1
|
Palma A, Buonaiuto G, Ballarino M, Laneve P. Genome biology of long non-coding RNAs in humans: A virtual karyotype. Comput Struct Biotechnol J 2025; 27:575-584. [PMID: 39989619 PMCID: PMC11847481 DOI: 10.1016/j.csbj.2025.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/29/2025] [Accepted: 01/29/2025] [Indexed: 02/25/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) represent a groundbreaking class of RNA molecules that exert regulatory functions with remarkable tissue and cellular specificity. Although the identification of functionally significant lncRNAs is increasing, a comprehensive profiling of their genomic features remains elusive. Here, we present a detailed overview of the distribution of lncRNA genes across human chromosomes and describe key RNA features-what we refer to as a "virtual lncRNA karyotype"-that provide insights into their biosynthesis and function. To achieve this, we leveraged existing human annotation files to construct a statistical genomic portrait of lncRNAs in comparison with protein-coding genes (PCGs). We found that lncRNAs are unevenly distributed across chromosomes and identified regions of high lncRNA density on chromosomes 18, 13, and X, which overlap with PCG-rich regions. Additionally, we observed that lncRNAs generally exhibit shorter gene lengths and fewer splicing variants compared to protein-coding transcripts, with a subset displaying pronounced clustering patterns that may indicate functional relevance. Finally, we identified several clinically associated and experimentally validated SNPs impacting lncRNA genes (lncGs). Overall, this study provides a foundational reference for exploring the non-coding genome, offering new insights into the genomic characteristics of lncRNAs. These findings may enhance our understanding of their biological significance and potential roles in disease.
Collapse
Affiliation(s)
- Alessandro Palma
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Giulia Buonaiuto
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Monica Ballarino
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Pietro Laneve
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
- Institute of Molecular Biology and Pathology, National Research Council of Italy, Piazzale Aldo Moro 7, Rome 00185, Italy
| |
Collapse
|
2
|
Tan S, Wang W, Li J, Sha Z. Comprehensive analysis of 111 Pleuronectiformes mitochondrial genomes: insights into structure, conservation, variation and evolution. BMC Genomics 2025; 26:50. [PMID: 39833664 PMCID: PMC11745014 DOI: 10.1186/s12864-025-11204-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Pleuronectiformes, also known as flatfish, are important model and economic animals. However, a comprehensive genome survey of their important organelles, mitochondria, has been limited. Therefore, we aim to analyze the genomic structure, codon preference, nucleotide diversity, selective pressure and repeat sequences, as well as reconstruct the phylogenetic relationship using the mitochondrial genomes of 111 flatfish species. RESULTS Our analysis revealed a conserved gene content of protein-coding genes and rRNA genes, but varying numbers of tRNA genes and control regions across species. Various gene rearrangements were found in flatfish species, especially for the rearrangement of nad5-nad6-cytb block in Samaridae family, the swapping rearrangement of nad6 and cytb gene in Bothidae family, as well as the control region translocation and tRNA-Gln gene inversion in the subfamily Cynoglossinae, suggesting their unique evolutionary history and/or functional benefit. Codon usage showed obvious biases, with adenine being the most frequent nucleotide at the third codon position. Nucleotide diversity and selective pressure analysis suggested that different protein-coding genes underwent varying degrees of evolutionary pressure, with cytb and cox genes being the most conserved ones. Phylogenetic analysis using both whole mitogenome information and concatenated independently aligned protein-coding genes largely mirrored the taxonomic classification of the species, but showed different phylogeny. The identification of simple sequence repeats and various long repetitive sequences provided additional complexity of genome organization and offered markers for evolutionary studies and breeding practices. CONCLUSIONS This study represents a significant step forward in our comprehension of the flatfish mitochondrial genomes, providing valuable insights into the structure, conservation and variation within flatfish mitogenomes, with implications for understanding their evolutionary history, functional genomics and fisheries management. Future research can delve deeper into conservation biology, evolutionary biology and functional usages of variations.
Collapse
Affiliation(s)
- Suxu Tan
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Wenwen Wang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Jinjiang Li
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Zhenxia Sha
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, Shandong, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China.
| |
Collapse
|
3
|
Chatzikyriakidou A. Beyond the "Dominant" and "Recessive" Patterns of Inheritance. Int J Mol Sci 2024; 25:13377. [PMID: 39769142 PMCID: PMC11676908 DOI: 10.3390/ijms252413377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
This study aimed to investigate whether genes with different modes of inheritance differ in the presence of promoter-enriched CGI loci. For each autosomal chromosome, the author searched for variations in the total number of diseases' phenotypes with autosomal dominant (AD) and recessive (AR) inheritance for a list of promoter-poor CGI (CGI-) and promoter-enriched CGI (CGI+) genes using the OMIM database. Then, the CGI- and CGI+ genes displaying random allelic or bi-allelic expression were examined. The author evaluated whether there was a distinct distribution of AD and AR diseases in the groups of chromosomes based on their SNP hotspot density. The same analysis was conducted for the X chromosome. The SPSS statistical package was utilized. The distribution of AD and AR diseases between CGI- and CGI+ bi-allelic genes significantly differed in autosomal chromosomes 6 and 17, which show intermediate SNP hotspot density. Additionally, a statistically significant difference was observed in AD and AR diseases in the remaining autosomal chromosomes with low SNP hotspots between their randomly allelic expressed CGI- and CGI+ genes. Specifically, AD diseases were related to CGI- genes, while AR diseases were associated with CGI+ genes. In the X chromosome, X-linked dominant (XLD) diseases were mainly found in CGI+ genes, and X-linked recessive (XLR) diseases were found in CGI- genes, regardless of the X-inactivation process. It is essential to study inheritance and classify genetic variants in a more stochastic way than the terms "Dominant" and "Recessive," and their derivatives, such as "Codominant" and "Incomplete Dominant," are applied in Mendelian and non-Mendelian inheritance. This concept may further explain the "Reduced Penetrance" and "Variable Expressivity" in certain human diseases. All the above suggests a need to reassess how genetic and epigenetic data are studied and utilized for genetic counseling or precision medicine.
Collapse
Affiliation(s)
- Anthoula Chatzikyriakidou
- Laboratory of Medical Biology—Genetics, Faculty of Medicine, School of Health Sciences, Aristotle University, 54124 Thessaloniki, Greece; ; Tel.: +30-2310999013
- Genetics Unit, “Papageorgiou” General Hospital of Thessaloniki, Faculty of Medicine, School of Health Sciences, Aristotle University, 54124 Thessaloniki, Greece
| |
Collapse
|
4
|
Luna R, Gómez-González B, Aguilera A. RNA biogenesis and RNA metabolism factors as R-loop suppressors: a hidden role in genome integrity. Genes Dev 2024; 38:504-527. [PMID: 38986581 PMCID: PMC11293400 DOI: 10.1101/gad.351853.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Genome integrity relies on the accuracy of DNA metabolism, but as appreciated for more than four decades, transcription enhances mutation and recombination frequencies. More recent research provided evidence for a previously unforeseen link between RNA and DNA metabolism, which is often related to the accumulation of DNA-RNA hybrids and R-loops. In addition to physiological roles, R-loops interfere with DNA replication and repair, providing a molecular scenario for the origin of genome instability. Here, we review current knowledge on the multiple RNA factors that prevent or resolve R-loops and consequent transcription-replication conflicts and thus act as modulators of genome dynamics.
