1
|
Kiliushik D, Goenner C, Law M, Schroeder GM, Srivastava Y, Jenkins JL, Wedekind JE. Knotty is nice: Metabolite binding and RNA-mediated gene regulation by the preQ 1 riboswitch family. J Biol Chem 2024; 300:107951. [PMID: 39486689 PMCID: PMC11625349 DOI: 10.1016/j.jbc.2024.107951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024] Open
Abstract
Riboswitches sense specific cellular metabolites, leading to messenger RNA conformational changes that regulate downstream genes. Here, we review the three known prequeosine1 (preQ1) riboswitch classes, which encompass five gene-regulatory motifs derived from distinct consensus models of folded RNA pseudoknots. Structural and functional analyses reveal multiple gene-regulation strategies ranging from partial occlusion of the ribosome-binding Shine-Dalgarno sequence (SDS), SDS sequestration driven by kinetic or thermodynamic folding pathways, direct preQ1 recognition by the SDS, and complete SDS burial with in the riboswitch architecture. Family members can also induce elemental transcriptional pausing, which depends on ligand-mediated pseudoknot formation. Accordingly, preQ1 family members provide insight into a wide range of gene-regulatory tactics as well as a diverse repertoire of chemical approaches used to recognize the preQ1 metabolite. From a broader perspective, future challenges for the field will include the identification of new riboswitches in mRNAs that do not possess an SDS or those that induce ligand-dependent transcriptional pausing. When choosing an antibacterial target, the field must also consider how well a riboswitch accommodates mutations. Investigation of riboswitches in their natural context will also be critical to elucidate how RNA-mediated gene regulation influences organism fitness, thus providing a firm foundation for antibiotic development.
Collapse
Affiliation(s)
- Daniil Kiliushik
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Coleman Goenner
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Matthew Law
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Griffin M Schroeder
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Yoshita Srivastava
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Jermaine L Jenkins
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Joseph E Wedekind
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| |
Collapse
|
2
|
Huang E, Frydman C, Xiao X. Navigating the landscape of epitranscriptomics and host immunity. Genome Res 2024; 34:515-529. [PMID: 38702197 PMCID: PMC11146601 DOI: 10.1101/gr.278412.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
RNA modifications, also termed epitranscriptomic marks, encompass chemical alterations to individual nucleotides, including processes such as methylation and editing. These marks contribute to a wide range of biological processes, many of which are related to host immune system defense. The functions of immune-related RNA modifications can be categorized into three main groups: regulation of immunogenic RNAs, control of genes involved in innate immune response, and facilitation of adaptive immunity. Here, we provide an overview of recent research findings that elucidate the contributions of RNA modifications to each of these processes. We also discuss relevant methods for genome-wide identification of RNA modifications and their immunogenic substrates. Finally, we highlight recent advances in cancer immunotherapies that aim to reduce cancer cell viability by targeting the enzymes responsible for RNA modifications. Our presentation of these dynamic research avenues sets the stage for future investigations in this field.
Collapse
Affiliation(s)
- Elaine Huang
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, California 90095, USA
| | - Clara Frydman
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, California 90095, USA
| | - Xinshu Xiao
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, California 90095, USA;
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California 90095, USA
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, California 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
3
|
Xiao L, Fang L, Kool ET. 2'-OH as a universal handle for studying intracellular RNAs. Cell Chem Biol 2024; 31:110-124. [PMID: 37992716 PMCID: PMC10841764 DOI: 10.1016/j.chembiol.2023.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/28/2023] [Accepted: 10/29/2023] [Indexed: 11/24/2023]
Abstract
RNA plays pivotal roles in most cellular processes, serving as both the traditional carrier of genetic information and as a key regulator of cellular functions. The advent of chemical technologies has contributed critically to the analysis of cellular RNA structures, functions, and interactions. Many of these methods and molecules involve the utilization of chemically reactive handles in RNAs, either introduced externally or inherent within the polymer itself. Among these handles, the 2'-hydroxyl (2'-OH) group has emerged as an exceptionally well-suited and general chemical moiety for the modification and profiling of RNAs in intracellular studies. In this review, we provide an overview of the recent advancements in intracellular applications of acylation at the 2'-OH group of RNA. We outline progress made in probing RNA structure and interactomes, controlling RNA function, RNA imaging, and analyzing RNA-small molecule interactions, all achieved in living cells through this simple chemical handle on the biopolymer.
Collapse
Affiliation(s)
- Lu Xiao
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Linglan Fang
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Chauvier A, Walter NG. Regulation of bacterial gene expression by non-coding RNA: It is all about time! Cell Chem Biol 2024; 31:71-85. [PMID: 38211587 DOI: 10.1016/j.chembiol.2023.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
Commensal and pathogenic bacteria continuously evolve to survive in diverse ecological niches by efficiently coordinating gene expression levels in their ever-changing environments. Regulation through the RNA transcript itself offers a faster and more cost-effective way to adapt than protein-based mechanisms and can be leveraged for diagnostic or antimicrobial purposes. However, RNA can fold into numerous intricate, not always functional structures that both expand and obscure the plethora of roles that regulatory RNAs serve within the cell. Here, we review the current knowledge of bacterial non-coding RNAs in relation to their folding pathways and interactions. We posit that co-transcriptional folding of these transcripts ultimately dictates their downstream functions. Elucidating the spatiotemporal folding of non-coding RNAs during transcription therefore provides invaluable insights into bacterial pathogeneses and predictive disease diagnostics. Finally, we discuss the implications of co-transcriptional folding andapplications of RNAs for therapeutics and drug targets.
Collapse
Affiliation(s)
- Adrien Chauvier
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Schaffter SW, Wintenberg ME, Murphy TM, Strychalski EA. Design Approaches to Expand the Toolkit for Building Cotranscriptionally Encoded RNA Strand Displacement Circuits. ACS Synth Biol 2023; 12:1546-1561. [PMID: 37134273 DOI: 10.1021/acssynbio.3c00079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cotranscriptionally encoded RNA strand displacement (ctRSD) circuits are an emerging tool for programmable molecular computation, with potential applications spanning in vitro diagnostics to continuous computation inside living cells. In ctRSD circuits, RNA strand displacement components are continuously produced together via transcription. These RNA components can be rationally programmed through base pairing interactions to execute logic and signaling cascades. However, the small number of ctRSD components characterized to date limits circuit size and capabilities. Here, we characterize over 200 ctRSD gate sequences, exploring different input, output, and toehold sequences and changes to other design parameters, including domain lengths, ribozyme sequences, and the order in which gate strands are transcribed. This characterization provides a library of sequence domains for engineering ctRSD components, i.e., a toolkit, enabling circuits with up to 4-fold more inputs than previously possible. We also identify specific failure modes and systematically develop design approaches that reduce the likelihood of failure across different gate sequences. Lastly, we show the ctRSD gate design is robust to changes in transcriptional encoding, opening a broad design space for applications in more complex environments. Together, these results deliver an expanded toolkit and design approaches for building ctRSD circuits that will dramatically extend capabilities and potential applications.
Collapse
Affiliation(s)
- Samuel W Schaffter
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Molly E Wintenberg
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Terence M Murphy
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | | |
Collapse
|
6
|
Trinity L, Wark I, Lansing L, Jabbari H, Stege U. Shapify: Paths to SARS-CoV-2 frameshifting pseudoknot. PLoS Comput Biol 2023; 19:e1010922. [PMID: 36854032 PMCID: PMC10004594 DOI: 10.1371/journal.pcbi.1010922] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/10/2023] [Accepted: 02/05/2023] [Indexed: 03/02/2023] Open
Abstract
Multiple coronaviruses including MERS-CoV causing Middle East Respiratory Syndrome, SARS-CoV causing SARS, and SARS-CoV-2 causing COVID-19, use a mechanism known as -1 programmed ribosomal frameshifting (-1 PRF) to replicate. SARS-CoV-2 possesses a unique RNA pseudoknotted structure that stimulates -1 PRF. Targeting -1 PRF in SARS-CoV-2 to impair viral replication can improve patients' prognoses. Crucial to developing these therapies is understanding the structure of the SARS-CoV-2 -1 PRF pseudoknot. Our goal is to expand knowledge of -1 PRF structural conformations. Following a structural alignment approach, we identify similarities in -1 PRF pseudoknots of SARS-CoV-2, SARS-CoV, and MERS-CoV. We provide in-depth analysis of the SARS-CoV-2 and MERS-CoV -1 PRF pseudoknots, including reference and noteworthy mutated sequences. To better understand the impact of mutations, we provide insight on -1 PRF pseudoknot sequence mutations and their effect on resulting structures. We introduce Shapify, a novel algorithm that given an RNA sequence incorporates structural reactivity (SHAPE) data and partial structure information to output an RNA secondary structure prediction within a biologically sound hierarchical folding approach. Shapify enhances our understanding of SARS-CoV-2 -1 PRF pseudoknot conformations by providing energetically favourable predictions that are relevant to structure-function and may correlate with -1 PRF efficiency. Applied to the SARS-CoV-2 -1 PRF pseudoknot, Shapify unveils previously unknown paths from initial stems to pseudoknotted structures. By contextualizing our work with available experimental data, our structure predictions motivate future RNA structure-function research and can aid 3-D modeling of pseudoknots.
Collapse
Affiliation(s)
- Luke Trinity
- Department of Computer Science, University of Victoria, Victoria, British Columbia, Canada
| | - Ian Wark
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
| | - Lance Lansing
- Department of Computer Science, University of Victoria, Victoria, British Columbia, Canada
| | - Hosna Jabbari
- Department of Computer Science, University of Victoria, Victoria, British Columbia, Canada
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
- Institute on Aging and Lifelong Health, Victoria, British Columbia, Canada
| | - Ulrike Stege
- Department of Computer Science, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
7
|
Simmel FC. Nucleic acid strand displacement - from DNA nanotechnology to translational regulation. RNA Biol 2023; 20:154-163. [PMID: 37095744 PMCID: PMC10132225 DOI: 10.1080/15476286.2023.2204565] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Nucleic acid strand displacement reactions involve the competition of two or more DNA or RNA strands of similar sequence for binding to a complementary strand, and facilitate the isothermal replacement of an incumbent strand by an invader. The process can be biased by augmenting the duplex comprising the incumbent with a single-stranded extension, which can act as a toehold for a complementary invader. The toehold gives the invader a thermodynamic advantage over the incumbent, and can be programmed as a unique label to activate a specific strand displacement process. Toehold-mediated strand displacement processes have been extensively utilized for the operation of DNA-based molecular machines and devices as well as for the design of DNA-based chemical reaction networks. More recently, principles developed initially in the context of DNA nanotechnology have been applied for the de novo design of gene regulatory switches that can operate inside living cells. The article specifically focuses on the design of RNA-based translational regulators termed toehold switches. Toehold switches utilize toehold-mediated strand invasion to either activate or repress translation of an mRNA in response to the binding of a trigger RNA molecule. The basic operation principles of toehold switches will be discussed as well as their applications in sensing and biocomputing. Finally, strategies for their optimization will be described as well as challenges for their operation in vivo.
