1
|
Almaqwashi AA, McCauley MJ, Andersson J, Rouzina I, Westerlund F, Lincoln P, Williams MC. Binuclear ruthenium complex linker length tunes DNA threading intercalation kinetics. Biophys J 2025; 124:667-676. [PMID: 39797403 PMCID: PMC11900151 DOI: 10.1016/j.bpj.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/16/2024] [Accepted: 01/08/2025] [Indexed: 01/13/2025] Open
Abstract
Binuclear ruthenium complexes have been investigated for potential DNA-targeted therapeutic and diagnostic applications. Studies of DNA threading intercalation, in which DNA basepairs must be broken for intercalation, have revealed means of optimizing a model binuclear ruthenium complex to obtain reversible DNA-ligand assemblies with the desired properties of high affinity and slow kinetics. Here, we used single-molecule force spectroscopy to study a binuclear ruthenium complex with a longer semirigid linker relative to the model complex. Equilibrium results suggest a DNA affinity that is an order of magnitude higher than the parent binuclear ruthenium complex, likely due to a sterically relieved DNA threading intercalation mechanism. Notably, kinetics analysis shows that less DNA elongation is required for threading intercalation compared to the parent complex, and the association rate is two orders of magnitude faster. The ruthenium complex elongates the DNA duplex by ∼0.3 nm per bound ligand to reach the equilibrium intercalated state, with a significantly different energy landscape relative to the parent complex. Mechanical properties of the ligand-saturated DNA duplex show a higher persistence length, indicating that the longer semirigid linker provides enough molecular spacing to allow a single monomer to fully stack with basepairs, comparable to the monomeric parent ruthenium complex. The DNA basepairs in the equilibrium threading intercalated state are likely intact, and the ruthenium complex is shielded from the polar solution, providing measurable single-molecule confocal fluorescence signals. The obtained confocal fluorescence imaging of the bound dye confirms mostly uniform intercalation along the tethered DNA, consistent with other intercalators. The results of this study, along with previously examined ruthenium complex variants, illustrate tunable intercalation mechanisms guided by the rational design of therapeutic and diagnostic small molecules to target and modify the DNA duplex.
Collapse
Affiliation(s)
- Ali A Almaqwashi
- Physics Department, College of Science and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Micah J McCauley
- Department of Physics, Northeastern University, Boston, Massachusetts
| | - Johanna Andersson
- Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden; Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio
| | - Fredrik Westerlund
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Per Lincoln
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Mark C Williams
- Department of Physics, Northeastern University, Boston, Massachusetts.
| |
Collapse
|
2
|
Saeed HK, Jarman PJ, Sreedharan S, Mowll R, Auty AJ, Chauvet AAP, Smythe CGW, de la Serna JB, Thomas JA. From Chemotherapy to Phototherapy - Changing the Therapeutic Action of a Metallo-Intercalating Ru II -Re I Luminescent System by Switching its Sub-Cellular Location. Chemistry 2023; 29:e202300617. [PMID: 37013945 PMCID: PMC10946911 DOI: 10.1002/chem.202300617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/05/2023]
Abstract
The synthesis of a new heterodinuclear ReI RuII metallointercalator containing RuII (dppz) and ReI (dppn) moieties is reported. Cell-free studies reveal that the complex has similar photophysical properties to its homoleptic M(dppz) analogue and it also binds to DNA with a similar affinity. However, the newly reported complex has very different in-cell properties to its parent. In complete contrast to the homoleptic system, the RuII (dppz)/ReI (dppn) complex is not intrinsically cytotoxic but displays appreciable phototoxic, despite both complexes displaying very similar quantum yields for singlet oxygen sensitization. Optical microscopy suggests that the reason for these contrasting biological effects is that whereas the homoleptic complex localises in the nuclei of cells, the RuII (dppz)/ReI (dppn) complex preferentially accumulates in mitochondria. These observations illustrate how even small structural changes in metal based therapeutic leads can modulate their mechanism of action.