Collapse
Affiliation(s)
- Rosa Luna
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Universidad de Sevilla-Spanish National Research Council (CSIC), 41092 Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Belén Gómez-González
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Universidad de Sevilla-Spanish National Research Council (CSIC), 41092 Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Andrés Aguilera
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Universidad de Sevilla-Spanish National Research Council (CSIC), 41092 Seville, Spain;
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
5
|
Templeton CW, Laimins LA. p53-dependent R-loop formation and HPV pathogenesis. Proc Natl Acad Sci U S A 2023; 120:e2305907120. [PMID: 37611058 PMCID: PMC10467572 DOI: 10.1073/pnas.2305907120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/30/2023] [Indexed: 08/25/2023] Open
Abstract
R-loops are trimeric RNA: DNA hybrids that are important physiological regulators of transcription; however, their aberrant formation or turnover leads to genomic instability and DNA breaks. High-risk human papillomaviruses (HPV) are the causative agents of genital as well as oropharyngeal cancers and exhibit enhanced amounts of DNA breaks. The levels of R-loops were found to be increased up to 50-fold in cells that maintain high-risk HPV genomes and were readily detected in squamous cell cervical carcinomas in vivo but not in normal cells. The high levels of R-loops in HPV-positive cells were present on both viral and cellular sites together with RNase H1, an enzyme that controls their resolution. Depletion of RNase H1 in HPV-positive cells further increased R-loop levels, resulting in impaired viral transcription and replication along with reduced expression of the DNA repair genes such as FANCD2 and ATR, both of which are necessary for viral functions. Overexpression of RNase H1 decreased total R-loop levels, resulting in a reduction of DNA breaks by over 50%. Furthermore, increased RNase H1 expression blocked viral transcription and replication while enhancing the expression of factors in the innate immune regulatory pathway. This suggests that maintaining elevated R-loop levels is important for the HPV life cycle. The E6 viral oncoprotein was found to be responsible for inducing high levels of R-loops by inhibiting p53's transcriptional activity. Our studies indicate that high R-loop levels are critical for HPV pathogenesis and that this depends on suppressing the p53 pathway.
Collapse
Affiliation(s)
- Conor Winslow Templeton
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Laimonis A. Laimins
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| |
Collapse
|
6
|
Koppenhöfer S, Tomasch J, Lang AS. Shared properties of gene transfer agent and core genes revealed by comparative genomics of Alphaproteobacteria. Microb Genom 2022; 8:mgen000890. [PMID: 36350115 PMCID: PMC9836097 DOI: 10.1099/mgen.0.000890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Gene transfer agents (GTAs) are phage-like particles that transfer pieces of cellular genomic DNA to other cells. Homologues of the Rhodobacter capsulatus GTA (RcGTA) structural genes are widely distributed in the Alphaproteobacteria and particularly well conserved in the order Rhodobacterales. Possible reasons for their widespread conservation are still being discussed. It has been suggested that these alphaproteobacterial elements originate from a prophage that was present in an ancestral bacterium and subsequently evolved into a GTA that is now widely maintained in extant descendant lineages. Here, we analysed genomic properties that might relate to the conservation of these alphaproteobacterial GTAs. This revealed that the chromosomal locations of the GTA gene clusters are biased. They primarily occur on the leading strand of DNA replication, at large distances from long repetitive elements, and thus are in regions of lower plasticity, and in areas of extreme GC skew, which also accumulate core genes. These extreme GC skew regions arise from the preferential use of codons with an excess of G over C, a distinct phenomenon from the elevated GC content that has previously been found to be associated with GTA genes. The observed properties, along with their high level of conservation, show that GTA genes share multiple features with core genes in the examined lineages of the Alphaproteobacteria.
Collapse
Affiliation(s)
- Sonja Koppenhöfer
- Department of Biology, Memorial University of Newfoundland, St John’s, Newfoundland and Labrador, Canada
| | - Jürgen Tomasch
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Science – Centre Algatech, Třeboň, Czech Republic
| | - Andrew S. Lang
- Department of Biology, Memorial University of Newfoundland, St John’s, Newfoundland and Labrador, Canada,*Correspondence: Andrew S. Lang,
| |
Collapse
|
7
|
Integrated Analyses of DNA Methylation and Gene Expression of Rainbow Trout Muscle under Variable Ploidy and Muscle Atrophy Conditions. Genes (Basel) 2022; 13:genes13071151. [PMID: 35885934 PMCID: PMC9319582 DOI: 10.3390/genes13071151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Rainbow trout, Oncorhynchus mykiss, is an important cool, freshwater aquaculture species used as a model for biological research. However, its genome reference has not been annotated for epigenetic markers affecting various biological processes, including muscle growth/atrophy. Increased energetic demands during gonadogenesis/reproduction provoke muscle atrophy in rainbow trout. We described DNA methylation and its associated gene expression in atrophying muscle by comparing gravid, diploid females to sterile, triploid females. Methyl Mini-seq and RNA-Seq were simultaneously used to characterize genome-wide DNA methylation and its association with gene expression in rainbow trout muscle. Genome-wide enrichment in the number of CpGs, accompanied by depleted methylation levels, was noticed around the gene transcription start site (TSS). Hypermethylation of CpG sites within ±1 kb on both sides of TSS (promoter and gene body) was weakly/moderately associated with reduced gene expression. Conversely, hypermethylation of the CpG sites in downstream regions of the gene body +2 to +10 kb was weakly associated with increased gene expression. Unlike mammalian genomes, rainbow trout gene promotors are poor in CpG islands, at <1% compared to 60%. No signs of genome-wide, differentially methylated (DM) CpGs were observed due to the polyploidy effect; only 1206 CpGs (0.03%) were differentially methylated, and these were primarily associated with muscle atrophy. Twenty-eight genes exhibited differential gene expression consistent with methylation levels of 31 DM CpGs. These 31 DM CpGs represent potential epigenetic markers of muscle atrophy in rainbow trout. The DM CpG-harboring genes are involved in apoptosis, epigenetic regulation, autophagy, collagen metabolism, cell membrane functions, and Homeobox proteins. Our study also identified genes explaining higher water content and modulated glycolysis previously shown as characteristic biochemical signs of rainbow trout muscle atrophy associated with sexual maturation. This study characterized DNA methylation in the rainbow trout genome and its correlation with gene expression. This work also identified novel epigenetic markers associated with muscle atrophy in fish/lower vertebrates.
Collapse
|
8
|
Yaşar P, Kars G, Yavuz K, Ayaz G, Oğuztüzün Ç, Bilgen E, Suvacı Z, Çetinkol ÖP, Can T, Muyan M. A CpG island promoter drives the CXXC5 gene expression. Sci Rep 2021; 11:15655. [PMID: 34341443 PMCID: PMC8329181 DOI: 10.1038/s41598-021-95165-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
CXXC5 is a member of the zinc-finger CXXC family that binds to unmethylated CpG dinucleotides. CXXC5 modulates gene expressions resulting in diverse cellular events mediated by distinct signaling pathways. However, the mechanism responsible for CXXC5 expression remains largely unknown. We found here that of the 14 annotated CXXC5 transcripts with distinct 5' untranslated regions encoding the same protein, transcript variant 2 with the highest expression level among variants represents the main transcript in cell models. The DNA segment in and at the immediate 5'-sequences of the first exon of variant 2 contains a core promoter within which multiple transcription start sites are present. Residing in a region with high G-C nucleotide content and CpG repeats, the core promoter is unmethylated, deficient in nucleosomes, and associated with active RNA polymerase-II. These findings suggest that a CpG island promoter drives CXXC5 expression. Promoter pull-down revealed the association of various transcription factors (TFs) and transcription co-regulatory proteins, as well as proteins involved in histone/chromatin, DNA, and RNA processing with the core promoter. Of the TFs, we verified that ELF1 and MAZ contribute to CXXC5 expression. Moreover, the first exon of variant 2 may contain a G-quadruplex forming region that could modulate CXXC5 expression.
Collapse
Affiliation(s)
- Pelin Yaşar
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey.
