1
|
Wang X, Shi X, Wang R. Regulating mRNA endosomal escape through lipid rafts: A review. Int J Pharm 2025; 675:125571. [PMID: 40199432 DOI: 10.1016/j.ijpharm.2025.125571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/24/2025] [Accepted: 04/05/2025] [Indexed: 04/10/2025]
Abstract
Messenger RNA (mRNA) therapeutics, enabled by lipid nanoparticles (LNPs) delivery systems, have revolutionized modern medicine by facilitating the delivery of genetic cargo to target cells. However, the efficient release of mRNA from LNPs within the endosomal pathways into the cytosol remains a major bottleneck in this field. Revisiting the formulation and function of mRNA-LNPs, it has been found that lipid rafts formed by cholesterol and distearoylphosphatidylcholine during the self-assembly process plan an essential role in the intracellular delivery and endosomal escape of mRNA-LNPs. These lipid rafts enhance the rigidity and stability of LNPs, facilitating mRNA encapsulation and closely contributing to improved intracellular delivery efficiency. By adjusting the composition or behavior of lipid rafts within LNPs-such as substituting cholesterol or altering the lipid phase-endosomal membranes can be destabilized, facilitating the escape of mRNA into the cytoplasm. This approach provides a promising strategy for rational design of mRNA delivery system and optimization of LNPs formulation. Additionally, methods for studying the mRNA escape process are summarized, as they serve as the foundation for achieving reliable and reproducible results.
Collapse
Affiliation(s)
- Xinxin Wang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xin Shi
- School of Life and Health Sciences, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Ruifeng Wang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| |
Collapse
|
2
|
Zhuo C, Zeng C, Liu H, Wang H, Peng Y, Zhao Y. Advances and Mechanisms of RNA-Ligand Interaction Predictions. Life (Basel) 2025; 15:104. [PMID: 39860045 PMCID: PMC11767038 DOI: 10.3390/life15010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
The diversity and complexity of RNA include sequence, secondary structure, and tertiary structure characteristics. These elements are crucial for RNA's specific recognition of other molecules. With advancements in biotechnology, RNA-ligand structures allow researchers to utilize experimental data to uncover the mechanisms of complex interactions. However, determining the structures of these complexes experimentally can be technically challenging and often results in low-resolution data. Many machine learning computational approaches have recently emerged to learn multiscale-level RNA features to predict the interactions. Predicting interactions remains an unexplored area. Therefore, studying RNA-ligand interactions is essential for understanding biological processes. In this review, we analyze the interaction characteristics of RNA-ligand complexes by examining RNA's sequence, secondary structure, and tertiary structure. Our goal is to clarify how RNA specifically recognizes ligands. Additionally, we systematically discuss advancements in computational methods for predicting interactions and to guide future research directions. We aim to inspire the creation of more reliable RNA-ligand interaction prediction tools.
Collapse
Affiliation(s)
- Chen Zhuo
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Chengwei Zeng
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Haoquan Liu
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Huiwen Wang
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China;
| | - Yunhui Peng
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
3
|
Zhang Y, Yang C, Xiong Y, Xiao Y. 3dDNAscoreA: A scoring function for evaluation of DNA 3D structures. Biophys J 2024; 123:2696-2704. [PMID: 38409781 PMCID: PMC11393702 DOI: 10.1016/j.bpj.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024] Open
Abstract
DNA molecules are vital macromolecules that play a fundamental role in many cellular processes and have broad applications in medicine. For example, DNA aptamers have been rapidly developed for diagnosis, biosensors, and clinical therapy. Recently, we proposed a computational method of predicting DNA 3D structures, called 3dDNA. However, it lacks a scoring function to evaluate the predicted DNA 3D structures, and so they are not ranked for users. Here, we report a scoring function, 3dDNAscoreA, for evaluation of DNA 3D structures based on a deep learning model ARES for RNA 3D structure evaluation but using a new strategy for training. 3dDNAscoreA is benchmarked on two test sets to show its ability to rank DNA 3D structures and select the native and near-native structures.