Collapse
Affiliation(s)
- Friedrich C Simmel
- TU Munich, School of Natural Sciences, Department of Bioscience, Garching, Germany
| |
Collapse
|
8
|
Structural and mechanistic basis for recognition of alternative tRNA precursor substrates by bacterial ribonuclease P. Nat Commun 2022; 13:5120. [PMID: 36045135 PMCID: PMC9433436 DOI: 10.1038/s41467-022-32843-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Binding of precursor tRNAs (ptRNAs) by bacterial ribonuclease P (RNase P) involves an encounter complex (ES) that isomerizes to a catalytic conformation (ES*). However, the structures of intermediates and the conformational changes that occur during binding are poorly understood. Here, we show that pairing between the 5′ leader and 3′RCCA extending the acceptor stem of ptRNA inhibits ES* formation. Cryo-electron microscopy single particle analysis reveals a dynamic enzyme that becomes ordered upon formation of ES* in which extended acceptor stem pairing is unwound. Comparisons of structures with alternative ptRNAs reveals that once unwinding is completed RNase P primarily uses stacking interactions and shape complementarity to accommodate alternative sequences at its cleavage site. Our study reveals active site interactions and conformational changes that drive molecular recognition by RNase P and lays the foundation for understanding how binding interactions are linked to helix unwinding and catalysis. Ribonuclease P efficiently processes all tRNA precursors despite sequence variation at the site of cleavage. Here, authors use high-throughput enzymology and cryoEM to reveal conformational changes that drive recognition by bacterial RNase P.
Collapse
|
9
|
Ujor VC, Lai LB, Okonkwo CC, Gopalan V, Ezeji TC. Ribozyme-Mediated Downregulation Uncovers DNA Integrity Scanning Protein A (DisA) as a Solventogenesis Determinant in Clostridium beijerinckii. Front Bioeng Biotechnol 2021; 9:669462. [PMID: 34169065 PMCID: PMC8217750 DOI: 10.3389/fbioe.2021.669462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/04/2021] [Indexed: 11/21/2022] Open
Abstract
Carbon catabolite repression (CCR) limits microbial utilization of lignocellulose-derived pentoses. To relieve CCR in Clostridium beijerinckii NCIMB 8052, we sought to downregulate catabolite control protein A (CcpA) using the M1GS ribozyme technology. A CcpA-specific ribozyme was constructed by tethering the catalytic subunit of Escherichia coli RNase P (M1 RNA) to a guide sequence (GS) targeting CcpA mRNA (M1GSCcpA). As negative controls, the ribozyme M1GSCcpA–Sc (constructed with a scrambled GSCcpA) or the empty plasmid pMTL500E were used. With a ∼3-fold knockdown of CcpA mRNA in C. beijerinckii expressing M1GSCcpA (C. beijerinckii_M1GSCcpA) relative to both controls, a modest enhancement in mixed-sugar utilization and solvent production was achieved. Unexpectedly, C. beijerinckii_M1GSCcpA–Sc produced 50% more solvent than C. beijerinckii_pMTL500E grown on glucose + arabinose. Sequence complementarity (albeit suboptimal) suggested that M1GSCcpA–Sc could target the mRNA encoding DNA integrity scanning protein A (DisA), an expectation that was confirmed by a 53-fold knockdown in DisA mRNA levels. Therefore, M1GSCcpA–Sc was renamed M1GSDisA. Compared to C. beijerinckii_M1GSCcpA and _pMTL500E, C. beijerinckii_M1GSDisA exhibited a 7-fold decrease in the intracellular c-di-AMP level after 24 h of growth and a near-complete loss of viability upon exposure to DNA-damaging antibiotics. Alterations in c-di-AMP-mediated signaling and cell cycling likely culminate in a sporulation delay and the solvent production gains observed in C. beijerinckii_M1GSDisA. Successful knockdown of the CcpA and DisA mRNAs demonstrate the feasibility of using M1GS technology as a metabolic engineering tool for increasing butanol production in C. beijerinckii.
Collapse
Affiliation(s)
- Victor Chinomso Ujor
- Fermentation Science Program, Department of Food Science, University of Wisconsin-Madison, Madison WI, United States
| | - Lien B Lai
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Christopher Chukwudi Okonkwo
- Department of Animal Sciences, Ohio State Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Venkat Gopalan
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Thaddeus Chukwuemeka Ezeji
- Department of Animal Sciences, Ohio State Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
10
|
Fremin BJ, Bhatt AS. Comparative genomics identifies thousands of candidate structured RNAs in human microbiomes. Genome Biol 2021; 22:100. [PMID: 33845850 PMCID: PMC8040213 DOI: 10.1186/s13059-021-02319-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 03/19/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Structured RNAs play varied bioregulatory roles within microbes. To date, hundreds of candidate structured RNAs have been predicted using informatic approaches that search for motif structures in genomic sequence data. The human microbiome contains thousands of species and strains of microbes. Yet, much of the metagenomic data from the human microbiome remains unmined for structured RNA motifs primarily due to computational limitations. RESULTS We sought to apply a large-scale, comparative genomics approach to these organisms to identify candidate structured RNAs. With a carefully constructed, though computationally intensive automated analysis, we identify 3161 conserved candidate structured RNAs in intergenic regions, as well as 2022 additional candidate structured RNAs that may overlap coding regions. We validate the RNA expression of 177 of these candidate structures by analyzing small fragment RNA-seq data from four human fecal samples. CONCLUSIONS This approach identifies a wide variety of candidate structured RNAs, including tmRNAs, antitoxins, and likely ribosome protein leaders, from a wide variety of taxa. Overall, our pipeline enables conservative predictions of thousands of novel candidate structured RNAs from human microbiomes.
Collapse
Affiliation(s)
- Brayon J Fremin
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Ami S Bhatt
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA.
- Department of Medicine (Hematology), Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
11
|
Andrzejewska A, Zawadzka M, Gumna J, Garfinkel DJ, Pachulska-Wieczorek K. In vivo structure of the Ty1 retrotransposon RNA genome. Nucleic Acids Res 2021; 49:2878-2893. [PMID: 33621339 PMCID: PMC7969010 DOI: 10.1093/nar/gkab090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/25/2022] Open
Abstract
Long terminal repeat (LTR)-retrotransposons constitute a significant part of eukaryotic genomes and influence their function and evolution. Like other RNA viruses, LTR-retrotransposons efficiently utilize their RNA genome to interact with host cell machinery during replication. Here, we provide the first genome-wide RNA secondary structure model for a LTR-retrotransposon in living cells. Using SHAPE probing, we explore the secondary structure of the yeast Ty1 retrotransposon RNA genome in its native in vivo state and under defined in vitro conditions. Comparative analyses reveal the strong impact of the cellular environment on folding of Ty1 RNA. In vivo, Ty1 genome RNA is significantly less structured and more dynamic but retains specific well-structured regions harboring functional cis-acting sequences. Ribosomes participate in the unfolding and remodeling of Ty1 RNA, and inhibition of translation initiation stabilizes Ty1 RNA structure. Together, our findings support the dual role of Ty1 genomic RNA as a template for protein synthesis and reverse transcription. This study also contributes to understanding how a complex multifunctional RNA genome folds in vivo, and strengthens the need for studying RNA structure in its natural cellular context.
Collapse
Affiliation(s)
- Angelika Andrzejewska
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Małgorzata Zawadzka
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Julita Gumna
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - David J Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Katarzyna Pachulska-Wieczorek
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
12
|
Li B, Cao Y, Westhof E, Miao Z. Advances in RNA 3D Structure Modeling Using Experimental Data. Front Genet 2020; 11:574485. [PMID: 33193680 PMCID: PMC7649352 DOI: 10.3389/fgene.2020.574485] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/02/2020] [Indexed: 12/26/2022] Open
Abstract
RNA is a unique bio-macromolecule that can both record genetic information and perform biological functions in a variety of molecular processes, including transcription, splicing, translation, and even regulating protein function. RNAs adopt specific three-dimensional conformations to enable their functions. Experimental determination of high-resolution RNA structures using x-ray crystallography is both laborious and demands expertise, thus, hindering our comprehension of RNA structural biology. The computational modeling of RNA structure was a milestone in the birth of bioinformatics. Although computational modeling has been greatly improved over the last decade showing many successful cases, the accuracy of such computational modeling is not only length-dependent but also varies according to the complexity of the structure. To increase credibility, various experimental data were integrated into computational modeling. In this review, we summarize the experiments that can be integrated into RNA structure modeling as well as the computational methods based on these experimental data. We also demonstrate how computational modeling can help the experimental determination of RNA structure. We highlight the recent advances in computational modeling which can offer reliable structure models using high-throughput experimental data.
Collapse
Affiliation(s)
- Bing Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yang Cao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Eric Westhof
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, Strasbourg, France
| | - Zhichao Miao
- Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| |
Collapse
|
13
|
Abstract
Ribosome profiling (Ribo-Seq) is a powerful method to study translation in bacteria. However, Ribo-Seq signal can be observed across RNAs that one would not expect to be bound by ribosomes. For example, Escherichia coli Ribo-Seq libraries also capture reads from most noncoding RNAs (ncRNAs). While some of these ncRNAs may overlap coding regions, this alone does not explain the majority of observed signal across ncRNAs. These fragments of ncRNAs in Ribo-Seq data pass all size selection steps of the Ribo-Seq protocol and survive hours of micrococcal nuclease (MNase) treatment. In this work, we specifically focus on Ribo-Seq signal across ncRNAs and provide evidence to suggest that RNA structure, as opposed to ribosome binding, protects them from degradation and allows them to persist in the Ribo-Seq sequencing library preparation. By inspecting these "contaminant reads" in bacterial Ribo-Seq, we show that data previously disregarded in bacterial Ribo-Seq experiments may, in fact, be used to gain partial information regarding the in vivo secondary structure of ncRNAs.IMPORTANCE Structured ncRNAs are pivotal mediators of bioregulation in bacteria, and their functions are often reliant on their specific structures. Here, we first inspect Ribo-Seq reads across noncoding regions, identifying contaminant reads in these libraries. We observe that contaminant reads in bacterial Ribo-Seq experiments that are often disregarded, in fact, strongly overlap with structured regions of ncRNAs. We then perform several bioinformatic analyses to determine why these contaminant reads may persist in Ribo-Seq libraries. Finally, we highlight some structured RNA contaminants in Ribo-Seq and support the hypothesis that structures in the RNA protect them from MNase digestion. We conclude that researchers should be cautious when interpreting Ribo-Seq signal as coding without considering signal distribution. These findings also may enable us to partially resolve RNA structures, identify novel structured RNAs, and elucidate RNA structure-function relationships in bacteria at a large scale and in vivo through the reanalysis of existing Ribo-Seq data sets.