- Epigenetics and Stem Cell Biology Laboratory, Single Cell Dynamics Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA.
| | - Gizem Kars
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey
| | - Kerim Yavuz
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey
| | - Gamze Ayaz
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey
- Cancer and Stem Cell Epigenetics Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Çerağ Oğuztüzün
- Department of Computer Engineering, Bilkent University, Ankara, 06800, Turkey
| | - Ecenaz Bilgen
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
| | - Zeynep Suvacı
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
| | | | - Tolga Can
- Department of Computer Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Mesut Muyan
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey.
- Cansyl Laboratories, Middle East Technical University, Ankara, 06800, Turkey.
| |
Collapse
|
9
|
Pinter S, Knodel F, Choudalakis M, Schnee P, Kroll C, Fuchs M, Broehm A, Weirich S, Roth M, Eisler SA, Zuber J, Jeltsch A, Rathert P. A functional LSD1 coregulator screen reveals a novel transcriptional regulatory cascade connecting R-loop homeostasis with epigenetic regulation. Nucleic Acids Res 2021; 49:4350-4370. [PMID: 33823549 PMCID: PMC8096265 DOI: 10.1093/nar/gkab180] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/04/2021] [Indexed: 12/30/2022] Open
Abstract
The lysine specific demethylase 1 (LSD1) plays a pivotal role in cellular differentiation by regulating the expression of key developmental genes in concert with different coregulatory proteins. This process is impaired in different cancer types and incompletely understood. To comprehensively identify functional coregulators of LSD1, we established a novel tractable fluorescent reporter system to monitor LSD1 activity in living cells. Combining this reporter system with a state-of-the-art multiplexed RNAi screen, we identify the DEAD-box helicase 19A (DDX19A) as a novel coregulator and demonstrate that suppression of Ddx19a results in an increase of R-loops and reduced LSD1-mediated gene silencing. We further show that DDX19A binds to tri-methylated lysine 27 of histone 3 (H3K27me3) and it regulates gene expression through the removal of transcription promoting R-loops. Our results uncover a novel transcriptional regulatory cascade where the downregulation of genes is dependent on the LSD1 mediated demethylation of histone H3 lysine 4 (H3K4). This allows the polycomb repressive complex 2 (PRC2) to methylate H3K27, which serves as a binding site for DDX19A. Finally, the binding of DDX19A leads to the efficient removal of R-loops at active promoters, which further de-represses LSD1 and PRC2, establishing a positive feedback loop leading to a robust repression of the target gene.
Collapse
Affiliation(s)
- Sabine Pinter
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Franziska Knodel
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Michel Choudalakis
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Philipp Schnee
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Carolin Kroll
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Marina Fuchs
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Alexander Broehm
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Sara Weirich
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Mareike Roth
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Stephan A Eisler
- Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, 70569 Stuttgart, Germany
| | - Johannes Zuber
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Philipp Rathert
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
10
|
Chédin F, Hartono SR, Sanz LA, Vanoosthuyse V. Best practices for the visualization, mapping, and manipulation of R-loops. EMBO J 2021; 40:e106394. [PMID: 33411340 PMCID: PMC7883053 DOI: 10.15252/embj.2020106394] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Accepted: 11/10/2020] [Indexed: 01/12/2023] Open
Abstract
R-loops represent an abundant class of large non-B DNA structures in genomes. Even though they form transiently and at modest frequencies, interfering with R-loop formation or dissolution has significant impacts on genome stability. Addressing the mechanism(s) of R-loop-mediated genome destabilization requires a precise characterization of their distribution in genomes. A number of independent methods have been developed to visualize and map R-loops, but their results are at times discordant, leading to confusion. Here, we review the main existing methodologies for R-loop mapping and assess their limitations as well as the robustness of existing datasets. We offer a set of best practices to improve the reproducibility of maps, hoping that such guidelines could be useful for authors and referees alike. Finally, we propose a possible resolution for the apparent contradictions in R-loop mapping outcomes between antibody-based and RNase H1-based mapping approaches.
Collapse
Affiliation(s)
- Frédéric Chédin
- Department of Molecular and Cellular Biology and Genome CenterUniversity of California, DavisDavisCAUSA
| | - Stella R Hartono
- Department of Molecular and Cellular Biology and Genome CenterUniversity of California, DavisDavisCAUSA
| | - Lionel A Sanz
- Department of Molecular and Cellular Biology and Genome CenterUniversity of California, DavisDavisCAUSA
| | - Vincent Vanoosthuyse
- Laboratoire de Biologie et Modélisation de la CelluleCNRSUMR 5239Univ LyonÉcole Normale Supérieure de LyonLyonFrance
| |
Collapse
|
11
|
Miglietta G, Russo M, Capranico G. G-quadruplex-R-loop interactions and the mechanism of anticancer G-quadruplex binders. Nucleic Acids Res 2020; 48:11942-11957. [PMID: 33137181 PMCID: PMC7708042 DOI: 10.1093/nar/gkaa944] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/17/2022] Open
Abstract
Genomic DNA and cellular RNAs can form a variety of non-B secondary structures, including G-quadruplex (G4) and R-loops. G4s are constituted by stacked guanine tetrads held together by Hoogsteen hydrogen bonds and can form at key regulatory sites of eukaryote genomes and transcripts, including gene promoters, untranslated exon regions and telomeres. R-loops are 3-stranded structures wherein the two strands of a DNA duplex are melted and one of them is annealed to an RNA. Specific G4 binders are intensively investigated to discover new effective anticancer drugs based on a common rationale, i.e.: the selective inhibition of oncogene expression or specific impairment of telomere maintenance. However, despite the high number of known G4 binders, such a selective molecular activity has not been fully established and several published data point to a different mode of action. We will review published data that address the close structural interplay between G4s and R-loops in vitro and in vivo, and how these interactions can have functional consequences in relation to G4 binder activity. We propose that R-loops can play a previously-underestimated role in G4 binder action, in relation to DNA damage induction, telomere maintenance, genome and epigenome instability and alterations of gene expression programs.
Collapse
Affiliation(s)
- Giulia Miglietta
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126 Bologna, Italy
| | - Marco Russo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126 Bologna, Italy
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126 Bologna, Italy
| |
Collapse
|
12
|
Krishnaswamy VG, Aishwarya S, Kathawala TM. Extrication of the Microbial Interactions of Activated Sludge Used in the Textile Effluent Treatment of Anaerobic Reactor Through Metagenomic Profiling. Curr Microbiol 2020; 77:2496-2509. [DOI: 10.1007/s00284-020-02020-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 05/07/2020] [Indexed: 11/29/2022]
|
13
|
Chedin F, Benham CJ. Emerging roles for R-loop structures in the management of topological stress. J Biol Chem 2020; 295:4684-4695. [PMID: 32107311 DOI: 10.1074/jbc.rev119.006364] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
R-loop structures are a prevalent class of alternative non-B DNA structures that form during transcription upon invasion of the DNA template by the nascent RNA. R-loops form universally in the genomes of organisms ranging from bacteriophages, bacteria, and yeasts to plants and animals, including mammals. A growing body of work has linked these structures to both physiological and pathological processes, in particular to genome instability. The rising interest in R-loops is placing new emphasis on understanding the fundamental physicochemical forces driving their formation and stability. Pioneering work in Escherichia coli revealed that DNA topology, in particular negative DNA superhelicity, plays a key role in driving R-loops. A clear role for DNA sequence was later uncovered. Here, we review and synthesize available evidence on the roles of DNA sequence and DNA topology in controlling R-loop formation and stability. Factoring in recent developments in R-loop modeling and single-molecule profiling, we propose a coherent model accounting for the interplay between DNA sequence and DNA topology in driving R-loop structure formation. This model reveals R-loops in a new light as powerful and reversible topological stress relievers, an insight that significantly expands the repertoire of R-loops' potential biological roles under both normal and aberrant conditions.
