complex. J Cell Sci 2023; 136:jcs260380. [PMID: 36620952 DOI: 10.1242/jcs.260380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/10/2022] [Indexed: 01/10/2023] Open
Abstract
SART3 is a multifunctional protein that acts in several steps of gene expression, including assembly and recycling of the spliceosomal U4/U6 small nuclear ribonucleoprotein particle (snRNP). In this work, we provide evidence that SART3 associates via its N-terminal HAT domain with the 12S U2 snRNP. Further analysis showed that SART3 associates with the post-splicing complex containing U2 and U5 snRNP components. In addition, we observed an interaction between SART3 and the RNA helicase DHX15, which disassembles post-splicing complexes. Based on our data, we propose a model that SART3 associates via its N-terminal HAT domain with the post-splicing complex, where it interacts with U6 snRNA to protect it and to initiate U6 snRNA recycling before a next round of splicing.
Collapse
MESH Headings
- RNA Splicing/genetics
- Spliceosomes/genetics
- Spliceosomes/metabolism
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- Ribonucleoprotein, U4-U6 Small Nuclear/genetics
- Ribonucleoprotein, U4-U6 Small Nuclear/metabolism
- Ribonucleoprotein, U5 Small Nuclear/genetics
- Ribonucleoprotein, U5 Small Nuclear/metabolism
- Ribonucleoprotein, U2 Small Nuclear/genetics
- Ribonucleoprotein, U2 Small Nuclear/metabolism
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
Collapse
Affiliation(s)
- Klára Klimešová
- Department of RNA Biology, Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Hana Petržílková
- Department of RNA Biology, Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Cyril Bařinka
- Laboratory of Structural Biology, Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague, Czech Republic
| | - David Staněk
- Department of RNA Biology, Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| |
Collapse
|
5
|
Timani KA, Rezaei S, Whitmill A, Liu Y, He JJ. Tip110/SART3-Mediated Regulation of NF-κB Activity by Targeting IκBα Stability Through USP15. Front Oncol 2022; 12:843157. [PMID: 35530338 PMCID: PMC9070983 DOI: 10.3389/fonc.2022.843157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
To date, there are a small number of nuclear-restricted proteins that have been reported to play a role in NF-κB signaling. However, the exact molecular mechanisms are not fully understood. Tip110 is a nuclear protein that has been implicated in multiple biological processes. In a previous study, we have shown that Tip110 interacts with oncogenic ubiquitin specific peptidase 15 (USP15) and that ectopic expression of Tip110 leads to re-distribution of USP15 from the cytoplasm to the nucleus. USP15 is known to regulate NF-κB activity through several mechanisms including modulation of IκBα ubiquitination. These findings prompted us to investigate the role of Tip110 in the NF-κB signaling pathway. We showed that Tip110 regulates NF-κB activity. The expression of Tip110 potentiated TNF-α-induced NF-κB activity and deletion of the nuclear localization domain in Tip110 abrogated this potentiation activity. We then demonstrated that Tip110 altered IκBα phosphorylation and stability in the presence of TNF-α. Moreover, we found that Tip110 and USP15 opposingly regulated NF-κB activity by targeting IκBα protein stability. We further showed that Tip110 altered the expression of NF-κB-dependent proinflammatory cytokines. Lastly, by using whole-transcriptome analysis of Tip110 knockout mouse embryonic stem cells, we found several NF-κB and NF-κB-related pathways were dysregulated. Taken together, these findings add to the nuclear regulation of NF-κB activity by Tip110 through IκBα stabilization and provide new evidence to support the role of Tip110 in controlling cellular processes such as cancers that involve proinflammatory responses.
