1
|
Torrillo P, Swigon D. Mechanical causes and implications of repetitive DNA motifs. Math Biosci 2025; 379:109343. [PMID: 39571787 DOI: 10.1016/j.mbs.2024.109343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 12/13/2024]
Abstract
Experimental research suggests that local patterns in DNA sequences can result in stiffer or more curved structures, potentially impacting chromatin formation, transcription regulation, and other processes. However, the effect of sequence variation on DNA geometry and mechanics remains relatively underexplored. Using rigid base pair models to aid rapid computation, we investigated the sample space of 100 bp DNA sequences to identify mechanical extrema based on metrics such as static persistence length, global bend, or angular deviation. Our results show that repetitive DNA motifs are overrepresented in these extrema. We identified specific extremal motifs and demonstrated that their geometric and mechanical properties significantly differ from standard DNA through hierarchical clustering. We provide a mathematical argument supporting the presence of DNA repeats in extremizing sequences. Finally, we find that repetitive DNA motifs with extreme mechanical properties are prevalent in genetic databases and hypothesize that their unique mechanical properties could contribute to this abundance.
Collapse
Affiliation(s)
- Paul Torrillo
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - David Swigon
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA; Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Serres S, Tardin C, Salomé L. Digital One-Step Competitive Detection of a Small Molecule in Synthetic and Environmental Waters. Anal Chem 2024; 96:15521-15525. [PMID: 39284000 DOI: 10.1021/acs.analchem.4c03828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Optical methods for single-molecule analysis hold the promise of accurate, sensitive, and rapid detection of target molecules. Here, we demonstrate the efficiency of such an approach for the competitive detection of small molecules in water. Our biosensing method is based on a combination of a single-DNA biochip for the parallelization of tethered particle motion real-time measurements with antibodies and modified targets as molecular competitors. The antibodies are coupled to the particles tethered to the surface by a long DNA bearing in its middle the molecular competitor bound to the antibodies. Competitive target binding leads to a detectable conformational change of the DNA tethers from looped to unlooped in proportions related to the target concentration. We thus managed to detect fluorescein, chosen as a model of a target molecule, in freshwater of various qualities, from solutions prepared with ultrapure water to more complex matrices such as river water and wastewater treatment plant effluent samples. Similar dose-response curves were obtained under these various conditions in a wide range of concentrations from nanomolar to micromolar with a limit of detection around 2 nM.
Collapse
Affiliation(s)
- Sandra Serres
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse 31077, France
| | - Catherine Tardin
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse 31077, France
| | - Laurence Salomé
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse 31077, France
| |
Collapse
|
3
|
Stellwagen E, Stellwagen NC. Monovalent cation localization in DNA A-tracts with different sequences. Electrophoresis 2023; 44:1414-1422. [PMID: 37354056 DOI: 10.1002/elps.202300063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/26/2023]
Abstract
The free solution mobilities of 26-base pair (bp) DNA oligomers containing A-tracts with and without internal ApT steps have been measured by capillary electrophoresis, using the mobility of a 26-bp random-sequence oligomer as a reference. The background electrolytes (BGEs) contained mixtures of Li+ and tetrapropylammonium (TPA+ ) ions, keeping the total cation concentration constant at 0.3 M. The mobility ratios equaled 1.00 in 0.3 M TPA+ , indicating that the A-tract and reference oligomers had the same B-form conformation in this BGE. With increasing [Li+ ], the mobility ratio decreased as Li+ ions became localized in the A-tract minor groove, suggesting that the A-tract was now in the B* conformation. If the A-tract contained an internal ApT step and the oligomer contained less than ∼50% A + T, the mobility ratio reached a reduced plateau value that remained constant as the [Li+ ] increased to 0.3 M. However, for A-tracts without an internal ApT step and for A-tracts embedded in oligomers containing more than 50% A + T, the mobility ratios increased again at high [Li+ ], eventually reaching a plateau value of 1.00. Hence, DNA A-tracts in solution appear to exist as mixtures of the B and B* conformations, with the fractional concentration of each conformer depending on the [Li+ ], the A-tract sequence, and the total A + T content of the oligomer.