Collapse
Affiliation(s)
- Brayon J Fremin
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Ami S Bhatt
- Department of Genetics, Stanford University, Stanford, California, USA
- Department of Medicine (Hematology), Stanford University, Stanford, California, USA
| |
Collapse
|
14
|
Jones AN, Pisignano G, Pavelitz T, White J, Kinisu M, Forino N, Albin D, Varani G. An evolutionarily conserved RNA structure in the functional core of the lincRNA Cyrano. RNA (NEW YORK, N.Y.) 2020; 26:1234-1246. [PMID: 32457084 PMCID: PMC7430676 DOI: 10.1261/rna.076117.120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/18/2020] [Indexed: 05/08/2023]
Abstract
The wide prevalence and regulated expression of long noncoding RNAs (lncRNAs) highlight their functional roles, but the molecular basis for their activities and structure-function relationships remains to be investigated, with few exceptions. Among the relatively few lncRNAs conserved over significant evolutionary distances is the long intergenic noncoding RNA (lincRNA) Cyrano (orthologous to human OIP5-AS1), which contains a region of 300 highly conserved nucleotides within tetrapods, which in turn contains a functional stretch of 26 nt of deep conservation. This region binds to and facilitates the degradation of the microRNA miR-7, a short ncRNA with multiple cellular functions, including modulation of oncogenic expression. We probed the secondary structure of Cyrano in vitro and in cells using chemical and enzymatic probing, and validated the results using comparative sequence analysis. At the center of the functional core of Cyrano is a cloverleaf structure maintained over the >400 million years of divergent evolution that separates fish and primates. This strikingly conserved motif provides interaction sites for several RNA-binding proteins and masks a conserved recognition site for miR-7. Conservation in this region strongly suggests that the function of Cyrano depends on the formation of this RNA structure, which could modulate the rate and efficiency of degradation of miR-7.
Collapse
Affiliation(s)
- Alisha N Jones
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| | - Giuseppina Pisignano
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
- Tumor Biology and Experimental Therapeutics Program, Institute of Oncology Research (IOR) and Oncology Institute of Southern Switzerland (IOSI), Bellinzona CH-6500, Switzerland
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Thomas Pavelitz
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| | - Jessica White
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| | - Martin Kinisu
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| | - Nicholas Forino
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| | - Dreycey Albin
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| |
Collapse
|
15
|
Design of a small molecule that stimulates vascular endothelial growth factor A enabled by screening RNA fold-small molecule interactions. Nat Chem 2020; 12:952-961. [PMID: 32839603 PMCID: PMC7571259 DOI: 10.1038/s41557-020-0514-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/24/2020] [Indexed: 12/20/2022]
Abstract
Vascular endothelial growth factor A (VEGFA) stimulates angiogenesis in human endothelial cells, and increasing its expression is a potential treatment for heart failure. Here, we report the design of a small molecule (TGP-377) that specifically and potently enhances VEGFA expression by the targeting of a non-coding microRNA that regulates its expression. A selection-based screen, named two-dimensional combinatorial screening, revealed preferences in small-molecule chemotypes that bind RNA and preferences in the RNA motifs that bind small molecules. The screening program increased the dataset of known RNA motif–small molecule binding partners by 20-fold. Analysis of this dataset against the RNA-mediated pathways that regulate VEGFA defined that the microRNA-377 precursor, which represses Vegfa messenger RNA translation, is druggable in a selective manner. We designed TGP-377 to potently and specifically upregulate VEGFA in human umbilical vein endothelial cells. These studies illustrate the power of two-dimensional combinatorial screening to define molecular recognition events between ‘undruggable’ biomolecules and small molecules, and the ability of sequence-based design to deliver efficacious structure-specific compounds.
Collapse
|
16
|
Zhang X, Li M, Liu Y. Optimization and characterization of position-selective labelling of RNA (PLOR) for diverse RNA and DNA sequences. RNA Biol 2020; 17:1009-1017. [PMID: 32249673 DOI: 10.1080/15476286.2020.1749797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Modifications of short RNAs at specific sites can be achieved commercially by solid-phase chemical synthesis method. However, labelling long RNAs is still challenging for the routine methods. Position-selective Labelling of RNA (PLOR) is a hybrid phase transcription method that allows to label RNAs at desired sites with great flexibility and decent efficiency. In principle, PLOR is a promising method for synthesis of long modified RNAs that are unable to be generated by solid-phase chemical synthesis and other methods. However, as a recently developed method, PLOR has been only applied to label a 71nt and a 104nt RNA, and the limited sequence applications of PLOR may hinder its potential usages. To extend PLOR to more RNAs, we tested the PLOR performances for various RNA sequences. Considering that the controlled transcriptional pauses at the initiation stage in PLOR may lead to different preferences on RNA sequences from in vitro transcription method, we here focused on identifying the effects of the 5'-end and initiated lengths of RNA on PLOR. In addition, our work demonstrated that PLOR efficiencies also varied with linker sizes of DNA templates. This work can facilitate PLOR to be the choice of synthesizing long modified RNAs for more users in the near future.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University , Shanghai, P. R. China
| | - Mengyang Li
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University , Shanghai, P. R. China
| | - Yu Liu
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University , Shanghai, P. R. China
| |
Collapse
|
17
|
Robinson EK, Covarrubias S, Carpenter S. The how and why of lncRNA function: An innate immune perspective. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2020; 1863:194419. [PMID: 31487549 PMCID: PMC7185634 DOI: 10.1016/j.bbagrm.2019.194419] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
Abstract
Next-generation sequencing has provided a more complete picture of the composition of the human transcriptome indicating that much of the "blueprint" is a vastness of poorly understood non-protein-coding transcripts. This includes a newly identified class of genes called long noncoding RNAs (lncRNAs). The lack of sequence conservation for lncRNAs across species meant that their biological importance was initially met with some skepticism. LncRNAs mediate their functions through interactions with proteins, RNA, DNA, or a combination of these. Their functions can often be dictated by their localization, sequence, and/or secondary structure. Here we provide a review of the approaches typically adopted to study the complexity of these genes with an emphasis on recent discoveries within the innate immune field. Finally, we discuss the challenges, as well as the emergence of new technologies that will continue to move this field forward and provide greater insight into the biological importance of this class of genes. This article is part of a Special Issue entitled: ncRNA in control of gene expression edited by Kotb Abdelmohsen.
Collapse
Affiliation(s)
- Elektra K Robinson
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States of America
| | - Sergio Covarrubias
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States of America
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States of America.
| |
Collapse
|
18
|
Desgranges E, Caldelari I, Marzi S, Lalaouna D. Navigation through the twists and turns of RNA sequencing technologies: Application to bacterial regulatory RNAs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194506. [PMID: 32068131 DOI: 10.1016/j.bbagrm.2020.194506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/20/2022]
Abstract
Discovered in the 1980s, small regulatory RNAs (sRNAs) are now considered key actors in virtually all aspects of bacterial physiology and virulence. Together with transcriptional and translational regulatory proteins, they integrate and often are hubs of complex regulatory networks, responsible for bacterial response/adaptation to various perceived stimuli. The recent development of powerful RNA sequencing technologies has facilitated the identification and characterization of sRNAs (length, structure and expression conditions) and their RNA targets in several bacteria. Nevertheless, it could be very difficult for non-experts to understand the advantages and drawbacks related to each offered option and, consequently, to make an informed choice. Therefore, the main goal of this review is to provide a guide to navigate through the twists and turns of high-throughput RNA sequencing technologies, with a specific focus on those applied to the study of sRNAs. This article is part of a Special Issue entitled: RNA and gene control in bacteria edited by Dr. M. Guillier and F. Repoila.
Collapse
Affiliation(s)
- Emma Desgranges
- Université de Strasbourg, CNRS, ARN UPR 9002, F-67000 Strasbourg, France
| | - Isabelle Caldelari
- Université de Strasbourg, CNRS, ARN UPR 9002, F-67000 Strasbourg, France
| | - Stefano Marzi
- Université de Strasbourg, CNRS, ARN UPR 9002, F-67000 Strasbourg, France
| | - David Lalaouna
- Université de Strasbourg, CNRS, ARN UPR 9002, F-67000 Strasbourg, France.
| |
Collapse
|
19
|
Velema WA, Kool ET. The chemistry and applications of RNA 2'-OH acylation. Nat Rev Chem 2020; 4:22-37. [PMID: 32984545 PMCID: PMC7513686 DOI: 10.1038/s41570-019-0147-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2019] [Indexed: 12/19/2022]
Abstract
RNA is a versatile biomolecule with a broad range of biological functions that go far beyond its initially described role as a simple information carrier. The development of chemical methods to control, manipulate and modify RNA has the potential to yield new insights into its many functions and properties. Traditionally, most of these methods involved the chemical modification of RNA structure using solid-state synthesis or enzymatic transformations. However, over the past 15 years, the direct functionalization of RNA by selective acylation of the 2'-hydroxyl (2'-OH) group has emerged as a powerful alternative that enables the simple modification of both synthetic and transcribed RNAs. In this Review, we discuss the chemical properties and design of effective reagents for RNA 2'-OH acylation, highlighting the unique problem of 2'-OH reactivity in the presence of water. We elaborate on how RNA 2'-OH acylation is being exploited to develop selective chemical probes that enable interrogation of RNA structure and function, and describe new developments and applications in the field.