Collapse
Affiliation(s)
- Frederic Chedin
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616 .,Genome Center, University of California, Davis, California 95616
| | - Craig J Benham
- Genome Center, University of California, Davis, California 95616 .,Departments of Mathematics and Biomedical Engineering, University of California, Davis, California 95616
| |
Collapse
|
14
|
Ultra-deep Coverage Single-molecule R-loop Footprinting Reveals Principles of R-loop Formation. J Mol Biol 2020; 432:2271-2288. [PMID: 32105733 DOI: 10.1016/j.jmb.2020.02.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/27/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022]
Abstract
R-loops are a prevalent class of non-B DNA structures that have been associated with both positive and negative cellular outcomes. DNA:RNA immunoprecipitation (DRIP) approaches based on the anti-DNA:RNA hybrid S9.6 antibody revealed that R-loops form dynamically over conserved genic hotspots. We have developed an orthogonal approach that queries R-loops via the presence of long stretches of single-stranded DNA on their looped-out strand. Nondenaturing sodium bisulfite treatment catalyzes the conversion of unpaired cytosines to uracils, creating permanent genetic tags for the position of an R-loop. Long-read, single-molecule PacBio sequencing allows the identification of R-loop 'footprints' at near nucleotide resolution in a strand-specific manner on long single DNA molecules and at ultra-deep coverage. Single-molecule R-loop footprinting coupled with PacBio sequencing (SMRF-seq) revealed a strong agreement between S9.6-based and bisulfite-based R-loop mapping and confirmed that R-loops form over genic hotspots, including gene bodies and terminal gene regions. Based on the largest single-molecule R-loop dataset to date, we show that individual R-loops form nonrandomly, defining discrete sets of overlapping molecular clusters that pileup through larger R-loop zones. R-loops most often map to intronic regions and their individual start and stop positions do not match with intron-exon boundaries, reinforcing the model that they form cotranscriptionally from unspliced transcripts. SMRF-seq further established that R-loop distribution patterns are not simply driven by intrinsic DNA sequence features but most likely also reflect DNA topological constraints. Overall, DRIP-based and SMRF-based approaches independently provide a complementary and congruent view of R-loop distribution, consolidating our understanding of the principles underlying R-loop formation.
Collapse
|
15
|
McLain AT, Faulk C. The evolution of CpG density and lifespan in conserved primate and mammalian promoters. Aging (Albany NY) 2019; 10:561-572. [PMID: 29661983 PMCID: PMC5940106 DOI: 10.18632/aging.101413] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022]
Abstract
Gene promoters are evolutionarily conserved across holozoans and enriched in CpG sites, the target for DNA methylation. As animals age, the epigenetic pattern of DNA methylation degrades, with highly methylated CpG sites gradually becoming demethylated while CpG islands increase in methylation. Across vertebrates, aging is a trait that varies among species. We used this variation to determine whether promoter CpG density correlates with species’ maximum lifespan. Human promoter sequences were used to identify conserved regions in 131 mammals and a subset of 28 primate genomes. We identified approximately 1000 gene promoters (5% of the total), that significantly correlated CpG density with lifespan. The correlations were performed via the phylogenetic least squares method to account for trait similarity by common descent using phylogenetic branch lengths. Gene set enrichment analysis revealed no significantly enriched pathways or processes, consistent with the hypothesis that aging is not under positive selection. However, within both mammals and primates, 95% of the promoters showed a positive correlation between increasing CpG density and species lifespan, and two thirds were shared between the primate subset and mammalian datasets. Thus, these genes may require greater buffering capacity against age-related dysregulation of DNA methylation in longer-lived species.
Collapse
Affiliation(s)
- Adam T McLain
- Department of Biology and Chemistry, College of Arts and Sciences, SUNY Polytechnic Institute, Utica, NY 13502, USA
| | - Christopher Faulk
- Department of Animal Sciences, University of Minnesota, College of Food, Agricultural, and Natural Resource Sciences, Saint Paul, MN 55108, USA
| |
Collapse
|
16
|
Non-canonical DNA/RNA structures during Transcription-Coupled Double-Strand Break Repair: Roadblocks or Bona fide repair intermediates? DNA Repair (Amst) 2019; 81:102661. [PMID: 31331819 DOI: 10.1016/j.dnarep.2019.102661] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although long overlooked, it is now well understood that DNA does not systematically assemble into a canonical double helix, known as B-DNA, throughout the entire genome but can also accommodate other structures including DNA hairpins, G-quadruplexes and RNA:DNA hybrids. Notably, these non-canonical DNA structures form preferentially at transcriptionally active loci. Acting as replication roadblocks and being targeted by multiple machineries, these structures weaken the genome and render it prone to damage, including DNA double-strand breaks (DSB). In addition, secondary structures also further accumulate upon DSB formation. Here we discuss the potential functions of pre-existing or de novo formed nucleic acid structures, as bona fide repair intermediates or repair roadblocks, especially during Transcription-Coupled DNA Double-Strand Break repair (TC-DSBR), and provide an update on the specialized protein complexes displaying the ability to remove these structures to safeguard genome integrity.
Collapse
|
17
|
Comparative DNA methylomic analyses reveal potential origins of novel epigenetic biomarkers of insulin resistance in monocytes from virally suppressed HIV-infected adults. Clin Epigenetics 2019; 11:95. [PMID: 31253200 PMCID: PMC6599380 DOI: 10.1186/s13148-019-0694-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Compared to healthy individuals, those with stably repressed HIV experience a higher risk of developing insulin resistance, a hallmark of pre-diabetes and a major determinant for cardiometabolic diseases. Although epigenetic processes, including in particular DNA methylation, appear to be dysregulated in individuals with insulin resistance, little is known about where these occur in the genomes of immune cells and the origins of these alterations in HIV-infected individuals. Here, we examined the genome-wide DNA methylation states of monocytes in HIV-infected individuals (n = 37) with varying levels of insulin sensitivity measured by the homeostatic model assessment of insulin resistance (HOMA-IR). RESULTS By profiling DNA methylation at single-nucleotide resolution using the Illumina Infinium HumanMethylation450 BeadChip in monocytes from insulin-resistant (IR; HOMA-IR ≥ 2.0; n = 14) and insulin-sensitive (IS; HOMA-IR < 2.0; n = 23) individuals, we identified 123 CpGs with significantly different DNA methylation levels. These CpGs were enriched at genes involved in pathways relating to glucose metabolism, immune activation, and insulin-relevant signaling, with the majority (86.2%) being hypomethylated in IR relative to IS individuals. Using a stepwise multiple logistic regression analysis, we observed 4 CpGs (cg27655935, cg02000426, cg10184328, and cg23085143) whose methylation levels independently predicted the insulin-resistant state at a higher confidence than that of clinical risk factors typically associated with insulin resistance (i.e., fasting glucose, 120-min oral glucose tolerance test, Framingham Risk Score, and Total to HDL cholesterol ratio). Interestingly, 79 of the 123 CpGs (64%) exhibited remarkably similar levels of methylation as that of hematopoietic stem cells (HSC) in monocytes from IR individuals, implicating epigenetic defects in myeloid differentiation as a possible origin for the methylation landscape underlying the insulin resistance phenotype. In support of this, gene ontology analysis of these 79 CpGs revealed overrepresentation of these CpGs at genes relevant to HSC function, including involvement in stem cell pluripotency, differentiation, and Wnt signaling pathways. CONCLUSION Altogether, our data suggests a possible role for DNA methylation in regulating monocyte activity that may associate with the insulin-resistant phenotype. The methylomic landscape of insulin resistance in monocytes could originate from epigenetic dysregulation during HSC differentiation through the myeloid lineage. Understanding the factors involved with changes in the myeloid trajectory may provide further insight into the development of insulin resistance. Furthermore, regulation of specific genes that were implicated in our analysis reveal possible targets for modulating immune activity to ameliorate insulin resistance.