Collapse
Affiliation(s)
- Earle Stellwagen
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, USA
| | | |
Collapse
|
4
|
Fan H. Single‐molecule tethered particle motion to study
protein‐DNA
interaction. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202300051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
5
|
Natarajan AK, Ryssy J, Kuzyk A. A DNA origami-based device for investigating DNA bending proteins by transmission electron microscopy. NANOSCALE 2023; 15:3212-3218. [PMID: 36722916 DOI: 10.1039/d2nr05366g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The DNA origami technique offers precise positioning of nanoscale objects with high accuracy. This has facilitated the development of DNA origami-based functional nanomechanical devices that enable the investigation of DNA-protein interactions at the single particle level. Herein, we used the DNA origami technique to fabricate a nanoscale device for studying DNA bending proteins. For a proof of concept, we used TATA-box binding protein (TBP) to evaluate our approach. Upon binding to the TATA box, TBP causes a bend to DNA of ∼90°. Our device translates this bending into an angular change that is readily observable with a conventional transmission electron microscope (TEM). Furthermore, we investigated the roles of transcription factor II A (TF(II)A) and transcription factor II B (TF(II)B). Our results indicate that TF(II)A introduces additional bending, whereas TF(II)B does not significantly alter the TBP-DNA structure. Our approach can be readily adopted to a wide range of DNA-bending proteins and will aid the development of DNA-origami-based devices tailored for the investigation of DNA-protein interactions.
Collapse
Affiliation(s)
- Ashwin Karthick Natarajan
- Department of Neuroscience and Biomedical Engineering, Aalto University, School of Science, P.O. Box 12200, FI-00076 Aalto, Finland.
| | - Joonas Ryssy
- Department of Neuroscience and Biomedical Engineering, Aalto University, School of Science, P.O. Box 12200, FI-00076 Aalto, Finland.
| | - Anton Kuzyk
- Department of Neuroscience and Biomedical Engineering, Aalto University, School of Science, P.O. Box 12200, FI-00076 Aalto, Finland.
| |
Collapse
|
6
|
Soukarié D, Rousseau P, Salhi M, de Caro A, Escudier JM, Tardin C, Ecochard V, Salomé L. Single-Molecule Sandwich Aptasensing on Nanoarrays by Tethered Particle Motion Analysis. Anal Chem 2022; 94:4319-4327. [PMID: 35226451 DOI: 10.1021/acs.analchem.1c04995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-throughput single-molecule techniques are expected to challenge the demand for rapid, simple, and sensitive detection methods in health and environmental fields. Based on a single-DNA-molecule biochip for the parallelization of tethered particle motion analyses by videomicroscopy coupled to image analysis and its smart combination with aptamers, we successfully developed an aptasensor enabling the detection of single target molecules by a sandwich assay. One aptamer is grafted to the nanoparticles tethered to the surface by a long DNA molecule bearing the second aptamer in its middle. The detection and quantification of the target are direct. The recognition of the target by a pair of aptamers leads to a looped configuration of the DNA-particle complex associated with a restricted motion of the particles, which is monitored in real time. An analytical range extending over 3 orders of magnitude of target concentration with a limit of detection in the picomolar range was obtained for thrombin.
Collapse
Affiliation(s)
- Diana Soukarié
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Philippe Rousseau
- Centre de Biologie Intégrative de Toulouse, Laboratoire de Microbiologie et Génétique Moléculaires, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Maya Salhi
- Centre de Biologie Intégrative de Toulouse, Laboratoire de Microbiologie et Génétique Moléculaires, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Alexia de Caro
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Jean-Marc Escudier
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Catherine Tardin
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Vincent Ecochard
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Laurence Salomé
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| |
Collapse
|
7
|
Yeou S, Lee NK. Single-Molecule Methods for Investigating the Double-Stranded DNA Bendability. Mol Cells 2022; 45:33-40. [PMID: 34470919 PMCID: PMC8819492 DOI: 10.14348/molcells.2021.0182] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/27/2022] Open
Abstract
The various DNA-protein interactions associated with the expression of genetic information involve double-stranded DNA (dsDNA) bending. Due to the importance of the formation of the dsDNA bending structure, dsDNA bending properties have long been investigated in the biophysics field. Conventionally, DNA bendability is characterized by innate averaging data from bulk experiments. The advent of single-molecule methods, such as atomic force microscopy, optical and magnetic tweezers, tethered particle motion, and single-molecule fluorescence resonance energy transfer measurement, has provided valuable tools to investigate not only the static structures but also the dynamic properties of bent dsDNA. Here, we reviewed the single-molecule methods that have been used for investigating dsDNA bendability and new findings related to dsDNA bending. Single-molecule approaches are promising tools for revealing the unknown properties of dsDNA related to its bending, particularly in cells.
