1
|
Danilowicz C, Meron A, Prentiss M. During recombinase-mediated homology recognition RecQ helicases inhibit formation of toxic long-lived D-loops that could promote genomic instability. Nucleic Acids Res 2025; 53:gkaf426. [PMID: 40377216 PMCID: PMC12082448 DOI: 10.1093/nar/gkaf426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 04/21/2025] [Accepted: 05/14/2025] [Indexed: 05/18/2025] Open
Abstract
Mutations in RecQ family helicases underlie human genetic disorders associated with genomic instability and cancer predisposition, but questions remain about how properly functioning RecQ reduces these deleterious effects. Importantly, some of the deleterious effects may result from incorrect repair of DNA double-strand breaks (DSBs) by recombinase proteins. Displacement loops (D-loops) are three-strand intermediates formed by recombinases during repair of DSB. RecQ helicases might enhance genome stability by disassembling incorrect recombinase-mediated D-loops formed between mismatched sequences and/or between short regions of accidental homology. We used bulk FRET and gel electrophoresis assays to probe the effects of RecQ family helicases in the context of ongoing recombinase-mediated D-loop formation. We found that RecQ does not differentially promote disassembly of short D-loops or D-loops that include mismatched base pairs. Thus, RecQ does not reduce genomic instability by discriminating against incorrect D-loops. In contrast, our results suggest that RecQ intervenes during D-loop formation to limit the length of recombinase-mediated D-loops. Without that intervention, D-loops can become so long that they do not spontaneously reverse. We suggest that RecQ prevents undesirable long-lived connections between chromosomes that could compromise chromosome metabolism and/or segregation and promote genomic instability.
Collapse
Affiliation(s)
- Claudia Danilowicz
- Department of Physics, Harvard University, Cambridge, MA 02138, United States
| | - Athalia Meron
- Department of Physics, Harvard University, Cambridge, MA 02138, United States
| | - Mara Prentiss
- Department of Physics, Harvard University, Cambridge, MA 02138, United States
| |
Collapse
|
2
|
Danilowicz C, Fu J, Prentiss M. Insight into RecA-mediated repair of double strand breaks is provided by probing how contiguous heterology affects recombination. J Biol Chem 2024; 300:107887. [PMID: 39395797 PMCID: PMC11570958 DOI: 10.1016/j.jbc.2024.107887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024] Open
Abstract
Homologous recombination can promote correct repair of double strand breaks in DNA by aligning a sequence region in the broken chromosome with the corresponding sequence region in an unbroken chromosome. D-loops join the broken and unbroken chromosomes during homology testing. Previous work studied how some mismatches affect the stability of D-loops, but they did not probe whether the D-loops disrupt regions of contiguous mismatches or simply bypass them. Furthermore, previous work has not considered how the length of flanking homology affects D-loop disruption of regions of contiguous mismatches. Finally, there are conflicts about the polarity of D-loop extension. We demonstrate that with or without ATP hydrolysis invading strands with six contiguous mismatches and sufficient flanking homology readily form D-loops that disrupt the structure of the mismatched region and incorporate both flanking homologous regions. Unsurprisingly, the probability that D-loops will incorporate both flanking homologous regions decreases as the number of mismatched bases increases. Furthermore, though D-loops may progress through homologous regions initially and dominantly in the 5' to 3' direction with respect to the single strand in the broken chromosome, our results suggest that progress through contiguous mismatches proceeds dominantly in the 3' to 5' direction. These results may reconcile previous conflicts about the polarity of D-loop extension. Additionally, the results suggest that homology recognition is not characterized by any simple iterative decision tree model that considers each homology testing step separately. Instead, homology recognition involves collective interactions. Finally, we consider implications for double strand break repair.
Collapse
Affiliation(s)
- Claudia Danilowicz
- Department of Physics, Harvard University, Cambridge, Massachusetts, USA
| | - Jonathan Fu
- Department of Physics, Harvard University, Cambridge, Massachusetts, USA
| | - Mara Prentiss
- Department of Physics, Harvard University, Cambridge, Massachusetts, USA.
| |
Collapse
|
3
|
Hu J, Crickard JB. All who wander are not lost: the search for homology during homologous recombination. Biochem Soc Trans 2024; 52:367-377. [PMID: 38323621 PMCID: PMC10903458 DOI: 10.1042/bst20230705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/08/2024]
Abstract
Homologous recombination (HR) is a template-based DNA double-strand break repair pathway that functions to maintain genomic integrity. A vital component of the HR reaction is the identification of template DNA to be used during repair. This occurs through a mechanism known as the homology search. The homology search occurs in two steps: a collision step in which two pieces of DNA are forced to collide and a selection step that results in homologous pairing between matching DNA sequences. Selection of a homologous template is facilitated by recombinases of the RecA/Rad51 family of proteins in cooperation with helicases, translocases, and topoisomerases that determine the overall fidelity of the match. This menagerie of molecular machines acts to regulate critical intermediates during the homology search. These intermediates include recombinase filaments that probe for short stretches of homology and early strand invasion intermediates in the form of displacement loops (D-loops) that stabilize paired DNA. Here, we will discuss recent advances in understanding how these specific intermediates are regulated on the molecular level during the HR reaction. We will also discuss how the stability of these intermediates influences the ultimate outcomes of the HR reaction. Finally, we will discuss recent physiological models developed to explain how the homology search protects the genome.
Collapse
Affiliation(s)
- Jingyi Hu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, U.S.A
| | - J. Brooks Crickard
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, U.S.A
| |
Collapse
|
4
|
Sabei A, Prentiss M, Prévost C. Modeling the Homologous Recombination Process: Methods, Successes and Challenges. Int J Mol Sci 2023; 24:14896. [PMID: 37834348 PMCID: PMC10573387 DOI: 10.3390/ijms241914896] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Homologous recombination (HR) is a fundamental process common to all species. HR aims to faithfully repair DNA double strand breaks. HR involves the formation of nucleoprotein filaments on DNA single strands (ssDNA) resected from the break. The nucleoprotein filaments search for homologous regions in the genome and promote strand exchange with the ssDNA homologous region in an unbroken copy of the genome. HR has been the object of intensive studies for decades. Because multi-scale dynamics is a fundamental aspect of this process, studying HR is highly challenging, both experimentally and using computational approaches. Nevertheless, knowledge has built up over the years and has recently progressed at an accelerated pace, borne by increasingly focused investigations using new techniques such as single molecule approaches. Linking this knowledge to the atomic structure of the nucleoprotein filament systems and the succession of unstable, transient intermediate steps that takes place during the HR process remains a challenge; modeling retains a very strong role in bridging the gap between structures that are stable enough to be observed and in exploring transition paths between these structures. However, working on ever-changing long filament systems submitted to kinetic processes is full of pitfalls. This review presents the modeling tools that are used in such studies, their possibilities and limitations, and reviews the advances in the knowledge of the HR process that have been obtained through modeling. Notably, we will emphasize how cooperative behavior in the HR nucleoprotein filament enables modeling to produce reliable information.