Collapse
Affiliation(s)
| | - Eric T. Kool
- Department of Chemistry, Stanford University, Stanford, CA, USA
| |
Collapse
|
20
|
Kim J, Zhou Y, Carlson PD, Teichmann M, Chaudhary S, Simmel FC, Silver PA, Collins JJ, Lucks JB, Yin P, Green AA. De novo-designed translation-repressing riboregulators for multi-input cellular logic. Nat Chem Biol 2019; 15:1173-1182. [PMID: 31686032 PMCID: PMC6864284 DOI: 10.1038/s41589-019-0388-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 09/10/2019] [Indexed: 01/24/2023]
Abstract
Efforts to construct synthetic biological circuits with more complex functions have often been hindered by the idiosyncratic behavior, limited dynamic range, and crosstalk of commonly utilized parts. Here, we employ de novo RNA design to develop two high-performance translational repressors with sensing and logic capabilities. These synthetic riboregulators, termed toehold repressors and three-way junction (3WJ) repressors, detect transcripts with nearly arbitrary sequences, repress gene expression by up to 300-fold, and yield orthogonal sets of up to 15 devices. Automated forward engineering is used to improve toehold repressor dynamic range and SHAPE-Seq is applied to confirm the designed switching mechanism of 3WJ repressors in living cells. We integrate the modular repressors into biological circuits that execute universal NAND and NOR logic and evaluate the four-input expression NOT ((A1 AND A2) OR (B1 AND B2)) in Escherichia coli. These capabilities make toehold and 3WJ repressors valuable new tools for biotechnological applications.
Collapse
Affiliation(s)
- Jongmin Kim
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Yu Zhou
- Biodesign Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Paul D Carlson
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.,Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Mario Teichmann
- Physics Department E14 and ZNN/WSI, Technische Universität München, Garching, Germany
| | - Soma Chaudhary
- Biodesign Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Friedrich C Simmel
- Physics Department E14 and ZNN/WSI, Technische Universität München, Garching, Germany.,Nanosystems Initiative Munich, Munich, Germany
| | - Pamela A Silver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - James J Collins
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julius B Lucks
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.,Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA. .,Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | - Alexander A Green
- Biodesign Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA. .,School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
21
|
Currin A, Swainston N, Dunstan MS, Jervis AJ, Mulherin P, Robinson CJ, Taylor S, Carbonell P, Hollywood KA, Yan C, Takano E, Scrutton NS, Breitling R. Highly multiplexed, fast and accurate nanopore sequencing for verification of synthetic DNA constructs and sequence libraries. Synth Biol (Oxf) 2019; 4:ysz025. [PMID: 32995546 PMCID: PMC7445882 DOI: 10.1093/synbio/ysz025] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 01/09/2023] Open
Abstract
Synthetic biology utilizes the Design-Build-Test-Learn pipeline for the engineering of biological systems. Typically, this requires the construction of specifically designed, large and complex DNA assemblies. The availability of cheap DNA synthesis and automation enables high-throughput assembly approaches, which generates a heavy demand for DNA sequencing to verify correctly assembled constructs. Next-generation sequencing is ideally positioned to perform this task, however with expensive hardware costs and bespoke data analysis requirements few laboratories utilize this technology in-house. Here a workflow for highly multiplexed sequencing is presented, capable of fast and accurate sequence verification of DNA assemblies using nanopore technology. A novel sample barcoding system using polymerase chain reaction is introduced, and sequencing data are analyzed through a bespoke analysis algorithm. Crucially, this algorithm overcomes the problem of high-error rate nanopore data (which typically prevents identification of single nucleotide variants) through statistical analysis of strand bias, permitting accurate sequence analysis with single-base resolution. As an example, 576 constructs (6 × 96 well plates) were processed in a single workflow in 72 h (from Escherichia coli colonies to analyzed data). Given our procedure's low hardware costs and highly multiplexed capability, this provides cost-effective access to powerful DNA sequencing for any laboratory, with applications beyond synthetic biology including directed evolution, single nucleotide polymorphism analysis and gene synthesis.
Collapse
Affiliation(s)
- Andrew Currin
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
- School of Natural Sciences, Department of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Neil Swainston
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
- School of Natural Sciences, Department of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Mark S Dunstan
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
- School of Natural Sciences, Department of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Adrian J Jervis
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
- School of Natural Sciences, Department of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Paul Mulherin
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
- School of Natural Sciences, Department of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Christopher J Robinson
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
- School of Natural Sciences, Department of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Sandra Taylor
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
- School of Natural Sciences, Department of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Pablo Carbonell
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
- School of Natural Sciences, Department of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Katherine A Hollywood
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
- School of Natural Sciences, Department of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Cunyu Yan
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
- School of Natural Sciences, Department of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Eriko Takano
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
- School of Natural Sciences, Department of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Nigel S Scrutton
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
- School of Natural Sciences, Department of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Rainer Breitling
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
- School of Natural Sciences, Department of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
22
|
Katz N, Cohen R, Solomon O, Kaufmann B, Atar O, Yakhini Z, Goldberg S, Amit R. Synthetic 5' UTRs Can Either Up- or Downregulate Expression upon RNA-Binding Protein Binding. Cell Syst 2019; 9:93-106.e8. [PMID: 31129060 DOI: 10.1016/j.cels.2019.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 02/07/2019] [Accepted: 04/26/2019] [Indexed: 01/08/2023]
Abstract
The construction of complex gene-regulatory networks requires both inhibitory and upregulatory modules. However, the vast majority of RNA-based regulatory "parts" are inhibitory. Using a synthetic biology approach combined with SHAPE-seq, we explored the regulatory effect of RNA-binding protein (RBP)-RNA interactions in bacterial 5' UTRs. By positioning a library of RNA hairpins upstream of a reporter gene and co-expressing them with the matching RBP, we observed a set of regulatory responses, including translational stimulation, translational repression, and cooperative behavior. Our combined approach revealed three distinct states in vivo: in the absence of RBPs, the RNA molecules can be found in either a molten state that is amenable to translation or a structured phase that inhibits translation. In the presence of RBPs, the RNA molecules are in a semi-structured phase with partial translational capacity. Our work provides new insight into RBP-based regulation and a blueprint for designing complete gene-regulatory circuits at the post-transcriptional level.
Collapse
Affiliation(s)
- Noa Katz
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Roni Cohen
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Oz Solomon
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel; School of Computer Science, Interdisciplinary Center, 46150 Herzeliya, Israel
| | - Beate Kaufmann
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Orna Atar
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Zohar Yakhini
- Department of Computer Science, Technion - Israel Institute of Technology, 32000 Haifa, Israel; School of Computer Science, Interdisciplinary Center, 46150 Herzeliya, Israel
| | - Sarah Goldberg
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Roee Amit
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel; Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, 32000 Haifa, Israel.
| |
Collapse
|
23
|
Abstract
RNA performs and regulates a diverse range of cellular processes, with new functional roles being uncovered at a rapid pace. Interest is growing in how these functions are linked to RNA structures that form in the complex cellular environment. A growing suite of technologies that use advances in RNA structural probes, high-throughput sequencing and new computational approaches to interrogate RNA structure at unprecedented throughput are beginning to provide insights into RNA structures at new spatial, temporal and cellular scales.
Collapse
Affiliation(s)
- Eric J Strobel
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Angela M Yu
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Julius B Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
24
|
Excess primer degradation by Exo I improves the preparation of 3' cDNA ligation-based sequencing libraries. Biotechniques 2019; 67:110-116. [PMID: 31208218 DOI: 10.2144/btn-2018-0178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
RNA sequencing library construction using single-stranded ligation of a DNA adapter to 3' ends of cDNAs often produces primer-adapter byproducts, which compete with cDNA-adapter ligation products during library amplification and, therefore, reduces the number of informative sequencing reads. We find that Escherichia coli Exo I digestion efficiently and selectively removes surplus reverse transcription primer and thereby reduces the primer-adapter product contamination in 3' cDNA ligation-based sequencing libraries, including small RNA libraries, which are typically similar in size to the primer-adapter products. We further demonstrate that Exo I treatment does not lead to trimming of the cDNA 3' end when duplexed with the RNA template. Exo I digestion is easy to perform and implement in other protocols and could facilitate a more widespread use of 3' cDNA ligation for sequencing-based applications.
Collapse
|
25
|
Thompson RD, Baisden JT, Zhang Q. NMR characterization of RNA small molecule interactions. Methods 2019; 167:66-77. [PMID: 31128236 DOI: 10.1016/j.ymeth.2019.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 01/25/2023] Open
Abstract
Exciting discoveries of naturally occurring ligand-sensing and disease-linked noncoding RNAs have promoted significant interests in understanding RNA-small molecule interactions. NMR spectroscopy is a powerful tool for characterizing intermolecular interactions. In this review, we describe protocols and approaches for applying NMR spectroscopy to investigate interactions between RNA and small molecules. We review protocols for RNA sample preparation, methods for identifying RNA-binding small molecules, approaches for mapping RNA-small molecule interactions, determining complex structures, and characterizing binding kinetics. We hope this review will provide a guideline to streamline NMR applications in studying RNA-small molecule interactions, facilitating both basic mechanistic understandings of RNA functions and translational efforts in developing RNA-targeted therapeutics.
Collapse
Affiliation(s)
- Rhese D Thompson
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jared T Baisden
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qi Zhang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
26
|
Umuhire Juru A, Patwardhan NN, Hargrove AE. Understanding the Contributions of Conformational Changes, Thermodynamics, and Kinetics of RNA-Small Molecule Interactions. ACS Chem Biol 2019; 14:824-838. [PMID: 31042354 DOI: 10.1021/acschembio.8b00945] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The implication of RNA in multiple cellular processes beyond protein coding has revitalized interest in the development of small molecules for therapeutically targeting RNA and for further probing its cellular biology. However, the process of rationally designing such small molecule probes is hampered by the paucity of information about fundamental molecular recognition principles of RNA. In this Review, we summarize two important and often underappreciated aspects of RNA-small molecule recognition: RNA conformational dynamics and the biophysical properties of interactions of small molecules with RNA, specifically thermodynamics and kinetics. While conformational flexibility is often said to impede RNA ligand development, the ability of small molecules to influence the RNA conformational landscape can have a significant effect on the cellular functions of RNA. An analysis of the conformational landscape of RNA and the interactions of individual conformations with ligands can thus guide the development of new small molecule probes, which needs to be investigated further. Additionally, while it is common practice to quantify the binding affinities ( Ka or Kd) of small molecules for biomacromolecules as a measure of their activity, further biophysical characterization of their interaction can provide a deeper understanding. Studies that focus on the thermodynamic and kinetic parameters for interaction between RNA and ligands are next discussed. Finally, this Review provides the reader with a perspective on how such in-depth analysis of biophysical characteristics of the interaction of RNA and small molecules can impact our understanding of these interactions and how they will benefit the future design of small molecule probes.