Collapse
Affiliation(s)
- Sanghun Yeou
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Nam Ki Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
8
|
Wang Y, Jiang B, Wang Y, Wei W, Niu B, Chen H, Wang H. Imaging the Heterogeneous Localization of a Single Molecule. Anal Chem 2021; 93:12464-12471. [PMID: 34459585 DOI: 10.1021/acs.analchem.1c02787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Single-molecule localization allows determining the underlying biological and biochemical processes and promotes the development of super-resolution imaging techniques. Here, we present an optical technique of tracking the motion of a single nanoparticle linked to a substrate via a biomolecule tether to reveal the localization of single biomolecules and the transient states of single nanoparticle switching between specific binding pairs. The affinities, steric hindrance, and conformational variation of a single-molecule binding pair uncover the dynamic details and intrinsic mechanism of binding processes with high specificity and accuracy (a few nanometers). The application of tracking motions of single soft liposomes on different modified surfaces was further demonstrated, which revealed the characteristic behavior related to surface chemistry. Our results show that the trajectory of nanoscale liposomes loaded with small-drug molecules is linked to the compositional inhomogeneity, which provides a route for thorough comprehension of the fundamental biotechnological process.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bo Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yan Wang
- Biodesign Center for Bioelectronics and Biosensors, and School of Electrical, Energy, and Computer Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Wei Wei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ben Niu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hongyuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hui Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Stellwagen NC. Using capillary electrophoresis to characterize the hydrodynamic and electrostatic properties of DNA in solutions containing various monovalent cations. Electrophoresis 2021; 43:309-326. [PMID: 34510492 DOI: 10.1002/elps.202100176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 11/08/2022]
Abstract
This review describes the results obtained by using free-solution capillary electrophoresis to probe the electrostatic and hydrodynamic properties of DNA in solutions containing various monovalent cations. In brief, we found that the mobilities of double-stranded DNAs (dsDNAs) increase with increasing molecular weight before leveling off and becoming constant at molecular weights ≥400 bp. The mobilities of single-stranded DNAs (ssDNAs) go through a maximum at ∼10-20 nucleotides before decreasing and becoming constant for oligomers larger than ∼30-50 bases. The mobilities of both ss- and dsDNAs increase linearly with the logarithm of increasing charge per unit length and decrease linearly with the logarithm of increasing ionic strength. Surprisingly, ss- and dsDNA mobilities level off and become nearly constant at ionic strengths ≥0.6 M. The thermal stabilities of dsDNAs decrease linearly with increasing solution viscosity. The diffusion coefficients of dsDNA are modulated by the diffusion coefficients of their counterions because of electrostatic DNA-cation coupling interactions. Finally, the anomalously slow mobilities observed for A-tract-containing DNAs can be attributed both to differences in shape and to the preferential localization of small cations in the A-tract minor groove. Since many of these results are mirrored in other polyion-counterion systems, free-solution electrophoresis can be viewed as a reporter of the electrostatics and hydrodynamics of highly charged polyions. New results describing the mobilities of dsDNA analogues of a microRNA-messenger RNA complex are also presented.
Collapse
|
10
|
Abstract
DNA dynamics can only be understood by taking into account its complex mechanical behavior at different length scales. At the micrometer level, the mechanical properties of single DNA molecules have been well-characterized by polymer models and are commonly quantified by a persistence length of 50 nm (~150 bp). However, at the base pair level (~3.4 Å), the dynamics of DNA involves complex molecular mechanisms that are still being deciphered. Here, we review recent single-molecule experiments and molecular dynamics simulations that are providing novel insights into DNA mechanics from such a molecular perspective. We first discuss recent findings on sequence-dependent DNA mechanical properties, including sequences that resist mechanical stress and sequences that can accommodate strong deformations. We then comment on the intricate effects of cytosine methylation and DNA mismatches on DNA mechanics. Finally, we review recently reported differences in the mechanical properties of DNA and double-stranded RNA, the other double-helical carrier of genetic information. A thorough examination of the recent single-molecule literature permits establishing a set of general 'rules' that reasonably explain the mechanics of nucleic acids at the base pair level. These simple rules offer an improved description of certain biological systems and might serve as valuable guidelines for future design of DNA and RNA nanostructures.
Collapse
|
11
|
Marin-Gonzalez A, Pastrana CL, Bocanegra R, Martín-González A, Vilhena JG, Pérez R, Ibarra B, Aicart-Ramos C, Moreno-Herrero F. Understanding the paradoxical mechanical response of in-phase A-tracts at different force regimes. Nucleic Acids Res 2020; 48:5024-5036. [PMID: 32282908 PMCID: PMC7229863 DOI: 10.1093/nar/gkaa225] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/31/2022] Open
Abstract
A-tracts are A:T rich DNA sequences that exhibit unique structural and mechanical properties associated with several functions in vivo. The crystallographic structure of A-tracts has been well characterized. However, the mechanical properties of these sequences is controversial and their response to force remains unexplored. Here, we rationalize the mechanical properties of in-phase A-tracts present in the Caenorhabditis elegans genome over a wide range of external forces, using single-molecule experiments and theoretical polymer models. Atomic Force Microscopy imaging shows that A-tracts induce long-range (∼200 nm) bending, which originates from an intrinsically bent structure rather than from larger bending flexibility. These data are well described with a theoretical model based on the worm-like chain model that includes intrinsic bending. Magnetic tweezers experiments show that the mechanical response of A-tracts and arbitrary DNA sequences have a similar dependence with monovalent salt supporting that the observed A-tract bend is intrinsic to the sequence. Optical tweezers experiments reveal a high stretch modulus of the A-tract sequences in the enthalpic regime. Our work rationalizes the complex multiscale flexibility of A-tracts, providing a physical basis for the versatile character of these sequences inside the cell.