Collapse
Affiliation(s)
- Afra Sabei
- CNRS, UPR 9080, Laboratoire de Biochimie Théorique, Université de Paris, 13 Rue Pierre et Marie Curie, F-75005 Paris, France;
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rotschild, PSL Research University, F-75005 Paris, France
| | - Mara Prentiss
- Department of Physics, Harvard University, Cambridge, MA02138, USA;
| | - Chantal Prévost
- CNRS, UPR 9080, Laboratoire de Biochimie Théorique, Université de Paris, 13 Rue Pierre et Marie Curie, F-75005 Paris, France;
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rotschild, PSL Research University, F-75005 Paris, France
| |
Collapse
|
5
|
Prentiss M, Wang D, Fu J, Prévost C, Godoy-Carter V, Kleckner N, Danilowicz C. Highly mismatch-tolerant homology testing by RecA could explain how homology length affects recombination. PLoS One 2023; 18:e0288611. [PMID: 37440583 PMCID: PMC10343044 DOI: 10.1371/journal.pone.0288611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
In E. coli, double strand breaks (DSBs) are resected and loaded with RecA protein. The genome is then rapidly searched for a sequence that is homologous to the DNA flanking the DSB. Mismatches in homologous partners are rare, suggesting that RecA should rapidly reject mismatched recombination products; however, this is not the case. Decades of work have shown that long lasting recombination products can include many mismatches. In this work, we show that in vitro RecA forms readily observable recombination products when 16% of the bases in the product are mismatched. We also consider various theoretical models of mismatch-tolerant homology testing. The models test homology by comparing the sequences of Ltest bases in two single-stranded DNAs (ssDNA) from the same genome. If the two sequences pass the homology test, the pairing between the two ssDNA becomes permanent. Stringency is the fraction of permanent pairings that join ssDNA from the same positions in the genome. We applied the models to both randomly generated genomes and bacterial genomes. For both randomly generated genomes and bacterial genomes, the models show that if no mismatches are accepted stringency is ∼ 99% when Ltest = 14 bp. For randomly generated genomes, stringency decreases with increasing mismatch tolerance, and stringency improves with increasing Ltest. In contrast, in bacterial genomes when Ltest ∼ 75 bp, stringency is ∼ 99% for both mismatch-intolerant and mismatch-tolerant homology testing. Furthermore, increasing Ltest does not improve stringency because most incorrect pairings join different copies of repeats. In sum, for bacterial genomes highly mismatch tolerant homology testing of 75 bp provides the same stringency as homology testing that rejects all mismatches and testing more than ∼75 base pairs is not useful. Interestingly, in vivo commitment to recombination typically requires homology testing of ∼ 75 bp, consistent with highly mismatch intolerant testing.
Collapse
Affiliation(s)
- Mara Prentiss
- Department of Physics, Harvard University, Cambridge, Massachusetts, United States of America
| | - Dianzhuo Wang
- Department of Physics, Harvard University, Cambridge, Massachusetts, United States of America
| | - Jonathan Fu
- Department of Physics, Harvard University, Cambridge, Massachusetts, United States of America
| | - Chantal Prévost
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Paris, France
| | - Veronica Godoy-Carter
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Claudia Danilowicz
- Department of Physics, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
6
|
Gibson PS, Veening JW. Gaps in the wall: understanding cell wall biology to tackle amoxicillin resistance in Streptococcus pneumoniae. Curr Opin Microbiol 2023; 72:102261. [PMID: 36638546 DOI: 10.1016/j.mib.2022.102261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 01/13/2023]
Abstract
Streptococcus pneumoniae is the most common cause of community-acquired pneumonia, and one of the main pathogens responsible for otitis media infections in children. Amoxicillin (AMX) is a broad-spectrum β-lactam antibiotic, used frequently for the treatment of bacterial respiratory tract infections. Here, we discuss the pneumococcal response to AMX, including the mode of action of AMX, the effects on autolysin regulation, and the evolution of resistance through natural transformation. We discuss current knowledge gaps in the synthesis and translocation of peptidoglycan and teichoic acids, major constituents of the pneumococcal cell wall and critical to AMX activity. Furthermore, an outlook of AMX resistance research is presented, including the development of natural competence inhibitors to block evolution via horizontal gene transfer, and the use of high-throughput essentiality screens for the discovery of novel cotherapeutics.
Collapse
Affiliation(s)
- Paddy S Gibson
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
7
|
Emmenecker C, Mézard C, Kumar R. Repair of DNA double-strand breaks in plant meiosis: role of eukaryotic RecA recombinases and their modulators. PLANT REPRODUCTION 2023; 36:17-41. [PMID: 35641832 DOI: 10.1007/s00497-022-00443-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Homologous recombination during meiosis is crucial for the DNA double-strand breaks (DSBs) repair that promotes the balanced segregation of homologous chromosomes and enhances genetic variation. In most eukaryotes, two recombinases RAD51 and DMC1 form nucleoprotein filaments on single-stranded DNA generated at DSB sites and play a central role in the meiotic DSB repair and genome stability. These nucleoprotein filaments perform homology search and DNA strand exchange to initiate repair using homologous template-directed sequences located elsewhere in the genome. Multiple factors can regulate the assembly, stability, and disassembly of RAD51 and DMC1 nucleoprotein filaments. In this review, we summarize the current understanding of the meiotic functions of RAD51 and DMC1 and the role of their positive and negative modulators. We discuss the current models and regulators of homology searches and strand exchange conserved during plant meiosis. Manipulation of these repair factors during plant meiosis also holds a great potential to accelerate plant breeding for crop improvements and productivity.