Collapse
|
18
|
High-resolution, strand-specific R-loop mapping via S9.6-based DNA-RNA immunoprecipitation and high-throughput sequencing. Nat Protoc 2019; 14:1734-1755. [PMID: 31053798 DOI: 10.1038/s41596-019-0159-1] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/28/2019] [Indexed: 11/08/2022]
Abstract
R-loops are prevalent three-stranded non-B DNA structures composed of an RNA-DNA hybrid and a single strand of DNA. R-loops are implicated in various basic nuclear processes, such as class-switch recombination, transcription termination and chromatin patterning. Perturbations in R-loop metabolism have been linked to genomic instability and have been implicated in human disorders, including cancer. As a consequence, the accurate mapping of these structures has been of increasing interest in recent years. Here, we describe two related immunoprecipitation-based methods for mapping R-loop structures: basic DRIP-seq (DNA-RNA immunoprecipitation followed by high-throughput DNA sequencing), an easy, robust, but resolution-limited technique; and DRIPc-seq (DNA-RNA immunoprecipitation followed by cDNA conversion coupled to high-throughput sequencing), a high-resolution and strand-specific iteration of the method that permits accurate R-loop mapping genome wide. Briefly, after gentle DNA extraction and restriction digestion with a cocktail of enzymes, R-loop structures are immunoprecipitated with the anti-RNA-DNA hybrid S9.6 antibody. Compared with DRIP-seq, in which the immunoprecipitated DNA is directly sequenced, DRIPc-seq permits the recovery of the RNA moiety of R-loops, and these RNA strands are subjected to strand-specific RNA sequencing (RNA-seq) analysis. DRIPc-seq can be performed in 5 d and can be applied to any cell type, provided sufficient starting material can be collected. Accurately mapping R-loop distribution in various cell lines and under varied conditions is essential to understanding the formation, roles and dynamic resolution of these important structures.
Collapse
|
19
|
Abstract
Three-stranded R-loop structures form during transcription when the nascent RNA transcript rehybridizes to the template DNA strand. This creates an RNA:DNA hybrid and forces the nontemplate DNA strand into a single-stranded, looped-out state. R-loops form universally over conserved hotspot regions. To date, the physicochemical bases underlying R-loop formation remain unclear. Using a “first-principle” mathematical approach backed by experimental validation, we elucidated the relative contributions of DNA sequence and DNA topology to R-loop formation. Our work provides a quantitative assessment of the energies underlying R-loop formation and of their interplay. It further reveals these structures as important regulators of the DNA topological state. R-loops are abundant three-stranded nucleic-acid structures that form in cis during transcription. Experimental evidence suggests that R-loop formation is affected by DNA sequence and topology. However, the exact manner by which these factors interact to determine R-loop susceptibility is unclear. To investigate this, we developed a statistical mechanical equilibrium model of R-loop formation in superhelical DNA. In this model, the energy involved in forming an R-loop includes four terms—junctional and base-pairing energies and energies associated with superhelicity and with the torsional winding of the displaced DNA single strand around the RNA:DNA hybrid. This model shows that the significant energy barrier imposed by the formation of junctions can be overcome in two ways. First, base-pairing energy can favor RNA:DNA over DNA:DNA duplexes in favorable sequences. Second, R-loops, by absorbing negative superhelicity, partially or fully relax the rest of the DNA domain, thereby returning it to a lower energy state. In vitro transcription assays confirmed that R-loops cause plasmid relaxation and that negative superhelicity is required for R-loops to form, even in a favorable region. Single-molecule R-loop footprinting following in vitro transcription showed a strong agreement between theoretical predictions and experimental mapping of stable R-loop positions and further revealed the impact of DNA topology on the R-loop distribution landscape. Our results clarify the interplay between base sequence and DNA superhelicity in controlling R-loop stability. They also reveal R-loops as powerful and reversible topology sinks that cells may use to nonenzymatically relieve superhelical stress during transcription.
Collapse
|
20
|
Piovesan A, Pelleri MC, Antonaros F, Strippoli P, Caracausi M, Vitale L. On the length, weight and GC content of the human genome. BMC Res Notes 2019; 12:106. [PMID: 30813969 PMCID: PMC6391780 DOI: 10.1186/s13104-019-4137-z] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/15/2019] [Indexed: 01/08/2023] Open
Abstract
Objective Basic parameters commonly used to describe genomes including length, weight and relative guanine-cytosine (GC) content are widely cited in absence of a primary source. By using updated data and original software we determined these values to the best of our knowledge as standard reference for the whole human nuclear genome, for each chromosome and for mitochondrial DNA. We also devised a method to calculate the relative GC content in the whole messenger RNA sequence set and in transcriptomes by multiplying the GC content of each gene by its mean expression level. Results The male nuclear diploid genome extends for 6.27 Gigabase pairs (Gbp), is 205.00 cm (cm) long and weighs 6.41 picograms (pg). Female values are 6.37 Gbp, 208.23 cm, 6.51 pg. The individual variability and the implication for the DNA informational density in terms of bits/volume were discussed. The genomic GC content is 40.9%. Following analysis in different transcriptomes and species, we showed that the greatest deviation was observed in the pathological condition analysed (trisomy 21 leukaemic cells) and in Caenorhabditis elegans. Our results may represent a solid basis for further investigation on human structural and functional genomics while also providing a framework for other genome comparative analysis. Electronic supplementary material The online version of this article (10.1186/s13104-019-4137-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Allison Piovesan
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Maria Chiara Pelleri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Francesca Antonaros
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Pierluigi Strippoli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Maria Caracausi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy.
| | - Lorenza Vitale
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| |
Collapse
|
21
|
Nir G, Farabella I, Pérez Estrada C, Ebeling CG, Beliveau BJ, Sasaki HM, Lee SD, Nguyen SC, McCole RB, Chattoraj S, Erceg J, AlHaj Abed J, Martins NMC, Nguyen HQ, Hannan MA, Russell S, Durand NC, Rao SSP, Kishi JY, Soler-Vila P, Di Pierro M, Onuchic JN, Callahan SP, Schreiner JM, Stuckey JA, Yin P, Aiden EL, Marti-Renom MA, Wu CT. Walking along chromosomes with super-resolution imaging, contact maps, and integrative modeling. PLoS Genet 2018; 14:e1007872. [PMID: 30586358 PMCID: PMC6324821 DOI: 10.1371/journal.pgen.1007872] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/08/2019] [Accepted: 12/04/2018] [Indexed: 12/13/2022] Open
Abstract
Chromosome organization is crucial for genome function. Here, we present a method for visualizing chromosomal DNA at super-resolution and then integrating Hi-C data to produce three-dimensional models of chromosome organization. Using the super-resolution microscopy methods of OligoSTORM and OligoDNA-PAINT, we trace 8 megabases of human chromosome 19, visualizing structures ranging in size from a few kilobases to over a megabase. Focusing on chromosomal regions that contribute to compartments, we discover distinct structures that, in spite of considerable variability, can predict whether such regions correspond to active (A-type) or inactive (B-type) compartments. Imaging through the depths of entire nuclei, we capture pairs of homologous regions in diploid cells, obtaining evidence that maternal and paternal homologous regions can be differentially organized. Finally, using restraint-based modeling to integrate imaging and Hi-C data, we implement a method-integrative modeling of genomic regions (IMGR)-to increase the genomic resolution of our traces to 10 kb.