Collapse
Affiliation(s)
- Alberto Marin-Gonzalez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Cantoblanco, Madrid, Spain
| | - Cesar L Pastrana
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Cantoblanco, Madrid, Spain
| | - Rebeca Bocanegra
- IMDEA Nanociencia, C/Faraday 9, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Alejandro Martín-González
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Cantoblanco, Madrid, Spain
| | - J G Vilhena
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.,Department of Physics, University of Basel, Klingelbergstrasse 82, CH 4056 Basel, Switzerland
| | - Rubén Pérez
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.,Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Borja Ibarra
- IMDEA Nanociencia, C/Faraday 9, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain.,Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & CNB-CSIC-IMDEA Nanociencia Associated Unit 'Unidad de Nanobiotecnología', 28049 Madrid, Spain
| | - Clara Aicart-Ramos
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Cantoblanco, Madrid, Spain
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Cantoblanco, Madrid, Spain
| |
Collapse
|
12
|
Post-replicative pairing of sister ter regions in Escherichia coli involves multiple activities of MatP. Nat Commun 2020; 11:3796. [PMID: 32732900 PMCID: PMC7394560 DOI: 10.1038/s41467-020-17606-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 07/03/2020] [Indexed: 02/07/2023] Open
Abstract
The ter region of the bacterial chromosome, where replication terminates, is the last to be segregated before cell division in Escherichia coli. Delayed segregation is controlled by the MatP protein, which binds to specific sites (matS) within ter, and interacts with other proteins such as ZapB. Here, we investigate the role of MatP by combining short-time mobility analyses of the ter locus with biochemical approaches. We find that ter mobility is similar to that of a non ter locus, except when sister ter loci are paired after replication. This effect depends on MatP, the persistence of catenanes, and ZapB. We characterise MatP/DNA complexes and conclude that MatP binds DNA as a tetramer, but bridging matS sites in a DNA-rich environment remains infrequent. We propose that tetramerisation of MatP links matS sites with ZapB and/or with non-specific DNA to promote optimal pairing of sister ter regions until cell division. Protein, MatP, binds to and delays segregation of the ter region of the bacterial chromosome before cell division. Here, the authors show that MatP displays multiple activities to promote optimal pairing of sister ter regions until cell division.
Collapse
|
13
|
Cai X, Arias DS, Velazquez LR, Vexler S, Bevier AL, Fygenson DK. DNA Nunchucks: Nanoinstrumentation for Single-Molecule Measurement of Stiffness and Bending. NANO LETTERS 2020; 20:1388-1395. [PMID: 31872766 DOI: 10.1021/acs.nanolett.9b04980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bending of double-stranded DNA (dsDNA) has important applications in biology and engineering, but measurement of DNA bend angles is notoriously difficult and rarely dynamic. Here we introduce a nanoscale instrument that makes dynamic measurement of the bend in short dsDNAs easy enough to be routine. The instrument works by embedding the ends of a dsDNA in stiff, fluorescently labeled DNA nanotubes, thereby mechanically magnifying their orientations. The DNA nanotubes are readily confined to a plane and imaged while freely diffusing. Single-molecule bend angles are rapidly and reliably extracted from the images by a neural network. We find that angular variance across a population increases with dsDNA length, as predicted by the worm-like chain model, although individual distributions can differ significantly from one another. For dsDNAs with phased A6-tracts, we measure an intrinsic bend of 17 ± 1° per A6-tract, consistent with other methods, and a length-dependent angular variance that indicates A6-tracts are (80 ± 30)% stiffer than generic dsDNA.