Collapse
Affiliation(s)
- Khalid Amine Timani
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, United States
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, United States
- *Correspondence: Khalid Amine Timani,
| | - Sahar Rezaei
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, United States
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, United States
| | - Amanda Whitmill
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Ying Liu
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, United States
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, United States
| | - Johnny J. He
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, United States
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, United States
| |
Collapse
|
6
|
Li M, Yu H, Liu K, Yang W, Zhou B, Gan L, Li S, Zhang C, Yu B. Serrate-Associated Protein 1, a splicing-related protein, promotes miRNA biogenesis in Arabidopsis. THE NEW PHYTOLOGIST 2021; 232:1959-1973. [PMID: 34449907 PMCID: PMC8568667 DOI: 10.1111/nph.17691] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/20/2021] [Indexed: 06/02/2023]
Abstract
MicroRNAs (miRNAs) are essential regulators of gene expression in metazoans and plants. In plants, most miRNAs are generated from primary miRNA transcripts (pri-miRNAs), which are processed by the Dicer-like 1 (DCL1) complex along with accessory proteins. Serrate-Associated Protein 1 (SEAP1), a conserved splicing-related protein, has been studied in human and yeast. However, the functions of SEAP1 in plants remain elusive. Lack of SEAP1 results in embryo lethality and knockdown of SEAP1 by an artificial miRNA (amiRSEAP1 ) causes pleiotropic developmental defects and reduction in miRNA accumulation. SEAP1 associates with the DCL1 complex, and may promote the interaction of the DCL1 complexes with pri-miRNAs. SEAP1 also enhances pri-miRNA accumulation, but does not affect pri-miRNA transcription, suggesting it may indirectly or directly stabilize pri-miRNAs. In addition, SEAP1 affects the splicing of some pri-miRNAs and intron retention of messenger RNAs at global levels. Our findings uncover both conserved and novel functions of SEAP1 in plants. Besides the role as a splicing factor, SEPA1 may promote miRNA biogenesis by positively modulating pri-miRNA splicing, processing and/or stability.
Collapse
Affiliation(s)
- Mu Li
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588–0666, USA
| | - Huihui Yu
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588–0666, USA
| | - Kan Liu
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588–0666, USA
| | - Weilong Yang
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588–0666, USA
| | - Bangjun Zhou
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588–0666, USA
| | - Lu Gan
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588–0666, USA
| | - Shengjun Li
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588–0666, USA
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Institute of Energy Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Chi Zhang
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588–0666, USA
| | - Bin Yu
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588–0666, USA
| |
Collapse
|
7
|
Sivasankara Pillai S, Dandurand LM. Potato Cyst Nematode Egg Viability Assessment and Preparasitic Juvenile Screening Using a Large Particle Flow Cytometer and Sorter. PHYTOPATHOLOGY 2021; 111:713-719. [PMID: 32900268 DOI: 10.1094/phyto-06-20-0255-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Potato cyst nematode (PCN) cysts consist of heterogenous populations of eggs, juveniles, and eggshells that make manual sorting of individual life stages cumbersome. The number of viable PCN eggs is a major determinant of crop damage. An accurate high-throughput PCN egg viability assay is useful for developing effective management and eradication plans. In this study, we present a method for rapid and precise enumeration and sorting of PCN eggs and juveniles, along with an egg viability assessment by staining eggs with the fluorescent stain, acridine orange, and sorting with the Complex Object Parametric Analyzer and Sorter (COPAS) system, a large particle flow cytometer. Both size sorting and fluorescent sorting capabilities of the COPAS were explored. By using the COPAS, sorting efficiency for eggs and preparasitic second-stage juveniles (J2s) was 97.6 and 97.2%, respectively, with 99% recovery at a flow rate of 15 events/s. Purity of sorted live and dead eggs was 95.5 and 94.1%, respectively. Sorting of J2s by size indicated that 15 to 16.4% of Globodera ellingtonae or G. pallida had an average body length of 436.1 ± 3.4 µm compared with an average size of 512.9 ± 4.4 µm for the majority of the J2 population for both species. A red autofluorescing J2 population was also identified through sorting. Sorting of eggs by flow cytometry did not significantly affect hatching (55.1 ± 1.2 and 53.9 ± 1.6%, respectively, for sorted or nonsorted eggs) or juvenile motility (91.3 ± 1.0 or 90.1 ± 1.1%, respectively), thus confirming that the method does not impair the biological activity of the nematode.