Collapse
Affiliation(s)
- Yi Zhang
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chenxi Yang
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yiduo Xiong
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Xiao
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Zhang Y, Xiong Y, Yang C, Xiao Y. 3dRNA/DNA: 3D Structure Prediction from RNA to DNA. J Mol Biol 2024; 436:168742. [PMID: 39237199 DOI: 10.1016/j.jmb.2024.168742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/03/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024]
Abstract
There is an increasing need for determining 3D structures of DNAs, e.g., for increasing the efficiency of DNA aptamer selection. Recently, we have proposed a computational method of 3D structure prediction of DNAs, called 3dDNA, which has been integrated into our original web server 3dRNA, now renamed 3dRNA/DNA (http://biophy.hust.edu.cn/new/3dRNA). Currently, 3dDNA can only output the predicted DNA 3D structures for users but cannot rank them as an energy function for assessing DNA 3D structures is still lacking. Here, we first provide a brief introduction to 3dDNA and then introduce a new energy function, 3dDNAscore, for the assessment of DNA 3D structures. 3dDNAscore is an all-atom knowledge-based potential by integrating 86 atomic types from nucleic acids. Benchmarks demonstrate that 3dDNAscore can effectively identify near-native structures from the decoys generated by 3dDNA, thus enhancing the completeness of 3dDNA.
Collapse
Affiliation(s)
- Yi Zhang
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yiduo Xiong
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Chenxi Yang
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yi Xiao
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
| |
Collapse
|
5
|
Lis JA, Domagała PJ. Inconsistencies in the Classification of the Family Cydnidae (Hemiptera: Heteroptera: Pentatomoidea) Revealed by Molecular Apomorphies in the Secondary and Tertiary Structures of 18S rRNA Length-Variable Region L (LVR L). Int J Mol Sci 2024; 25:939. [PMID: 38256014 PMCID: PMC10815949 DOI: 10.3390/ijms25020939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The SSU nuclear rDNA (encoding 18S ribosomal RNA) is one of the most frequently sequenced genes in the molecular analysis of insects. Molecular apomorphies in the secondary and tertiary structures of several 18S rRNA length-variable regions (LVRs) located within the V2, V4, and V7 hypervariable regions can be good indicators for recovering monophyletic groups within some heteropteran families. Among the LVRs that have been analysed, the LVR L in the V4 hypervariable region is the longest and most crucial for such assessments. We analysed the 18S rRNA V4 hypervariable region sequences of 45 species from the family Cydnidae, including all 6 subfamilies (Amaurocorinae, Amnestinae, Cephalocteinae, Cydninae, Garsauriinae, and Sehirinae) and three pentatomoid families (Parastrachiidae, Thaumastellidae, and Thyreocoridae), which have often been included in the broadly defined Cydnidae family. This is the first time that representatives of all Cydnidae subfamilies have been included in a molecular analysis. Only taxa from two subfamilies, Sehirinae and Cydninae, have been used in previous molecular studies. The secondary and tertiary structures of the LVR L were predicted for each species using the two-step procedure already accepted for such analyses to recover any molecular apomorphy essential for determining monophyly. The results of our comparative studies contradict the current understanding of the relationships among burrowing bugs and the current family classification.
Collapse
Affiliation(s)
- Jerzy A. Lis
- Institute of Biology, University of Opole, Oleska 22, 45-052 Opole, Poland;
| | | |
Collapse
|
6
|
Wiedemann J, Kaczor J, Milostan M, Zok T, Blazewicz J, Szachniuk M, Antczak M. RNAloops: a database of RNA multiloops. Bioinformatics 2022; 38:4200-4205. [PMID: 35809063 PMCID: PMC9438955 DOI: 10.1093/bioinformatics/btac484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/26/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Knowledge of the 3D structure of RNA supports discovering its functions and is crucial for designing drugs and modern therapeutic solutions. Thus, much attention is devoted to experimental determination and computational prediction targeting the global fold of RNA and its local substructures. The latter include multi-branched loops-functionally significant elements that highly affect the spatial shape of the entire molecule. Unfortunately, their computational modeling constitutes a weak point of structural bioinformatics. A remedy for this is in collecting these motifs and analyzing their features. RESULTS RNAloops is a self-updating database that stores multi-branched loops identified in the PDB-deposited RNA structures. A description of each loop includes angular data-planar and Euler angles computed between pairs of adjacent helices to allow studying their mutual arrangement in space. The system enables search and analysis of multiloops, presents their structure details numerically and visually, and computes data statistics. AVAILABILITY AND IMPLEMENTATION RNAloops is freely accessible at https://rnaloops.cs.put.poznan.pl. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jakub Wiedemann
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
| | - Jacek Kaczor
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