Collapse
Affiliation(s)
- Aline Umuhire Juru
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Neeraj N. Patwardhan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Amanda E. Hargrove
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
27
|
Simmel FC, Yurke B, Singh HR. Principles and Applications of Nucleic Acid Strand Displacement Reactions. Chem Rev 2019; 119:6326-6369. [PMID: 30714375 DOI: 10.1021/acs.chemrev.8b00580] [Citation(s) in RCA: 418] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dynamic DNA nanotechnology, a subfield of DNA nanotechnology, is concerned with the study and application of nucleic acid strand-displacement reactions. Strand-displacement reactions generally proceed by three-way or four-way branch migration and initially were investigated for their relevance to genetic recombination. Through the use of toeholds, which are single-stranded segments of DNA to which an invader strand can bind to initiate branch migration, the rate with which strand displacement reactions proceed can be varied by more than 6 orders of magnitude. In addition, the use of toeholds enables the construction of enzyme-free DNA reaction networks exhibiting complex dynamical behavior. A demonstration of this was provided in the year 2000, in which strand displacement reactions were employed to drive a DNA-based nanomachine (Yurke, B.; et al. Nature 2000, 406, 605-608). Since then, toehold-mediated strand displacement reactions have been used with ever increasing sophistication and the field of dynamic DNA nanotechnology has grown exponentially. Besides molecular machines, the field has produced enzyme-free catalytic systems, all DNA chemical oscillators and the most complex molecular computers yet devised. Enzyme-free catalytic systems can function as chemical amplifiers and as such have received considerable attention for sensing and detection applications in chemistry and medical diagnostics. Strand-displacement reactions have been combined with other enzymatically driven processes and have also been employed within living cells (Groves, B.; et al. Nat. Nanotechnol. 2015, 11, 287-294). Strand-displacement principles have also been applied in synthetic biology to enable artificial gene regulation and computation in bacteria. Given the enormous progress of dynamic DNA nanotechnology over the past years, the field now seems poised for practical application.
Collapse
Affiliation(s)
| | - Bernard Yurke
- Micron School of Materials Science and Engineering , Boise State University , Boise , ID 83725 , United States
| | - Hari R Singh
- Physics Department , TU München , 85748 Garching , Germany
| |
Collapse
|
28
|
Katz N, Cohen R, Solomon O, Kaufmann B, Atar O, Yakhini Z, Goldberg S, Amit R. An in Vivo Binding Assay for RNA-Binding Proteins Based on Repression of a Reporter Gene. ACS Synth Biol 2018; 7:2765-2774. [PMID: 30408420 DOI: 10.1021/acssynbio.8b00378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We study translation repression in bacteria by engineering a regulatory circuit that functions as a binding assay for RNA binding proteins (RBP) in vivo. We do so by inducing expression of a fluorescent protein-RBP chimera, together with encoding its binding site at various positions within the ribosomal initiation region (+11-13 nt from the AUG) of a reporter module. We show that when bound by their cognate RBPs, the phage coat proteins for PP7 (PCP) and Qβ (QCP), strong repression is observed for all hairpin positions within the initiation region. Yet, a sharp transition to no-effect is observed when positioned in the elongation region, at a single-nucleotide resolution. Employing in vivo Selective 2'-hydroxyl acylation analyzed by primer extension followed by sequencing (SHAPE-seq) for a representative construct, established that in the translationally active state the mRNA molecule is nonstructured, while in the repressed state a structured signature was detected. We then utilize this regulatory phenomena to quantify the binding affinity of the coat proteins of phages MS2, PP7, GA, and Qβ to 14 cognate and noncognate binding sites in vivo. Using our circuit, we demonstrate qualitative differences between in vitro to in vivo binding characteristics for various variants when comparing to past studies. Furthermore, by introducing a simple mutation to the loop region for the Qβ-wt site, MCP binding is abolished, creating the first high-affinity QCP site that is completely orthogonal to MCP. Consequently, we demonstrate that our hybrid transcriptional-post-transcriptional circuit can be utilized as a binding assay to quantify RNA-RBP interactions in vivo.
Collapse
Affiliation(s)
- Noa Katz
- Department of Biotechnology and Food Engineering, Technion − Israel Institute of Technology, Haifa 32000, Israel
| | - Roni Cohen
- Department of Biotechnology and Food Engineering, Technion − Israel Institute of Technology, Haifa 32000, Israel
| | - Oz Solomon
- Department of Biotechnology and Food Engineering, Technion − Israel Institute of Technology, Haifa 32000, Israel
- School of Computer Science, Interdisciplinary Center, Herzeliya 46150, Israel
| | - Beate Kaufmann
- Department of Biotechnology and Food Engineering, Technion − Israel Institute of Technology, Haifa 32000, Israel
| | - Orna Atar
- Department of Biotechnology and Food Engineering, Technion − Israel Institute of Technology, Haifa 32000, Israel
| | - Zohar Yakhini
- Department of Computer Science, Technion − Israel Institute of Technology, Haifa 32000, Israel
- School of Computer Science, Interdisciplinary Center, Herzeliya 46150, Israel
| | - Sarah Goldberg
- Department of Biotechnology and Food Engineering, Technion − Israel Institute of Technology, Haifa 32000, Israel
| | - Roee Amit
- Department of Biotechnology and Food Engineering, Technion − Israel Institute of Technology, Haifa 32000, Israel
- Russell Berrie Nanotechnology Institute, Technion − Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
29
|
Leistra AN, Curtis NC, Contreras LM. Regulatory non-coding sRNAs in bacterial metabolic pathway engineering. Metab Eng 2018; 52:190-214. [PMID: 30513348 DOI: 10.1016/j.ymben.2018.11.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/31/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022]
Abstract
Non-coding RNAs (ncRNAs) are versatile and powerful controllers of gene expression that have been increasingly linked to cellular metabolism and phenotype. In bacteria, identified and characterized ncRNAs range from trans-acting, multi-target small non-coding RNAs to dynamic, cis-encoded regulatory untranslated regions and riboswitches. These native regulators have inspired the design and construction of many synthetic RNA devices. In this work, we review the design, characterization, and impact of ncRNAs in engineering both native and exogenous metabolic pathways in bacteria. We also consider the opportunities afforded by recent high-throughput approaches for characterizing sRNA regulators and their corresponding networks to showcase their potential applications and impact in engineering bacterial metabolism.
Collapse
Affiliation(s)
- Abigail N Leistra
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, TX 78712, USA
| | - Nicholas C Curtis
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, TX 78712, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, TX 78712, USA.
| |
Collapse
|
30
|
Mailler E, Paillart JC, Marquet R, Smyth RP, Vivet-Boudou V. The evolution of RNA structural probing methods: From gels to next-generation sequencing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1518. [PMID: 30485688 DOI: 10.1002/wrna.1518] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/13/2018] [Accepted: 10/17/2018] [Indexed: 01/09/2023]
Abstract
RNA molecules are important players in all domains of life and the study of the relationship between their multiple flexible states and the associated biological roles has increased in recent years. For several decades, chemical and enzymatic structural probing experiments have been used to determine RNA structure. During this time, there has been a steady improvement in probing reagents and experimental methods, and today the structural biologist community has a large range of tools at its disposal to probe the secondary structure of RNAs in vitro and in cells. Early experiments used radioactive labeling and polyacrylamide gel electrophoresis as read-out methods. This was superseded by capillary electrophoresis, and more recently by next-generation sequencing. Today, powerful structural probing methods can characterize RNA structure on a genome-wide scale. In this review, we will provide an overview of RNA structural probing methodologies from a historical and technical perspective. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry RNA Methods > RNA Analyses in vitro and In Silico RNA Methods > RNA Analyses in Cells.
Collapse
Affiliation(s)
- Elodie Mailler
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| | | | - Roland Marquet
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| | - Redmond P Smyth
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| | - Valerie Vivet-Boudou
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| |
Collapse
|
31
|
Smyth RP, Negroni M, Lever AM, Mak J, Kenyon JC. RNA Structure-A Neglected Puppet Master for the Evolution of Virus and Host Immunity. Front Immunol 2018; 9:2097. [PMID: 30283444 PMCID: PMC6156135 DOI: 10.3389/fimmu.2018.02097] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 08/24/2018] [Indexed: 11/13/2022] Open
Abstract
The central dogma of molecular biology describes the flow of genetic information from DNA to protein via an RNA intermediate. For many years, RNA has been considered simply as a messenger relaying information between DNA and proteins. Recent advances in next generation sequencing technology, bioinformatics, and non-coding RNA biology have highlighted the many important roles of RNA in virtually every biological process. Our understanding of RNA biology has been further enriched by a number of significant advances in probing RNA structures. It is now appreciated that many cellular and viral biological processes are highly dependent on specific RNA structures and/or sequences, and such reliance will undoubtedly impact on the evolution of both hosts and viruses. As a contribution to this special issue on host immunity and virus evolution, it is timely to consider how RNA sequences and structures could directly influence the co-evolution between hosts and viruses. In this manuscript, we begin by stating some of the basic principles of RNA structures, followed by describing some of the critical RNA structures in both viruses and hosts. More importantly, we highlight a number of available new tools to predict and to evaluate novel RNA structures, pointing out some of the limitations readers should be aware of in their own analyses.
Collapse
Affiliation(s)
- Redmond P Smyth
- Helmholtz Institute for RNA-based Infection Research, Würzburg, Germany.,Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Matteo Negroni
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, F-67000, Strasbourg, France
| | - Andrew M Lever
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Johnson Mak
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Julia C Kenyon
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Homerton College, Cambridge, United Kingdom
| |
Collapse
|
32
|
Zampetaki A, Albrecht A, Steinhofel K. Long Non-coding RNA Structure and Function: Is There a Link? Front Physiol 2018; 9:1201. [PMID: 30197605 PMCID: PMC6117379 DOI: 10.3389/fphys.2018.01201] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/10/2018] [Indexed: 01/12/2023] Open
Abstract
RNA has emerged as the prime target for diagnostics, therapeutics and the development of personalized medicine. In particular, the non-coding RNAs (ncRNAs) that do not encode proteins, display remarkable biochemical versatility. They can fold into complex structures and interact with proteins, DNA and other RNAs, modulating the activity, DNA targets or partners of multiprotein complexes. Thus, ncRNAs confer regulatory plasticity and represent a new layer of epigenetic control that is dysregulated in disease. Intriguingly, for long non-coding RNAs (lncRNAs, >200 nucleotides length) structural conservation rather than nucleotide sequence conservation seems to be crucial for maintaining their function. LncRNAs tend to acquire complex secondary and tertiary structures and their functions only impose very subtle sequence constraints. In the present review we will discuss the biochemical assays that can be employed to determine the lncRNA structural configurations. The implications and challenges of linking function and lncRNA structure to design novel RNA therapeutic approaches will also be analyzed.