Collapse
Affiliation(s)
| | - Louise-Marie Dandurand
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844
| |
Collapse
|
8
|
Liudkovska V, Dziembowski A. Functions and mechanisms of RNA tailing by metazoan terminal nucleotidyltransferases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1622. [PMID: 33145994 PMCID: PMC7988573 DOI: 10.1002/wrna.1622] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/28/2022]
Abstract
Termini often determine the fate of RNA molecules. In recent years, 3' ends of almost all classes of RNA species have been shown to acquire nontemplated nucleotides that are added by terminal nucleotidyltransferases (TENTs). The best-described role of 3' tailing is the bulk polyadenylation of messenger RNAs in the cell nucleus that is catalyzed by canonical poly(A) polymerases (PAPs). However, many other enzymes that add adenosines, uridines, or even more complex combinations of nucleotides have recently been described. This review focuses on metazoan TENTs, which are either noncanonical PAPs or terminal uridylyltransferases with varying processivity. These enzymes regulate RNA stability and RNA functions and are crucial in early development, gamete production, and somatic tissues. TENTs regulate gene expression at the posttranscriptional level, participate in the maturation of many transcripts, and protect cells against viral invasion and the transposition of repetitive sequences. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > 3' End Processing RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Vladyslava Liudkovska
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Andrzej Dziembowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
9
|
Mattout A, Gaidatzis D, Kalck V, Gasser SM. A Nuclear RNA Degradation Pathway Helps Silence Polycomb/H3K27me3-Marked Loci in Caenorhabditis elegans. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:141-153. [PMID: 32350050 DOI: 10.1101/sqb.2019.84.040238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In fission yeast and plants, RNA-processing pathways contribute to heterochromatin silencing, complementing well-characterized pathways of transcriptional repression. However, it was unclear whether this additional level of regulation occurs in metazoans. In a genetic screen, we uncovered a pathway of silencing in Caenorhabditis elegans somatic cells, whereby the highly conserved, RNA-binding complex LSM2-8 contributes to the repression of heterochromatic reporters and endogenous genes bearing the Polycomb mark H3K27me3. Importantly, the LSM2-8 complex works cooperatively with a 5'-3' exoribonuclease, XRN-2, and disruption of the pathway leads to selective mRNA stabilization. LSM2-8 complex-mediated RNA degradation does not target nor depend on H3K9me2/me3, unlike previously described pathways of heterochromatic RNA degradation. Up-regulation of lsm-8-sensitive loci coincides with a localized drop in H3K27me3 levels in the lsm-8 mutant. Put into the context of epigenetic control of gene expression, it appears that targeted RNA degradation helps repress a subset of H3K27me3-marked genes, revealing an unappreciated layer of regulation for facultative heterochromatin in animals.
Collapse
Affiliation(s)
- Anna Mattout
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Dimos Gaidatzis
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Véronique Kalck
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.,University of Basel, Faculty of Science, CH-4056 Basel, Switzerland
| |
Collapse
|
10
|
Preston MA, Porter DF, Chen F, Buter N, Lapointe CP, Keles S, Kimble J, Wickens M. Unbiased screen of RNA tailing activities reveals a poly(UG) polymerase. Nat Methods 2019; 16:437-445. [PMID: 30988468 PMCID: PMC6613791 DOI: 10.1038/s41592-019-0370-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/24/2019] [Accepted: 03/05/2019] [Indexed: 12/22/2022]
Abstract
Ribonucleotidyl transferases (rNTases) add untemplated ribonucleotides to diverse RNAs. We have developed TRAID-seq, a screening strategy in Saccharomyces cerevisiae to identify sequences added to a reporter RNA at single-nucleotide resolution by overexpressed candidate enzymes from different organisms. The rNTase activities of 22 previously unexplored enzymes were determined. In addition to poly(A)- and poly(U)-adding enzymes, we identified a cytidine-adding enzyme that is likely to be part of a two-enzyme system that adds CCA to tRNAs in a eukaryote; a nucleotidyl transferase that adds nucleotides to RNA without apparent nucleotide preference; and a poly(UG) polymerase, Caenorhabditis elegans MUT-2, that adds alternating uridine and guanosine nucleotides to form poly(UG) tails. MUT-2 is known to be required for certain forms of RNA silencing, and mutants of the enzyme that result in defective silencing did not add poly(UG) tails in our assay. We propose that MUT-2 poly(UG) polymerase activity is required to promote genome integrity and RNA silencing.