| | - Maciej Milostan
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland,Poznan Supercomputing and Networking Center, 61-131 Poznan, Poland
| | - Tomasz Zok
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland,Poznan Supercomputing and Networking Center, 61-131 Poznan, Poland
| | - Jacek Blazewicz
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland,Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | | | | |
Collapse
|
7
|
Luwanski K, Hlushchenko V, Popenda M, Zok T, Sarzynska J, Martsich D, Szachniuk M, Antczak M. RNAspider: a webserver to analyze entanglements in RNA 3D structures. Nucleic Acids Res 2022; 50:W663-W669. [PMID: 35349710 PMCID: PMC9252836 DOI: 10.1093/nar/gkac218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Advances in experimental and computational techniques enable the exploration of large and complex RNA 3D structures. These, in turn, reveal previously unstudied properties and motifs not characteristic for small molecules with simple architectures. Examples include entanglements of structural elements in RNA molecules and knot-like folds discovered, among others, in the genomes of RNA viruses. Recently, we presented the first classification of entanglements, determined by their topology and the type of entangled structural elements. Here, we introduce RNAspider - a web server to automatically identify, classify, and visualize primary and higher-order entanglements in RNA tertiary structures. The program applies to evaluate RNA 3D models obtained experimentally or by computational prediction. It supports the analysis of uncommon topologies in the pseudoknotted RNA structures. RNAspider is implemented as a publicly available tool with a user-friendly interface and can be freely accessed at https://rnaspider.cs.put.poznan.pl/.
Collapse
Affiliation(s)
- Kamil Luwanski
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Vladyslav Hlushchenko
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Mariusz Popenda
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Tomasz Zok
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Daniil Martsich
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Marta Szachniuk
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Maciej Antczak
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
8
|
Carrascoza F, Antczak M, Miao Z, Westhof E, Szachniuk M. Evaluation of the stereochemical quality of predicted RNA 3D models in the RNA-Puzzles submissions. RNA (NEW YORK, N.Y.) 2022; 28:250-262. [PMID: 34819324 PMCID: PMC8906551 DOI: 10.1261/rna.078685.121] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
In silico prediction is a well-established approach to derive a general shape of an RNA molecule based on its sequence or secondary structure. This paper reports an analysis of the stereochemical quality of the RNA three-dimensional models predicted using dedicated computer programs. The stereochemistry of 1052 RNA 3D structures, including 1030 models predicted by fully automated and human-guided approaches within 22 RNA-Puzzles challenges and reference structures, is analyzed. The evaluation is based on standards of RNA stereochemistry that the Protein Data Bank requires from deposited experimental structures. Deviations from standard bond lengths and angles, planarity, or chirality are quantified. A reduction in the number of such deviations should help in the improvement of RNA 3D structure modeling approaches.
Collapse
Affiliation(s)
- Francisco Carrascoza
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, 60-965 Poznan, Poland
| | - Maciej Antczak
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, 60-965 Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Zhichao Miao
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, United Kingdom
- Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200081, China
| | - Eric Westhof
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire CNRS, Architecture et Réactivité de l'ARN, 67084 Strasbourg, France
| | - Marta Szachniuk
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, 60-965 Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| |
Collapse
|
9
|
Zhang D, Li J, Chen SJ. IsRNA1: De Novo Prediction and Blind Screening of RNA 3D Structures. J Chem Theory Comput 2021; 17:1842-1857. [PMID: 33560836 DOI: 10.1021/acs.jctc.0c01148] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Modeling structures and functions of large ribonucleic acid (RNAs) especially with complicated topologies is highly challenging due to the inefficiency of large conformational sampling and the presence of complicated tertiary interactions. To address this problem, one highly promising approach is coarse-grained modeling. Here, following an iterative simulated reference state approach to decipher the correlations between different structural parameters, we developed a potent coarse-grained RNA model named as IsRNA1 for RNA studies. Molecular dynamics simulations in the IsRNA1 can predict the native structures of small RNAs from a sequence and fold medium-sized RNAs into near-native tertiary structures with the assistance of secondary structure constraints. A large-scale benchmark test on RNA 3D structure prediction shows that IsRNA1 exhibits improved performance for relatively large RNAs of complicated topologies, such as large stem-loop structures and structures containing long-range tertiary interactions. The advantages of IsRNA1 include the consideration of the correlations between the different structural variables, the appropriate characterization of canonical base-pairing and base-stacking interactions, and the better sampling for the backbone conformations. Moreover, a blind screening protocol was developed based on IsRNA1 to identify good structural models from a pool of candidates without prior knowledge of the native structures.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Physics, Department of Biochemistry, and Institute of Data Science and Informatics, University of Missouri, Columbia, Missouri 65211, United States