Collapse
Affiliation(s)
- Anna Zampetaki
- King's British Heart Foundation Centre, King's College London, London, United Kingdom
| | - Andreas Albrecht
- Faculty of Science and Technology, Middlesex University, London, United Kingdom
| | | |
Collapse
|
33
|
Gasser C, Gebetsberger J, Gebetsberger M, Micura R. SHAPE probing pictures Mg2+-dependent folding of small self-cleaving ribozymes. Nucleic Acids Res 2018; 46:6983-6995. [PMID: 29924364 PMCID: PMC6101554 DOI: 10.1093/nar/gky555] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/28/2022] Open
Abstract
Self-cleaving ribozymes are biologically relevant RNA molecules which catalyze site-specific cleavage of the phosphodiester backbone. Gathering knowledge of their three-dimensional structures is critical toward an in-depth understanding of their function and chemical mechanism. Equally important is collecting information on the folding process and the inherent dynamics of a ribozyme fold. Over the past years, Selective-2'-Hydroxyl Acylation analyzed by Primer Extension (SHAPE) turned out to be a significant tool to probe secondary and tertiary interactions of diverse RNA species at the single nucleotide level under varying environmental conditions. Small self-cleaving ribozymes, however, have not been investigated by this method so far. Here, we describe SHAPE probing of pre-catalytic folds of the recently discovered ribozyme classes twister, twister-sister (TS), pistol and hatchet. The study has implications on Mg2+-dependent folding and reveals potentially dynamic residues of these ribozymes that are otherwise difficult to identify. For twister, TS and pistol ribozymes the new findings are discussed in the light of their crystal structures, and in case of twister also with respect to a smFRET folding analysis. For the hatchet ribozyme where an atomic resolution structure is not yet available, the SHAPE data challenge the proposed secondary structure model and point at selected residues and putative long-distance interactions that appear crucial for structure formation and cleavage activity.
Collapse
Affiliation(s)
- Catherina Gasser
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck CMBI, Leopold-Franzens University, Innrain 80-82, Innsbruck 6020, Austria
| | - Jennifer Gebetsberger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck CMBI, Leopold-Franzens University, Innrain 80-82, Innsbruck 6020, Austria
| | - Manuel Gebetsberger
- Division for Biomedical Physics, Medical University of Innsbruck, Müllerstraße 44, Innsbruck 6020, Austria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck CMBI, Leopold-Franzens University, Innrain 80-82, Innsbruck 6020, Austria
| |
Collapse
|
34
|
Peters G, Maertens J, Lammertyn J, De Mey M. Exploring of the feature space of de novo developed post-transcriptional riboregulators. PLoS Comput Biol 2018; 14:e1006170. [PMID: 30118473 PMCID: PMC6114898 DOI: 10.1371/journal.pcbi.1006170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 08/29/2018] [Accepted: 04/30/2018] [Indexed: 11/23/2022] Open
Abstract
Metabolic engineering increasingly depends upon RNA technology to customly rewire the metabolism to maximize production. To this end, pure riboregulators allow dynamic gene repression without the need of a potentially burdensome coexpressed protein like typical Hfq binding small RNAs and clustered regularly interspaced short palindromic repeats technology. Despite this clear advantage, no clear general design principles are available to de novo develop repressing riboregulators, limiting the availability and the reliable development of these type of riboregulators. Here, to overcome this lack of knowledge on the functionality of repressing riboregulators, translation inhibiting RNAs are developed from scratch. These de novo developed riboregulators explore features related to thermodynamical and structural factors previously attributed to translation initiation modulation. In total, 12 structural and thermodynamic features were defined of which six features were retained after removing correlations from an in silico generated riboregulator library. From this translation inhibiting RNA library, 18 riboregulators were selected using a experimental design and subsequently constructed and co-expressed with two target untranslated regions to link the translation inhibiting RNA features to functionality. The pure riboregulators in the design of experiments showed repression down to 6% of the original protein expression levels, which could only be partially explained by a ordinary least squares regression model. To allow reliable forward engineering, a partial least squares regression model was constructed and validated to link the properties of translation inhibiting RNA riboregulators to gene repression. In this model both structural and thermodynamic features were important for efficient gene repression by pure riboregulators. This approach enables a more reliable de novo forward engineering of effective pure riboregulators, which further expands the RNA toolbox for gene expression modulation. To allow reliable forward engineering of microbial cell factories, various metabolic engineering efforts rely on RNA-based technology. As such, programmable riboregulators allow dynamic control over gene expression. However, no clear design principles exist for de novo developed repressing riboregulators, which limits their applicability. Here, various engineering principles are identified and computationally explored. Subsequently, various design criteria are used in an experimental design, which were explored in an in vivo study. This resulted in a regression model that enables a more reliable computational design of repression small RNAs.
Collapse
Affiliation(s)
- Gert Peters
- Centre for Synthetic Biology, Ghent University, Ghent, Belgium
| | - Jo Maertens
- Centre for Synthetic Biology, Ghent University, Ghent, Belgium
| | | | - Marjan De Mey
- Centre for Synthetic Biology, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
35
|
Westermann AJ. Regulatory RNAs in Virulence and Host-Microbe Interactions. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0002-2017. [PMID: 30003867 PMCID: PMC11633609 DOI: 10.1128/microbiolspec.rwr-0002-2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Indexed: 02/06/2023] Open
Abstract
Bacterial regulatory RNAs are key players in adaptation to changing environmental conditions and response to diverse cellular stresses. However, while regulatory RNAs of bacterial pathogens have been intensely studied under defined conditions in vitro, characterization of their role during the infection of eukaryotic host organisms is lagging behind. This review summarizes our current understanding of the contribution of the different classes of regulatory RNAs and RNA-binding proteins to bacterial virulence and illustrates their role in infection by reviewing the mechanisms of some prominent representatives of each class. Emerging technologies are described that bear great potential for global, unbiased studies of virulence-related RNAs in bacterial model and nonmodel pathogens in the future. The review concludes by deducing common principles of RNA-mediated gene expression control of virulence programs in different pathogens, and by defining important open questions for upcoming research in the field.
Collapse
Affiliation(s)
- Alexander J Westermann
- Institute of Molecular Infection Biology, University of Würzburg
- Helmholtz Institute for RNA-Based Infection Research, D-97080 Würzburg, Germany
| |
Collapse
|
36
|
Sauter B, Gillingham D. Profiling the Nucleobase and Structure Selectivity of Anticancer Drugs and other DNA Alkylating Agents by RNA Sequencing. Chembiochem 2018; 19:1638-1642. [PMID: 29732707 DOI: 10.1002/cbic.201800235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Indexed: 01/10/2023]
Abstract
Drugs that covalently modify DNA are components of most chemotherapy regimens, often serving as first-line treatments. Classically, the reactivity and selectivity of DNA alkylating agents has been determined in vitro with short oligonucleotides. A statistically sound analysis of sequence preferences of alkylating agents is untenable with serial analysis methods because of the combinatorial explosion of sequence possibilities. Next-generation sequencing (NGS) is ideally suited for the broad characterization of sequence or structure selectivities because it analyzes many sequences at once. Herein, NGS is used to report on the chemoselectivity of alkylating agents on RNA and this technology is applied to the previously uncharacterized alkylating agent trimethylsilyl diazomethane.
Collapse
Affiliation(s)
- Basilius Sauter
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Dennis Gillingham
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| |
Collapse
|
37
|
Senoussi A, Lee Tin Wah J, Shimizu Y, Robert J, Jaramillo A, Findeiss S, Axmann IM, Estevez-Torres A. Quantitative Characterization of Translational Riboregulators Using an in Vitro Transcription-Translation System. ACS Synth Biol 2018; 7:1269-1278. [PMID: 29617125 DOI: 10.1021/acssynbio.7b00387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Riboregulators are short RNA sequences that, upon binding to a ligand, change their secondary structure and influence the expression rate of a downstream gene. They constitute an attractive alternative to transcription factors for building synthetic gene regulatory networks because they can be engineered de novo. However, riboregulators are generally designed in silico and tested in vivo, which provides little quantitative information about their performances, thus hindering the improvement of design algorithms. Here we show that a cell-free transcription-translation (TX-TL) system provides valuable information about the performances of in silico designed riboregulators. We first propose a simple model that provides a quantitative definition of the dynamic range of a riboregulator. We further characterize two types of translational riboregulators composed of a cis-repressed (cr) and a trans-activating (ta) strand. At the DNA level we demonstrate that high concentrations of taDNA poisoned the activator until total shut off, in agreement with our model, and that relative dynamic ranges of riboregulators determined in vitro are in agreement with published in vivo data. At the RNA level, we show that this approach provides a fast and simple way to measure dissociation constants of functional riboregulators, in contrast to standard mobility-shift assays. Our method opens the route for using cell-free TX-TL systems for the quantitative characterization of functional riboregulators in order to improve their design in silico.
Collapse
Affiliation(s)
- Anis Senoussi
- Sorbonne Université and CNRS, Laboratoire Jean Perrin, F-75005, Paris, France
| | | | - Yoshihiro Shimizu
- Laboratory for Cell-Free Protein Synthesis, RIKEN Quantitative Biology Center, Osaka 565-0874, Japan
| | - Jérôme Robert
- Sorbonne Université and CNRS, Laboratoire Jean Perrin, F-75005, Paris, France
| | - Alfonso Jaramillo
- Warwick Integrative Synthetic Biology Centre and School of Life Sciences, University of Warwick, CV4 7AL, Coventry, U.K
- CNRS Laboratoire iSSB, Université Paris-Saclay, Université d’ Évry and CEA, DRF, IG, Genoscope, F-91000 Évry, France
- Institute for Integrative Systems Biology, University of Valencia-CSIC, 46980 Paterna, Spain
| | - Sven Findeiss
- Dept. Computer Science and ICB, University Leipzig, D-04107 Leipzig, Germany
- University of Vienna, Faculties of Computer Science and Chemistry, Dept. of Theoretical Chemistry, A-1090 Vienna, Austria
| | - Ilka M. Axmann
- Institute for Synthetic Microbiology and CEPLAS, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | | |
Collapse
|
38
|
Abstract
This protocol is an extension to: Nat. Protoc. 10, 1643-1669 (2015); doi:10.1038/nprot.2015.103; published online 01 October 2015RNAs play key roles in many cellular processes. The underlying structure of RNA is an important determinant of how transcripts function, are processed, and interact with RNA-binding proteins and ligands. RNA structure analysis by selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) takes advantage of the reactivity of small electrophilic chemical probes that react with the 2'-hydroxyl group to assess RNA structure at nucleotide resolution. When coupled with mutational profiling (MaP), in which modified nucleotides are detected as internal miscodings during reverse transcription and then read out by massively parallel sequencing, SHAPE yields quantitative per-nucleotide measurements of RNA structure. Here, we provide an extension to our previous in vitro SHAPE-MaP protocol with detailed guidance for undertaking and analyzing SHAPE-MaP probing experiments in live cells. The MaP strategy works for both abundant-transcriptome experiments and for cellular RNAs of low to moderate abundance, which are not well examined by whole-transcriptome methods. In-cell SHAPE-MaP, performed in roughly 3 d, can be applied in cell types ranging from bacteria to cultured mammalian cells and is compatible with a variety of structure-probing reagents. We detail several strategies by which in-cell SHAPE-MaP can inform new biological hypotheses and emphasize downstream analyses that reveal sequence or structure motifs important for RNA interactions in cells.