Collapse
Affiliation(s)
- Hiwa K. Saeed
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| | - Paul J. Jarman
- Department of Biomedical ScienceUniversity of SheffieldSheffieldS10 2TNUK
| | - Sreejesh Sreedharan
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
- School of Human ScienceUniversity of DerbyDerbyDE22 1GBUK
| | - Rachel Mowll
- Department of Biomedical ScienceUniversity of SheffieldSheffieldS10 2TNUK
| | | | | | - Carl G. W. Smythe
- Department of Biomedical ScienceUniversity of SheffieldSheffieldS10 2TNUK
| | - Jorge Bernardino de la Serna
- Faculty of MedicineNational Heart and Lung InstituteImperial CollegeLondonSW7 2AZUK
- Central Laser FacilityRutherford Appleton LaboratoryMRC-Research Complex at Harwell Science and Technology Facilities CouncilHarwellOX11 0FAUK
| | - Jim A. Thomas
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| |
Collapse
|
3
|
Georgakopoulou C, Thomos D, Tsolis T, Ypsilantis K, Plakatouras JC, Kordias D, Magklara A, Kouderis C, Kalampounias AG, Garoufis A. Synthesis, characterization, interactions with the DNA duplex dodecamer d(5'-CGCGAATTCGCG-3') 2 and cytotoxicity of binuclear η 6-arene-Ru(II) complexes. Dalton Trans 2022; 51:13808-13825. [PMID: 36039685 DOI: 10.1039/d2dt02304k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel binuclear η6-arene-Ru(II) complexes with the general formula {[(η6-cym)Ru(L)]2(μ-BL)}(PF6)4, and their corresponding water soluble {[(η6-cym)Ru(L)]2(μ-BL)}Cl4, where cym = p-cymene, L = 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen), BL = 4,4'-bipyridine (BL-1), 1,2-bis(4-pyridyl)ethane (BL-2) and 1,3-bis(4-pyridyl)propane (BL-3), were synthesized and characterized. The structure of {[(η6-cym)Ru(phen)]2(μ-BL-1)}(PF6)4 was determined by X-ray single crystal methods. The interaction of {[(η6-cym)Ru(phen)]2(μ-BL-i)}Cl4 (i = 1, 2, 3; (4), (5) and (6) correspondingly) with the DNA duplex d(5'-CGCGAATTCGCG-3')2 was studied by means of NMR techniques and fluorescence titrations. The results show that complex (4) binds with a Kb = 12.133 × 103 M-1 through both intercalation and groove binding, while (5) and (6) are groove binders (Kb = 2.333 × 103 M-1 and Kb = 3.336 × 103 M-1 correspondingly). Comparison with the mononuclear complex [(η6-cym)Ru(phen)(py)]2+ reveals that it binds to the d(5'-CGCGAATTCGCG-3')2 with a Kb value two orders of magnitude lower than (4) (Kb = 0.158 × 103 M-1), indicating that for the binuclear complexes both ruthenium moieties participate in the binding. The complexes were found to be cytotoxic against the A2780 and A2780 res. cancer cell line with a selectivity index (SI) in the range of 3.0-5.9.
Collapse
Affiliation(s)
| | - Dimitrios Thomos
- Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece.
| | - Theodoros Tsolis
- Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece.