Collapse
Affiliation(s)
- Melanie A Preston
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Promega Corporation, Madison, WI, USA
| | - Douglas F Porter
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Program in Epithelial Biology, Stanford University Medical School, Stanford, CA, USA
| | - Fan Chen
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA
| | - Natascha Buter
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Promega Corporation, Madison, WI, USA
| | - Christopher P Lapointe
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
| | - Sunduz Keles
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
11
|
Aeschimann F, Neagu A, Rausch M, Großhans H. let-7 coordinates the transition to adulthood through a single primary and four secondary targets. Life Sci Alliance 2019; 2:e201900335. [PMID: 30910805 PMCID: PMC6435043 DOI: 10.26508/lsa.201900335] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 12/21/2022] Open
Abstract
The juvenile-to-adult (J/A) transition, or puberty, is a period of extensive changes of animal body morphology and function. The onset of puberty is genetically controlled, and the let-7 miRNA temporally regulates J/A transition events in nematodes and mammals. Here, we uncover the targets and downstream pathways through which Caenorhabditis elegans let-7 controls male and female sexual organ morphogenesis and skin progenitor cell fates. We find that let-7 directs all three processes by silencing a single target, the post-transcriptional regulator lin-41 In turn, the RNA-binding protein LIN41/TRIM71 regulates these processes by silencing only four target mRNAs. Thus, by silencing LIN41, let-7 activates LIN-29a and MAB-10 (an early growth response-type transcription factor and its NAB1/2-orthologous cofactor, respectively) to terminate progenitor cell self-renewal and to promote vulval integrity. By contrast, let-7 promotes development of the male sexual organ by up-regulating DMD-3 and MAB-3, two Doublesex/MAB-3 domain-containing transcription factors. Our results provide mechanistic insight into how a linear chain of post-transcriptional regulators diverges in the control of a small set of transcriptional regulators to achieve a coordinated J/A transition.
Collapse
Affiliation(s)
- Florian Aeschimann
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Anca Neagu
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Magdalene Rausch
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
12
|
Li Y, Maine EM. The balance of poly(U) polymerase activity ensures germline identity, survival and development in Caenorhabditis elegans. Development 2018; 145:145/19/dev165944. [PMID: 30305273 DOI: 10.1242/dev.165944] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022]
Abstract
Poly(U) polymerases (PUPs) catalyze 3' uridylation of mRNAs and small RNAs, a modification often correlating with decreased RNA stability. We have investigated the importance of three proteins with in vitro PUP activity, PUP-1/CDE-1, PUP-2 and PUP-3, in C. elegans germline development. Genetic analysis indicates that PUP-1/CDE-1 and PUP-2 are developmentally redundant under conditions of temperature stress during which they ensure germline viability and development. Multiple lines of evidence indicate that pup-1/-2 double mutant germ cells fail to maintain their identity as distinct from soma. Consistent with phenotypic data, PUP-1 and PUP-2 are expressed in embryonic germ cell precursors and throughout germline development. The developmental importance of PUP activity is presumably in regulating gene expression as both a direct and indirect consequence of modifying target RNAs. PUP-3 is significantly overexpressed in the pup-1/-2 germline, and loss of pup-3 function partially suppresses pup-1/-2 germline defects. We conclude that one major function of PUP-1/-2 is to limit PUP-3 expression. Overall, the balance of PUP-1, PUP-2 and PUP-3 activities appears to ensure proper germline development.
Collapse
Affiliation(s)
- Yini Li
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - Eleanor M Maine
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
13
|
Didychuk AL, Butcher SE, Brow DA. The life of U6 small nuclear RNA, from cradle to grave. RNA (NEW YORK, N.Y.) 2018; 24:437-460. [PMID: 29367453 PMCID: PMC5855946 DOI: 10.1261/rna.065136.117] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Removal of introns from precursor messenger RNA (pre-mRNA) and some noncoding transcripts is an essential step in eukaryotic gene expression. In the nucleus, this process of RNA splicing is carried out by the spliceosome, a multi-megaDalton macromolecular machine whose core components are conserved from yeast to humans. In addition to many proteins, the spliceosome contains five uridine-rich small nuclear RNAs (snRNAs) that undergo an elaborate series of conformational changes to correctly recognize the splice sites and catalyze intron removal. Decades of biochemical and genetic data, along with recent cryo-EM structures, unequivocally demonstrate that U6 snRNA forms much of the catalytic core of the spliceosome and is highly dynamic, interacting with three snRNAs, the pre-mRNA substrate, and >25 protein partners throughout the splicing cycle. This review summarizes the current state of knowledge on how U6 snRNA is synthesized, modified, incorporated into snRNPs and spliceosomes, recycled, and degraded.