Collapse
MESH Headings
- Cells, Cultured
- Chromosome Painting/methods
- Chromosome Structures/chemistry
- Chromosome Structures/genetics
- Chromosome Structures/ultrastructure
- Chromosome Walking/methods
- Chromosomes, Human, Pair 19/chemistry
- Chromosomes, Human, Pair 19/genetics
- Chromosomes, Human, Pair 19/ultrastructure
- Female
- Fluorescent Dyes
- Humans
- Imaging, Three-Dimensional
- In Situ Hybridization, Fluorescence/methods
- Male
- Models, Genetic
- Oligonucleotide Probes
- Pedigree
Collapse
Affiliation(s)
- Guy Nir
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Irene Farabella
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Cynthia Pérez Estrada
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Carl G. Ebeling
- Bruker Nano Inc., Salt Lake City, Utah, United States of America
| | - Brian J. Beliveau
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Hiroshi M. Sasaki
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - S. Dean Lee
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Son C. Nguyen
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ruth B. McCole
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shyamtanu Chattoraj
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jelena Erceg
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jumana AlHaj Abed
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nuno M. C. Martins
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Huy Q. Nguyen
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mohammed A. Hannan
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sheikh Russell
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Neva C. Durand
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
| | - Suhas S. P. Rao
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jocelyn Y. Kishi
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Paula Soler-Vila
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Michele Di Pierro
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - José N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | | | | | - Jeff A. Stuckey
- Bruker Nano Inc., Middleton, Wisconsin, United States of America
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Erez Lieberman Aiden
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
- Departments of Computer Science and Computational and Applied Mathematics, Rice University, Houston, Texas, United States of America
| | - Marc A. Marti-Renom
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - C.-ting Wu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
| |
Collapse
|
22
|
Manzo SG, Hartono SR, Sanz LA, Marinello J, De Biasi S, Cossarizza A, Capranico G, Chedin F. DNA Topoisomerase I differentially modulates R-loops across the human genome. Genome Biol 2018; 19:100. [PMID: 30060749 PMCID: PMC6066927 DOI: 10.1186/s13059-018-1478-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/10/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Co-transcriptional R-loops are abundant non-B DNA structures in mammalian genomes. DNA Topoisomerase I (Top1) is often thought to regulate R-loop formation owing to its ability to resolve both positive and negative supercoils. How Top1 regulates R-loop structures at a global level is unknown. RESULTS Here, we perform high-resolution strand-specific R-loop mapping in human cells depleted for Top1 and find that Top1 depletion results in both R-loop gains and losses at thousands of transcribed loci, delineating two distinct gene classes. R-loop gains are characteristic for long, highly transcribed, genes located in gene-poor regions anchored to Lamin B1 domains and in proximity to H3K9me3-marked heterochromatic patches. R-loop losses, by contrast, occur in gene-rich regions overlapping H3K27me3-marked active replication initiation regions. Interestingly, Top1 depletion coincides with a block of the cell cycle in G0/G1 phase and a trend towards replication delay. CONCLUSIONS Our findings reveal new properties of Top1 in regulating R-loop homeostasis in a context-dependent manner and suggest a potential role for Top1 in modulating the replication process via R-loop formation.
Collapse
Affiliation(s)
- Stefano G Manzo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Present address: Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Stella R Hartono
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, USA
| | - Lionel A Sanz
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, USA
| | - Jessica Marinello
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| | - Frederic Chedin
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, USA.
| |
Collapse
|
23
|
Patel D, Patel M, Westermark B, Singh U. Dynamic bimodal changes in CpG and non-CpG methylation genome-wide upon CGGBP1 loss-of-function. BMC Res Notes 2018; 11:419. [PMID: 29966527 PMCID: PMC6027561 DOI: 10.1186/s13104-018-3516-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/19/2018] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Although CpG methylation is well studied, mechanisms of non-CpG methylation in mammals remains elusive. Studying proteins with non-CpG cytosine methylation-sensitive DNA-binding, such as human CGGBP1, can unveil cytosine methylation regulatory mechanisms. Here we have resequenced a published genome-wide bisulfite sequencing library and analyzed it at base level resolution. CpG, CHG and CHH (where H is any nucleotide other than G) methylation states in non-targeting or CGGBP1-targeting shmiR lentivirus-transduced cells have been analyzed to identify how CGGBP1 regulates CpG and non-CpG methylation. RESULTS We report that CGGBP1 acts as a dynamic bimodal balancer of methylation. Both gain and loss of methylation observed upon CGGBP1 depletion were spatially overlapping at annotated functional regions and not identifiable with any sequence motifs but clearly associated with GC-skew. CGGBP1 depletion caused clustered methylation changes in cis, upstream of R-loop forming promoters. This was complemented by clustered occurrences of methylation changes in proximity of transcription start sites of known cytosine methylation regulatory genes, altered expression of which can regulate cytosine methylation in trans. Despite low coverage, our data provide reliable estimates of the spectrum of methylation changes regulated by CGGBP1 in all cytosine contexts genome-wide through a combination of cis and trans-acting mechanisms.
Collapse
Affiliation(s)
- Divyesh Patel
- HoMeCell Laboratory, Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India
| | - Manthan Patel
- HoMeCell Laboratory, Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India
| | - Bengt Westermark
- Department of Immunology, Genetics and Pathology, and Science for Life Laboratory, Uppsala University, 75185, Uppsala, Sweden
| | - Umashankar Singh
- HoMeCell Laboratory, Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
24
|
Anastasiadi D, Esteve-Codina A, Piferrer F. Consistent inverse correlation between DNA methylation of the first intron and gene expression across tissues and species. Epigenetics Chromatin 2018; 11:37. [PMID: 29958539 PMCID: PMC6025724 DOI: 10.1186/s13072-018-0205-1] [Citation(s) in RCA: 269] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/19/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA methylation is one of the main epigenetic mechanisms for the regulation of gene expression in eukaryotes. In the standard model, methylation in gene promoters has received the most attention since it is generally associated with transcriptional silencing. Nevertheless, recent studies in human tissues reveal that methylation of the region downstream of the transcription start site is highly informative of gene expression. Also, in some cell types and specific genes it has been found that methylation of the first intron, a gene feature typically rich in enhancers, is linked with gene expression. However, a genome-wide, tissue-independent, systematic comparative analysis of the relationship between DNA methylation in the first intron and gene expression across vertebrates has not been explored yet. RESULTS The most important findings of this study are: (1) using different tissues from a modern fish, we show a clear genome-wide, tissue-independent quasi-linear inverse relationship between DNA methylation of the first intron and gene expression. (2) This relationship is conserved across vertebrates, since it is also present in the genomes of a model pufferfish, a model frog and different human tissues. Among the gene features, tissues and species interrogated, the first intron's negative correlation with the gene expression was most consistent. (3) We identified more tissue-specific differentially methylated regions (tDMRs) in the first intron than in any other gene feature. These tDMRs have positive or negative correlation with gene expression, indicative of distinct mechanisms of tissue-specific regulation. (4) Lastly, we identified CpGs in transcription factor binding motifs, enriched in the first intron, the methylation of which tended to increase with the distance from the first exon-first intron boundary, with a concomitant decrease in gene expression. CONCLUSIONS Our integrative analysis clearly reveals the important and conserved role of the methylation level of the first intron and its inverse association with gene expression regardless of tissue and species. These findings not only contribute to our basic understanding of the epigenetic regulation of gene expression but also identify the first intron as an informative gene feature regarding the relationship between DNA methylation and gene expression where future studies should be focused.