| | | | - John C Plakatouras
- Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece. .,University Research Center of Ioannina (URCI), Institute of Materials Science and Computing, Ioannina, Greece
| | - Dimitris Kordias
- Biomedical Research Institute-Foundation for Research and Technology, 45110 Ioannina, Greece.,Laboratory of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Angeliki Magklara
- Biomedical Research Institute-Foundation for Research and Technology, 45110 Ioannina, Greece.,Laboratory of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece.,Institute of Biosciences, University Research Center of Ioannina (U.R.C.I.), Ioannina, Greece
| | | | - Angelos G Kalampounias
- Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece. .,University Research Center of Ioannina (URCI), Institute of Materials Science and Computing, Ioannina, Greece
| | - Achilleas Garoufis
- Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece. .,University Research Center of Ioannina (URCI), Institute of Materials Science and Computing, Ioannina, Greece
| |
Collapse
|
4
|
Feng B, Sundin E, Lincoln P, Mårtensson AKF. DNA threading intercalation of enantiopure [Ru(phen) 2bidppz] 2+ induced by hydrophobic catalysis. Phys Chem Chem Phys 2021; 23:2238-2244. [PMID: 33439155 DOI: 10.1039/d0cp00845a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The enantiomers of a novel mononuclear ruthenium(ii) complex [Ru(phen)2bidppz]2+ with an elongated dppz moiety were synthesized. Surprisingly, the complex showed no DNA intercalating capability in an aqueous environment. However, by the addition of water-miscible polyethylene glycol ether PEG-400, self-aggregation of the hydrophobic ruthenium(ii) complexes was counter-acted, thus strongly promoting the DNA intercalation binding mode. This mild alteration of the environment surrounding the DNA polymer does not damage or alter the DNA structure but instead enables more efficient binding characterization studies of potential DNA binding drugs.
Collapse
Affiliation(s)
- Bobo Feng
- Department of Chemistry and Chemical Engineering, Kemigården 4, SE-412 96 Gothenburg, Sweden.
| | | | | | | |
Collapse
|
5
|
Single-Molecule Mechanics in Ligand Concentration Gradient. MICROMACHINES 2020; 11:mi11020212. [PMID: 32093081 PMCID: PMC7074681 DOI: 10.3390/mi11020212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/09/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023]
Abstract
Single-molecule experiments provide unique insights into the mechanisms of biomolecular phenomena. However, because varying the concentration of a solute usually requires the exchange of the entire solution around the molecule, ligand-concentration-dependent measurements on the same molecule pose a challenge. In the present work we exploited the fact that a diffusion-dependent concentration gradient arises in a laminar-flow microfluidic device, which may be utilized for controlling the concentration of the ligand that the mechanically manipulated single molecule is exposed to. We tested this experimental approach by exposing a λ-phage dsDNA molecule, held with a double-trap optical tweezers instrument, to diffusionally-controlled concentrations of SYTOX Orange (SxO) and tetrakis(4-N-methyl)pyridyl-porphyrin (TMPYP). We demonstrate that the experimental design allows access to transient-kinetic, equilibrium and ligand-concentration-dependent mechanical experiments on the very same single molecule.
Collapse
|
6
|
Saeed HK, Sreedharan S, Jarman PJ, Archer SA, Fairbanks SD, Foxon SP, Auty AJ, Chekulaev D, Keane T, Meijer AJHM, Weinstein JA, Smythe CGW, Bernardino de la Serna J, Thomas JA. Making the Right Link to Theranostics: The Photophysical and Biological Properties of Dinuclear Ru II-Re I dppz Complexes Depend on Their Tether. J Am Chem Soc 2020; 142:1101-1111. [PMID: 31846306 DOI: 10.1021/jacs.9b12564] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The synthesis of new dinuclear complexes containing linked RuII(dppz) and ReI(dppz) moieties is reported. The photophysical and biological properties of the new complex, which incorporates a N,N'-bis(4-pyridylmethyl)-1,6-hexanediamine tether ligand, are compared to a previously reported RuII/ReI complex linked by a simple dipyridyl alkane ligand. Although both complexes bind to DNA with similar affinities, steady-state and time-resolved photophysical studies reveal that the nature of the linker affects the excited state dynamics of the complexes and their DNA photocleavage properties. Quantum-based DFT calculations on these systems offer insights into these effects. While both complexes are live cells permeant, their intracellular localizations are significantly affected by the nature of the linker. Notably, one of the complexes displayed concentration-dependent localization and possesses photophysical properties that are compatible with SIM and STED nanoscopy. This allowed the dynamics of its intracellular localization to be tracked at super resolutions.