Collapse
Affiliation(s)
- Allison L Didychuk
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Samuel E Butcher
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - David A Brow
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
| |
Collapse
|
14
|
Hernando-Rodríguez B, Erinjeri AP, Rodríguez-Palero MJ, Millar V, González-Hernández S, Olmedo M, Schulze B, Baumeister R, Muñoz MJ, Askjaer P, Artal-Sanz M. Combined flow cytometry and high-throughput image analysis for the study of essential genes in Caenorhabditis elegans. BMC Biol 2018; 16:36. [PMID: 29598825 PMCID: PMC5875015 DOI: 10.1186/s12915-018-0496-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/06/2018] [Indexed: 12/28/2022] Open
Abstract
Background Advances in automated image-based microscopy platforms coupled with high-throughput liquid workflows have facilitated the design of large-scale screens utilising multicellular model organisms such as Caenorhabditis elegans to identify genetic interactions, therapeutic drugs or disease modifiers. However, the analysis of essential genes has lagged behind because lethal or sterile mutations pose a bottleneck for high-throughput approaches, and a systematic way to analyse genetic interactions of essential genes in multicellular organisms has been lacking. Results In C. elegans, non-conditional lethal mutations can be maintained in heterozygosity using chromosome balancers, commonly expressing green fluorescent protein (GFP) in the pharynx. However, gene expression or function is typically monitored by the use of fluorescent reporters marked with the same fluorophore, presenting a challenge to sort worm populations of interest, particularly at early larval stages. Here, we develop a sorting strategy capable of selecting homozygous mutants carrying a GFP stress reporter from GFP-balanced animals at the second larval stage. Because sorting is not completely error-free, we develop an automated high-throughput image analysis protocol that identifies and discards animals carrying the chromosome balancer. We demonstrate the experimental usefulness of combining sorting of homozygous lethal mutants and automated image analysis in a functional genomic RNA interference (RNAi) screen for genes that genetically interact with mitochondrial prohibitin (PHB). Lack of PHB results in embryonic lethality, while homozygous PHB deletion mutants develop into sterile adults due to maternal contribution and strongly induce the mitochondrial unfolded protein response (UPRmt). In a chromosome-wide RNAi screen for C. elegans genes having human orthologues, we uncover both known and new PHB genetic interactors affecting the UPRmt and growth. Conclusions The method presented here allows the study of balanced lethal mutations in a high-throughput manner. It can be easily adapted depending on the user’s requirements and should serve as a useful resource for the C. elegans community for probing new biological aspects of essential nematode genes as well as the generation of more comprehensive genetic networks. Electronic supplementary material The online version of this article (10.1186/s12915-018-0496-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Blanca Hernando-Rodríguez
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Annmary Paul Erinjeri
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - María Jesús Rodríguez-Palero
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Val Millar
- GE Healthcare Life Sciences, Maynard Centre, Forest Farm, Whitchurch, Cardiff, UK.,Present address: Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sara González-Hernández
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain.,Present address: Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - María Olmedo
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain.,Present address: Department of Genetics, University of Seville, Seville, Spain
| | - Bettina Schulze
- Centre for Biological Signalling Studies (BIOSS), Laboratory for Bioinformatics and Molecular Genetics, Faculty of Biology, and ZBMZ Center for Biochemistry and Molecular Cell Biology (Faculty of Medicine), Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Ralf Baumeister
- Centre for Biological Signalling Studies (BIOSS), Laboratory for Bioinformatics and Molecular Genetics, Faculty of Biology, and ZBMZ Center for Biochemistry and Molecular Cell Biology (Faculty of Medicine), Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Manuel J Muñoz
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Peter Askjaer
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Seville, Spain
| | - Marta Artal-Sanz
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Seville, Spain. .,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain.