| | - Jun Li
- Department of Physics, Department of Biochemistry, and Institute of Data Science and Informatics, University of Missouri, Columbia, Missouri 65211, United States
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and Institute of Data Science and Informatics, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
10
|
Kudla M, Gutowska K, Synak J, Weber M, Bohnsack KS, Lukasiak P, Villmann T, Blazewicz J, Szachniuk M. Virxicon: A Lexicon Of Viral Sequences. Bioinformatics 2020; 36:5507-5513. [PMID: 33367605 PMCID: PMC8016492 DOI: 10.1093/bioinformatics/btaa1066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/18/2020] [Accepted: 12/11/2020] [Indexed: 11/12/2022] Open
Abstract
Motivation Viruses are the most abundant biological entities and constitute a large reservoir of genetic diversity. In recent years, knowledge about them has increased significantly as a result of dynamic development in life sciences and rapid technological progress. This knowledge is scattered across various data repositories, making a comprehensive analysis of viral data difficult. Results In response to the need for gathering a comprehensive knowledge of viruses and viral sequences, we developed Virxicon, a lexicon of all experimentally acquired sequences for RNA and DNA viruses. The ability to quickly obtain data for entire viral groups, searching sequences by levels of taxonomic hierarchy—according to the Baltimore classification and ICTV taxonomy—and tracking the distribution of viral data and its growth over time are unique features of our database compared to the other tools. Availabilityand implementation Virxicon is a publicly available resource, updated weekly. It has an intuitive web interface and can be freely accessed at http://virxicon.cs.put.poznan.pl/.
Collapse
Affiliation(s)
- Mateusz Kudla
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Poznan, 60-965, Poland.,Saxon Institute for Computational Intelligence and Machine Learning, University of Applied Sciences Mittweida, Mittweida, 09648, Germany
| | - Kaja Gutowska
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Poznan, 60-965, Poland.,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Jaroslaw Synak
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Poznan, 60-965, Poland
| | - Mirko Weber
- Saxon Institute for Computational Intelligence and Machine Learning, University of Applied Sciences Mittweida, Mittweida, 09648, Germany
| | - Katrin Sophie Bohnsack
- Saxon Institute for Computational Intelligence and Machine Learning, University of Applied Sciences Mittweida, Mittweida, 09648, Germany
| | - Piotr Lukasiak
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Poznan, 60-965, Poland.,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Thomas Villmann
- Saxon Institute for Computational Intelligence and Machine Learning, University of Applied Sciences Mittweida, Mittweida, 09648, Germany
| | - Jacek Blazewicz
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Poznan, 60-965, Poland.,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Marta Szachniuk
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Poznan, 60-965, Poland.,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| |
Collapse
|
11
|
Gumna J, Zok T, Figurski K, Pachulska-Wieczorek K, Szachniuk M. RNAthor - fast, accurate normalization, visualization and statistical analysis of RNA probing data resolved by capillary electrophoresis. PLoS One 2020; 15:e0239287. [PMID: 33002005 PMCID: PMC7529196 DOI: 10.1371/journal.pone.0239287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/03/2020] [Indexed: 12/18/2022] Open
Abstract
RNAs adopt specific structures to perform their functions, which are critical to fundamental cellular processes. For decades, these structures have been determined and modeled with strong support from computational methods. Still, the accuracy of the latter ones depends on the availability of experimental data, for example, chemical probing information that can define pseudo-energy constraints for RNA folding algorithms. At the same time, diverse computational tools have been developed to facilitate analysis and visualization of data from RNA structure probing experiments followed by capillary electrophoresis or next-generation sequencing. RNAthor, a new software tool for the fully automated normalization of SHAPE and DMS probing data resolved by capillary electrophoresis, has recently joined this collection. RNAthor automatically identifies unreliable probing data. It normalizes the reactivity information to a uniform scale and uses it in the RNA secondary structure prediction. Our web server also provides tools for fast and easy RNA probing data visualization and statistical analysis that facilitates the comparison of multiple data sets. RNAthor is freely available at http://rnathor.cs.put.poznan.pl/.