Collapse
Affiliation(s)
- Xinyue Cai
- Department of Physics , University of California, Santa Barbara , Santa Barbara , California , United States
| | - D Sebastian Arias
- Department of Physics , University of California, Santa Barbara , Santa Barbara , California , United States
| | - Lourdes R Velazquez
- Department of Physics , University of California, Santa Barbara , Santa Barbara , California , United States
- Biomolecular Science & Engineering Program , University of California, Santa Barbara , Santa Barbara , California , United States
| | - Shelby Vexler
- Biomolecular Science & Engineering Program , University of California, Santa Barbara , Santa Barbara , California , United States
| | - Alexander L Bevier
- Department of Physics , University of California, Santa Barbara , Santa Barbara , California , United States
| | - D Kuchnir Fygenson
- Department of Physics , University of California, Santa Barbara , Santa Barbara , California , United States
- Biomolecular Science & Engineering Program , University of California, Santa Barbara , Santa Barbara , California , United States
| |
Collapse
|
14
|
Statistical physics and mesoscopic modeling to interpret tethered particle motion experiments. Methods 2019; 169:57-68. [PMID: 31302177 DOI: 10.1016/j.ymeth.2019.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/11/2019] [Accepted: 07/07/2019] [Indexed: 11/22/2022] Open
Abstract
Tethered particle motion experiments are versatile single-molecule techniques enabling one to address in vitro the molecular properties of DNA and its interactions with various partners involved in genetic regulations. These techniques provide raw data such as the tracked particle amplitude of movement, from which relevant information about DNA conformations or states must be recovered. Solving this inverse problem appeals to specific theoretical tools that have been designed in the two last decades, together with the data pre-processing procedures that ought to be implemented to avoid biases inherent to these experimental techniques. These statistical tools and models are reviewed in this paper.
Collapse
|
15
|
Parallelized DNA tethered bead measurements to scrutinize DNA mechanical structure. Methods 2019; 169:46-56. [PMID: 31351926 DOI: 10.1016/j.ymeth.2019.07.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/01/2019] [Accepted: 07/22/2019] [Indexed: 01/05/2023] Open
Abstract
Tethering beads to DNA offers a panel of single molecule techniques for the refined analysis of the conformational dynamics of DNA and the elucidation of the mechanisms of enzyme activity. Recent developments include the massive parallelization of these techniques achieved by the fabrication of dedicated nanoarrays by soft nanolithography. We focus here on two of these techniques: the Tethered Particle motion and Magnetic Tweezers allowing analysis of the behavior of individual DNA molecules in the absence of force and under the application of a force and/or a torque, respectively. We introduce the experimental protocols for the parallelization and discuss the benefits already gained, and to come, for these single molecule investigations.
Collapse
|
16
|
Brunet A, Salomé L, Rousseau P, Destainville N, Manghi M, Tardin C. How does temperature impact the conformation of single DNA molecules below melting temperature? Nucleic Acids Res 2019; 46:2074-2081. [PMID: 29294104 PMCID: PMC5829751 DOI: 10.1093/nar/gkx1285] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/19/2017] [Indexed: 01/26/2023] Open
Abstract
The double stranded DNA molecule undergoes drastic structural changes during biological processes such as transcription during which it opens locally under the action of RNA polymerases. Local spontaneous denaturation could contribute to this mechanism by promoting it. Supporting this idea, different biophysical studies have found an unexpected increase in the flexibility of DNA molecules with various sequences as a function of the temperature, which would be consistent with the formation of a growing number of locally denatured sequences. Here, we take advantage of our capacity to detect subtle changes occurring on DNA by using high throughput tethered particle motion to question the existence of bubbles in double stranded DNA under physiological salt conditions through their conformational impact on DNA molecules ranging from several hundreds to thousands of base pairs. Our results strikingly differ from previously published ones, as we do not detect any unexpected change in DNA flexibility below melting temperature. Instead, we measure a bending modulus that remains stable with temperature as expected for intact double stranded DNA.
Collapse
Affiliation(s)
- Annaël Brunet
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France.,Laboratoire de Physique Théorique (IRSAMC), Université de Toulouse, CNRS, Toulouse, France
| | - Laurence Salomé
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France
| | - Philippe Rousseau
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Nicolas Destainville
- Laboratoire de Physique Théorique (IRSAMC), Université de Toulouse, CNRS, Toulouse, France
| | - Manoel Manghi
- Laboratoire de Physique Théorique (IRSAMC), Université de Toulouse, CNRS, Toulouse, France
| | - Catherine Tardin
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France
| |
Collapse
|
17
|
Guilbaud S, Salomé L, Destainville N, Manghi M, Tardin C. Dependence of DNA Persistence Length on Ionic Strength and Ion Type. PHYSICAL REVIEW LETTERS 2019; 122:028102. [PMID: 30720315 DOI: 10.1103/physrevlett.122.028102] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Indexed: 06/09/2023]
Abstract
Even though the persistence length L_{P} of double-stranded DNA plays a pivotal role in cell biology and nanotechnologies, its dependence on ionic strength I lacks a consensual description. Using a high-throughput single-molecule technique and statistical physics modeling, we measure L_{P} in the presence of monovalent (Li^{+}, Na^{+}, K^{+}) and divalent (Mg^{2+}, Ca^{2+}) metallic and alkyl ammonium ions, over a large range 0.5 mM≤I≤5 M. We show that linear Debye-Hückel-type theories do not describe even part of these data. By contrast, the Netz-Orland and Trizac-Shen formulas, two approximate theories including nonlinear electrostatic effects and the finite DNA radius, fit our data with divalent and monovalent ions, respectively, over the whole I range. Furthermore, the metallic ion type does not influence L_{P}(I), in contrast to alkyl ammonium monovalent ions at high I.