Collapse
Affiliation(s)
- Dafni Anastasiadi
- Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Francesc Piferrer
- Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain.
| |
Collapse
|
25
|
Cheung NKM, Nakamura R, Uno A, Kumagai M, Fukushima HS, Morishita S, Takeda H. Unlinking the methylome pattern from nucleotide sequence, revealed by large-scale in vivo genome engineering and methylome editing in medaka fish. PLoS Genet 2017; 13:e1007123. [PMID: 29267279 PMCID: PMC5755920 DOI: 10.1371/journal.pgen.1007123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 01/05/2018] [Accepted: 11/23/2017] [Indexed: 11/17/2022] Open
Abstract
The heavily methylated vertebrate genomes are punctuated by stretches of poorly methylated DNA sequences that usually mark gene regulatory regions. It is known that the methylation state of these regions confers transcriptional control over their associated genes. Given its governance on the transcriptome, cellular functions and identity, genome-wide DNA methylation pattern is tightly regulated and evidently predefined. However, how is the methylation pattern determined in vivo remains enigmatic. Based on in silico and in vitro evidence, recent studies proposed that the regional hypomethylated state is primarily determined by local DNA sequence, e.g., high CpG density and presence of specific transcription factor binding sites. Nonetheless, the dependency of DNA methylation on nucleotide sequence has not been carefully validated in vertebrates in vivo. Herein, with the use of medaka (Oryzias latipes) as a model, the sequence dependency of DNA methylation was intensively tested in vivo. Our statistical modeling confirmed the strong statistical association between nucleotide sequence pattern and methylation state in the medaka genome. However, by manipulating the methylation state of a number of genomic sequences and reintegrating them into medaka embryos, we demonstrated that artificially conferred DNA methylation states were predominantly and robustly maintained in vivo, regardless of their sequences and endogenous states. This feature was also observed in the medaka transgene that had passed across generations. Thus, despite the observed statistical association, nucleotide sequence was unable to autonomously determine its own methylation state in medaka in vivo. Our results apparently argue against the notion of the governance on the DNA methylation by nucleotide sequence, but instead suggest the involvement of other epigenetic factors in defining and maintaining the DNA methylation landscape. Further investigation in other vertebrate models in vivo will be needed for the generalization of our observations made in medaka. The genomes of vertebrate animals are naturally and extensively modified by methylation. The DNA methylation is essential to normal functions of cells, hence the whole animal, since it governs gene expression. Defects in the establishment and maintenance of proper methylation pattern are commonly associated with various developmental abnormalities and diseases. How exactly is the normal pattern defined in vertebrate animals is not fully understood, but recent researches with computational analyses and cultured cells suggested that DNA sequence is a primary determinant of the methylation pattern. This study encompasses the first experiments that rigorously test this notion in whole animal (medaka fish). In statistical sense, we observed the very strong correlation between DNA sequence and methylation state. However, by introducing unmethylated and artificially methylated native genomic DNA sequences into the genome, we demonstrated that the artificially conferred methylation states were robustly maintained in the animal, independent of the sequence and native state. Our results thus demonstrate that genome-wide DNA methylation pattern is not autonomously determined by the DNA sequence, which underpins the vital role of DNA methylation pattern as a core epigenetic element.
Collapse
Affiliation(s)
- Napo K M Cheung
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Ryohei Nakamura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Ayako Uno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Masahiko Kumagai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroto S Fukushima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
26
|
Roszik J, Fenyőfalvi G, Halász L, Karányi Z, Székvölgyi L. In Silico Restriction Enzyme Digests to Minimize Mapping Bias in Genomic Sequencing. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 6:66-67. [PMID: 28695155 PMCID: PMC5485759 DOI: 10.1016/j.omtm.2017.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - György Fenyőfalvi
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Research Centre for Molecular Medicine, University of Debrecen, Nagyerdei krt 98, Debrecen 4032, Hungary
| | - László Halász
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Research Centre for Molecular Medicine, University of Debrecen, Nagyerdei krt 98, Debrecen 4032, Hungary.,Department of Biochemistry and Molecular Biology, University of Debrecen, Egyetem sq. 1, Debrecen 4032, Hungary
| | - Zsolt Karányi
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Research Centre for Molecular Medicine, University of Debrecen, Nagyerdei krt 98, Debrecen 4032, Hungary
| | - Lóránt Székvölgyi
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Research Centre for Molecular Medicine, University of Debrecen, Nagyerdei krt 98, Debrecen 4032, Hungary.,Department of Biochemistry and Molecular Biology, University of Debrecen, Egyetem sq. 1, Debrecen 4032, Hungary
| |
Collapse
|
27
|
Ssb1 and Ssb2 cooperate to regulate mouse hematopoietic stem and progenitor cells by resolving replicative stress. Blood 2017; 129:2479-2492. [PMID: 28270450 DOI: 10.1182/blood-2016-06-725093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 02/26/2017] [Indexed: 12/14/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are vulnerable to endogenous damage and defects in DNA repair can limit their function. The 2 single-stranded DNA (ssDNA) binding proteins SSB1 and SSB2 are crucial regulators of the DNA damage response; however, their overlapping roles during normal physiology are incompletely understood. We generated mice in which both Ssb1 and Ssb2 were constitutively or conditionally deleted. Constitutive Ssb1/Ssb2 double knockout (DKO) caused early embryonic lethality, whereas conditional Ssb1/Ssb2 double knockout (cDKO) in adult mice resulted in acute lethality due to bone marrow failure and intestinal atrophy featuring stem and progenitor cell depletion, a phenotype unexpected from the previously reported single knockout models of Ssb1 or Ssb2 Mechanistically, cDKO HSPCs showed altered replication fork dynamics, massive accumulation of DNA damage, genome-wide double-strand breaks enriched at Ssb-binding regions and CpG islands, together with the accumulation of R-loops and cytosolic ssDNA. Transcriptional profiling of cDKO HSPCs revealed the activation of p53 and interferon (IFN) pathways, which enforced cell cycling in quiescent HSPCs, resulting in their apoptotic death. The rapid cell death phenotype was reproducible in in vitro cultured cDKO-hematopoietic stem cells, which were significantly rescued by nucleotide supplementation or after depletion of p53. Collectively, Ssb1 and Ssb2 control crucial aspects of HSPC function, including proliferation and survival in vivo by resolving replicative stress to maintain genomic stability.
Collapse
|
28
|
Sagie S, Toubiana S, Hartono SR, Katzir H, Tzur-Gilat A, Havazelet S, Francastel C, Velasco G, Chédin F, Selig S. Telomeres in ICF syndrome cells are vulnerable to DNA damage due to elevated DNA:RNA hybrids. Nat Commun 2017; 8:14015. [PMID: 28117327 PMCID: PMC5286223 DOI: 10.1038/ncomms14015] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022] Open
Abstract
DNA:RNA hybrids, nucleic acid structures with diverse physiological functions, can disrupt genome integrity when dysregulated. Human telomeres were shown to form hybrids with the lncRNA TERRA, yet the formation and distribution of these hybrids among telomeres, their regulation and their cellular effects remain elusive. Here we predict and confirm in several human cell types that DNA:RNA hybrids form at many subtelomeric and telomeric regions. We demonstrate that ICF syndrome cells, which exhibit short telomeres and elevated TERRA levels, are enriched for hybrids at telomeric regions throughout the cell cycle. Telomeric hybrids are associated with high levels of DNA damage at chromosome ends in ICF cells, which are significantly reduced with overexpression of RNase H1. Our findings suggest that abnormally high TERRA levels in ICF syndrome lead to accumulation of telomeric hybrids that, in turn, can result in telomeric dysfunction. ICF syndrome cells exhibit shortened telomeres and elevated levels of the noncoding RNA TERRA. Here the authors show this is associated with high levels of DNA damage, suggesting an increase in telomere dysfunction due to the formation of DNA: RNA hybrids
Collapse
Affiliation(s)
- Shira Sagie
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Shir Toubiana
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Stella R Hartono
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, California 95616, USA
| | - Hagar Katzir
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Aya Tzur-Gilat
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Shany Havazelet
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Claire Francastel
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, CNRS UMR7216, Paris Cedex 75205, France
| | - Guillaume Velasco
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, CNRS UMR7216, Paris Cedex 75205, France
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, California 95616, USA
| | - Sara Selig
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| |
Collapse
|
29
|
Jenjaroenpun P, Wongsurawat T, Sutheeworapong S, Kuznetsov VA. R-loopDB: a database for R-loop forming sequences (RLFS) and R-loops. Nucleic Acids Res 2017; 45:D119-D127. [PMID: 27899586 PMCID: PMC5210542 DOI: 10.1093/nar/gkw1054] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 10/04/2016] [Accepted: 10/20/2016] [Indexed: 11/18/2022] Open
Abstract
R-loopDB (http://rloop.bii.a-star.edu.sg) was originally constructed as a collection of computationally predicted R-loop forming sequences (RLFSs) in the human genic regions. The renewed R-loopDB provides updates, improvements and new options, including access to recent experimental data. It includes genome-scale prediction of RLFSs for humans, six other animals and yeast. Using the extended quantitative model of RLFSs (QmRLFS), we significantly increased the number of RLFSs predicted in the human genes and identified RLFSs in other organism genomes. R-loopDB allows searching of RLFSs in the genes and in the 2 kb upstream and downstream flanking sequences of any gene. R-loopDB exploits the Ensembl gene annotation system, providing users with chromosome coordinates, sequences, gene and genomic data of the 1 565 795 RLFSs distributed in 121 056 genic or proximal gene regions of the covered organisms. It provides a comprehensive annotation of Ensembl RLFS-positive genes including 93 454 protein coding genes, 12 480 long non-coding RNA and 7 568 small non-coding RNA genes and 7 554 pseudogenes. Using new interface and genome viewers of R-loopDB, users can search the gene(s) in multiple species with keywords in a single query. R-loopDB provides tools to carry out comparative evolution and genome-scale analyses in R-loop biology.