Collapse
Affiliation(s)
- Julita Gumna
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Tomasz Zok
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Kacper Figurski
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | | | - Marta Szachniuk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
- * E-mail: (KPW); (MS)
| |
Collapse
|
12
|
Magnus M, Antczak M, Zok T, Wiedemann J, Lukasiak P, Cao Y, Bujnicki JM, Westhof E, Szachniuk M, Miao Z. RNA-Puzzles toolkit: a computational resource of RNA 3D structure benchmark datasets, structure manipulation, and evaluation tools. Nucleic Acids Res 2020; 48:576-588. [PMID: 31799609 PMCID: PMC7145511 DOI: 10.1093/nar/gkz1108] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/06/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022] Open
Abstract
Significant improvements have been made in the efficiency and accuracy of RNA 3D structure prediction methods during the succeeding challenges of RNA-Puzzles, a community-wide effort on the assessment of blind prediction of RNA tertiary structures. The RNA-Puzzles contest has shown, among others, that the development and validation of computational methods for RNA fold prediction strongly depend on the benchmark datasets and the structure comparison algorithms. Yet, there has been no systematic benchmark set or decoy structures available for the 3D structure prediction of RNA, hindering the standardization of comparative tests in the modeling of RNA structure. Furthermore, there has not been a unified set of tools that allows deep and complete RNA structure analysis, and at the same time, that is easy to use. Here, we present RNA-Puzzles toolkit, a computational resource including (i) decoy sets generated by different RNA 3D structure prediction methods (raw, for-evaluation and standardized datasets), (ii) 3D structure normalization, analysis, manipulation, visualization tools (RNA_format, RNA_normalizer, rna-tools) and (iii) 3D structure comparison metric tools (RNAQUA, MCQ4Structures). This resource provides a full list of computational tools as well as a standard RNA 3D structure prediction assessment protocol for the community.
Collapse
Affiliation(s)
- Marcin Magnus
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
- ReMedy-International Research Agenda Unit, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Maciej Antczak
- Institute of Computing Science & European Centre for Bioinformatics and Genomics, Poznan University of Technology, 60-965 Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Tomasz Zok
- Institute of Computing Science & European Centre for Bioinformatics and Genomics, Poznan University of Technology, 60-965 Poznan, Poland
| | - Jakub Wiedemann
- Institute of Computing Science & European Centre for Bioinformatics and Genomics, Poznan University of Technology, 60-965 Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Piotr Lukasiak
- Institute of Computing Science & European Centre for Bioinformatics and Genomics, Poznan University of Technology, 60-965 Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Yang Cao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Janusz M Bujnicki
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Eric Westhof
- Architecture et Réactivité de l’ARN, Université de Strasbourg, Institut de biologie moléculaire et cellulaire du CNRS, 12 allée Konrad Roentgen, 67084 Strasbourg, France
| | - Marta Szachniuk
- Institute of Computing Science & European Centre for Bioinformatics and Genomics, Poznan University of Technology, 60-965 Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Zhichao Miao
- Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200081, China
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
13
|
RNApolis: Computational Platform for RNA Structure Analysis. FOUNDATIONS OF COMPUTING AND DECISION SCIENCES 2019. [DOI: 10.2478/fcds-2019-0012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