Collapse
Affiliation(s)
- Côme Emmenecker
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
- University of Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
| | - Christine Mézard
- Institut Jean-Pierre Bourgin (IJPB), CNRS, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| | - Rajeev Kumar
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| |
Collapse
|
8
|
Choi J, Kong M, Gallagher DN, Li K, Bronk G, Cao Y, Greene EC, Haber JE. Repair of mismatched templates during Rad51-dependent Break-Induced Replication. PLoS Genet 2022; 18:e1010056. [PMID: 36054210 PMCID: PMC9477423 DOI: 10.1371/journal.pgen.1010056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 09/15/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
Using budding yeast, we have studied Rad51-dependent break-induced replication (BIR), where the invading 3’ end of a site-specific double-strand break (DSB) and a donor template share 108 bp of homology that can be easily altered. BIR still occurs about 10% as often when every 6th base is mismatched as with a perfectly matched donor. Here we explore the tolerance of mismatches in more detail, by examining donor templates that each carry 10 mismatches, each with different spatial arrangements. Although 2 of the 6 arrangements we tested were nearly as efficient as the evenly-spaced reference, 4 were significantly less efficient. A donor with all 10 mismatches clustered at the 3’ invading end of the DSB was not impaired compared to arrangements where mismatches were clustered at the 5’ end. Our data suggest that the efficiency of strand invasion is principally dictated by thermodynamic considerations, i.e., by the total number of base pairs that can be formed; but mismatch position-specific effects are also important. We also addressed an apparent difference between in vitro and in vivo strand exchange assays, where in vitro studies had suggested that at a single contiguous stretch of 8 consecutive bases was needed to be paired for stable strand pairing, while in vivo assays using 108-bp substrates found significant recombination even when every 6th base was mismatched. Now, using substrates of either 90 or 108 nt–the latter being the size of the in vivo templates–we find that in vitro D-loop results are very similar to the in vivo results. However, there are still notable differences between in vivo and in vitro assays that are especially evident with unevenly-distributed mismatches. Mismatches in the donor template are incorporated into the BIR product in a strongly polar fashion up to ~40 nucleotides from the 3’ end. Mismatch incorporation depends on the 3’→ 5’ proofreading exonuclease activity of DNA polymerase δ, with little contribution from Msh2/Mlh1 mismatch repair proteins, or from Rad1-Rad10 flap nuclease or the Mph1 helicase. Surprisingly, the probability of a mismatch 27 nt from the 3’ end being replaced by donor sequence was the same whether the preceding 26 nucleotides were mismatched every 6th base or fully homologous. These data suggest that DNA polymerase δ “chews back” the 3’ end of the invading strand without any mismatch-dependent cues from the strand invasion structure. However, there appears to be an alternative way to incorporate a mismatch at the first base at the 3’ end of the donor. DNA double-strand breaks (DSBs) are the most lethal forms of DNA damage and inaccurate repair of these breaks presents a serious threat to genomic integrity and cell viability. Break-induced replication (BIR) is a homologous recombination pathway that results in a nonreciprocal translocation of chromosome ends. We used budding yeast Saccharomyces cerevisiae to investigate Rad51-mediated BIR, where the invading 3’ end of the DSB and a donor template share 108 bp of homology. We examined the tolerance of differently distributed mismatches on a homologous donor template. A donor with all 10 mismatches clustered every 6th base at the 3’ invading end of the DSB was not impaired compared to arrangements where mismatches were clustered at the 5’ end. We also compared the efficiency of in vivo BIR with in vitro D-loop formation and find that for substrates of the same length, the tolerance for mismatches is comparable. However, there are still notable differences between in vivo and in vitro assays that are especially evident in substrates with unevenly-distributed mismatches. Mismatches are incorporated into the BIR product in a strongly polar fashion as far as about 40 nucleotides from the 3’ end, dependent on the 5’ to 3’ proofreading activity of DNA polymerase δ. Pol δ can “chew back” the 3’ end of the invading strand even when the sequences removed have no mismatches for the first 26 nucleotides. However, a mismatch at the first base can be removed from the 3’ end by another, unidentified mechanism.
Collapse
Affiliation(s)
- Jihyun Choi
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Muwen Kong
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, New York, United States of America
| | - Danielle N. Gallagher
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Kevin Li
- Department of Physics, Brandeis University, Waltham, Massachusetts, United States of America
| | - Gabriel Bronk
- Department of Physics, Brandeis University, Waltham, Massachusetts, United States of America
| | - Yiting Cao
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Eric C. Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, New York, United States of America
| | - James E. Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
9
|
Gibson PS, Bexkens E, Zuber S, Cowley LA, Veening JW. The acquisition of clinically relevant amoxicillin resistance in Streptococcus pneumoniae requires ordered horizontal gene transfer of four loci. PLoS Pathog 2022; 18:e1010727. [PMID: 35877768 PMCID: PMC9352194 DOI: 10.1371/journal.ppat.1010727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/04/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
Understanding how antimicrobial resistance spreads is critical for optimal application of new treatments. In the naturally competent human pathogen Streptococcus pneumoniae, resistance to β-lactam antibiotics is mediated by recombination events in genes encoding the target proteins, resulting in reduced drug binding affinity. However, for the front-line antibiotic amoxicillin, the exact mechanism of resistance still needs to be elucidated. Through successive rounds of transformation with genomic DNA from a clinically resistant isolate, we followed amoxicillin resistance development. Using whole genome sequencing, we showed that multiple recombination events occurred at different loci during one round of transformation. We found examples of non-contiguous recombination, and demonstrated that this could occur either through multiple D-loop formation from one donor DNA molecule, or by the integration of multiple DNA fragments. We also show that the final minimum inhibitory concentration (MIC) differs depending on recipient genome, explained by differences in the extent of recombination at key loci. Finally, through back transformations of mutant alleles and fluorescently labelled penicillin (bocillin-FL) binding assays, we confirm that pbp1a, pbp2b, pbp2x, and murM are the main resistance determinants for amoxicillin resistance, and that the order of allele uptake is important for successful resistance evolution. We conclude that recombination events are complex, and that this complexity contributes to the highly diverse genotypes of amoxicillin-resistant pneumococcal isolates.
Collapse
Affiliation(s)
- Paddy S. Gibson
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Evan Bexkens
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Sylvia Zuber
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Lauren A. Cowley
- Department of Biology & Biochemistry, Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Savocco J, Piazza A. Recombination-mediated genome rearrangements. Curr Opin Genet Dev 2021; 71:63-71. [PMID: 34325160 DOI: 10.1016/j.gde.2021.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/20/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022]
Abstract
Homologous recombination (HR) is a universal DNA double-strand break (DSB) repair pathway that uses an intact DNA molecule as a template. Signature HR reactions are homology search and DNA strand invasion catalyzed by the prototypical RecA-ssDNA filament (Rad51 and Dmc1 in eukaryotes), which produces heteroduplex DNA-containing joint molecules (JMs). These reactions uniquely infringe on the DNA strands association established at replication, on the basis of substantial sequence similarity. For that reason, and despite the high fidelity of its templated nature, DSB repair by HR authorizes the alteration of genome structure, guided by repetitive DNA elements. The resulting structural variations (SVs) can involve vast genomic regions, potentially affecting multiple coding sequences and regulatory elements at once, with possible pathological consequences. Here, we discuss recent advances in our understanding of genetic and molecular vulnerabilities of HR leading to SVs, and of the various fidelity-enforcing factors acting across scales on the balancing act of this complex pathway. An emphasis is put on extra-chomosomal DNAs, both product of, and substrate for HR-mediated chromosomal rearrangements.