Collapse
Affiliation(s)
- Sébastien Guilbaud
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31 077 Toulouse, France
| | - Laurence Salomé
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31 077 Toulouse, France
| | - Nicolas Destainville
- Laboratoire de Physique Théorique (IRSAMC), Université de Toulouse, CNRS, UPS, 31 062 Toulouse, France
| | - Manoel Manghi
- Laboratoire de Physique Théorique (IRSAMC), Université de Toulouse, CNRS, UPS, 31 062 Toulouse, France
| | - Catherine Tardin
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31 077 Toulouse, France
| |
Collapse
|
18
|
Visser EW, Horáček M, Zijlstra P. Plasmon Rulers as a Probe for Real-Time Microsecond Conformational Dynamics of Single Molecules. NANO LETTERS 2018; 18:7927-7934. [PMID: 30423246 PMCID: PMC6328297 DOI: 10.1021/acs.nanolett.8b03860] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/31/2018] [Indexed: 05/24/2023]
Abstract
Biopolymers such as DNA, RNA, and proteins exploit conformational changes to modulate their function. Although state-of-the-art single-molecule approaches enable identification of conformational states, the transition path and metastable intermediates often remain elusive because they occur on microsecond time scales. Here we introduce a method to probe conformational dynamics with microsecond integration times based on a heterodimer of plasmonic particles. By combining Brownian dynamics and electromagnetic simulations, we find that integration times of 1 μs can be routinely achieved, providing the capability to identify short-lived intermediates and transition paths at the single-molecule level in real-time. Importantly, plasmon rulers require no specialized equipment but can be probed on existing fluorescence microscopes equipped with a fast camera. The approach combines the advantages of fluorescent probes (zero-force, parallelization) and mechanical probes such as optical tweezers (continuous microsecond integration times). They offer a unique opportunity to study conformational dynamics and compare measurements to full-atom simulations, where computational demands limit the simulation time.
Collapse
Affiliation(s)
- Emiel W.A. Visser
- Department
of Applied Physics, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Matěj Horáček
- Department
of Applied Physics, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Peter Zijlstra
- Department
of Applied Physics, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
19
|
Fan HF, Ma CH, Jayaram M. Single-Molecule Tethered Particle Motion: Stepwise Analyses of Site-Specific DNA Recombination. MICROMACHINES 2018; 9:E216. [PMID: 30424148 PMCID: PMC6187709 DOI: 10.3390/mi9050216] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/25/2018] [Accepted: 04/28/2018] [Indexed: 12/17/2022]
Abstract
Tethered particle motion/microscopy (TPM) is a biophysical tool used to analyze changes in the effective length of a polymer, tethered at one end, under changing conditions. The tether length is measured indirectly by recording the Brownian motion amplitude of a bead attached to the other end. In the biological realm, DNA, whose interactions with proteins are often accompanied by apparent or real changes in length, has almost exclusively been the subject of TPM studies. TPM has been employed to study DNA bending, looping and wrapping, DNA compaction, high-order DNA⁻protein assembly, and protein translocation along DNA. Our TPM analyses have focused on tyrosine and serine site-specific recombinases. Their pre-chemical interactions with DNA cause reversible changes in DNA length, detectable by TPM. The chemical steps of recombination, depending on the substrate and the type of recombinase, may result in a permanent length change. Single molecule TPM time traces provide thermodynamic and kinetic information on each step of the recombination pathway. They reveal how mechanistically related recombinases may differ in their early commitment to recombination, reversibility of individual steps, and in the rate-limiting step of the reaction. They shed light on the pre-chemical roles of catalytic residues, and on the mechanisms by which accessory proteins regulate recombination directionality.