Collapse
Affiliation(s)
| | | | | | | | | | - Simon P Foxon
- ZapGo, Limited , Rutherford Appleton Laboratory, Harwell , Oxford OX11 0FA , United Kingdom
| | | | | | | | | | | | | | - Jorge Bernardino de la Serna
- Central Laser Facility, Rutherford Appleton Laboratory , Research Complex at Harwell, Science and Technology Facilities Council , Harwell-Oxford , Didcot OX11 0QX , United Kingdom
- National Heart and Lung Institute, Faculty of Medicine , Imperial College London , Sir Alexander Fleming Building, Exhibition Road , London SW7 2AZ , United Kingdom
| | | |
Collapse
|
7
|
Osterloh WR, Galindo G, Yates MJ, Van Caemelbecke E, Kadish KM. Synthesis, Structural and Physicochemical Properties of Water-Soluble Mixed-Ligand Diruthenium Complexes Containing Anilinopyridinate Bridging Ligands. Inorg Chem 2020; 59:584-594. [PMID: 31876147 DOI: 10.1021/acs.inorgchem.9b02838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of water-soluble Ru25+ complexes of the type Ru2(O2CCH3)3(L)Cl where L = 2,3,4,5,6-F5ap, 2,4,6-F3ap, 2-Fap, ap, 2-Meap, 2,6-Me2ap, or 2,4,6-Me3ap, where ap is the anilinopyridinate anion, have been characterized as to their structural and physicochemical properties in H2O and DMSO. Five of the newly synthesized complexes were structurally characterized, and the Ru-Cl bond lengths range from 2.477 to 2.544 Å while the Ru-Ru bond lengths range from 2.2838 to 2.2935 Å. The UV-vis spectra of each compound are characterized by three absorption bands in both H2O and DMSO, the intensity and position of which vary with both the type of bridging ligand and the solvent. The seven examined Ru25+ complexes exist as 1:1 electrolytes in water, and each undergoes a reversible one-electron reduction assigned to Ru25+/Ru24+ in both investigated solvents. A second irreversible reduction attributed to Ru24+/Ru23+ is also observed for each compound at more negative potentials in DMSO. A linear free energy relationship exists between the sum of the Hammett substituent constants (Σσ) on the ap-type bridging ligand and the wavenumber of an absorption band for the Ru25+ complexes. A linear relationship is also seen between Σσ and measured E1/2 values for the Ru25+/Ru24+ process in water containing 0.1 M KCl, but little to no effect is seen between the specific bridging ligand and the structural features of the investigated compounds.
Collapse
Affiliation(s)
- W Ryan Osterloh
- Department of Chemistry , University of Houston , Houston , Texas 77204-5003 , United States.,Department of Chemistry , Houston Baptist University , 7502 Fondren Road , Houston , Texas 77074-3298 , United States
| | - Gabriel Galindo
- Department of Chemistry , University of Houston , Houston , Texas 77204-5003 , United States.,Department of Chemistry , Houston Baptist University , 7502 Fondren Road , Houston , Texas 77074-3298 , United States
| | - Michelle J Yates
- Department of Chemistry , University of Houston , Houston , Texas 77204-5003 , United States.,Department of Chemistry , Houston Baptist University , 7502 Fondren Road , Houston , Texas 77074-3298 , United States
| | - Eric Van Caemelbecke
- Department of Chemistry , University of Houston , Houston , Texas 77204-5003 , United States.,Department of Chemistry , Houston Baptist University , 7502 Fondren Road , Houston , Texas 77074-3298 , United States
| | - Karl M Kadish
- Department of Chemistry , University of Houston , Houston , Texas 77204-5003 , United States
| |
Collapse
|
8
|
Jia F, Wang S, Man Y, Kumar P, Liu B. Recent Developments in the Interactions of Classic Intercalated Ruthenium Compounds: [Ru(bpy)₂dppz] 2+ and [Ru(phen)₂dppz] 2+ with a DNA Molecule. Molecules 2019; 24:molecules24040769. [PMID: 30791625 PMCID: PMC6412511 DOI: 10.3390/molecules24040769] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 12/19/2022] Open
Abstract
[Ru(bpy)2dppz]2+ and [Ru(phen)2dppz]2+ as the light switches of the deoxyribose nucleic acid (DNA) molecule have attracted much attention and have become a powerful tool for exploring the structure of the DNA helix. Their interactions have been intensively studied because of the excellent photophysical and photochemical properties of ruthenium compounds. In this perspective, this review describes the recent developments in the interactions of these two classic intercalated compounds with a DNA helix. The mechanism of the molecular light switch effect and the selectivity of these two compounds to different forms of a DNA helix has been discussed. In addition, the specific binding modes between them have been discussed in detail, for a better understanding the mechanism of the light switch and the luminescence difference. Finally, recent studies of single molecule force spectroscopy have also been included so as to precisely interpret the kinetics, equilibrium constants, and the energy landscape during the process of the dynamic assembly of ligands into a single DNA helix.