Collapse
Affiliation(s)
- Jérôme Savocco
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, Lyon, France
| | - Aurèle Piazza
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, Lyon, France.
| |
Collapse
|
11
|
Influences of ssDNA-RecA Filament Length on the Fidelity of Homologous Recombination. J Mol Biol 2021; 433:167143. [PMID: 34242669 DOI: 10.1016/j.jmb.2021.167143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/08/2021] [Accepted: 06/30/2021] [Indexed: 11/22/2022]
Abstract
Chromosomal double-strand breaks can be accurately repaired by homologous recombination, but genomic rearrangement can result if the repair joins different copies of a repeated sequence. Rearrangement can be advantageous or fatal. During repair, a broken double-stranded DNA (dsDNA) is digested by the RecBCD complex from the 5' end, leaving a sequence gap that separates two 3' single-stranded DNA (ssDNA) tails. RecA binds to the 3' tails forming helical nucleoprotein filaments.A three-strand intermediate is formed when a RecA-bound ssDNA with L nucleotides invades a homologous region of dsDNA and forms a heteroduplex product with a length ≤ L bp. The homology dependent stability of the heteroduplex determines how rapidly and accurately homologous recombination repairs double-strand breaks. If the heteroduplex is sufficiently sequence matched, repair progresses to irreversible DNA synthesis. Otherwise, the heteroduplex should rapidly reverse. In this work, we present in vitro measurements of the L dependent stability of heteroduplex products formed by filaments with 90 ≤ L ≤ 420 nt, which is within the range observedin vivo. We find that without ATP hydrolysis, products are irreversible when L > 50 nt. In contrast, with ATP hydrolysis when L < 160 nt, products reverse in < 30 seconds; however, with ATP hydrolysis when L ≥ 320 nt, some products reverse in < 30 seconds, while others last thousands of seconds. We consider why these two different filament length regimes show such distinct behaviors. We propose that the experimental results combined with theoretical insights suggest that filaments with 250 ≲ L ≲ 8500 nt optimize DSB repair.
Collapse
|
12
|
Boyer B, Danilowicz C, Prentiss M, Prévost C. Weaving DNA strands: structural insight on ATP hydrolysis in RecA-induced homologous recombination. Nucleic Acids Res 2019; 47:7798-7808. [PMID: 31372639 PMCID: PMC6735932 DOI: 10.1093/nar/gkz667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 07/12/2019] [Accepted: 07/19/2019] [Indexed: 01/01/2023] Open
Abstract
Homologous recombination is a fundamental process in all living organisms that allows the faithful repair of DNA double strand breaks, through the exchange of DNA strands between homologous regions of the genome. Results of three decades of investigation and recent fruitful observations have unveiled key elements of the reaction mechanism, which proceeds along nucleofilaments of recombinase proteins of the RecA family. Yet, one essential aspect of homologous recombination has largely been overlooked when deciphering the mechanism: while ATP is hydrolyzed in large quantity during the process, how exactly hydrolysis influences the DNA strand exchange reaction at the structural level remains to be elucidated. In this study, we build on a previous geometrical approach that studied the RecA filament variability without bound DNA to examine the putative implication of ATP hydrolysis on the structure, position, and interactions of up to three DNA strands within the RecA nucleofilament. Simulation results on modeled intermediates in the ATP cycle bring important clues about how local distortions in the DNA strand geometries resulting from ATP hydrolysis can aid sequence recognition by promoting local melting of already formed DNA heteroduplex and transient reverse strand exchange in a weaving type of mechanism.
Collapse
Affiliation(s)
- Benjamin Boyer
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005 Paris, France.,Presently in Laboratoire Génomique Bioinformatique et Applications, EA4627, Conservatoire National des Arts et Métiers, 292 rue Saint Martin, 75003 Paris, France
| | | | - Mara Prentiss
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Chantal Prévost
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005 Paris, France.,Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| |
Collapse
|
13
|
Lin YH, Chu CC, Fan HF, Wang PY, Cox MM, Li HW. A 5'-to-3' strand exchange polarity is intrinsic to RecA nucleoprotein filaments in the absence of ATP hydrolysis. Nucleic Acids Res 2019; 47:5126-5140. [PMID: 30916331 PMCID: PMC6547424 DOI: 10.1093/nar/gkz189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 01/13/2023] Open
Abstract
RecA is essential to recombinational DNA repair in which RecA filaments mediate the homologous DNA pairing and strand exchange. Both RecA filament assembly and the subsequent DNA strand exchange are directional. Here, we demonstrate that the polarity of DNA strand exchange is embedded within RecA filaments even in the absence of ATP hydrolysis, at least over short DNA segments. Using single-molecule tethered particle motion, we show that successful strand exchange in the presence of ATP proceeds with a 5′-to-3′ polarity, as demonstrated previously. RecA filaments prepared with ATPγS also exhibit a 5′-to-3′ progress of strand exchange, suggesting that the polarity is not determined by RecA disassembly and/or ATP hydrolysis. RecAΔC17 mutants, lacking a C-terminal autoregulatory flap, also promote strand exchange in a 5′-to-3′ polarity in ATPγS, a polarity that is largely lost with this RecA variant when ATP is hydrolyzed. We propose that there is an inherent strand exchange polarity mediated by the structure of the RecA filament groove, associated by conformation changes propagated in a polar manner as DNA is progressively exchanged. ATP hydrolysis is coupled to polar strand exchange over longer distances, and its contribution to the polarity requires an intact RecA C-terminus.
Collapse
Affiliation(s)
- Yu-Hsuan Lin
- Department of Chemistry, National Taiwan University, 10617, Taiwan
| | - Chia-Chieh Chu
- Department of Chemistry, National Taiwan University, 10617, Taiwan
| | - Hsiu-Fang Fan
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, 11221 Taiwan
| | - Pang-Yen Wang
- Department of Chemistry, National Taiwan University, 10617, Taiwan
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin, Madison, 53706, USA
| | - Hung-Wen Li
- Department of Chemistry, National Taiwan University, 10617, Taiwan
| |
Collapse
|
14
|
RecA kinetically selects homologous DNA by testing a five- or six-nucleotide matching sequence and deforming the second DNA. Q Rev Biophys 2019; 51:e11. [PMID: 30912492 DOI: 10.1017/s0033583518000094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
RecA family proteins pair two DNAs with the same sequence to promote strand exchange during homologous recombination. To understand how RecA proteins search for and recognize homology, we sought to determine the length of homologous sequence that permits RecA to start its reaction. Specifically, we analyzed the effect of sequence heterogeneity on the association rate of homologous DNA with RecA/single-stranded DNA complex. We assumed that the reaction can start with equal likelihood at any point in the DNA, and that sequence heterogeneity abolishes some possible initiation sites. This analysis revealed that the effective recognition size is five or six nucleotides, larger than the three nucleotides recognized by a RecA monomer. Because the first DNA is elongated 1.5-fold by intercalation of amino acid residues of RecA every three bases, the second bound DNA must be elongated to pair with the first. Because this length is similar to estimates based on the strand-exchange reaction or DNA pair formation, the homology test is likely to occur primarily at the association step. The energetic difference due to the absence of hydrogen bonding is too small to discriminate single-nucleotide heterogeneity over a five- or six-nucleotide sequence. The selection is very likely to be made kinetically, and probably involves some structural factor other than Watson-Crick hydrogen bonding. It would be valuable to determine whether this is also the case for other biological reactions involving DNA base complementarity, such as replication, transcription, and translation.