In the 1970s, computer scientists began to engage in research in the field of structural biology. The first structural databases, as well as models and methods supporting the analysis of biomolecule structures, started to be created. RNA was put at the centre of scientific interest quite late. However, more and more methods dedicated to this molecule are currently being developed. This paper presents RNApolis - a new computing platform, which offers access to seven bioinformatic tools developed to support the RNA structure study. The set of tools include a structural database and systems for predicting, modelling, annotating and evaluating the RNA structure. RNApolis supports research at different structural levels and allows the discovery, establishment, and validation of relationships between the primary, secondary and tertiary structure of RNAs. The platform is freely available at http://rnapolis.pl
Collapse
|
14
|
Antczak M, Popenda M, Zok T, Zurkowski M, Adamiak RW, Szachniuk M. New algorithms to represent complex pseudoknotted RNA structures in dot-bracket notation. Bioinformatics 2018; 34:1304-1312. [PMID: 29236971 PMCID: PMC5905660 DOI: 10.1093/bioinformatics/btx783] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 10/23/2017] [Accepted: 12/08/2017] [Indexed: 11/12/2022] Open
Abstract
Motivation Understanding the formation, architecture and roles of pseudoknots in RNA structures are one of the most difficult challenges in RNA computational biology and structural bioinformatics. Methods predicting pseudoknots typically perform this with poor accuracy, often despite experimental data incorporation. Existing bioinformatic approaches differ in terms of pseudoknots' recognition and revealing their nature. A few ways of pseudoknot classification exist, most common ones refer to a genus or order. Following the latter one, we propose new algorithms that identify pseudoknots in RNA structure provided in BPSEQ format, determine their order and encode in dot-bracket-letter notation. The proposed encoding aims to illustrate the hierarchy of RNA folding. Results New algorithms are based on dynamic programming and hybrid (combining exhaustive search and random walk) approaches. They evolved from elementary algorithm implemented within the workflow of RNA FRABASE 1.0, our database of RNA structure fragments. They use different scoring functions to rank dissimilar dot-bracket representations of RNA structure. Computational experiments show an advantage of new methods over the others, especially for large RNA structures. Availability and implementation Presented algorithms have been implemented as new functionality of RNApdbee webserver and are ready to use at http://rnapdbee.cs.put.poznan.pl. Contact mszachniuk@cs.put.poznan.pl. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Maciej Antczak
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Mariusz Popenda
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Tomasz Zok
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
- Poznan Supercomputing and Networking Center, Poznan, Poland
| | - Michal Zurkowski
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Ryszard W Adamiak
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Marta Szachniuk
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
15
|
Xu X, Chen SJ. Hierarchical Assembly of RNA Three-Dimensional Structures Based on Loop Templates. J Phys Chem B 2018; 122:5327-5335. [PMID: 29258305 DOI: 10.1021/acs.jpcb.7b10102] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The current RNA structure prediction methods cannot keep up the pace of the rapidly increasing number of sequences and the emerging new functions of RNAs. Template-based RNA three-dimensional structure prediction methods are restricted by the limited number of known RNA structures, and traditional motif-based search for the templates does not always lead to successful results. Here we report a new template search and assembly algorithm, the hierarchical loop template-assembly method (VfoldLA). The method searches for templates for single strand loop/junctions instead of the whole motifs, which often renders no available templates, or short fragments (several nucleotides), which requires a long computational time to assemble and refine. The VfoldLA method has the advantage of accounting for local and nonlocal interloop interactions. Benchmark tests indicate that this new method can provide low-resolution predictions for RNA conformations at different levels of structural complexities. Furthermore, the VfoldLA-predicted conformations may also serve as reliable putative models for further structure prediction and refinements. VfoldLA is accessible at http://rna.physics.missouri.edu/vfoldLA .