Collapse
Affiliation(s)
- Piroon Jenjaroenpun
- Department of Genome and Gene Expression Data Analysis, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, 138671, Singapore
| | - Thidathip Wongsurawat
- Department of Genome and Gene Expression Data Analysis, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, 138671, Singapore
| | - Sawannee Sutheeworapong
- Systems Biology and Bioinformatics Research, Pilot Plant Development and Training Institute, King Mongkut's University of Technology, Thonburi, Bangkok, Thailand
| | - Vladimir A Kuznetsov
- Department of Genome and Gene Expression Data Analysis, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, 138671, Singapore
- School of Computer Engineering, Nanyang Technological University, 639798, Singapore
| |
Collapse
|
30
|
Nascent Connections: R-Loops and Chromatin Patterning. Trends Genet 2016; 32:828-838. [PMID: 27793359 DOI: 10.1016/j.tig.2016.10.002] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 11/22/2022]
Abstract
RNA molecules, such as long noncoding RNAs (lncRNAs), have critical roles in regulating gene expression, chromosome architecture, and the modification states of chromatin. Recent developments suggest that RNA also influences gene expression and chromatin patterns through the interaction of nascent transcripts with their DNA template via the formation of co-transcriptional R-loop structures. R-loop formation over specific, conserved, hotspots occurs at thousands of genes in mammalian genomes and represents an important and dynamic feature of mammalian chromatin. Here, focusing primarily on mammalian systems, I describe the accumulating connections and possible mechanisms linking R-loop formation and chromatin patterning. The possible contribution of aberrant R-loops to pathological conditions is also discussed.
Collapse
|
31
|
Al-Hadid Q, Yang Y. R-loop: an emerging regulator of chromatin dynamics. Acta Biochim Biophys Sin (Shanghai) 2016; 48:623-31. [PMID: 27252122 DOI: 10.1093/abbs/gmw052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 04/29/2016] [Indexed: 12/27/2022] Open
Abstract
The dynamic structure of chromatin, which exists in two conformational states: heterochromatin and euchromatin, alters the accessibility of the DNA to regulatory factors during transcription, replication, recombination, and DNA damage repair. Chemical modifications of histones and DNA, as well as adenosine triphospahate-dependent nucleosome remodeling, have been the major focus of research on chromatin dynamics over the past two decades. However, recent studies using a DNA-RNA hybrid-specific antibody and next-generation sequencing approaches have revealed that the formation of R-loops, one of the most common non-canonical DNA structures, is an emerging regulator of chromatin states. This review focuses on recent insights into the interplay between R-loop formation and the epigenetic modifications of chromatin in normal and disease states.
Collapse
Affiliation(s)
- Qais Al-Hadid
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Cancer Center, Duarte, CA 91010, USA
| | - Yanzhong Yang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
32
|
Abstract
Hybridization of RNA to its template DNA strand during transcription induces formation of R-loops-RNA:DNA hybrids with unpaired non-template DNA strands. Although unresolved R-loops can be detrimental, some R-loops contribute to regulation of chromatin structure. Consequently, R-loops help regulate gene expression and play important roles in numerous cellular processes.
Collapse
Affiliation(s)
- Thomas G Fazzio
- a Department of Molecular, Cell, and Cancer Biology , University of Massachusetts Medical School , Worcester , MA , USA.,b Program in Molecular Medicine , University of Massachusetts Medical School , Worcester , MA , USA
| |
Collapse
|
33
|
Marsh AG, Hoadley KD, Warner ME. Distribution of CpG Motifs in Upstream Gene Domains in a Reef Coral and Sea Anemone: Implications for Epigenetics in Cnidarians. PLoS One 2016; 11:e0150840. [PMID: 26950882 PMCID: PMC4780780 DOI: 10.1371/journal.pone.0150840] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/20/2016] [Indexed: 12/26/2022] Open
Abstract
Coral reefs are under assault from stressors including global warming, ocean acidification, and urbanization. Knowing how these factors impact the future fate of reefs requires delineating stress responses across ecological, organismal and cellular scales. Recent advances in coral reef biology have integrated molecular processes with ecological fitness and have identified putative suites of temperature acclimation genes in a Scleractinian coral Acropora hyacinthus. We wondered what unique characteristics of these genes determined their coordinate expression in response to temperature acclimation, and whether or not other corals and cnidarians would likewise possess these features. Here, we focus on cytosine methylation as an epigenetic DNA modification that is responsive to environmental stressors. We identify common conserved patterns of cytosine-guanosine dinucleotide (CpG) motif frequencies in upstream promoter domains of different functional gene groups in two cnidarian genomes: a coral (Acropora digitifera) and an anemone (Nematostella vectensis). Our analyses show that CpG motif frequencies are prominent in the promoter domains of functional genes associated with environmental adaptation, particularly those identified in A. hyacinthus. Densities of CpG sites in upstream promoter domains near the transcriptional start site (TSS) are 1.38x higher than genomic background levels upstream of -2000 bp from the TSS. The increase in CpG usage suggests selection to allow for DNA methylation events to occur more frequently within 1 kb of the TSS. In addition, observed shifts in CpG densities among functional groups of genes suggests a potential role for epigenetic DNA methylation within promoter domains to impact functional gene expression responses in A. digitifera and N. vectensis. Identifying promoter epigenetic sequence motifs among genes within specific functional groups establishes an approach to describe integrated cellular responses to environmental stress in reef corals and potential roles of epigenetics on survival and fitness in the face of global climate change.
Collapse
Affiliation(s)
- Adam G. Marsh
- Marine Biosciences, School of Marine Science and Policy, University of Delaware, Lewes, DE, United States of America
- Center for Bioinformatics and Computational Biology/Delaware Biotechnology Institute/University of Delaware, Newark, DE, United States of America
- * E-mail:
| | - Kenneth D. Hoadley
- Marine Biosciences, School of Marine Science and Policy, University of Delaware, Lewes, DE, United States of America
| | - Mark E. Warner
- Marine Biosciences, School of Marine Science and Policy, University of Delaware, Lewes, DE, United States of America
| |
Collapse
|