Collapse
Affiliation(s)
- Fuchao Jia
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Shuo Wang
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Yan Man
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Parveen Kumar
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
9
|
Almaqwashi AA, Zhou W, Naufer MN, Riddell IA, Yilmaz ÖH, Lippard SJ, Williams MC. DNA Intercalation Facilitates Efficient DNA-Targeted Covalent Binding of Phenanthriplatin. J Am Chem Soc 2019; 141:1537-1545. [PMID: 30599508 DOI: 10.1021/jacs.8b10252] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Phenanthriplatin, a monofunctional anticancer agent derived from cisplatin, shows significantly more rapid DNA covalent-binding activity compared to its parent complex. To understand the underlying molecular mechanism, we used single-molecule studies with optical tweezers to probe the kinetics of DNA-phenanthriplatin binding as well as DNA binding to several control complexes. The time-dependent extensions of single λ-DNA molecules were monitored at constant applied forces and compound concentrations, followed by rinsing with a compound-free solution. DNA-phenanthriplatin association consisted of fast and reversible DNA lengthening with time constant τ ≈ 10 s, followed by slow and irreversible DNA elongation that reached equilibrium in ∼30 min. In contrast, only reversible fast DNA elongation occured for its stereoisomer trans-phenanthriplatin, suggesting that the distinct two-rate kinetics of phenanthriplatin is sensitive to the geometric conformation of the complex. Furthermore, no DNA unwinding was observed for pyriplatin, in which the phenanthridine ligand of phenanthriplatin is replaced by the smaller pyridine molecule, indicating that the size of the aromatic group is responsible for the rapid DNA elongation. These findings suggest that the mechanism of binding of phenanthriplatin to DNA involves rapid, partial intercalation of the phenanthridine ring followed by slower substitution of the adjacent chloride ligand by, most likely, the N7 atom of a purine base. The cis isomer affords the proper stereochemistry at the metal center to facilitate essentially irreversible DNA covalent binding, a geometric advantage not afforded by trans-phenanthriplatin. This study demonstrates that reversible DNA intercalation provides a robust transition state that is efficiently converted to an irreversible DNA-Pt bound state.