Collapse
|
15
|
Steinfeld JB, Beláň O, Kwon Y, Terakawa T, Al-Zain A, Smith MJ, Crickard JB, Qi Z, Zhao W, Rothstein R, Symington LS, Sung P, Boulton SJ, Greene EC. Defining the influence of Rad51 and Dmc1 lineage-specific amino acids on genetic recombination. Genes Dev 2019; 33:1191-1207. [PMID: 31371435 PMCID: PMC6719624 DOI: 10.1101/gad.328062.119] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/01/2019] [Indexed: 02/06/2023]
Abstract
The vast majority of eukaryotes possess two DNA recombinases: Rad51, which is ubiquitously expressed, and Dmc1, which is meiosis-specific. The evolutionary origins of this two-recombinase system remain poorly understood. Interestingly, Dmc1 can stabilize mismatch-containing base triplets, whereas Rad51 cannot. Here, we demonstrate that this difference can be attributed to three amino acids conserved only within the Dmc1 lineage of the Rad51/RecA family. Chimeric Rad51 mutants harboring Dmc1-specific amino acids gain the ability to stabilize heteroduplex DNA joints with mismatch-containing base triplets, whereas Dmc1 mutants with Rad51-specific amino acids lose this ability. Remarkably, RAD-51 from Caenorhabditis elegans, an organism without Dmc1, has acquired "Dmc1-like" amino acids. Chimeric C. elegans RAD-51 harboring "canonical" Rad51 amino acids gives rise to toxic recombination intermediates, which must be actively dismantled to permit normal meiotic progression. We propose that Dmc1 lineage-specific amino acids involved in the stabilization of heteroduplex DNA joints with mismatch-containing base triplets may contribute to normal meiotic recombination.
Collapse
Affiliation(s)
- Justin B Steinfeld
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Ondrej Beláň
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Tsuyoshi Terakawa
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Amr Al-Zain
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Michael J Smith
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - J Brooks Crickard
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Zhi Qi
- Center for Quantitative Biology, Peking University-Tsinghua University Joint Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Rodney Rothstein
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Lorraine S Symington
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Simon J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Eric C Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, New York 10032, USA
| |
Collapse
|
16
|
Li C, Danilowicz C, Tashjian TF, Godoy VG, Prévost C, Prentiss M. The positioning of Chi sites allows the RecBCD pathway to suppress some genomic rearrangements. Nucleic Acids Res 2019; 47:1836-1846. [PMID: 30544167 PMCID: PMC6393298 DOI: 10.1093/nar/gky1252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/29/2018] [Accepted: 12/11/2018] [Indexed: 12/03/2022] Open
Abstract
Bacterial recombinational repair of double-strand breaks often begins with creation of initiating 3′ single-stranded DNA (ssDNA) tails on each side of a double-strand break (DSB). Importantly, if the RecBCD pathway is followed, RecBCD creates a gap between the sequences at 3′ ends of the initiating strands. The gap flanks the DSB and extends at least to the nearest Chi site on each strand. Once the initiating strands form ssDNA–RecA filaments, each ssDNA–RecA filament searches for homologous double-stranded DNA (dsDNA) to use as a template for the DNA synthesis needed to fill the gap created by RecBCD. Our experimental results show that the DNA synthesis requires formation of a heteroduplex dsDNA that pairs >20 contiguous bases in the initiating strand with sequence matched bases in a strand from the original dsDNA. To trigger synthesis, the heteroduplex must be near the 3′ end of the initiating strand. Those experimentally determined requirements for synthesis combined with the Chi site dependence of the function of RecBCD and the distribution of Chi sites in bacterial genomes could allow the RecBCD pathway to avoid some genomic rearrangements arising from directly induced DSBs; however, the same three factors could promote other rearrangements.
Collapse
Affiliation(s)
- Chastity Li
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | | | - Tommy F Tashjian
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Veronica G Godoy
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Chantal Prévost
- Laboratoire de BioChimie Théorique, CNRS UMR 9080, IBPC, Paris, France
| | - Mara Prentiss
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
17
|
Moving forward one step back at a time: reversibility during homologous recombination. Curr Genet 2019; 65:1333-1340. [PMID: 31123771 DOI: 10.1007/s00294-019-00995-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 10/26/2022]
Abstract
DNA double-strand breaks are genotoxic lesions whose repair can be templated off an intact DNA duplex through the conserved homologous recombination (HR) pathway. Because it mainly consists of a succession of non-covalent associations of molecules, HR is intrinsically reversible. Reversibility serves as an integral property of HR, exploited and tuned at various stages throughout the pathway with anti- and pro-recombinogenic consequences. Here, we focus on the reversibility of displacement loops (D-loops), a central DNA joint molecule intermediate whose dynamics and regulation have recently been physically probed in somatic S. cerevisiae cells. From homology search to repair completion, we discuss putative roles of D-loop reversibility in repair fidelity and outcome.
Collapse
|
18
|
Lu D, Danilowicz C, Tashjian TF, Prévost C, Godoy VG, Prentiss M. Slow extension of the invading DNA strand in a D-loop formed by RecA-mediated homologous recombination may enhance recognition of DNA homology. J Biol Chem 2019; 294:8606-8616. [PMID: 30975899 PMCID: PMC6544866 DOI: 10.1074/jbc.ra119.007554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/10/2019] [Indexed: 11/21/2022] Open
Abstract
DNA recombination resulting from RecA-mediated strand exchange aided by RecBCD proteins often enables accurate repair of DNA double-strand breaks. However, the process of recombinational repair between short DNA regions of accidental similarity can lead to fatal genomic rearrangements. Previous studies have probed how effectively RecA discriminates against interactions involving a short similar sequence that is embedded in otherwise dissimilar sequences but have not yielded fully conclusive results. Here, we present results of in vitro experiments with fluorescent probes strategically located on the interacting DNA fragments used for recombination. Our findings suggest that DNA synthesis increases the stability of the recombination products. Fluorescence measurements can also probe the homology dependence of the extension of invading DNA strands in D-loops formed by RecA-mediated strand exchange. We examined the slow extension of the invading strand in a D-loop by DNA polymerase (Pol) IV and the more rapid extension by DNA polymerase LF-Bsu. We found that when DNA Pol IV extends the invading strand in a D-loop formed by RecA-mediated strand exchange, the extension afforded by 82 bp of homology is significantly longer than the extension on 50 bp of homology. In contrast, the extension of the invading strand in D-loops by DNA LF-Bsu Pol is similar for intermediates with ≥50 bp of homology. These results suggest that fatal genomic rearrangements due to the recombination of small regions of accidental homology may be reduced if RecA-mediated strand exchange is immediately followed by DNA synthesis by a slow polymerase.