| |
Collapse
|
15
|
De Almeida C, Scheer H, Zuber H, Gagliardi D. RNA uridylation: a key posttranscriptional modification shaping the coding and noncoding transcriptome. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [PMID: 28984054 DOI: 10.1002/wrna.1440] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 12/27/2022]
Abstract
RNA uridylation is a potent and widespread posttranscriptional regulator of gene expression. RNA uridylation has been detected in a range of eukaryotes including trypanosomes, animals, plants, and fungi, but with the noticeable exception of budding yeast. Virtually all classes of eukaryotic RNAs can be uridylated and uridylation can also tag viral RNAs. The untemplated addition of a few uridines at the 3' end of a transcript can have a decisive impact on RNA's fate. In rare instances, uridylation is an intrinsic step in the maturation of noncoding RNAs like for the U6 spliceosomal RNA or mitochondrial guide RNAs in trypanosomes. Uridylation can also switch specific miRNA precursors from a degradative to a processing mode. This switch depends on the number of uridines added which is regulated by the cellular context. Yet, the typical consequence of uridylation on mature noncoding RNAs or their precursors is to accelerate decay. Importantly, mRNAs are also tagged by uridylation. In fact, the advent of novel high throughput sequencing protocols has recently revealed the pervasiveness of mRNA uridylation, from plants to humans. As for noncoding RNAs, the main function to date for mRNA uridylation is to promote degradation. Yet, additional roles begin to be ascribed to U-tailing such as the control of mRNA deadenylation, translation control and possibly storage. All these new findings illustrate that we are just beginning to appreciate the diversity of roles played by RNA uridylation and its full temporal and spatial implication in regulating gene expression. WIREs RNA 2018, 9:e1440. doi: 10.1002/wrna.1440 This article is categorized under: RNA Processing > 3' End Processing RNA Processing > RNA Editing and Modification RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms.
Collapse
Affiliation(s)
- Caroline De Almeida
- Institut de Biologie Moleculaire des Plantes (IBMP), CNRS, University of Strasbourg, Strasbourg, France
| | - Hélène Scheer
- Institut de Biologie Moleculaire des Plantes (IBMP), CNRS, University of Strasbourg, Strasbourg, France
| | - Hélène Zuber
- Institut de Biologie Moleculaire des Plantes (IBMP), CNRS, University of Strasbourg, Strasbourg, France
| | - Dominique Gagliardi
- Institut de Biologie Moleculaire des Plantes (IBMP), CNRS, University of Strasbourg, Strasbourg, France
| |
Collapse
|
16
|
Philippe L, Pandarakalam GC, Fasimoye R, Harrison N, Connolly B, Pettitt J, Müller B. An in vivo genetic screen for genes involved in spliced leader trans-splicing indicates a crucial role for continuous de novo spliced leader RNP assembly. Nucleic Acids Res 2017; 45:8474-8483. [PMID: 28582530 PMCID: PMC5737717 DOI: 10.1093/nar/gkx500] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/23/2017] [Accepted: 05/26/2017] [Indexed: 11/13/2022] Open
Abstract
Spliced leader (SL) trans-splicing is a critical element of gene expression in a number of eukaryotic groups. This process is arguably best understood in nematodes, where biochemical and molecular studies in Caenorhabditis elegans and Ascaris suum have identified key steps and factors involved. Despite this, the precise details of SL trans-splicing have yet to be elucidated. In part, this is because the systematic identification of the molecules involved has not previously been possible due to the lack of a specific phenotype associated with defects in this process. We present here a novel GFP-based reporter assay that can monitor SL1 trans-splicing in living C. elegans. Using this assay, we have identified mutants in sna-1 that are defective in SL trans-splicing, and demonstrate that reducing function of SNA-1, SNA-2 and SUT-1, proteins that associate with SL1 RNA and related SmY RNAs, impairs SL trans-splicing. We further demonstrate that the Sm proteins and pICln, SMN and Gemin5, which are involved in small nuclear ribonucleoprotein assembly, have an important role in SL trans-splicing. Taken together these results provide the first in vivo evidence for proteins involved in SL trans-splicing, and indicate that continuous replacement of SL ribonucleoproteins consumed during trans-splicing reactions is essential for effective trans-splicing.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Base Sequence
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans/metabolism
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Helminth Proteins/genetics
- Helminth Proteins/metabolism
- Microscopy, Fluorescence
- RNA Interference
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA, Helminth/genetics
- RNA, Helminth/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Spliced Leader/genetics
- RNA, Spliced Leader/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Ribonucleoproteins/genetics
- Ribonucleoproteins/metabolism
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Trans-Splicing
Collapse
Affiliation(s)
- Lucas Philippe
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - George C. Pandarakalam
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Rotimi Fasimoye
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Neale Harrison
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Bernadette Connolly
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Jonathan Pettitt
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Berndt Müller
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
17
|
Whitmill A, Liu Y, Timani KA, Niu Y, He JJ. Tip110 Deletion Impaired Embryonic and Stem Cell Development Involving Downregulation of Stem Cell Factors Nanog, Oct4, and Sox2. Stem Cells 2017; 35:1674-1686. [PMID: 28436127 DOI: 10.1002/stem.2631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 03/09/2017] [Accepted: 03/21/2017] [Indexed: 12/21/2022]
Abstract
HIV-1 Tat-interacting protein of 110 kDa, Tip110, plays important roles in multiple biological processes. In this study, we aimed to characterize the function of Tip110 in embryonic development. Transgenic mice lacking expression of a functional Tip110 gene (Tip110-/- ) died post-implantation, and Tip110-/- embryos exhibited developmental arrest between 8.5 and 9.5 days post coitum. However, in vitro cultures of Tip110-/- embryos showed that Tip110 loss did not impair embryo growth from the zygote to the blastocyst. Extended in vitro cultures of Tip110-/- blastocysts showed that Tip110 loss impaired both blastocyst outgrowth and self-renewal and survival of blastocyst-derived embryonic stem cells. Microarray analysis of Tip110-/- embryonic stem cells revealed that Tip110 loss altered differentiation, pluripotency, and cycling of embryonic stem cells and was associated with downregulation of several major stem cell factors including Nanog, Oct4, and Sox2 through a complex network of signaling pathways. Taken together, these findings document for the first time the lethal effects of complete loss of Tip110 on mammalian embryonic development and suggest that Tip110 is an important regulator of not only embryonic development but also stem cell factors. Stem Cells 2017;35:1674-1686.