Collapse
Affiliation(s)
- Xiaojun Xu
- Institute of Bioinformatics and Medical Engineering , Jiangsu University of Technology , Changzhou , Jiangsu 213001 , China.,Department of Physics, Department of Biochemistry, and Informatics Institute , University of Missouri , Columbia , Missouri 65211 , United States
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and Informatics Institute , University of Missouri , Columbia , Missouri 65211 , United States
| |
Collapse
|
16
|
Wiedemann J, Zok T, Milostan M, Szachniuk M. LCS-TA to identify similar fragments in RNA 3D structures. BMC Bioinformatics 2017; 18:456. [PMID: 29058576 PMCID: PMC5651598 DOI: 10.1186/s12859-017-1867-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/09/2017] [Indexed: 11/30/2022] Open
Abstract
Background In modern structural bioinformatics, comparison of molecular structures aimed to identify and assess similarities and differences between them is one of the most commonly performed procedures. It gives the basis for evaluation of in silico predicted models. It constitutes the preliminary step in searching for structural motifs. In particular, it supports tracing the molecular evolution. Faced with an ever-increasing amount of available structural data, researchers need a range of methods enabling comparative analysis of the structures from either global or local perspective. Results Herein, we present a new, superposition-independent method which processes pairs of RNA 3D structures to identify their local similarities. The similarity is considered in the context of structure bending and bonds’ rotation which are described by torsion angles. In the analyzed RNA structures, the method finds the longest continuous segments that show similar torsion within a user-defined threshold. The length of the segment is provided as local similarity measure. The method has been implemented as LCS-TA algorithm (Longest Continuous Segments in Torsion Angle space) and is incorporated into our MCQ4Structures application, freely available for download from http://www.cs.put.poznan.pl/tzok/mcq/. Conclusions The presented approach ties torsion-angle-based method of structure analysis with the idea of local similarity identification by handling continuous 3D structure segments. The first method, implemented in MCQ4Structures, has been successfully utilized in RNA-Puzzles initiative. The second one, originally applied in Euclidean space, is a component of LGA (Local-Global Alignment) algorithm commonly used in assessing protein models submitted to CASP. This unique combination of concepts implemented in LCS-TA provides a new perspective on structure quality assessment in local and quantitative aspect. A series of computational experiments show the first results of applying our method to comparison of RNA 3D models. LCS-TA can be used for identifying strengths and weaknesses in the prediction of RNA tertiary structures. Electronic supplementary material The online version of this article (10.1186/s12859-017-1867-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jakub Wiedemann
- Institute of Computing Science & European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965, Poznan, Poland
| | - Tomasz Zok
- Institute of Computing Science & European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965, Poznan, Poland.,Poznan Supercomputing and Networking Center, Jana Pawla II 10, 61-139, Poznan, Poland
| | - Maciej Milostan
- Institute of Computing Science & European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965, Poznan, Poland.,Poznan Supercomputing and Networking Center, Jana Pawla II 10, 61-139, Poznan, Poland
| | - Marta Szachniuk
- Institute of Computing Science & European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965, Poznan, Poland. .,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.
| |
Collapse
|
17
|
Schlick T, Pyle AM. Opportunities and Challenges in RNA Structural Modeling and Design. Biophys J 2017; 113:225-234. [PMID: 28162235 PMCID: PMC5529161 DOI: 10.1016/j.bpj.2016.12.037] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/08/2016] [Accepted: 12/19/2016] [Indexed: 01/27/2023] Open
Abstract
We describe opportunities and challenges in RNA structural modeling and design, as recently discussed during the second Telluride Science Research Center workshop organized in June 2016. Topics include fundamental processes of RNA, such as structural assemblies (hierarchical folding, multiple conformational states and their clustering), RNA motifs, and chemical reactivity of RNA, as used for structural prediction and functional inference. We also highlight the software and database issues associated with RNA structures, such as the multiple approaches for motif annotation, the need for frequent database updating, and the importance of quality control of RNA structures. We discuss various modeling approaches for structure prediction, mechanistic analysis of RNA reactions, and RNA design, and the complementary roles that both atomistic and coarse-grained approaches play in such simulations. Collectively, as scientists from varied disciplines become familiar and drawn into these unique challenges, new approaches and collaborative efforts will undoubtedly be catalyzed.
Collapse
Affiliation(s)
- Tamar Schlick
- Department of Chemistry, New York University, New York, New York; Courant Institute of Mathematical Sciences, New York University, New York, New York.
| | - Anna Marie Pyle
- Department of Molecular and Cellular and Developmental Biology and Department of Chemistry, Yale University; Howard Hughes Medical Institute, New Haven, Connecticut.
| |
Collapse
|
18
|
Abstract
Biological functions of RNA molecules are dependent upon sustained specific three-dimensional (3D) structures of RNA, with or without the help of proteins. Understanding of RNA structure is frequently based on 2D structures, which describe only the Watson-Crick (WC) base pairs. Here, we hierarchically review the structural elements of RNA and how they contribute to RNA 3D structure. We focus our analysis on the non-WC base pairs and on RNA modules. Several computer programs have now been designed to predict RNA modules. We describe the RNA-Puzzles initiative, which is a community-wide, blind assessment of RNA 3D structure prediction programs to determine the capabilities and bottlenecks of current predictions. The assessment metrics used in RNA-Puzzles are briefly described. The detection of RNA 3D modules from sequence data and their automatic implementation belong to the current challenges in RNA 3D structure prediction.