Collapse
Affiliation(s)
- Hsiu-Fang Fan
- Biophotonics and Molecular Imaging Center, Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan.
| | - Chien-Hui Ma
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| | - Makkuni Jayaram
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
20
|
Madariaga-Marcos J, Hormeño S, Pastrana CL, Fisher GLM, Dillingham MS, Moreno-Herrero F. Force determination in lateral magnetic tweezers combined with TIRF microscopy. NANOSCALE 2018; 10:4579-4590. [PMID: 29461549 PMCID: PMC5831119 DOI: 10.1039/c7nr07344e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/07/2017] [Indexed: 06/08/2023]
Abstract
Combining single-molecule techniques with fluorescence microscopy has attracted much interest because it allows the correlation of mechanical measurements with directly visualized DNA : protein interactions. In particular, its combination with total internal reflection fluorescence microscopy (TIRF) is advantageous because of the high signal-to-noise ratio this technique achieves. This, however, requires stretching long DNA molecules across the surface of a flow cell to maximize polymer exposure to the excitation light. In this work, we develop a module to laterally stretch DNA molecules at a constant force, which can be easily implemented in regular or combined magnetic tweezers (MT)-TIRF setups. The pulling module is further characterized in standard flow cells of different thicknesses and glass capillaries, using two types of micrometer size superparamagnetic beads, long DNA molecules, and a home-built device to rotate capillaries with mrad precision. The force range achieved by the magnetic pulling module was between 0.1 and 30 pN. A formalism for estimating forces in flow-stretched tethered beads is also proposed, and the results compared with those of lateral MT, demonstrating that lateral MT achieve higher forces with lower dispersion. Finally, we show the compatibility with TIRF microscopy and the parallelization of measurements by characterizing DNA binding by the centromere-binding protein ParB from Bacillus subtilis. Simultaneous MT pulling and fluorescence imaging demonstrate the non-specific binding of BsParB on DNA under conditions restrictive to condensation.
Collapse
Affiliation(s)
- J. Madariaga-Marcos
- Department of Macromolecular Structures , Centro Nacional de Biotecnología , Consejo Superior de Investigaciones Científicas , 28049 Cantoblanco , Madrid , Spain .
| | - S. Hormeño
- Department of Macromolecular Structures , Centro Nacional de Biotecnología , Consejo Superior de Investigaciones Científicas , 28049 Cantoblanco , Madrid , Spain .
| | - C. L. Pastrana
- Department of Macromolecular Structures , Centro Nacional de Biotecnología , Consejo Superior de Investigaciones Científicas , 28049 Cantoblanco , Madrid , Spain .
| | - G. L. M. Fisher
- DNA:Protein Interactions Unit , School of Biochemistry , Biomedical Sciences Building , University of Bristol , Bristol , BS8 1TD , UK
| | - M. S. Dillingham
- DNA:Protein Interactions Unit , School of Biochemistry , Biomedical Sciences Building , University of Bristol , Bristol , BS8 1TD , UK
| | - F. Moreno-Herrero
- Department of Macromolecular Structures , Centro Nacional de Biotecnología , Consejo Superior de Investigaciones Científicas , 28049 Cantoblanco , Madrid , Spain .
| |
Collapse
|
21
|
Tardin C. The mechanics of DNA loops bridged by proteins unveiled by single-molecule experiments. Biochimie 2017; 142:80-92. [PMID: 28804000 DOI: 10.1016/j.biochi.2017.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/06/2017] [Indexed: 12/28/2022]
Abstract
Protein-induced DNA bridging and looping is a common mechanism for various and essential processes in bacterial chromosomes. This mechanism is preserved despite the very different bacterial conditions and their expected influence on the thermodynamic and kinetic characteristics of the bridge formation and stability. Over the last two decades, single-molecule techniques carried out on in vitro DNA systems have yielded valuable results which, in combination with theoretical works, have clarified the effects of different parameters of nucleoprotein complexes on the protein-induced DNA bridging and looping process. In this review, I will outline the features that can be measured for such processes with various single-molecule techniques in use in the field. I will then describe both the experimental results and the theoretical models that illuminate the contribution of the DNA molecule itself as well as that of the bridging proteins in the DNA looping mechanism at play in the nucleoid of E. coli.
Collapse
Affiliation(s)
- Catherine Tardin
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France.
| |
Collapse
|
22
|
Mitchell JS, Glowacki J, Grandchamp AE, Manning RS, Maddocks JH. Sequence-Dependent Persistence Lengths of DNA. J Chem Theory Comput 2017; 13:1539-1555. [DOI: 10.1021/acs.jctc.6b00904] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Jaroslaw Glowacki
- Ecole Polytechnique Fédérale de Lausanne, Lausanne CH 1273, Switzerland
| | | | | | - John H. Maddocks
- Ecole Polytechnique Fédérale de Lausanne, Lausanne CH 1273, Switzerland
| |
Collapse
|
23
|
FtsK translocation permits discrimination between an endogenous and an imported Xer/dif recombination complex. Proc Natl Acad Sci U S A 2016; 113:7882-7. [PMID: 27317749 DOI: 10.1073/pnas.1523178113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In bacteria, the FtsK/Xer/dif (chromosome dimer resolution site) system is essential for faithful vertical genetic transmission, ensuring the resolution of chromosome dimers during their segregation to daughter cells. This system is also targeted by mobile genetic elements that integrate into chromosomal dif sites. A central question is thus how Xer/dif recombination is tuned to both act in chromosome segregation and stably maintain mobile elements. To explore this question, we focused on pathogenic Neisseria species harboring a genomic island in their dif sites. We show that the FtsK DNA translocase acts differentially at the recombination sites flanking the genomic island. It stops at one Xer/dif complex, activating recombination, but it does not stop on the other site, thus dismantling it. FtsK translocation thus permits cis discrimination between an endogenous and an imported Xer/dif recombination complex.