Collapse
Affiliation(s)
- Amanda Whitmill
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Ying Liu
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Khalid Amine Timani
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Yinghua Niu
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Johnny J He
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
18
|
LIN41 Post-transcriptionally Silences mRNAs by Two Distinct and Position-Dependent Mechanisms. Mol Cell 2017; 65:476-489.e4. [DOI: 10.1016/j.molcel.2016.12.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/11/2016] [Accepted: 12/13/2016] [Indexed: 12/14/2022]
|
19
|
Abstract
Spliceosomal snRNPs are complex particles that proceed through a fascinating maturation pathway. Several steps of this pathway are closely linked to nuclear non-membrane structures called Cajal bodies. In this review, I summarize the last 20 y of research in this field. I primarily focus on snRNP biogenesis, specifically on the steps that involve Cajal bodies. I also evaluate the contribution of the Cajal body in snRNP quality control and discuss the role of snRNPs in Cajal body formation.
Collapse
Affiliation(s)
- David Staněk
- a Institute of Molecular Genetics, Czech Academy of Sciences , Prague , Czech Republic
| |
Collapse
|
20
|
Whitmill A, Timani KA, Liu Y, He JJ. Tip110: Physical properties, primary structure, and biological functions. Life Sci 2016; 149:79-95. [PMID: 26896687 DOI: 10.1016/j.lfs.2016.02.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 12/11/2022]
Abstract
HIV-1 Tat-interacting protein of 110kDa (Tip110), also referred to as squamous cell carcinoma antigen recognized by T cells 3 (Sart3), p110 or p110(nrb), was initially identified as a cDNA clone (KIAA0156) without annotated functions. Over the past twenty years, several functions have been attributed to this protein. The proposed biological functions include roles for Tip110 in pre-mRNA splicing, gene transcription, stem cell biology, and development. Dysregulation of Tip110 is also a contributing factor in the development of cancer and other human diseases. It is clear that our understanding of this protein is rapidly evolving. In this review, we aimed to provide a summary of all the existing literature on this gene/protein and its proposed biological functions.
Collapse
Affiliation(s)
- Amanda Whitmill
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Khalid Amine Timani
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Ying Liu
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Johnny J He
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States.
| |
Collapse
|
21
|
Haas G, Cetin S, Messmer M, Chane-Woon-Ming B, Terenzi O, Chicher J, Kuhn L, Hammann P, Pfeffer S. Identification of factors involved in target RNA-directed microRNA degradation. Nucleic Acids Res 2016; 44:2873-87. [PMID: 26809675 PMCID: PMC4824107 DOI: 10.1093/nar/gkw040] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 01/13/2016] [Indexed: 12/18/2022] Open
Abstract
The mechanism by which micro (mi)RNAs control their target gene expression is now well understood. It is however less clear how the level of miRNAs themselves is regulated. Under specific conditions, abundant and highly complementary target RNA can trigger miRNA degradation by a mechanism involving nucleotide addition and exonucleolytic degradation. One such mechanism has been previously observed to occur naturally during viral infection. To date, the molecular details of this phenomenon are not known. We report here that both the degree of complementarity and the ratio of miRNA/target abundance are crucial for the efficient decay of the small RNA. Using a proteomic approach based on the transfection of biotinylated antimiRNA oligonucleotides, we set to identify the factors involved in target-mediated miRNA degradation. Among the retrieved proteins, we identified members of the RNA-induced silencing complex, but also RNA modifying and degradation enzymes. We further validate and characterize the importance of one of these, the Perlman Syndrome 3′-5′ exonuclease DIS3L2. We show that this protein interacts with Argonaute 2 and functionally validate its role in target-directed miRNA degradation both by artificial targets and in the context of mouse cytomegalovirus infection.