Collapse
Affiliation(s)
- Matthew J Smola
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
39
|
Lackey L, Coria A, Woods C, McArthur E, Laederach A. Allele-specific SHAPE-MaP assessment of the effects of somatic variation and protein binding on mRNA structure. RNA (NEW YORK, N.Y.) 2018; 24:513-528. [PMID: 29317542 PMCID: PMC5855952 DOI: 10.1261/rna.064469.117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/04/2018] [Indexed: 05/22/2023]
Abstract
The impact of inherited and somatic mutations on messenger RNA (mRNA) structure remains poorly understood. Recent technological advances that leverage next-generation sequencing to obtain experimental structure data, such as SHAPE-MaP, can reveal structural effects of mutations, especially when these data are incorporated into structure modeling. Here, we analyze the ability of SHAPE-MaP to detect the relatively subtle structural changes caused by single-nucleotide mutations. We find that allele-specific sorting greatly improved our detection ability. Thus, we used SHAPE-MaP with a novel combination of clone-free robotic mutagenesis and allele-specific sorting to perform a rapid, comprehensive survey of noncoding somatic and inherited riboSNitches in two cancer-associated mRNAs, TPT1 and LCP1 Using rigorous thermodynamic modeling of the Boltzmann suboptimal ensemble, we identified a subset of mutations that change TPT1 and LCP1 RNA structure, with approximately 14% of all variants identified as riboSNitches. To confirm that these in vitro structures were biologically relevant, we tested how dependent TPT1 and LCP1 mRNA structures were on their environments. We performed SHAPE-MaP on TPT1 and LCP1 mRNAs in the presence or absence of cellular proteins and found that both mRNAs have similar overall folds in all conditions. RiboSNitches identified within these mRNAs in vitro likely exist under biological conditions. Overall, these data reveal a robust mRNA structural landscape where differences in environmental conditions and most sequence variants do not significantly alter RNA structural ensembles. Finally, predicting riboSNitches in mRNAs from sequence alone remains particularly challenging; these data will provide the community with benchmarks for further algorithmic development.
Collapse
Affiliation(s)
- Lela Lackey
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Aaztli Coria
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Chanin Woods
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Evonne McArthur
- School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
40
|
Lee YJ, Kim SJ, Moon TS. Multilevel Regulation of Bacterial Gene Expression with the Combined STAR and Antisense RNA System. ACS Synth Biol 2018; 7:853-865. [PMID: 29429328 DOI: 10.1021/acssynbio.7b00322] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Synthetic small RNA regulators have emerged as a versatile tool to predictably control bacterial gene expression. Owing to their simple design principles, small size, and highly orthogonal behavior, these engineered genetic parts have been incorporated into genetic circuits. However, efforts to achieve more sophisticated cellular functions using RNA regulators have been hindered by our limited ability to integrate different RNA regulators into complex circuits. Here, we present a combined RNA regulatory system in Escherichia coli that uses small transcription activating RNA (STAR) and antisense RNA (asRNA) to activate or deactivate target gene expression in a programmable manner. Specifically, we demonstrated that the activated target output by the STAR system can be deactivated by expressing two different types of asRNAs: one binds to and sequesters the STAR regulator, affecting the transcription process, while the other binds to the target mRNA, affecting the translation process. We improved deactivation efficiencies (up to 96%) by optimizing each type of asRNA and then integrating the two optimized asRNAs into a single circuit. Furthermore, we demonstrated that the combined STAR and asRNA system can control gene expression in a reversible way and can regulate expression of a gene in the genome. Lastly, we constructed and simultaneously tested two A AND NOT B logic gates in the same cell to show sophisticated multigene regulation by the combined system. Our approach establishes a methodology for integrating multiple RNA regulators to rationally control multiple genes.
Collapse
Affiliation(s)
- Young Je Lee
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Soo-Jung Kim
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
41
|
Mustoe AM, Busan S, Rice GM, Hajdin CE, Peterson BK, Ruda VM, Kubica N, Nutiu R, Baryza JL, Weeks KM. Pervasive Regulatory Functions of mRNA Structure Revealed by High-Resolution SHAPE Probing. Cell 2018; 173:181-195.e18. [PMID: 29551268 DOI: 10.1016/j.cell.2018.02.034] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/02/2018] [Accepted: 02/15/2018] [Indexed: 11/25/2022]
Abstract
mRNAs can fold into complex structures that regulate gene expression. Resolving such structures de novo has remained challenging and has limited our understanding of the prevalence and functions of mRNA structure. We use SHAPE-MaP experiments in living E. coli cells to derive quantitative, nucleotide-resolution structure models for 194 endogenous transcripts encompassing approximately 400 genes. Individual mRNAs have exceptionally diverse architectures, and most contain well-defined structures. Active translation destabilizes mRNA structure in cells. Nevertheless, mRNA structure remains similar between in-cell and cell-free environments, indicating broad potential for structure-mediated gene regulation. We find that the translation efficiency of endogenous genes is regulated by unfolding kinetics of structures overlapping the ribosome binding site. We discover conserved structured elements in 35% of UTRs, several of which we validate as novel protein binding motifs. RNA structure regulates every gene studied here in a meaningful way, implying that most functional structures remain to be discovered.
Collapse
Affiliation(s)
- Anthony M Mustoe
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA.
| | - Steven Busan
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Greggory M Rice
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA; Novartis Institutes for Biomedical Research, Inc., Cambridge, MA, USA
| | | | - Brant K Peterson
- Novartis Institutes for Biomedical Research, Inc., Cambridge, MA, USA
| | - Vera M Ruda
- Novartis Institutes for Biomedical Research, Inc., Cambridge, MA, USA
| | - Neil Kubica
- Novartis Institutes for Biomedical Research, Inc., Cambridge, MA, USA
| | - Razvan Nutiu
- Novartis Institutes for Biomedical Research, Inc., Cambridge, MA, USA
| | - Jeremy L Baryza
- Novartis Institutes for Biomedical Research, Inc., Cambridge, MA, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
42
|
Jayaraman D, Kenyon JC. New windows into retroviral RNA structures. Retrovirology 2018; 15:11. [PMID: 29368653 PMCID: PMC5784592 DOI: 10.1186/s12977-018-0393-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/12/2018] [Indexed: 12/16/2022] Open
Abstract
Background The multiple roles of both viral and cellular RNAs have become increasingly apparent in recent years, and techniques to model them have become significantly more powerful, enabling faster and more accurate visualization of RNA structures. Main body Techniques such as SHAPE (selective 2’OH acylation analysed by primer extension) have revolutionized the field, and have been used to examine RNAs belonging to many and diverse retroviruses. Secondary structure probing reagents such as these have been aided by the development of faster methods of analysis either via capillary or next-generation sequencing, allowing the analysis of entire genomes, and of retroviral RNA structures within virions. Techniques to model the three-dimensional structures of these large RNAs have also recently developed. Conclusions The flexibility of retroviral RNAs, both structural and functional, is clear from the results of these new experimental techniques. Retroviral RNA structures and structural changes control many stages of the lifecycle, and both the RNA structures themselves and their interactions with ligands are potential new drug targets. In addition, our growing understanding of retroviral RNA structures is aiding our knowledge of cellular RNA form and function.
Collapse
Affiliation(s)
- Dhivya Jayaraman
- Department of Medicine, National University of Singapore, 14 Medical Drive, MD 6, Level 15, Singapore, 117599, Singapore
| | - Julia Claire Kenyon
- Department of Medicine, University of Cambridge, Level 5 Addenbrookes Hospital Hills Rd, Cambridge, CB2 0QQ, UK. .,Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2 Blk MD4, Level 3, Singapore, 117545, Singapore. .,Homerton College, University of Cambridge, Hills Rd, Cambridge, CB2 8PH, UK.
| |
Collapse
|
43
|
Lee YJ, Moon TS. Design rules of synthetic non-coding RNAs in bacteria. Methods 2018; 143:58-69. [PMID: 29309838 DOI: 10.1016/j.ymeth.2018.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/31/2017] [Accepted: 01/03/2018] [Indexed: 12/21/2022] Open
Abstract
One of the long-term goals of synthetic biology is to develop designable genetic parts with predictable behaviors that can be utilized to implement diverse cellular functions. The discovery of non-coding RNAs and their importance in cellular processing have rapidly attracted researchers' attention towards designing functional non-coding RNA molecules. These synthetic non-coding RNAs have simple design principles governed by Watson-Crick base pairing, but exhibit increasingly complex functions. Importantly, due to their specific and modular behaviors, synthetic non-coding RNAs have been widely adopted to modulate transcription and translation of target genes. In this review, we summarize various design rules and strategies employed to engineer synthetic non-coding RNAs. Specifically, we discuss how RNA molecules can be transformed into powerful regulators and utilized to control target gene expression. With the establishment of generalizable non-coding RNA design rules, the research community will shift its focus to RNA regulators from protein regulators.