Collapse
|
24
|
Wittmeier A, Holterhoff AL, Johnson J, Gibbs JG. Rotational Analysis of Spherical, Optically Anisotropic Janus Particles by Dynamic Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10402-10. [PMID: 26352095 DOI: 10.1021/acs.langmuir.5b02864] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We analyze the rotational dynamics of spherical colloidal Janus particles made from silica (SiO2) with a hemispherical gold/palladium (Au/Pd) cap. Since the refractive index difference between the surrounding fluid and a two-faced, optically anisotropic Janus microsphere is a function of the particle's orientation, it is possible to observe its rotational dynamics with bright-field optical microscopy. We investigate rotational diffusion and constant rotation of single Janus microspheres which are partially tethered to a solid surface so they are free to rotate but show little or no translational motion. Also, since the metal cap is a powerful catalyst in the breakdown of hydrogen peroxide, H2O2, the particles can be activated chemically. In this case, we analyze the motion of coupled Janus dimers which undergo a stable rotary motion about a mutual center. The analysis of both experimental and simulation data, which are microscopy and computer-generated videos, respectively, is based upon individual particle tracking and differential dynamic microscopy (DDM). DDM, which typically requires ensemble averages to extract meaningful information for colloidal dynamics, can be effective in certain situations for systems consisting of single entities. In particular, when translational motion is suppressed, both rotational diffusion and constant rotation can be probed.
Collapse
Affiliation(s)
- Andrew Wittmeier
- Department of Physics and Astronomy and ‡Center for Bioengineering Innovation, Northern Arizona University , S San Francisco St., Flagstaff, Arizona 86011, United States
| | - Andrew Leeth Holterhoff
- Department of Physics and Astronomy and ‡Center for Bioengineering Innovation, Northern Arizona University , S San Francisco St., Flagstaff, Arizona 86011, United States
| | - Joel Johnson
- Department of Physics and Astronomy and ‡Center for Bioengineering Innovation, Northern Arizona University , S San Francisco St., Flagstaff, Arizona 86011, United States
| | - John G Gibbs
- Department of Physics and Astronomy and ‡Center for Bioengineering Innovation, Northern Arizona University , S San Francisco St., Flagstaff, Arizona 86011, United States
| |
Collapse
|
25
|
Brunet A, Tardin C, Salomé L, Rousseau P, Destainville N, Manghi M. Dependence of DNA Persistence Length on Ionic Strength of Solutions with Monovalent and Divalent Salts: A Joint Theory–Experiment Study. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00735] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Annaël Brunet
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS) 205 route de Narbonne, BP 64182, F-31077 Toulouse, France
- UPS,
IPBS, Université de Toulouse F-31077 Toulouse, France
- UPS, Laboratoire
de Physique Théorique (IRSAMC), Université de Toulouse, F-31062 Toulouse, France
- CNRS, Laboratoire de Physique Théorique (IRSAMC), F-31062 Toulouse, France
| | - Catherine Tardin
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS) 205 route de Narbonne, BP 64182, F-31077 Toulouse, France
- UPS,
IPBS, Université de Toulouse F-31077 Toulouse, France
| | - Laurence Salomé
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS) 205 route de Narbonne, BP 64182, F-31077 Toulouse, France
- UPS,
IPBS, Université de Toulouse F-31077 Toulouse, France
| | - Philippe Rousseau
- UPS,
Laboratoire de Microbiologie et Génétique Moléculaires
(LMGM), Université de Toulouse, F-31062 Toulouse, France
- CNRS, LMGM, UMR CNRS-UPS 5100, F-31062 Toulouse, France
| | - Nicolas Destainville
- UPS, Laboratoire
de Physique Théorique (IRSAMC), Université de Toulouse, F-31062 Toulouse, France
- CNRS, Laboratoire de Physique Théorique (IRSAMC), F-31062 Toulouse, France
| | - Manoel Manghi
- UPS, Laboratoire
de Physique Théorique (IRSAMC), Université de Toulouse, F-31062 Toulouse, France
- CNRS, Laboratoire de Physique Théorique (IRSAMC), F-31062 Toulouse, France
| |
Collapse
|