Collapse
Affiliation(s)
- Gabrielle Haas
- Architecture and Reactivity of RNA, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| | - Semih Cetin
- Architecture and Reactivity of RNA, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| | - Mélanie Messmer
- Architecture and Reactivity of RNA, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| | - Béatrice Chane-Woon-Ming
- Architecture and Reactivity of RNA, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| | - Olivier Terenzi
- Architecture and Reactivity of RNA, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| | - Johana Chicher
- Architecture and Reactivity of RNA, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| | - Lauriane Kuhn
- Architecture and Reactivity of RNA, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| | - Philippe Hammann
- Architecture and Reactivity of RNA, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| | - Sébastien Pfeffer
- Architecture and Reactivity of RNA, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| |
Collapse
|
22
|
Amiel AR, Johnston HT, Nedoncelle K, Warner JF, Ferreira S, Röttinger E. Characterization of Morphological and Cellular Events Underlying Oral Regeneration in the Sea Anemone, Nematostella vectensis. Int J Mol Sci 2015; 16:28449-71. [PMID: 26633371 PMCID: PMC4691047 DOI: 10.3390/ijms161226100] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/30/2015] [Accepted: 11/06/2015] [Indexed: 01/05/2023] Open
Abstract
Cnidarians, the extant sister group to bilateria, are well known for their impressive regenerative capacity. The sea anemone Nematostella vectensis is a well-established system for the study of development and evolution that is receiving increased attention for its regenerative capacity. Nematostella is able to regrow missing body parts within five to six days after its bisection, yet studies describing the morphological, cellular, and molecular events underlying this process are sparse and very heterogeneous in their experimental approaches. In this study, we lay down the basic framework to study oral regeneration in Nematostella vectensis. Using various imaging and staining techniques we characterize in detail the morphological, cellular, and global molecular events that define specific landmarks of this process. Furthermore, we describe in vivo assays to evaluate wound healing success and the initiation of pharynx reformation. Using our described landmarks for regeneration and in vivo assays, we analyze the effects of perturbing either transcription or cellular proliferation on the regenerative process. Interestingly, neither one of these experimental perturbations has major effects on wound closure, although they slightly delay or partially block it. We further show that while the inhibition of transcription blocks regeneration in a very early step, inhibiting cellular proliferation only affects later events such as pharynx reformation and tentacle elongation.
Collapse
Affiliation(s)
- Aldine R Amiel
- Institute for Research on Cancer and Aging, Université de Nice Sophia-Antipolis UMR 7284, INSERM U1081, CNRS UMR 7284, Nice 06107 Cedex 02, France.
| | - Hereroa T Johnston
- Institute for Research on Cancer and Aging, Université de Nice Sophia-Antipolis UMR 7284, INSERM U1081, CNRS UMR 7284, Nice 06107 Cedex 02, France.
| | - Karine Nedoncelle
- Institute for Research on Cancer and Aging, Université de Nice Sophia-Antipolis UMR 7284, INSERM U1081, CNRS UMR 7284, Nice 06107 Cedex 02, France.
| | - Jacob F Warner
- Institute for Research on Cancer and Aging, Université de Nice Sophia-Antipolis UMR 7284, INSERM U1081, CNRS UMR 7284, Nice 06107 Cedex 02, France.
| | - Solène Ferreira
- Institute for Research on Cancer and Aging, Université de Nice Sophia-Antipolis UMR 7284, INSERM U1081, CNRS UMR 7284, Nice 06107 Cedex 02, France.
| | - Eric Röttinger
- Institute for Research on Cancer and Aging, Université de Nice Sophia-Antipolis UMR 7284, INSERM U1081, CNRS UMR 7284, Nice 06107 Cedex 02, France.
| |
Collapse
|