Collapse
Affiliation(s)
- Ali A Almaqwashi
- Physics Department , King Abdulaziz University , Rabigh 21911 , Saudi Arabia
| | - Wen Zhou
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.,David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - M Nabuan Naufer
- Department of Physics , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Imogen A Riddell
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.,Department of Chemistry , The University of Manchester , Manchester M13 9PL , United Kingdom
| | - Ömer H Yilmaz
- David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Stephen J Lippard
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.,David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Mark C Williams
- Department of Physics , Northeastern University , Boston , Massachusetts 02115 , United States
| |
Collapse
|
10
|
Clark AG, Naufer MN, Westerlund F, Lincoln P, Rouzina I, Paramanathan T, Williams MC. Reshaping the Energy Landscape Transforms the Mechanism and Binding Kinetics of DNA Threading Intercalation. Biochemistry 2018; 57:614-619. [PMID: 29243480 DOI: 10.1021/acs.biochem.7b01036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecules that bind DNA via threading intercalation show high binding affinity as well as slow dissociation kinetics, properties ideal for the development of anticancer drugs. To this end, it is critical to identify the specific molecular characteristics of threading intercalators that result in optimal DNA interactions. Using single-molecule techniques, we quantify the binding of a small metal-organic ruthenium threading intercalator (Δ,Δ-B) and compare its binding characteristics to a similar molecule with significantly larger threading moieties (Δ,Δ-P). The binding affinities of the two molecules are the same, while comparison of the binding kinetics reveals significantly faster kinetics for Δ,Δ-B. However, the kinetics is still much slower than that observed for conventional intercalators. Comparison of the two threading intercalators shows that the binding affinity is modulated independently by the intercalating section and the binding kinetics is modulated by the threading moiety. In order to thread DNA, Δ,Δ-P requires a "lock mechanism", in which a large length increase of the DNA duplex is required for both association and dissociation. In contrast, measurements of the force-dependent binding kinetics show that Δ,Δ-B requires a large DNA length increase for association but no length increase for dissociation from DNA. This contrasts strongly with conventional intercalators, for which almost no DNA length change is required for association but a large DNA length change must occur for dissociation. This result illustrates the fundamentally different mechanism of threading intercalation compared with conventional intercalation and will pave the way for the rational design of therapeutic drugs based on DNA threading intercalation.
Collapse
Affiliation(s)
- Andrew G Clark
- Department of Physics, Northeastern University , Boston, Massachusetts 02115, United States
| | - M Nabuan Naufer
- Department of Physics, Northeastern University , Boston, Massachusetts 02115, United States
| | - Fredrik Westerlund
- Department of Biology and Biological Engineering, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| | - Per Lincoln
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | - Thayaparan Paramanathan
- Department of Physics, Bridgewater State University , Bridgewater, Massachusetts 02325, United States
| | - Mark C Williams
- Department of Physics, Northeastern University , Boston, Massachusetts 02115, United States
| |
Collapse
|
11
|
Almaqwashi AA, Andersson J, Lincoln P, Rouzina I, Westerlund F, Williams MC. Dissecting the Dynamic Pathways of Stereoselective DNA Threading Intercalation. Biophys J 2016; 110:1255-63. [PMID: 27028636 DOI: 10.1016/j.bpj.2016.02.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/01/2016] [Accepted: 02/08/2016] [Indexed: 02/07/2023] Open
Abstract
DNA intercalators that have high affinity and slow kinetics are developed for potential DNA-targeted therapeutics. Although many natural intercalators contain multiple chiral subunits, only intercalators with a single chiral unit have been quantitatively probed. Dumbbell-shaped DNA threading intercalators represent the next order of structural complexity relative to simple intercalators, and can provide significant insights into the stereoselectivity of DNA-ligand intercalation. We investigated DNA threading intercalation by binuclear ruthenium complex [μ-dppzip(phen)4Ru2](4+) (Piz). Four Piz stereoisomers are defined by the chirality of the intercalating subunit (Ru(phen)2dppz) and the distal subunit (Ru(phen)2ip), respectively, each of which can be either right-handed (Δ) or left-handed (Λ). We used optical tweezers to measure single DNA molecule elongation due to threading intercalation, revealing force-dependent DNA intercalation rates and equilibrium dissociation constants. The force spectroscopy analysis provided the zero-force DNA binding affinity, the equilibrium DNA-ligand elongation Δxeq, and the dynamic DNA structural deformations during ligand association xon and dissociation xoff. We found that Piz stereoisomers exhibit over 20-fold differences in DNA binding affinity, from a Kd of 27 ± 3 nM for (Δ,Λ)-Piz to a Kd of 622 ± 55 nM for (Λ,Δ)-Piz. The striking affinity decrease is correlated with increasing Δxeq from 0.30 ± 0.02 to 0.48 ± 0.02 nm and xon from 0.25 ± 0.01 to 0.46 ± 0.02 nm, but limited xoff changes. Notably, the affinity and threading kinetics is 10-fold enhanced for right-handed intercalating subunits, and 2- to 5-fold enhanced for left-handed distal subunits. These findings demonstrate sterically dispersed transition pathways and robust DNA structural recognition of chiral intercalators, which are critical for optimizing DNA binding affinity and kinetics.