Collapse
Affiliation(s)
- Daniel Lu
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138
| | - Claudia Danilowicz
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138
| | - Tommy F Tashjian
- Department of Biology, Northeastern University, Boston, Massachusetts 02115
| | - Chantal Prévost
- Laboratoire de Biochimie Théorique, CNRS UMR 9080, Institut de Biologie Physico-chimique (IBPC), Paris 75005, France
| | - Veronica G Godoy
- Department of Biology, Northeastern University, Boston, Massachusetts 02115
| | - Mara Prentiss
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138.
| |
Collapse
|
19
|
Tashjian TF, Danilowicz C, Molza AE, Nguyen BH, Prévost C, Prentiss M, Godoy VG. Residues in the fingers domain of the translesion DNA polymerase DinB enable its unique participation in error-prone double-strand break repair. J Biol Chem 2019; 294:7588-7600. [PMID: 30872406 DOI: 10.1074/jbc.ra118.006233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/28/2019] [Indexed: 11/06/2022] Open
Abstract
The evolutionarily conserved Escherichia coli translesion DNA polymerase IV (DinB) is one of three enzymes that can bypass potentially deadly DNA lesions on the template strand during DNA replication. Remarkably, however, DinB is the only known translesion DNA polymerase active in RecA-mediated strand exchange during error-prone double-strand break repair. In this process, a single-stranded DNA (ssDNA)-RecA nucleoprotein filament invades homologous dsDNA, pairing the ssDNA with the complementary strand in the dsDNA. When exchange reaches the 3' end of the ssDNA, a DNA polymerase can add nucleotides onto the end, using one strand of dsDNA as a template and displacing the other. It is unknown what makes DinB uniquely capable of participating in this reaction. To explore this topic, we performed molecular modeling of DinB's interactions with the RecA filament during strand exchange, identifying key contacts made with residues in the DinB fingers domain. These residues are highly conserved in DinB, but not in other translesion DNA polymerases. Using a novel FRET-based assay, we found that DinB variants with mutations in these conserved residues are less effective at stabilizing RecA-mediated strand exchange than native DinB. Furthermore, these variants are specifically deficient in strand displacement in the absence of RecA filament. We propose that the amino acid patch of highly conserved residues in DinB-like proteins provides a mechanistic explanation for DinB's function in strand exchange and improves our understanding of recombination by providing evidence that RecA plays a role in facilitating DinB's activity during strand exchange.
Collapse
Affiliation(s)
- Tommy F Tashjian
- From the Department of Biology, Northeastern University, Boston, Massachusetts 02115
| | - Claudia Danilowicz
- the Department of Physics, Harvard University, Cambridge, Massachusetts 02138, and
| | - Anne-Elizabeth Molza
- the Laboratoire de Biochimie Théorique, CNRS UPR9080 and Université Paris Diderot, IBPC, 75005 Paris, France
| | - Brian H Nguyen
- From the Department of Biology, Northeastern University, Boston, Massachusetts 02115
| | - Chantal Prévost
- the Laboratoire de Biochimie Théorique, CNRS UPR9080 and Université Paris Diderot, IBPC, 75005 Paris, France
| | - Mara Prentiss
- the Department of Physics, Harvard University, Cambridge, Massachusetts 02138, and
| | - Veronica G Godoy
- From the Department of Biology, Northeastern University, Boston, Massachusetts 02115,
| |
Collapse
|
20
|
Shinohara T, Arai N, Iikura Y, Kasagi M, Masuda-Ozawa T, Yamaguchi Y, Suzuki-Nagata K, Shibata T, Mikawa T. Nonfilament-forming RecA dimer catalyzes homologous joint formation. Nucleic Acids Res 2018; 46:10855-10869. [PMID: 30285153 PMCID: PMC6237804 DOI: 10.1093/nar/gky877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/19/2018] [Indexed: 01/18/2023] Open
Abstract
Homologous recombination is essential to genome maintenance, and also to genome diversification. In virtually all organisms, homologous recombination depends on the RecA/Rad51-family recombinases, which catalyze ATP-dependent formation of homologous joints—critical intermediates in homologous recombination. RecA/Rad51 binds first to single-stranded (ss) DNA at a damaged site to form a spiral nucleoprotein filament, after which double-stranded (ds) DNA interacts with the filament to search for sequence homology and to form consecutive base pairs with ssDNA (‘pairing’). How sequence homology is recognized and what exact role filament formation plays remain unknown. We addressed the question of whether filament formation is a prerequisite for homologous joint formation. To this end we constructed a nonpolymerizing (np) head-to-tail-fused RecA dimer (npRecA dimer) and an npRecA monomer. The npRecA dimer bound to ssDNA, but did not form continuous filaments upon binding to DNA; it formed beads-on-string structures exclusively. Although its efficiency was lower, the npRecA dimer catalyzed the formation of D-loops (a type of homologous joint), whereas the npRecA monomer was completely defective. Thus, filament formation contributes to efficiency, but is not essential to sequence-homology recognition and pairing, for which a head-to-tail dimer form of RecA protomer is required and sufficient.
Collapse
Affiliation(s)
- Takeshi Shinohara
- Cellular & Molecular Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Department of Supramolecular Biology, Graduate School of Nanobiosciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Naoto Arai
- Department of Applied Biological Science, Nihon University College of Bioresource Sciences, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan
| | - Yukari Iikura
- Cellular & Molecular Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Motochika Kasagi
- Cellular & Molecular Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Department of Supramolecular Biology, Graduate School of Nanobiosciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tokiha Masuda-Ozawa
- Cellular & Molecular Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Department of Supramolecular Biology, Graduate School of Nanobiosciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yuuki Yamaguchi
- Cellular & Molecular Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Department of Supramolecular Biology, Graduate School of Nanobiosciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kayo Suzuki-Nagata
- RIKEN Quantitative Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Takehiko Shibata
- Cellular & Molecular Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Department of Supramolecular Biology, Graduate School of Nanobiosciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
- To whom correspondence should be addressed. Takehiko Shibata. Tel: +81 3 3950 2534; . Correspondence may also be addressed to Tsutomu Mikawa. Tel: +81 45 633 8013;
| | - Tsutomu Mikawa
- Cellular & Molecular Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Department of Supramolecular Biology, Graduate School of Nanobiosciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Quantitative Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- To whom correspondence should be addressed. Takehiko Shibata. Tel: +81 3 3950 2534; . Correspondence may also be addressed to Tsutomu Mikawa. Tel: +81 45 633 8013;
| |
Collapse
|
21
|
Abstract
The repair of chromosomal double-strand breaks (DSBs) by homologous recombination is essential to maintain genome integrity. The key step in DSB repair is the RecA/Rad51-mediated process to match sequences at the broken end to homologous donor sequences that can be used as a template to repair the lesion. Here, in reviewing research about DSB repair, I consider the many factors that appear to play important roles in the successful search for homology by several homologous recombination mechanisms. See also the video abstract here: https://youtu.be/vm7-X5uIzS8.