Collapse
Affiliation(s)
- Zhichao Miao
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67000 Strasbourg, France; ,
| | - Eric Westhof
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67000 Strasbourg, France; ,
| |
Collapse
|
19
|
Antczak M, Kasprzak M, Lukasiak P, Blazewicz J. Structural alignment of protein descriptors - a combinatorial model. BMC Bioinformatics 2016; 17:383. [PMID: 27639380 PMCID: PMC5027075 DOI: 10.1186/s12859-016-1237-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/02/2016] [Indexed: 11/17/2022] Open
Abstract
Background Structural alignment of proteins is one of the most challenging problems in molecular biology. The tertiary structure of a protein strictly correlates with its function and computationally predicted structures are nowadays a main premise for understanding the latter. However, computationally derived 3D models often exhibit deviations from the native structure. A way to confirm a model is a comparison with other structures. The structural alignment of a pair of proteins can be defined with the use of a concept of protein descriptors. The protein descriptors are local substructures of protein molecules, which allow us to divide the original problem into a set of subproblems and, consequently, to propose a more efficient algorithmic solution. In the literature, one can find many applications of the descriptors concept that prove its usefulness for insight into protein 3D structures, but the proposed approaches are presented rather from the biological perspective than from the computational or algorithmic point of view. Efficient algorithms for identification and structural comparison of descriptors can become crucial components of methods for structural quality assessment as well as tertiary structure prediction. Results In this paper, we propose a new combinatorial model and new polynomial-time algorithms for the structural alignment of descriptors. The model is based on the maximum-size assignment problem, which we define here and prove that it can be solved in polynomial time. We demonstrate suitability of this approach by comparison with an exact backtracking algorithm. Besides a simplification coming from the combinatorial modeling, both on the conceptual and complexity level, we gain with this approach high quality of obtained results, in terms of 3D alignment accuracy and processing efficiency. Conclusions All the proposed algorithms were developed and integrated in a computationally efficient tool descs-standalone, which allows the user to identify and structurally compare descriptors of biological molecules, such as proteins and RNAs. Both PDB (Protein Data Bank) and mmCIF (macromolecular Crystallographic Information File) formats are supported. The proposed tool is available as an open source project stored on GitHub (https://github.com/mantczak/descs-standalone). Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1237-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maciej Antczak
- Institute of Computing Science, Poznan University of Technology, Piotrowo 2, Poznan, 60-965, Poland.
| | - Marta Kasprzak
- Institute of Computing Science, Poznan University of Technology, Piotrowo 2, Poznan, 60-965, Poland.,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan, 61-704, Poland
| | - Piotr Lukasiak
- Institute of Computing Science, Poznan University of Technology, Piotrowo 2, Poznan, 60-965, Poland.,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan, 61-704, Poland
| | - Jacek Blazewicz
- Institute of Computing Science, Poznan University of Technology, Piotrowo 2, Poznan, 60-965, Poland.,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan, 61-704, Poland
| |
Collapse
|
20
|
RNAComposer and RNA 3D structure prediction for nanotechnology. Methods 2016; 103:120-7. [PMID: 27016145 DOI: 10.1016/j.ymeth.2016.03.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/04/2016] [Accepted: 03/21/2016] [Indexed: 11/21/2022] Open
Abstract
RNAs adopt specific, stable tertiary architectures to perform their activities. Knowledge of RNA tertiary structure is fundamental to understand RNA functions beginning with transcription and ending with turnover. Contrary to advanced RNA secondary structure prediction algorithms, which allow good accuracy when experimental data are integrated into the prediction, tertiary structure prediction of large RNAs still remains a significant challenge. However, the field of RNA tertiary structure prediction is rapidly developing and new computational methods based on different strategies are emerging. RNAComposer is a user-friendly and freely available server for 3D structure prediction of RNA up to 500 nucleotide residues. RNAComposer employs fully automated fragment assembly based on RNA secondary structure specified by the user. Importantly, this method allows incorporation of distance restraints derived from the experimental data to strengthen the 3D predictions. The potential and limitations of RNAComposer are discussed and an application to RNA design for nanotechnology is presented.
Collapse
|