Collapse
Affiliation(s)
- Young Je Lee
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
44
|
Leistra AN, Mihailovic MK, Contreras LM. Fluorescence-Based Methods for Characterizing RNA Interactions In Vivo. Methods Mol Biol 2018; 1737:129-164. [PMID: 29484592 DOI: 10.1007/978-1-4939-7634-8_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fluorescence-based tools that measure RNA-RNA and RNA-protein interactions in vivo offer useful experimental approaches to probe the complex and dynamic physiological behavior of bacterial RNAs. Here we document the step-by-step design and application of two fluorescence-based methods for studying the regulatory interactions RNAs perform in vivo: (i) the in vivo RNA Structural Sensing System (iRS3) for measuring RNA accessibility and (ii) the trifluorescence complementation (TriFC) assay for measuring RNA-protein interactions.
Collapse
Affiliation(s)
- Abigail N Leistra
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Mia K Mihailovic
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
45
|
Meyer S, Carlson PD, Lucks JB. Characterizing the Structure-Function Relationship of a Naturally Occurring RNA Thermometer. Biochemistry 2017; 56:6629-6638. [PMID: 29172455 PMCID: PMC5807002 DOI: 10.1021/acs.biochem.7b01170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A large number of bacteria have been found to govern virulence and heat shock responses using temperature-sensing RNAs known as RNA thermometers. A prime example is the agsA thermometer known to regulate the production of the AgsA heat shock protein in Salmonella enterica using a "fourU" structural motif. Using the SHAPE-Seq RNA structure-probing method in vivo and in vitro, we found that the regulator functions by a subtle shift in equilibrium RNA structure populations that leads to a partial melting of the helix containing the ribosome binding site. We also demonstrate that binding of the ribosome to the agsA mRNA causes changes to the thermometer structure that appear to facilitate thermometer helix unwinding. These results demonstrate how subtle RNA structural changes can govern gene expression and illuminate the function of an important bacterial regulatory motif.
Collapse
Affiliation(s)
- Sarai Meyer
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University; 120 Olin Hall; Ithaca, NY 14853; USA
| | - Paul D. Carlson
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University; 120 Olin Hall; Ithaca, NY 14853; USA
| | - Julius B. Lucks
- Department of Chemical and Biological Engineering, Northwestern University; 2145 Sheridan Rd.; Evanston, IL 60208; USA
| |
Collapse
|
46
|
Leistra AN, Amador P, Buvanendiran A, Moon-Walker A, Contreras LM. Rational Modular RNA Engineering Based on In Vivo Profiling of Structural Accessibility. ACS Synth Biol 2017; 6:2228-2240. [PMID: 28796489 DOI: 10.1021/acssynbio.7b00185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bacterial small RNAs (sRNAs) have been established as powerful parts for controlling gene expression. However, development and application of engineered sRNAs has primarily focused on regulating novel synthetic targets. In this work, we demonstrate a rational modular RNA engineering approach that uses in vivo structural accessibility measurements to tune the regulatory activity of a multisubstrate sRNA for differential control of its native target network. Employing the CsrB global sRNA regulator as a model system, we use published in vivo structural accessibility data to infer the contribution of its local structures (substructures) to function and select a subset for engineering. We then modularly recombine the selected substructures, differentially representing those of presumed high or low functional contribution, to build a library of 21 CsrB variants. Using fluorescent translational reporter assays, we demonstrate that the CsrB variants achieve a 5-fold gradient of control of well-characterized Csr network targets. Interestingly, results suggest that less conserved local structures within long, multisubstrate sRNAs may represent better targets for rational engineering than their well-conserved counterparts. Lastly, mapping the impact of sRNA variants on a signature Csr network phenotype indicates the potential of this approach for tuning the activity of global sRNA regulators in the context of metabolic engineering applications.
Collapse
Affiliation(s)
- Abigail N. Leistra
- McKetta
Department of Chemical Engineering, University of Texas at Austin, 200
E. Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - Paul Amador
- Microbiology
Graduate Program, University of Texas at Austin, 100 E. 24th Street
Stop A6500, Austin, Texas 78712, United States
| | - Aishwarya Buvanendiran
- Biological
Sciences Program College of Natural Sciences, University of Texas at Austin, 120 Inner Campus Drive Stop G2500, Austin, Texas 78712, United States
| | - Alex Moon-Walker
- Biological
Sciences Program College of Natural Sciences, University of Texas at Austin, 120 Inner Campus Drive Stop G2500, Austin, Texas 78712, United States
| | - Lydia M. Contreras
- McKetta
Department of Chemical Engineering, University of Texas at Austin, 200
E. Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| |
Collapse
|
47
|
Ray AK, Naiyer S, Singh SS, Bhattacharya A, Bhattacharya S. Application of SHAPE reveals in vivo RNA folding under normal and growth-stressed conditions in the human parasite Entamoeba histolytica. Mol Biochem Parasitol 2017; 219:42-51. [PMID: 29175581 DOI: 10.1016/j.molbiopara.2017.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 11/30/2022]
Abstract
Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) is a versatile sequence independent method to probe RNA structure in vivo and in vitro. It has so far been tried mainly with model organisms. We show that cells of Entamoeba histolytica, a protozoan parasite of humans are hyper-sensitive to the in vivo SHAPE reagent, NAI, and show rapid loss of viability and RNA integrity. We optimized treatment conditions with 5.8S rRNA and Eh_U3 snoRNA to obtain NAI-modification while retaining RNA integrity. The modification patterns were highly reproducible. The in vivo folding was different from in vitro and correlated well with known interactions of 5.8S rRNA with proteins in vivo. The Eh_U3 snoRNA also showed many differences in its in vivo versus in vitro folding, which correlated with conserved interactions of this RNA with 18S rRNA and 5'-ETS. Further, Eh_U3 snoRNA obtained from serum-starved cells showed an open 3'-hinge structure, indicating disruption of 5'-ETS interaction. This could contribute to the observed slow processing of pre-rRNA in starved cells. Our work shows the applicability of SHAPE to study in vivo RNA folding in a parasite and will encourage the use of this reagent for RNA structure analysis in other such organisms.
Collapse
Affiliation(s)
- Ashwini Kumar Ray
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sarah Naiyer
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
48
|
Jang S, Jang S, Yang J, Seo SW, Jung GY. RNA-based dynamic genetic controllers: development strategies and applications. Curr Opin Biotechnol 2017; 53:1-11. [PMID: 29132120 PMCID: PMC7126020 DOI: 10.1016/j.copbio.2017.10.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/11/2017] [Accepted: 10/16/2017] [Indexed: 12/25/2022]
Abstract
Unique properties of RNA lead to the development of RNA-based dynamic genetic controllers. Natural riboswitches are re-engineered to detect new molecules. RNA-based regulatory mechanisms are exploited to construct novel dynamic RNA controllers. Computational methods and in vitro–in vivo selection enable de novo design of dynamic RNA controllers. Dynamic RNA controllers are utilized for metabolic engineering and synthetic biology.
Dynamic regulation of gene expression in response to various molecules is crucial for both basic science and practical applications. RNA is considered an attractive material for creating dynamic genetic controllers because of its specific binding to ligands, structural flexibility, programmability, and small size. Here, we review recent advances in strategies for developing RNA-based dynamic controllers and applications. First, we describe studies that re-engineered natural riboswitches to generate new dynamic controllers. Next, we summarize RNA-based regulatory mechanisms that have been exploited to build novel artificial dynamic controllers. We also discuss computational methods and high-throughput selection approaches for de novo design of dynamic RNA controllers. Finally, we explain applications of dynamic RNA controllers for metabolic engineering and synthetic biology.
Collapse
Affiliation(s)
- Sungho Jang
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sungyeon Jang
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jina Yang
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, 1, Gwanak-ro, Gwanak-Gu, Seoul 08826, Republic of Korea
| | - Sang Woo Seo
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, 1, Gwanak-ro, Gwanak-Gu, Seoul 08826, Republic of Korea.
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
49
|
Engstrom MD, Pfleger BF. Transcription control engineering and applications in synthetic biology. Synth Syst Biotechnol 2017; 2:176-191. [PMID: 29318198 PMCID: PMC5655343 DOI: 10.1016/j.synbio.2017.09.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/18/2022] Open
Abstract
In synthetic biology, researchers assemble biological components in new ways to produce systems with practical applications. One of these practical applications is control of the flow of genetic information (from nucleic acid to protein), a.k.a. gene regulation. Regulation is critical for optimizing protein (and therefore activity) levels and the subsequent levels of metabolites and other cellular properties. The central dogma of molecular biology posits that information flow commences with transcription, and accordingly, regulatory tools targeting transcription have received the most attention in synthetic biology. In this mini-review, we highlight many past successes and summarize the lessons learned in developing tools for controlling transcription. In particular, we focus on engineering studies where promoters and transcription terminators (cis-factors) were directly engineered and/or isolated from DNA libraries. We also review several well-characterized transcription regulators (trans-factors), giving examples of how cis- and trans-acting factors have been combined to create digital and analogue switches for regulating transcription in response to various signals. Last, we provide examples of how engineered transcription control systems have been used in metabolic engineering and more complicated genetic circuits. While most of our mini-review focuses on the well-characterized bacterium Escherichia coli, we also provide several examples of the use of transcription control engineering in non-model organisms. Similar approaches have been applied outside the bacterial kingdom indicating that the lessons learned from bacterial studies may be generalized for other organisms.
Collapse
Affiliation(s)
- Michael D. Engstrom
- Genetics-Biotechnology Center, University of Wisconsin-Madison School of Medicine and Public Health, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison College of Engineering, USA
| | - Brian F. Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison College of Engineering, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, USA
| |
Collapse
|
50
|
Dawn of the in vivo RNA structurome and interactome. Biochem Soc Trans 2017; 44:1395-1410. [PMID: 27911722 DOI: 10.1042/bst20160075] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/19/2016] [Accepted: 07/04/2016] [Indexed: 12/11/2022]
Abstract
RNA is one of the most fascinating biomolecules in living systems given its structural versatility to fold into elaborate architectures for important biological functions such as gene regulation, catalysis, and information storage. Knowledge of RNA structures and interactions can provide deep insights into their functional roles in vivo For decades, RNA structural studies have been conducted on a transcript-by-transcript basis. The advent of next-generation sequencing (NGS) has enabled the development of transcriptome-wide structural probing methods to profile the global landscape of RNA structures and interactions, also known as the RNA structurome and interactome, which transformed our understanding of the RNA structure-function relationship on a transcriptomic scale. In this review, molecular tools and NGS methods used for RNA structure probing are presented, novel insights uncovered by RNA structurome and interactome studies are highlighted, and perspectives on current challenges and potential future directions are discussed. A more complete understanding of the RNA structures and interactions in vivo will help illuminate the novel roles of RNA in gene regulation, development, and diseases.
Collapse
|