Collapse
Affiliation(s)
- James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA
| |
Collapse
|
22
|
Danilowicz C, Hermans L, Coljee V, Prévost C, Prentiss M. ATP hydrolysis provides functions that promote rejection of pairings between different copies of long repeated sequences. Nucleic Acids Res 2017; 45:8448-8462. [PMID: 28854739 PMCID: PMC5737215 DOI: 10.1093/nar/gkx582] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/05/2017] [Indexed: 01/30/2023] Open
Abstract
During DNA recombination and repair, RecA family proteins must promote rapid joining of homologous DNA. Repeated sequences with >100 base pair lengths occupy more than 1% of bacterial genomes; however, commitment to strand exchange was believed to occur after testing ∼20-30 bp. If that were true, pairings between different copies of long repeated sequences would usually become irreversible. Our experiments reveal that in the presence of ATP hydrolysis even 75 bp sequence-matched strand exchange products remain quite reversible. Experiments also indicate that when ATP hydrolysis is present, flanking heterologous dsDNA regions increase the reversibility of sequence matched strand exchange products with lengths up to ∼75 bp. Results of molecular dynamics simulations provide insight into how ATP hydrolysis destabilizes strand exchange products. These results inspired a model that shows how pairings between long repeated sequences could be efficiently rejected even though most homologous pairings form irreversible products.
Collapse
Affiliation(s)
| | - Laura Hermans
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Vincent Coljee
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Chantal Prévost
- Laboratoire de Biochimie Théorique, CNRS UMR 9080, IBPC, Paris, France
| | - Mara Prentiss
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
23
|
Lee JY, Steinfeld JB, Qi Z, Kwon Y, Sung P, Greene EC. Sequence imperfections and base triplet recognition by the Rad51/RecA family of recombinases. J Biol Chem 2017; 292:11125-11135. [PMID: 28476890 DOI: 10.1074/jbc.m117.787614] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/27/2017] [Indexed: 11/06/2022] Open
Abstract
Homologous recombination plays key roles in double-strand break repair, rescue, and repair of stalled replication forks and meiosis. The broadly conserved Rad51/RecA family of recombinases catalyzes the DNA strand invasion reaction that takes place during homologous recombination. We have established single-stranded (ss)DNA curtain assays for measuring individual base triplet steps during the early stages of strand invasion. Here, we examined how base triplet stepping by RecA, Rad51, and Dmc1 is affected by DNA sequence imperfections, such as single and multiple mismatches, abasic sites, and single nucleotide insertions. Our work reveals features of base triplet stepping that are conserved among these three phylogenetic lineages of the Rad51/RecA family and also reveals lineage-specific behaviors reflecting properties that are unique to each recombinase. These findings suggest that Dmc1 is tolerant of single mismatches, multiple mismatches, and even abasic sites, whereas RecA and Rad51 are not. Interestingly, the presence of single nucleotide insertion abolishes recognition of an adjacent base triplet by all three recombinases. On the basis of these findings, we describe models for how sequence imperfections may affect base triplet recognition by Rad51/RecA family members, and we discuss how these models and our results may relate to the different biological roles of RecA, Rad51, and Dmc1.
Collapse
Affiliation(s)
- Ja Yil Lee
- From the Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032 and
| | - Justin B Steinfeld
- From the Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032 and
| | - Zhi Qi
- From the Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032 and
| | - YoungHo Kwon
- the Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Patrick Sung
- the Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Eric C Greene
- From the Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032 and
| |
Collapse
|
24
|
Anand R, Beach A, Li K, Haber J. Rad51-mediated double-strand break repair and mismatch correction of divergent substrates. Nature 2017; 544:377-380. [PMID: 28405019 PMCID: PMC5544500 DOI: 10.1038/nature22046] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/06/2017] [Indexed: 01/14/2023]
Abstract
The Rad51 (also known as RecA) family of recombinases executes the critical step in homologous recombination: the search for homologous DNA to serve as a template during the repair of DNA double-strand breaks (DSBs). Although budding yeast Rad51 has been extensively characterized in vitro, the stringency of its search and sensitivity to mismatched sequences in vivo remain poorly defined. Here, in Saccharomyces cerevisiae, we analysed Rad51-dependent break-induced replication in which the invading DSB end and its donor template share a 108-base-pair homology region and the donor carries different densities of single-base-pair mismatches. With every eighth base pair mismatched, repair was about 14% of that of completely homologous sequences. With every sixth base pair mismatched, repair was still more than 5%. Thus, completing break-induced replication in vivo overcomes the apparent requirement for at least 6-8 consecutive paired bases that has been inferred from in vitro studies. When recombination occurs without a protruding nonhomologous 3' tail, the mismatch repair protein Msh2 does not discourage homeologous recombination. However, when the DSB end contains a 3' protruding nonhomologous tail, Msh2 promotes the rejection of mismatched substrates. Mismatch correction of strand invasion heteroduplex DNA is strongly polar, favouring correction close to the DSB end. Nearly all mismatch correction depends on the proofreading activity of DNA polymerase-δ, although the repair proteins Msh2, Mlh1 and Exo1 influence the extent of correction.
Collapse
Affiliation(s)
| | - Annette Beach
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02254-9110
| | - Kevin Li
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02254-9110
| | - James Haber
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02254-9110
| |
Collapse
|
25
|
Bitran A, Chiang WY, Levine E, Prentiss M. Mechanisms of fast and stringent search in homologous pairing of double-stranded DNA. PLoS Comput Biol 2017; 13:e1005421. [PMID: 28257444 PMCID: PMC5360337 DOI: 10.1371/journal.pcbi.1005421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/21/2017] [Accepted: 02/21/2017] [Indexed: 12/03/2022] Open
Abstract
Self-organization in the cell relies on the rapid and specific binding of molecules to their cognate targets. Correct bindings must be stable enough to promote the desired function even in the crowded and fluctuating cellular environment. In systems with many nearly matched targets, rapid and stringent formation of stable products is challenging. Mechanisms that overcome this challenge have been previously proposed, including separating the process into multiple stages; however, how particular in vivo systems overcome the challenge remains unclear. Here we consider a kinetic system, inspired by homology dependent pairing between double stranded DNA in bacteria. By considering a simplified tractable model, we identify different homology testing stages that naturally occur in the system. In particular, we first model dsDNA molecules as short rigid rods containing periodically spaced binding sites. The interaction begins when the centers of two rods collide at a random angle. For most collision angles, the interaction energy is weak because only a few binding sites near the collision point contribute significantly to the binding energy. We show that most incorrect pairings are rapidly rejected at this stage. In rare cases, the two rods enter a second stage by rotating into parallel alignment. While rotation increases the stability of matched and nearly matched pairings, subsequent rotational fluctuations reduce kinetic trapping. Finally, in vivo chromosome are much longer than the persistence length of dsDNA, so we extended the model to include multiple parallel collisions between long dsDNA molecules, and find that those additional interactions can greatly accelerate the searching. Protein folding and the binding of sequence dependent proteins to DNA are examples of self-assembling systems in which the binding energy varies continuously throughout the interaction. Previous theoretical work has highlighted the importance of dividing the interaction into separate stages characterized by interaction times and binding energies that vary by orders of magnitude. Insight into how such a division might naturally arise and promote accurate and efficient self-assembly is provided by our study of a simple tractable model inspired by the homology dependent pairing of double stranded DNA molecules in vivo. In the model, the binding energy is controlled by one single continuously tunable variable whose natural evolution creates stages that efficiently and accurately form stable products.