Collapse
Affiliation(s)
- Ali A Almaqwashi
- Department of Physics, Northeastern University, Boston, Massachusetts
| | - Johanna Andersson
- Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden; Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Per Lincoln
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio
| | - Fredrik Westerlund
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Mark C Williams
- Department of Physics, Northeastern University, Boston, Massachusetts.
| |
Collapse
|
12
|
DNA intercalation optimized by two-step molecular lock mechanism. Sci Rep 2016; 6:37993. [PMID: 27917863 PMCID: PMC5137138 DOI: 10.1038/srep37993] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/03/2016] [Indexed: 11/25/2022] Open
Abstract
The diverse properties of DNA intercalators, varying in affinity and kinetics over several orders of magnitude, provide a wide range of applications for DNA-ligand assemblies. Unconventional intercalation mechanisms may exhibit high affinity and slow kinetics, properties desired for potential therapeutics. We used single-molecule force spectroscopy to probe the free energy landscape for an unconventional intercalator that binds DNA through a novel two-step mechanism in which the intermediate and final states bind DNA through the same mono-intercalating moiety. During this process, DNA undergoes significant structural rearrangements, first lengthening before relaxing to a shorter DNA-ligand complex in the intermediate state to form a molecular lock. To reach the final bound state, the molecular length must increase again as the ligand threads between disrupted DNA base pairs. This unusual binding mechanism results in an unprecedented optimized combination of high DNA binding affinity and slow kinetics, suggesting a new paradigm for rational design of DNA intercalators.
Collapse
|
13
|
Imidazolyl-Naphthalenediimide-Based Threading Intercalators of DNA. Chembiochem 2016; 17:2162-2171. [DOI: 10.1002/cbic.201600478] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Indexed: 12/22/2022]
|
14
|
Almaqwashi AA, Paramanathan T, Rouzina I, Williams MC. Mechanisms of small molecule-DNA interactions probed by single-molecule force spectroscopy. Nucleic Acids Res 2016; 44:3971-88. [PMID: 27085806 PMCID: PMC4872107 DOI: 10.1093/nar/gkw237] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/24/2016] [Indexed: 12/31/2022] Open
Abstract
There is a wide range of applications for non-covalent DNA binding ligands, and optimization of such interactions requires detailed understanding of the binding mechanisms. One important class of these ligands is that of intercalators, which bind DNA by inserting aromatic moieties between adjacent DNA base pairs. Characterizing the dynamic and equilibrium aspects of DNA-intercalator complex assembly may allow optimization of DNA binding for specific functions. Single-molecule force spectroscopy studies have recently revealed new details about the molecular mechanisms governing DNA intercalation. These studies can provide the binding kinetics and affinity as well as determining the magnitude of the double helix structural deformations during the dynamic assembly of DNA–ligand complexes. These results may in turn guide the rational design of intercalators synthesized for DNA-targeted drugs, optical probes, or integrated biological self-assembly processes. Herein, we survey the progress in experimental methods as well as the corresponding analysis framework for understanding single molecule DNA binding mechanisms. We discuss briefly minor and major groove binding ligands, and then focus on intercalators, which have been probed extensively with these methods. Conventional mono-intercalators and bis-intercalators are discussed, followed by unconventional DNA intercalation. We then consider the prospects for using these methods in optimizing conventional and unconventional DNA-intercalating small molecules.
Collapse
Affiliation(s)
- Ali A Almaqwashi
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | | | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Mark C Williams
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|