Collapse
Affiliation(s)
- Amir Bitran
- Department of Physics, Harvard University, Cambridge, Massachusetts, United States of America
| | - Wei-Yin Chiang
- Department of Physics, Harvard University, Cambridge, Massachusetts, United States of America
- FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Erel Levine
- Department of Physics, Harvard University, Cambridge, Massachusetts, United States of America
- FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| | - Mara Prentiss
- Department of Physics, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
26
|
Zhang YW, Nong DG, Dou SX, Li W, Yan Y, Xi XG, Xu CH, Li M. Iterative homology checking and non-uniform stepping during RecA-mediated strand exchange. Biochem Biophys Res Commun 2016; 478:1153-7. [PMID: 27543204 DOI: 10.1016/j.bbrc.2016.08.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 08/14/2016] [Indexed: 12/11/2022]
Abstract
Recombinase-mediated homologous recombination (HR) in which strands are exchanged between two similar or identical DNA molecules is essential for maintaining genome fidelity and generating genetic diversity. It is believed that HR comprises two distinct stages: an initial alignment with stringent homology checking followed by stepwise heteroduplex expansion. If and how homology checking takes place during heteroduplex expansion, however, remains unknown. In addition, the number of base pairs (bp) involved in each step is still under debate. By using single-molecule approaches to catch transient intermediates in RecA-mediated HR with different degrees of homology, we show that (i) the expansion proceeds with step sizes of multiples of 3 bp, (ii) the step sizes follow wide distributions that are similar to that of initial alignment lengths, and (iii) each distribution can be divided into a short-scale and a long-scale part irrespective of the degree of homology. Our results suggest an iterative mechanism of strand exchange in which ssDNA-RecA filament interrogates double-stranded DNA using a short tract (6-15 bp) for quick checking and a long tract (>18 bp) for stringent sequence comparison. The present work provides novel insights into the physical and structural bases of DNA recombination.
Collapse
Affiliation(s)
- Yu-Wei Zhang
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Da-Guan Nong
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shuo-Xing Dou
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Li
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yan Yan
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China; Department of Physics, Emory University, Atlanta, GA, 30322, USA
| | - Xu-Guang Xi
- College of Life Sciences, Northwest A & F University, Xi'an, Shaanxi, 712100, China; LBPA, ENS de Cachan, CNRS, Université Paris-Saclay, F-94235, Cachan, France
| | - Chun-Hua Xu
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
27
|
Abstract
The repair of DNA by homologous recombination is an essential, efficient, and high-fidelity process that mends DNA lesions formed during cellular metabolism; these lesions include double-stranded DNA breaks, daughter-strand gaps, and DNA cross-links. Genetic defects in the homologous recombination pathway undermine genomic integrity and cause the accumulation of gross chromosomal abnormalities-including rearrangements, deletions, and aneuploidy-that contribute to cancer formation. Recombination proceeds through the formation of joint DNA molecules-homologously paired but metastable DNA intermediates that are processed by several alternative subpathways-making recombination a versatile and robust mechanism to repair damaged chromosomes. Modern biophysical methods make it possible to visualize, probe, and manipulate the individual molecules participating in the intermediate steps of recombination, revealing new details about the mechanics of genetic recombination. We review and discuss the individual stages of homologous recombination, focusing on common pathways in bacteria, yeast, and humans, and place particular emphasis on the molecular mechanisms illuminated by single-molecule methods.
Collapse
Affiliation(s)
- Jason C Bell
- Department of Microbiology and Molecular Genetics, and Department of Molecular and Cellular Biology, University of California, Davis, California 95616;
| | - Stephen C Kowalczykowski
- Department of Microbiology and Molecular Genetics, and Department of Molecular and Cellular Biology, University of California, Davis, California 95616;
| |
Collapse
|
28
|
Prentiss M, Prévost C, Danilowicz C. Structure/function relationships in RecA protein-mediated homology recognition and strand exchange. Crit Rev Biochem Mol Biol 2015; 50:453-76. [DOI: 10.3109/10409238.2015.1092943] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Yang D, Boyer B, Prévost C, Danilowicz C, Prentiss M. Integrating multi-scale data on homologous recombination into a new recognition mechanism based on simulations of the RecA-ssDNA/dsDNA structure. Nucleic Acids Res 2015; 43:10251-63. [PMID: 26384422 PMCID: PMC4666392 DOI: 10.1093/nar/gkv883] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/23/2015] [Indexed: 12/11/2022] Open
Abstract
RecA protein is the prototypical recombinase. Members of the recombinase family can accurately repair double strand breaks in DNA. They also provide crucial links between pairs of sister chromatids in eukaryotic meiosis. A very broad outline of how these proteins align homologous sequences and promote DNA strand exchange has long been known, as are the crystal structures of the RecA-DNA pre- and postsynaptic complexes; however, little is known about the homology searching conformations and the details of how DNA in bacterial genomes is rapidly searched until homologous alignment is achieved. By integrating a physical model of recognition to new modeling work based on docking exploration and molecular dynamics simulation, we present a detailed structure/function model of homology recognition that reconciles extremely quick searching with the efficient and stringent formation of stable strand exchange products and which is consistent with a vast body of previously unexplained experimental results.
Collapse
Affiliation(s)
- Darren Yang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Benjamin Boyer
- Laboratoire de Biochimie Théorique, CNRS UPR 9080, Univ Paris Diderot, Sorbonne Paris Cité, IBPC, Paris, France
| | - Chantal Prévost
- Laboratoire de Biochimie Théorique, CNRS UPR 9080, Univ Paris Diderot, Sorbonne Paris Cité, IBPC, Paris, France
| | | | - Mara Prentiss
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|